
KernTune: Self-tuning Linux Kernel Performance Using
Support Vector Machines

Long Yi
Department of Computer Science, University of

the Western Cape
Bellville, South Africa

2475600@uwc.ac.za

James Connan
Department of Computer Science, University of

the Western Cape
Bellville, South Africa

jconnan@uwc.ac.za

ABSTRACT
Self-tuning has been an elusive goal for operating systems
and is becoming a pressing issue for modern operating sys-
tems. Well-trained system administrators are able to tune
an operating system to achieve better system performance
for a specific system class. Unfortunately, the system class
can change when the running applications change. Our
model for self-tuning operating system is based on a monitor-
classify-adjust loop. The idea of this loop is to continuously
monitor certain performance metrics, and whenever these
change, the system determines the new system class and dy-
namically adjusts tuning parameters for this new class. This
paper describes KernTune, a prototype tool that identifies
the system class and improves system performance automat-
ically. A key aspect of KernTune is the notion of Artificial
Intelligence (AI) oriented performance tuning. It uses a sup-
port vector machine (SVM) to identify the system class, and
tunes the operating system for that specific system class.
This paper presents design and implementation details for
KernTune. It shows how KernTune identifies a system class
and tunes the operating system for improved performance.

Keywords
support vector machine, Linux kernel, operating system,
optimisation, performance, benchmark, machine learning,
workload, open source, system profiler

1. INTRODUCTION
KernTune is a combination of performance tuning and SVM
technology that provides a practical tool for operating sys-
tem optimisation needed to support continued improvements
in system performance. A major obstacle to operating sys-
tem optimisation is obtaining high-quality system informa-
tion that represents the current system usage. Ideally, such
information should be representative of how an operating
system is used on a machine. Given the current operating
system architecture, it is not practical for end-users to ob-
tain and use such information, as typical users do not know

how to generate the information and would not be able to
optimise their systems if they did. The KernTune tool ad-
dresses this problem, using the monitor-classify-adjust cycle
to collect, process, and apply information to optimise a sys-
tem automatically.

This paper describes our implementation of KernTune for
GNU/Linux systems. Our implementation is composed of
three components: the Monitor, the Classifier and the Ad-

justor. The monitor is a monitoring component that imple-
ments continuous, low-overhead collection and system in-
formation monitoring. The classifier is a classifying com-
ponent that translates system information and classifies the
system class, including computing the best possible system
class from the classification results. The adjustor is an ad-
justing component that implements optimisation, choosing
kernel parameters and adjusting system settings to the spe-
cific system class. In this paper we focus on the first two
components, the monitor and the classifier. Although some
discussion of the adjustor is needed to provide context for
the rest of the work, a detailed description of specific system
optimisations is outside the scope of this paper.

2. RELATED WORK
There are a number of tools for automatic Linux kernel opti-
misation. In this section we review some relevant tools and
explain how they differ from KernTune.

KernTune enables systems to evolve with changes in usage.
This functionality is currently not provided by any other
tool. KernTune builds on technology originally developed
for classification. Several existing tools adjust kernel pa-
rameters for the purpose of improving performance. These
tools differ from KernTune in two important ways. First,
though these tools are based on the designer’s knowledge
and experience of adjusting the kernel parameters for im-
proving performance, the users of the tools need to know the
purpose of the system (the system class). In KernTune, we
employ SVM technology to classify the system class. A fur-
ther difference between KernTune and earlier tuning tools is
that KernTune is designed specifically for automatic tuning
and optimisation. It runs as a daemon in the background
and keeps track of usage changes.

Powertweak-Linux [9] is a kernel tuning tool that improves
Linux system performance. It uses the /proc file-system,
and hdparm tool to tweak systems. Like KernTune, this
tool also performs optimisations on systems by known tun-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of the Western Cape Research Repository

https://core.ac.uk/display/62632694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ing rules. Powertweak-Linux was designed for Linux sys-
tems and can either apply manual optimisation or tuning
rules. KernTune uses machine learning, parameter-driven
and system-class-specific optimisations to improve system
performance.

