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Abstract Continental Antarctic is perceived as a largely pristine environment, although certain localized 

regions (e.g., parts of the Ross Dependency Dry Valleys) are relatively heavy impacted by human activities. 

The procedures imposed on Antarctic field parties for the handling and disposal of both solid and liquid 

wastes are designed to minimise eutrofication and contamination (particularly by human enteric bacteria). 

However, little consideration has been given to the significance, if any, of less obvious forms of microbial 

contamination resulting from periodic human activities in Antarctica. The predominant commensal 

microorganism on human skin, Staphylococcus epidermidis, could be detected by PCR, in Dry Valley mineral 

soils collected from heavily impacted areas, but could not be detected in Dry Valley mineral soils collected 

from low impact and pristine areas. Cell viability of this non-enteric human commensal is rapidly lost in 

Dry Valley mineral soil. However, S. epidermidis can persist for long periods in Dry Valley mineral soil as 

non-viable cells and/or naked DNA. 
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Introduction 

The Dry Valleys of Eastern Antarctica harbor a variety of unique microbial biotopes, including lake 

systems, mineral   soils,   endolithic-bearing   rock   strata   and seasonally inundated flush areas (Wynn-

Williams 1990; Cowan and Ah Tow 2004. Culturing and microscopic studies, comprehensively reviewed by 

Friedmann (1993), have shown that mineral soils contain a variety of bacteria, fungi, yeast and protozoa. 

Culture-independent techniques such as DNA fluorescent dyes (for example, SYBR Green) (Weinbauer et 

al. 1998; Carpenter et al. 2000) and ssu rRNA gene PCR techniques (Carpenter et al. 2000; Glockner et al. 

2000; Gordon et al. 2000) have contributed significantly to the detection and identification of new 

microorganisms in these extreme environments, but so-called 'uncultured' phylotypes remain the dominant 

sequences isolated (Smith et al. unpublished results). 

 

Various pathways for introducing microbes into Antarctica have been observed and these include atmo-

spheric circulation (wind), oceanic currents, fish, migratory birds and marine mammals (Vincent 2000). 

While studies have shown that pollen and microorganisms are introduced into Antarctica via atmospheric 

circulation (Vincent 1988; Priscu et al. 1999), these can be considered as a means of natural dissemination. 

However, increases in human activities in Antarctica have accelerated the rate of introduction of non-

indigenous microorganisms to the ice-free areas of the Antarctic continent. The durability or longevity of 

non-indigenous microorganisms in the Antarctic environment is also of concern. Numerous researchers 

have reported on the preservation of DNA in various environments, including amber (Cano and Borucki 

1995), tundra soil (Stokstad 2003), permafrost (Willerslev et al. 2003) as well as in subfossil bones of Adelie 

penguins in Antarctica (Lambert et al. 2002). 
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Scientific, exploratory and touristic interest in this unique continent has led to a rapid increase in human 

activities. Research activities in the Dry Valleys alone, serviced by only two scientific bases (McMurdo 

station (US) and Scott Base (NZ)), typically imposes 500-1,000 individuals across a reasonably localised 

area for durations of 2-8 weeks each austral summer period. The results of human activity potentially 

include physical disruption of surface soils, eutrofication of soils and water systems, and contamination by 

detritus, xenobi-otic chemicals and non-indigenous microorganisms. 

 

a Impact status: Pristine site < 0.1 h human presence within 50 m radius of sample site p.a., Medium impact site < 200 h human presence within 50 m 
radius of sample site p.a., High impact site > 1,000 h human presence within 50 m radius of sample site p.a. Note that positive control sample SB(D) 

represents approximately 15,000 h total impact (24 h p.d.x90 pax x7d accumulation) 

 

 

Site reference Location GPS reading Designationa 

CR1-2 Cape Royds, 20 m from front of historic hut 77°33.081'S 166°09.898'E Medium impact area 

CE1-2 Cape Evans, 20 m from ground in vicinity of front door to historic 

hut 

77°38.292'S 166°24.414'E Medium impact area 

MAC1 McMurdo station, from Derelict Junction bus stop 
- High impact area 

MAC2 McMurdo station, from pedestrian entrance to coffee shop 
- High impact area 

SB1 Scott Base, from vicinity of rear entrance to Base - High impact area 

SB2 Scott Base, from vicinity of side entrance to stores hanger - High impact area 

SB(D) Scott Base, floor dust from domestic vacuum cleaner - Positive control 
BIC1-3 Bratina Island camp sites, from ground outside doors of huts 1-3 78°00.82'S 165°33.05'E High impact areas 

BIC4 Bratina Island, pristine sample from ridge S of Salt Pond. 78°03.991'S 165°32.753'E Pristine site 

MVT12 Myers Valley, from steep ridge above frozen lake; Altitude, 2689' 
asl. 

