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SCIENTIFIC MODELS OF HUMAN
HEALTH RISK ANALYSIS IN LEGAL AND

POLICY DECISIONS

DOUGLAS CRAWFORD-BROWN*

I

INTRODUCTION

Scientists working in the fields of law or policy faced with risk-based deci-
sions find themselves in very different positions epistemologically than those in
the routine practice of science.  First, risk assessment is an interdisciplinary ac-
tivity, requiring the piecing together of expertise from many fields.  Only a
community of scientists could possess so much expertise.  It is problematic when
a single scientist, or a small group of them, is called upon to speak on behalf of
the entire community.  Second, science is by nature forward-looking.  It is a
process by which truth is progressively refined and approached, rather than an
end point.  In court, or in the policy arena, however, scientists are called on to
“freeze” this process in a snapshot that will be regarded as final.  Scientists may
have little or no experience in this activity.  The quality of scientific predictions
of risk in the courtroom and policy arena rests in large measure on how these
two differences between the normal practice and the legal/policy practice of sci-
ence are reconciled.  This article considers a variety of issues that arise in recon-
ciling these differences, and the problems that remain with scientific estimates
of risk when these are used in decisions.

II

DEFINITION OF RISK

Before turning to the issues arising from risk predictions, a definition of risk
is needed.  Three schools of thought are prevalent in the field of risk assess-
ment.1

(1)  Objective risk.  This school treats risk as an objective property of the
world, much like any other scientific concept.  Risk is identified with a combina-
tion of the probability and the severity of an outcome.2  Often, the combination
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2. See id. at 5-9.
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is the mathematical product of the probability and the severity, but this opera-
tion is not scientifically or logically necessary, as is demonstrated by the fact
that there are competing operations in the scientific community such as Quality
Adjusted Life Years (“QALY”).3

(2)  Subjective risk.  This school treats risk as a subjective property of indi-
viduals in a society.  Risk is identified as the degree of concern, or dread, ex-
pressed by an individual over some situation.  It is measured using polls based
on expressed or revealed opinions.4

(3)  Psychologistic risk.  This school treats risk as a property of epistemo-
logical reflection, or analysis of existing evidence.  Risk is identified as the de-
gree of evidentiary support for the belief that an adverse effect will occur under
certain circumstances.  This school shares features with the objective school,
such as the recognition that risks are related to probabilities.  It is closer, how-
ever, to the Bayesian conception of probability because the objective school
employs a long-term frequency concept of probability.5

While some social scientists adhere to the subjective concept of risk, it gen-
erally is not the concept employed in the practice of natural science or in legal
or policy decisionmaking.  The difference between the objective and psycholo-
gistic conceptions of risk, however, is not so apparent in practical terms as might
otherwise appear.  For example, adherents of both would agree with the fol-
lowing statement by the National Academy of Science’s National Research
Council:

Human-health risk assessment entails the evaluation of scientific information on the
hazardous properties of environmental agents and on the extent of human exposure to
those agents.  The product of the evaluation is a statement regarding the probability
that populations so exposed will be harmed, and to what degree.  The probability may
be expressed quantitatively or in relatively qualitative ways.6

Furthermore, both agree that risk involves probability and severity.  Both agree
that probability and severity are objective properties of the world.  The objec-
tive school, however, equates risk solely with probability and severity, while the
psychologistic school adds a third component to risk: rational confidence in the
estimates of probability and severity.  The key difference between the two
schools is that the objective school believes risk arises from this probability,
while the psychologistic school believes risk arises from a state of evidence that
rationally supports this probability.  To see this distinction, imagine a case in
which a scientist from the objective school and a scientist from the psychologis-
tic school each agree that the probability of cancer following exposure to an en-
vironmental pollutant is either 0.1 or 0.2.  They also agree that they are sixty

3. See id. at 29-30.  QALY equals the effective number of years of life after subtracting years of
life lost through fatal disease, and multiplying remaining years of life by a quality factor to account for
the presence of non-fatal diseases that make life of lower quality.

4. See id. at 9-10.
5. See id. at 10-12.  The Bayesian conception of probability is that all probabilities refer to the de-

gree of subjective confidence in a belief, not to objective properties of phenomena.
6. COMMITTEE ON RISK ASSESSMENT OF HAZARDOUS AIR POLLUTANTS, NATIONAL

RESEARCH COUNCIL, SCIENCE AND JUDGMENT IN RISK ASSESSMENT 25-26 (1994).
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percent confident that the probability is 0.1 and forty percent confident that the
probability is 0.2.  They further agree that a full scientific picture of the risk
should include both estimates of probability and their associated degrees of
confidence.

Where do they disagree?  Imagine that they both appear in court and are
asked for their best estimate of the risk.  The adherent of the objective school
believes there is a single risk in the world, that it is either 0.1 or 0.2, and that she
is uncertain which is the true risk.  Since she is more confident that the prob-
ability of effect is 0.1 than that it is 0.2, her best estimate of the risk is 0.1.  This
is her testimony when faced with the challenge from the court.

The adherent of the psychologistic school, however, does not believe there
is a single risk in the world.  He agrees that there is a single probability of effect,
but this probability is not conflated with risk.  Each probability, 0.1 and 0.2, has
some rational support in the evidence, which is why each has a degree of confi-
dence above zero.  As a result, one risks each state of affairs being true—that is,
one risks living in a world in which each probability exists.  When asked for the
best estimate of the risk, this individual will reply that he is sixty percent confi-
dent that the probability is 0.1 and forty percent confident that it is 0.2.  Ac-
cording to the psychologistic scientist, it is not correct to select a single prob-
ability and equate this with the risk.  Although there may be a single best
estimate of the probability of effect, risk is a more complex concept involving
the ensemble of estimates of probability and their associated degrees of confi-
dence.