The most recent tool for tuning the Linux kernel is the ker-
nel patches developed by Jake Moilanen [5]. He implements
an automatic optimisation module in the Linux kernel. It
supports continuous tuning of the kernel by applying a Ge-
netic Algorithm. There are substantial similarities between
Moilanen’s patches and KernTune. Both Moilanen’s patches
and KernTune use a Machine Learning method to tune sys-
tems while causing very little overhead. The primary differ-
ence between the two tools is how they are applied. In Kern-
Tune we have focused on classification, whereas the empha-
sis of Moilanen’s patch has been focused on chromosomes.
Another difference is that Moilanen’s patch works in the ker-
nel as a module and KernTune runs out of the kernel as a
daemon.

SarCheck [2] is another performance analysis and tuning tool
for Linux systems. It produces recommendations and expla-
nations for tuning the kernel with supporting graphs and ta-
bles. The KernTune does not produce recommendations and
Its goal is to tune real systems. Though the goal of SarCheck
is different from KernTune, the two tools share many simi-
larities: both tools continuously collect system information
and use the information to guide further operations. The
main differences between the two tools are that SarCheck
produces recommendations and suggestions for tuning the
kernel, it collects system information, and produces the op-
timisation recommendations, rather than applying the op-
timisation as in KernTune. KernTune also supports auto-
matic optimisation.

3. SVM CLASSIFICATION
In the last few years, there has been a surge of interest in
Support Vector Machines (SVMs), a new generation learn-
ing system based on recent advances in statistical learning
theory. SVMs have empirically been shown to deliver good
generalisation performance in real-world applications such
as text categorisation [4], hand-written character recogni-
tion [8], image classification [6], object detection [7], speaker
identification [12], etc. SVMs show a competitive perfor-
mance on problems where data is sparse (few data) and
noisy (many features). SVMs were first introduced in the
early 1990s by Vapnik [11] as a binary classification tool
and are rapidly growing in popularity due to many attrac-
tive features, and promising empirical performance.

We first briefly introduce basic ideas behind SVM. Then we
discuss SVM classification. Next, we present LibSVM, a
popular open source tool for SVM classification and regres-
sion.

3.1 Review of SVMs
Support Vector Machines (SVMs) are a set of related su-
pervised learning methods used for classification and regres-
sion. Their common factor is the use of a technique known
as the “kernel trick” to apply linear classification techniques
to non-linear classification problems.

Figure 1: (a) A linear classification (b) A non-
linear classification

Suppose we want to classify some data points into two classes.
We are interested in whether we can separate them by a hy-

perplane. A hyperplane is a geometrical concept. It is a
generalisation of the concept of a plane. We also want to
choose a hyperplane that separates the data points clearly,
with maximum distance to the closest data point from both
classes, this distance is called the margin. We desire this
margin as large as possible since we can more accurately
classify a new point when the separation between the two
classes is greater. If such a hyperplane exists, the hyper-
plane is clearly of interest and is known as the maximum-

margin hyperplane or the optimal hyperplane. The vectors
that are closest to this hyperplane are called the support

vectors. The basic idea behind SVMs is to learn a decision
hyperplane that separates the data points with maximum
margin. In linear classification cases, the algorithm aims to
find a linear decision hyperplane that can separate the data
points with maximum margin. In non-linear cases, the algo-
rithm maps the data points into a higher dimensional space
and thus finds a decision hyperplane that can separate the
data points linearly. Figure 1 (a) shows a classic example
for linear classification.

In this example, the objects: circles and squares, belong ei-
ther to class A—circles or B—squares. The separating line
defines a boundary between class A and B. Any new ob-
ject added to this example would be classified as class A or
class B. The above is the simplest example. Unfortunately,
most real-world problems are not that simple. Most prob-
lems involve non-linear separable data for which there does
not exist a hyperplane that can successfully separate one
class from another. More complex structures are needed to
make an optimal hyperplane. This situation is illustrated
by Figure 1 (b).