78°03.968 S 163°52.083 E Pristine site 

UWV1 Upper Wright Valley, pristine sample from elevated 
valley. Altitude; 4322' asl. 

77°30.674'S 160°40.164'E Pristine site 

 

Table 1 Eastern Antarctic Ross Island and Dry Valleys mineral soils sampling sites 
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Fig. 1 Detection of Staphylococcus epidermidis in high impact, low impact and pristine sites in Antarctica. The S. epidermidis-specific PCR primers target 
a 124 bp DNA fragment which is specific to the S. epidermidis genome (Martineau et al. 1996). Approximately 10 ng of bulk genomic DNA, extracted 
from Antarctic Ross Dependency soil samples was used,as template DNA in S. epidermidis-specific PCR amplifications: SB1 (lane 1); SB2 (lane 
2); SB(D) (lane 3); BIC1 (lane 4); BIC2 (lane 5); BIC3 (lane 6); MAC1 (lane 7); MAC2 (lane 8); CR1 (lane 9); CR2 (lane 10); CE1 (lane 11); CE2 (lane 

12); BIC4 (lane 13); UWV1 (lane 14) and MVT12 (lane 15). N represents the PCR negative controls (sterile water as template); P represents the PCR 

positive controls (2 ng S. epidermidis genomic DNA as template); and M depicts the molecular weight marker (k Pst I). PCR products were visualized on a 
2% agarose gel containing 500 ig/ml Ethidium Bromide 

 

 

 

Microbial contamination has been detected at both the macroscopic (Eckford et al. 2002) and microscopic 

levels. For example, there are numerous reports on the isolation or detection of non-indigenous enteric 

bacteria derived from human faecal waste (McFeters et al. 1993; Edwards et al. 1998; Sjoling and Cowan 

2000; Bruni et al. 1997; Baker et al. 2003). Here we show that non-enteric human commensal microbiota 

are rapidly disseminated into the Antarctic Dry Valley mineral soils tested, and that although cell viability is 

rapidly lost, non-viable cells and/or naked DNA persist for long periods. 
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Fig. 2 S. epidermidis survival in BIC4 soil. a S. epidermidis isolation from BIC4 soil seeded with S. epidermidis. Plus signs represent isolation of S. 

epidermidis from the NA plates, while minus signs indicate failure to isolate S. epidermidis. b Detection of S. epidermidis in BIC4 soil seeded with S. 

epidermidis and incubated at 4°C for up to 54 weeks. DNA templates included total genomic DNA extracted from BIC4 soil (a pristine site) (lane 1); as 

well as BIC4 soil seeded with 1x105 cfu/ml S. epidermidis and incubated at 4°C for various lengths of time. Time of extractions, from the seeded samples 

were as follows: time 0 (immediately after inoculation with S. epidermidis) (lane 2); 1 week (lane 3); 2 weeks (lane 4); 3 weeks (lane 5); 4 weeks (lane 6); 

6 weeks (lane 7); 7 weeks (lane 8); 8 weeks (lane 9); 10 weeks (lane 10); 15 weeks (lane 11); 21 weeks (lane 12); 30 weeks (lane 13); 40 weeks (lane 14); 

and 54 weeks (lane 15). N represents the PCR negative controls (sterile water as template); P represents the PCR positive controls (2 ng S. epidermidis 

genomic DNA as template); and M depicts the molecular weight marker (k Pst I) 
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Fig. 3 Detection of S. epidermidis in BIC4 soil. Soil samples were seeded with S. epidermidis genomic DNA and incubated at 4°C for up to 23.5 weeks. 
DNA templates included total genomic DNA extracted from BIC4 soil (pristine site) (lane 1); as well as BIC4 soil seeded with S. epidermidis genomic 

DNA equivalent to 1 x105 cfu/ ml and incubated at 4°C for various lengths of time. Time of extractions, from the seeded samples, were as follows: time 0 

(immediately after inoculation with S. epidermidis genomic DNA) (lane 2); 1.5 days (lane 3); 3.5 days (lane 4); 3 weeks (lane 5); 5.5 weeks (lane 6); 9.5 
weeks (lane 7); 15.5 weeks (lane 8); and 23.5 weeks (lane 9). N represents the PCR negative control (sterile water as template); P represents the PCR 

positive control (2 ng S. epidermidis genomic DNA as template); and M depicts the molecular weight marker (k Pst I) 