Compared to Figure 1 (a), it is clear that a curve instead
of a line, forms the separation between circles and squares.
The curve is more complex than the straight line. SVM is
particularly suitable to solve such problems. Rather than
drawing a curve between the two classes, SVM maps the
data into a higher dimensional space by using a kernel func-
tion and then draws a separating hyperplane there. Figure 2
shows the idea behind SVM non-linear classification.

This higher dimensional space is called the feature space
and the original training set is called the input space. With
an appropriately chosen feature space, any input space can
be separated linearly. In Figure 2, the original objects in
the input space have been mapped into the feature space by

I n p u t S p a c e F e a t u r e S p a c e

Figure 2: Mapping from input space to feature space

using a set of known functions as the kernel which maps the
input data into a different space—the feature space—where
a hyperplane can be used to do the separation. Note that in
the feature space, the mapped objects are linearly separable.
Thus, instead of drawing a complex curve in the input space

to separate the circles and squares, we find an optimal line
in the feature space that separates the two classes linearly.
A more detailed introduction on SVM can be found at [11].

3.2 SVM Classification
The SVM is a supervised classification technique for creating
a classifier from training data. The training data consist of
pairs of input objects typically vectors, and desired outputs.
The output can be a continuous value—called regression, or
can be class labels of the input object—called classification.
Since the primary interest of our research is SVM classifi-
cation, we will ignore SVM regression and focus on SVM
classification.

SVM classification usually involves two kinds of data, train-
ing data and testing data. The training data includes some
training examples. Each of those examples contains one la-

bel and several attributes. The testing data includes testing
examples, which each of them containing several attributes.
Using the training set, the SVM classifier would distinguish
between the members and non-members of a given class.
Having learned the features of the class, the SVM can pre-
dict new objects as members or as non-members of the class.
The goal of SVM classification is to predict the label of test-
ing instances which are only given by attributes in the testing
set by learning from the training instances in the training
set. To achieve this, the SVM learns a separating hyper-
plane from the training data by using the kernel function to
map the data point into a higher dimensional space.

3.3 LibSVM
LibSVM (Library for Support Vector Machines) [1] is a sim-
ple and easy-to-use open source implementation for SVM.
It was developed by Chang and Li and contains C-support
vector classification (C-SVC) [3], v-support vector classi-
fication (v-SVC) [8], e-support vector regression (e-SVR)
[8], and v-support vector regression (v-SVR) [10]. It sup-

ports multi-class classification, weighted SVM for unbal-
anced data, cross-validation and automatic model selection.
It has interfaces for Python, R, Splus, MATLAB, Perl, Ruby,
and LabVIEW. Users can easily link it with their own pro-
grams. It includes four kernels: Linear, Polynomial, Radial
Basis Function (RBF), and Sigmoid. The goal of LibSVM
is to help users to easily use SVM as a tool. We use the
C-support classification and RBF kernel in our KernTune.

4. DESIGN AND IMPLEMENTATION
We designed our KernTune tool to meet a number of re-
quirements that we believe are necessary for mainstream
systems:

• Optimisation should happen on the machine where the
application or service is running. For complex systems,
there can be substantial variation in how the operating
system is used for different requirements. Given these
variations between system classes, automatic optimisa-
tion will be most effective if it can process information
specific to the system and the machine.

• Optimisation should not happen only once. In a real
computing environment, system usage changes accord-
ing to various requirements. The application or service
running in the morning might not be used by end-users
in the evening. The end-users could require another
service instead of the morning one. Re-optimisation
for this requirement is reasonable, but it is not prac-
tical for end-users to keep optimising a dynamically
changing system. To enable optimisation continuously,
we assume that the system information represents the
class of system and base all optimisations on this sys-
tem class. In practice, a user-level daemon is usually
used for this.

• Optimisation must be transparent to the user. We
assume that the people who use computers do not
have much background in the field of computers or
system optimisation. Optimisation should be trans-
parent in that the user does not need to understand or
participate in the optimisation process. Transparency
also implies that the optimisations must achieve con-
sistent performance benefits with no negative perfor-
mance impact.

The KernTune tool is designed to address all these require-
ments. It automatically collects and analyses system infor-
mation and uses that to optimise the kernel. Our prototype
implementation of KernTune supports automatic optimisa-
tion for Intel x86-based computers running the Linux kernel.
We built several custom system tools to collect performance
data, test results and made small modifications to LibSVM
to support automatic collection and classification. The main
component of KernTune is based on the Library for Support
Vector Machines (LibSVM) [1]. We have extended this li-
brary to support constant system-specific optimisation.

4.1 Overview of KernTune
Our initial design targets a single server environment. Kern-
Tune provides a monitor-classify-adjust cycle control for
SVM-based and system-specific optimisation. An important

/ P r o c F i l e � S y s t e m
T h e M C A C y c l eT h e M o n i t o rT h e C l a s s i fi e r T h e A d j u s t o r

T h e T r a i n i n g s e t
Figure 3: Overview of KernTune

feature of KernTune is that optimisation occurs on the sys-
tem where the applications are running. The optimisation
occurs only when the applications or services have already
changed.

The major components of KernTune and their relationships
are represented schematically in Figure 3. Optimisations
in KernTune are applied without the use of Linux kernel
source code. To achieve this goal we explore the /proc file-
system that presents the state of a running GNU/Linux sys-
tem. Prior work on Linux kernel tuning was implemented
by Jake Moilane [5]. His goals were to modify the kernel
source and applying a Genetic Algorithm (GA) to kernel
optimisation. An important aspect of our design is that
the monitor-classify-adjust cycle is machine and operating
system independent. Though we are aware of prior work
on automatic kernel optimisation, we have chosen not to
modify the Linux kernel, focusing instead on the problem of
using SVM-based optimisations to improve system perfor-
mance. The traditional method for providing a viable tool
for self-optimisation is to define a series of optimisation rules
that build a knowledge-based database to support various
system classes. Our method is to apply the SVM technology
to build a system tool (KernTune) that permits automatic
adjustment of system settings.

KernTune has three major software components: monitor,
classifier and adjustor. The monitor collects system infor-
mation for use by the classifier. The monitor collects system
information with very low overhead, leaving subsequent pro-
cessing to the classifier. The classifier is a user-level daemon
that provides system settings management as well as infor-
mation analysis to classify system classes and decide when
to invoke the adjustor. The adjustor implements the opti-
misations provided by KernTune. The current version of
our Adjustor supports three different system-class optimisa-
tions: web server class, ftp server class and database server
class.

4.2 Data Collection:The monitor

All the optimisations require system-specific information, in-
cluding the active application information and performance

counters. The monitor automatically collects this informa-
tion. The data collection is implemented in the monitor,
the output of the monitor is the input of the classifier. One
key goal of the monitor is low system overhead. Our moni-
tor achieves this goal by using a subset of the performance
counters and the active application information, rather than
collecting all performance and application data. A straight-
forward approach for system data collection is real-time col-
lection. Although this approach has the advantage that it
is well understood, the system overhead incurred during the

monitor execution would be substantial. If too little data is
collected, it would be difficult to ensure that the resulting
data was representative of the system class. By collecting
performance counters and the active application informa-
tion on the system continuously, we assure that the data
accurately reflects how the system is used.

After collecting the system data from the /proc file-system,
we combine the individual performance counters from each
performance object to generate a single basic output file.
The monitor sums the counters from each performance ob-
ject for each kernel module to create an aggregate file. This
file includes the active application name, its open port num-
ber, and other system performance counters such as proces-
sor time, memory usage, packets sent/sec, etc. (See Sec-
tion 4.3). The selection of performance counters is a gen-
eral problem for performance tools and is not unique to our
methodology. In conventional performance tools, complete
system information is collected. It is a large data collec-
tion and results in system overhead. By contrast KernTune
only collects a very small amount of important performance
counters and the active application information. We believe
that our method is appropriate, even though complete data
collection can give better classification results.