 

 

Results and discussion 

Dry Valley mineral soils were collected aseptically in January 2002 from various sites in the Ross Depen-

dency region, Eastern Antarctica, namely (i) pristine sites; (ii) low impacted areas such as historic huts; and 

(iii) heavily impacted areas (Table 1). Samples were kept frozen from the time of collection and stored at 

—80°C. Bulk DNA was extracted directly from the Antarctic Dry Valley mineral soils (Table 1) according 

to the modified Zhou method (Stach et al. 2001). Genomic DNA concentrations ranged between 0.098 

ng/g w.w. soil. S. epidermidis, the predominant commensal microorganism  found  on  human  skin (Kloos 

et al. 1992), was used as a target organism for studies of dissemination and longevity. Using species-specific 

PCR (Martineau et al. 1996), we were able to detect S. epidermidis in Dry Valley mineral soils collected from 

sites that are heavily impacted by human activity (Table 1, Fig. 1). The presence of S. epidermidis cells in 

these high impact areas presumably results from the continuous dissemination of human skin and hair 

particles. In contrast, S. epidermidis could not be detected from mineral soils collected from low impact and 

'pristine' sites (Table 1, Fig. 1). The sensitivity of the S. epidermidis-specific primers (Martineau et al. 1996) was 

tested on DNA extracted from Antarctic volcanic ash seeded with serially diluted S. epidermidis cells 

(ranging from 1 x107 cfu/g to 1 x102 cfu/g). The level of detection of S. epidermidis in Antarctic soil was 

determined to be 1 x105 cfu/g (data not shown). This would imply that either S. epidermidis is not present in 

the lo-impact areas (e.g., pristine sites); or that S. epidermidis is not present in the low-impact areas in 

numbers below detection levels. 

 

It should be noted that S. epidermidis contamination in Antarctic mineral soils has been documented as early 

as 1978 (Friedmann 1993). It is therefore important to quantify the period that non-indigenous species 

such as S. epidermidis survive in the harsh Antarctic conditions. To address this issue, we inoculated 0.5 g 

aliquots of pristine Antarctic soil (BIC4) with 1x105 cfu/ml S. epidermidis and incubated at 4°C for an 

extended period. At various time intervals, aliquots of seeded soil were serially diluted in Ringer's solution 

(Merck), plated on Nutrient agar (NA) media (in duplicate) and incubated at 37°C for at least 24 h. The 

colony forming units per millilitre (cfu/ml) were calculated and plotted against time. Single colonies were 
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randomly selected from the NA plates and tested using S. epidermidis-specific PCR (Martineau et al. 1996) 

primers. S. epidermidis could be isolated from the seeded soil for no more than seven weeks from the time 

of inoculation (Fig. 2a), with an estimated t50 of approximately 4 days. However, S. epidermidis-specific PCR of 

DNA extracted from these seeded soil samples continued to show a positive amplification signal after 54 

weeks (Fig. 2b). Whether this result indicates that S. epidermidis continues to exist in a viable but non-

culturable (VBNC) state, as non-viable but non degraded cells, or merely as exposed DNA from lysed cells 

is not clear. 

 

To investigate DNA stability, we seeded 0.5 g aliquots of BIC4 soil with ~0.3 ng S. epidermidis genomic 

DNA (equivalent to 1 x105 cfu/ml) and incubated at 4°C. At various time intervals, bulk DNA was 

extracted (Stach et al. 2001) from aliquots and used as template DNA in S. epidermidis-specific PCR reactions 

(Marti-neau et al. 1996). S. epidermidis DNA could be detected in soil DNA extracts (Fig. 3) at the 

termination of the experiment (23.5 weeks). Although we cannot rule out the possibility that S. epidermidis 

survives in a VBNC state, this result suggests that naked genomic DNA is well preserved in Antarctic soil, 

possibly due to the low temperatures and water activities typical of Dry Valley soils (Wynn-Williams 1990). 

 

The survival of S. epidermidis genomic DNA in these harsh conditions has significant implications for the 

survival of any other contaminating microorganisms, including those less benign than S. epidermidis (Vincent 

2000). Regardless of whether S. epidermidis survives in the VBNC state or purely as naked DNA, these 

results suggest that in the desiccated mineral soils of the Antarctic continent, incident microbial cells of any 

source are probably not subject to the rapid lysis and degradation, as is assumed to occur in more 

temperate and moist environments. Our findings therefore potentially impact both on the interpretation of 

microbial diversity studies and on the results of gene mining in these 'so called' pristine sites. 
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