The overhead of our current monitor satisfies our main sub-
jective performance goal: it is unnoticeable. Measurements
of our current monitor implementation show the overhead of
system profiling is typically below 1% of CPU usage. Given
this level of performance, we have chosen to defer further
work on reducing monitor overhead and focus on the other
functionality required for automatic optimisation.

4.3 Data Processing:The classifier

The classifier is implemented as a user-level daemon that
periodically reads and processes the raw data samples gen-
erated by the monitor. Whereas the monitor is responsible
for data collection, the classifier performs data translation
and processing. The goals of this processing are twofold: to
transform the raw data samples into a compact form that
can be used directly by LibSVM and to decide when to in-
voke an optimisation. In our work to date, we have primarily
focused on transforming raw data for use by LibSVM.

The classifier translates the monitor output file into the
LibSVM file format and identifies the system class in the
translated file by applying LibSVM. In the conversion from
raw data to the LibSVM file format, each sample has to
be translated into numeric values that the LibSVM library
can recognise. The translated data provides the information
needed by LibSVM to identify the system class. LibSVM
maps the translated data to an intermediate form that the
LibSVM engine can process.

From the optimisation point of view, operating systems are
logically composed of multiple modules, typically with CPU,
memory, file-system, disk I/O and networking. The number
of performance counters used results in increasing the clas-
sification accuracy. We use the term sample set to refer to
the output from the monitor. When processing the sample
set, the classifier invokes the svm predict interface of Lib-
SVM and outputs a result file containing the class of system
being recognised. A sample set may not include enough in-
formation to perform an accurate classification. This makes
it desirable for the classifier to process multiple sample sets
from the monitor and combine the results into a single, more
accurate, result for the adjustor. The classifier sums all the
results and concludes the best possible system class.

4.4 System Tuning:The adjustor

The adjustor applies optimisations using the system class
from the classifier. For this paper, the adjustor implemented
three different system-class optimisations, namely the Web
Server, Ftp Server and Database Server classes. The input
to the adjustor is the system class which has already been
identified by the classifier. Using a set of suggested kernel
values, the adjustor performed optimisations through the
sysctl system call.

When the classifier gives us a clear recommendation on
which parameter should be adjusted and by how much, we
merely have to change the parameter. However, this sim-
ple adjustment may cause technical problems: dynamically
changing parameters could cause system instability while
the system is performing a high workload. To address this
problem, an adaptable mechanism is necessary for the high-
workload condition. We provide an extra workload check
before adjusting the parameters, to make sure the adjust-
ment is under a low-workload. The optimisations do not
have to include all tuning parameters since the parameters
are used only to direct optimisation toward the most impor-
tant parts of the system. Our KernTune Adjustor is cur-
rently implemented as a composition of tuning rules which
optimise the most important kernel components for the sys-
tem class. Considering system overhead and complexity, we
have chosen to adjust the most important parameters that
impact on the performance rather than adjusting every pa-
rameter in the kernel.

Since these optimisations make some system components
run faster at the expense of others, a potential pitfall of
the optimisation is that the system might perform worse
when running more interactive applications on the system.
This problem could be avoided by introducing more system
characteristics which represent more system classes into the
training set, for example, adding the port numbers of appli-
cations or services to the sample set. This scheme is used
by the monitor and the classifier.

5. EXPERIMENTAL RESULTS
This section describes our experiments to evaluate auto-
matic SVM-based optimisation with KernTune. After de-
scribing the experimental system and workloads, we present
two sets of results. One set of experiments documents the
correctness of classification in KernTune. The second set
of experiments quantifies the effectiveness of optimisation
in the KernTune Adjustor. We report the results, both in

terms of correctness of classification and effectiveness of op-
timisation. Our experimental results show that the correct-
ness of classification using SVM is as high as 90% and the
optimisations applied by KernTune achieve substantial per-
formance improvements for our test workloads. The main
criteria upon which KernTune should be evaluated is its cor-
rectness for SVM classification. This section also discusses
issues relating to making KernTune more practical.

5.1 Experimental Details
Our KernTune prototype tool used the Linux kernel 2.4.29.
We ran our experiments on two Intel x86-based PCs. One
machine represented a server from one of our chosen system
classes. The other machine was a workload generator to sim-
ulate a real computing environment. The two systems both
include a 512 KB second-level cache and 256 MB of main
memory and they have exactly the same hardware config-
uration. The target experimental system is based on Gen-
too Linux version 2004.2. The workload-generator system
is based on SUSE Linux 10.0. We used three workloads: a
web server workload, an ftp server workload and a database
workload for the three system classes in this study.

Table 1 gives a description of each workload generator. All
experiments for this paper were run in single-system-class
mode. Two factors limited our choice of workloads. First,
the system workload must be easily simulated by existing
tools. As a research performance tool, KernTune does not
support a full set of system classes and workloads. Second, a
benchmark tool for the workload must be readily available.
As a result we were unable to simulate workloads for many
popular system classes. We also excluded similar training
samples within a class, as they will not affect the SVM pro-
cessing in the classifier significantly.

5.2 Classification Results
Table 2 shows our classification experimental results for the
three system-class workloads. It gives the number of testing
attempts and the system classes identified by the classifier.
The accuracy is the ratio of correct classification against
the total number of test attempts. There are two accuracy
results in the table. One is calculated from a training set
including only 40 samples. The other is calculated from a
bigger training set with 400 samples. Our comparative ex-
periment results demonstrate that increasing effective train-
ing samples improves the classification results of the SVM
significantly. Classification using SVM technology achieves
a high accuracy, depending on system class. However, more
training samples will need more CPU time to analyse and
calculate, this would lead to a high overhead of the sys-
tem. Our experience with SVM suggests that an effective
and small training set is needed to obtain better accuracy
of classification. To determine the trade-off between the ap-
propriate number of training samples and system overhead
is important. Our experiments show that using up to 2000
samples causes tolerable overhead. Table 3 lists the over-
head in the 400-sample case. Figure 4 plots the accuracy of
classification for each class as the number of samples are var-
ied. Figure 5 plots the overhead as the number of samples
are varied. We developed perfmon for monitoring system
performance and it is also a part of the monitor.

5.3 Performance Results

Table 1: Workload Simulation
System Class Workload Generator

web server httperf runs multiple http fetches
in parallel, to simulate a web server
workload. It can also be considered
a web server benchmark tool.
Example:
./httperf --wsess=1000,50,0

--rate=200

--server=xxx.xxx.xxx.xxx

--uri=/index.html

ftp server dkftpbench is an ftp benchmark
tool. It can be used as a ftp server
workload generator. Example:
./dkftpbench -n1

-hxxx.xxx.xxx.xxx -t30 -v

-uftp -pftp -fbigfile

database server The mysql test suit is a database
benchmark suite for mysql. It in-
cludes test insert, test select,
test connect and test create tools.
They can be found in the mysql
package. They can also be used as
sql simulation generators to simu-
late database workloads. Example:
./test insert;./test select

Table 2: Classification Results
System Class Test Tool Attempts 40 400

Web Server httperf 1000 57.8% 89.8%

Ftp Server dkftpbench 1000 66.7% 96.2%

DB Server test insert 1000 77.8% 97.9%

Table 3: Overhead of KernTune
System KernTune Off KernTune On Overhead

Web Server 0.00% CPU 0.99% CPU 0.99%

Ftp Server 1.98% CPU 2.97% CPU 0.99%

DB Server 85.15% CPU 87.13% CPU 1.98%

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0T r a i n i n g S a m p l e s02 04 06 08 01 0 0
A cc uracyofC l assifi cati on(%) F t p S e r v e rD a t a b a s e S e r v e r

Figure 4: Accuracy of Classification

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0T r a i n i n g S a m p l e s024
681 0

O verh ead ofC l assifi cati on(%)
D a t a b a s e S e r v e rW e b S e r v e rF t p S e r v e r

Figure 5: Overhead of Classification

Table 4: Performance Results
System Class Test Tool Improve

Web server time, httperf 6.16%

Ftp server time, dkftpbench 2.19%

Database server time, test-insert 8.04%

Table 5: Web Server Results
Tool KernTune Off KernTune On Diff

httperf 50.956(s) 47.283(s) 7.2%

httperf 50.993(s) 47.043(s) 7.7%

httperf 50.453(s) 47.843(s) 5.2%

httperf 50.879(s) 47.409(s) 6.0%

httperf 51.334(s) 48.943(s) 4.7%

httperf 50.339(s) 47.463(s) 5.7%

httperf 50.421(s) 47.579(s) 5.6%

httperf 50.842(s) 47.085(s) 7.4%

httperf 50.563(s) 47.467(s) 6.1%

httperf 50.675(s) 47.636(s) 6.0%

KernTune optimised the system, and then we benchmarked
the optimised system. Table 4 shows optimisation results
of the three system classes. Each optimisation improvement
given in Table 4 are computed from the average of ten tests
in Tables 5, 6 and 7. The time program is used to com-
pute the CPU time. The results in ”KernTune Off” and
”KernTune On” columns are the time of CPU costs, smaller
is better. Table 4 shows that in each case the optimised
system performs better that the original system.

6. CONCLUSIONS
Our study has demonstrated that automatic optimisation
based on SVM technology is both efficient and effective. In
our experience of developing KernTune, we found some is-
sues that need to be resolved to make KernTune more prac-
tical. Our current KernTune uses a training set to train the
SVM classifier. Finding and testing a good training set with
minimal samples for all different system classes is very diffi-

Table 6: Ftp Server Results

Tool KernTune Off KernTune On Diff

dkftpbench 62.070(s) 60.093(s) 3.2%

dkftpbench 61.278(s) 60.061(s) 2.0%

dkftpbench 61.630(s) 60.092(s) 2.5%

dkftpbench 60.929(s) 60.034(s) 1.5%

dkftpbench 61.422(s) 60.053(s) 2.2%

dkftpbench 60.708(s) 60.016(s) 1.1%

dkftpbench 60.776(s) 60.011(s) 1.3%

dkftpbench 61.653(s) 60.082(s) 2.5%

dkftpbench 61.756(s) 60.025(s) 2.8%

dkftpbench 61.755(s) 60.021(s) 2.8%

Table 7: Database Server Results
Tool KernTune Off KernTune On Diff

test-insert 36.263(s) 33.656(s) 7.2%

test-insert 36.871(s) 33.491(s) 9.2%

test-insert 36.123(s) 33.131(s) 8.3%

test-insert 36.443(s) 33.154(s) 9.0%

test-insert 36.754(s) 33.212(s) 9.6%

test-insert 36.278(s) 33.512(s) 7.6%

test-insert 36.218(s) 33.625(s) 7.2%

test-insert 36.389(s) 33.643(s) 7.5%

test-insert 36.261(s) 33.712(s) 7.0%

test-insert 36.411(s) 33.589(s) 7.8%

cult, especially in a complex networking environment. The
samples must be able to represent the different system usage
concisely to reduce the time and overhead of SVM process-
ing. As more system classes evolve in the future, this would
lead to even more samples. It is not possible to collect those
training samples manually. A tool should be developed to
collect the samples automatically. Our current KernTune
uses the SVM method for classifying system classes. We
achieved high classification accuracy with a small training
set. We did not optimise the SVM classification procedure
and the training set in this study. We believe that provid-
ing optimisation for the SVM process with carefully tested
training samples can achieve more accurate classification.
Optimising SVM also includes choosing better feature vec-
tors for training sets, scaling training data, choosing a bet-
ter kernel function, etc. As more system classes should be
considered in the real computing world, this would bring a
bigger training set and more complex training samples to
the SVM processing. The continuous collection of system
information and SVM processing can lead to overhead is-
sues with KernTune. This issue must be fully resolved if the
overhead approaches the performance improvement, since
KernTune is a tuning tool to make a system run faster, and
not to slow down the system. KernTune must achieve a
balance between good classification accuracy and the load
caused by the SVM processing. The KernTune tool has a
major practical drawback, however, as it requires new train-
ing samples when applying it to a new system class. Another
possibility is to develop a tool to generate samples for new
classes.

This paper describes a tool for continuous low-overhead mon-
itoring, classifying and adjusting to meet the requirements
of automatic optimisation. We achieve these low overheads
through SVM-based statistical sampling and by deferring
SVM processing to available idle CPU cycles. Our results
show that continuous optimisation can be achieved with very
low overhead and that the resulting optimisations are ef-
fective. As modern operating systems become increasingly
complex, the importance of these automatic optimisations
will increase. The research combines aspects of both oper-
ating systems and machine learning. Our KernTune demon-
strates how a practical tool for automatic optimisation can
be implemented for GNU/Linux systems. It brings a new
application to the SVM area and a new approach to oper-

ating system automatic optimisation.

There are three areas of future work we plan to pursue, SVM
classification, system optimisation and benchmark skills. We
plan to: 1. Tune the SVM classification and make the SVM
processing faster; 2. Scale and tune training sets to train
SVM; 3. Introduce more system classes to KernTune and
generate data for the classes; 4. Optimise the SVM library—
LIBSVM—built into KernTune; 5. Discover and incorpo-
rate more system optimisation techniques into KernTune; 6.
Improve benchmark skills by introducing industry-standard
test suits; 7. Add the Linux kernel-2.6.x support to Kern-
Tune and bring KernTune to other operating systems; 8.
Optimise KernTune itself and reduce its overhead to the
system.

7. REFERENCES
[1] C. Chang and C. Lin. LibSVM: a library for support

vector machines. 2001.
Available at
http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz.

[2] A. Corporation. SarCheck, 1996. Available at
http://www.sarcheck.com.

[3] C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 20(3):273–297, 1995. Available at
http://citeseer.ist.psu.edu/

cortes95supportvector.html.

[4] T. Joachims. Transductive inference for text
classification using support vector machines. In
I. Bratko and S. Dzeroski, editors, Proceedings of

ICML-99, 16th International Conference on Machine

Learning, pages 200–209, Bled, SL, 1999. Morgan
Kaufmann Publishers, San Francisco, US. Available at
http://citeseer.ist.psu.edu/joachims99transductive.html.

[5] J. Moilanen. Linux: Tuning the kernel with a genetic
algorithm. Jan 2005. Available at
http://kerneltrap.org/node/4493.

[6] E. Osuna, R. Freund, and F. Girosi. Training support
vector machines:an application to face detection.
Computer Vision and Pattern Recognition, pages
130–136, 1997. Available at
http://citeseer.ist.psu.edu/

osuna97training.html.

[7] M. Pontil and A. Verri. Support vector machines for
3d object recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 20(6):637–646,
1998. Available at http://citeseer.ist.psu.edu/

pontil98support.html.

[8] B. S.-K. C. F. P. T.Poggio and V.Vapnik. Comparing
support vector machines with gaussian kernels to
radial basis function classifiers. IEEE Trans,
45:2758–2765, Nov 1997.

[9] A. van de Ven. Powertweak Linux, 2003. Available at
http://powertweak .sourceforge.net.

[10] V. N. Vapnik. Statistical Learning Theory. Adaptive
and Learning Systems for Sigal Processing. Wiley and
Sons, Sep 1998.

[11] V. N. Vapnik. The Nature of Statistical Learning

Theory. Springer, Nov 1999.

[12] V. Wan and W. Campbell. Support vector machines
for speaker verification and identification. pages
775–784, 2000. Available at

http://citeseer.ist.psu.edu/ wan00support.html.