In many ways, then, there are no practical implications when a court or pol-
icy-maker receives advice on risk but is unsure whether a scientist is of the ob-
jective or psychologistic school.  Both scientists will provide estimates of the
probability of effect, the severity of effect, and the confidence with which spe-
cific estimates of the probability may be asserted rationally.  The sole difference
lies at the moment a scientist is asked to reflect on this information, digest it,
abstract it, and provide a summary statement representing the best estimate of
the risk.  At that moment, the scientist in the objective school will say she is un-
certain about the risk, but is most confident it is 0.1.  The scientist in the psy-
chologistic school will say this uncertainty is part of the ontology of risk and will
not equate any single probability of effect with the risk.  Both scientists would
agree that the best estimate of the probability of the effect is 0.1.  Because they
work from different definitions of risk, however, they disagree as to whether
this estimate constitutes a statement of risk.

III

RISK ASSESSMENT AS A COLLECTIVE ACTIVITY

Human health risk arises from a confluence of three aspects of the world:
(1) a risk agent—for example, the radiation released from Three Mile Island;
(2) a potentially affected individual or group—for example, the people irradi-
ated by the radiation from Three Mile Island; and (3) a condition of exposure in
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which the risk agent and the potentially affected individuals are brought into
contact—for example, the inhalation of  radionuclides in the air after the Three
Mile Island releases.  All three of these aspects of the world must be in place for
the risk to exist, and the risk is a property of all three of these.  It is not proper
to speak scientifically of the risk from a risk agent—for example, the risk from
radiation—because the answer also depends on the potentially affected individ-
ual and the condition of exposure.

As a result, risk assessment includes a series of steps that both produce and
integrate information on all three of these aspects of the world.  As defined by
the National Academy of Science’s National Research Council, the components
of a scientific risk assessment are Hazard Identification, Exposure-Response
Assessment, and Risk Characterization.7  In Hazard Identification, evidence is
assembled and assessed to determine whether the risk agent, under any condi-
tions of exposure, produces adverse health effects in humans.  If it does, the se-
verity of those effects are assessed as well as whether they are restricted to any
particular sub-group, for example the elderly.8  Exposure Assessment involves
determining to what degree, and by which routes—for example, inhalation or
ingestion—potentially affected individuals are exposed to this risk agent under
the precise conditions of exposure of interest.9  Exposure-Response Assessment
considers evidence to assess the relationship between the degree of exposure
and the probability/severity of the health effects shown in Hazard Identifica-
tion.10  Risk Characterization integrates the results of the first three components
of risk assessment.  This final step takes into account the actual exposures found
in Exposure Assessment and the relationship between exposure and response
found in the Exposure-Response Assessment to calculate the probability and
severity of effects under the conditions of exposure and in the affected popula-
tion of interest in this decision.  Risk Characterization also determines the vari-
ability of this risk between different individuals and the uncertainty in these es-
timates of risk.

Hazard Identification involves assessment of scientific evidence from fields
such as medicine, biology, biostatistics, epidemiology, and toxicology.  Expo-
sure Assessment analyzes scientific evidence from environmental science, at-
mospheric science, hydrology, demographics, and other similar areas.  Expo-
sure-Response Assessment involves assessment of scientific evidence from
fields like toxicology, biology, biomathematics, and epidemiology.  Finally, risk
characterization integrates evidence using uncertainty analysis, logic tree analy-
sis, and fault tree analysis.  These four components of a risk assessment require
methods and judgments from widely disparate fields of science.

Judgments of risk, therefore, result from a community of scientists whose
expertise spans the range noted above.  The scientific quality of the final as-

7. See id. at 26-27.
8. See id. at 57-60.
9. See id. at 43-45.

10. See id. at 60-66.
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sessment results not merely from the formal methodologies employed, but from
the scientific judgments made in selecting the most defensible and reliable
bodies of data and models to use in those methodologies.  While an individual
might be able to master the formal methodologies, that individual will likely not
have the expertise required to speak on behalf of the scientific community in all
areas in which data and models must be selected for use in those methodolo-
gies.  As an assessment is constructed from the base upwards—from Hazard
Identification to Risk Characterization—the reasoning developed by an indi-
vidual occupying one level of judgments rests on judgments made by those who
came before him.  The result is a line of reasoning in which the judgments of
most of the experts are dependent upon the prior reasoning of experts in other
fields.  No one expert can warrant the judgments required in all the necessary
steps of reasoning.  A guarantee that the final judgment of risk represents
“good” or “reliable” science results from the cumulative effects of individual
judgments by an organized community, and not the judgment of any one indi-
vidual, not even the individual integrating the scientific knowledge in Risk
Characterization.

IV

SCIENTIFIC RATIONALITY AS A COLLECTIVE ACTIVITY

Part III introduced the idea that the complexity of a risk assessment pre-
vents any one assessor from warranting the results of the entire assessment.11

Science-based risk assessment is also a collective activity in a deeper sense.
Some claim that scientific judgments themselves, even in a single area of exper-
tise, are the result of a community effort.12  This claim means that each individ-
ual judgment integrated into a risk assessment is a collective activity of a com-
munity of scientists.  Therefore, the rationality of scientific judgments is the
rationality of a community rather than an individual.

People who participate in risk assessment consider their own judgments ra-
tional, and may at times consider those of their competitors irrational, without
being able to define the term “rational.”  There are hundreds of definitions of
rationality in the philosophical literature, but they share characteristics cap-
tured in the following definition:  Rationality is the selection of apt means for
the highest ends.13  Rationality focuses on systematically comparing alternative
means to reach a set of ends and selecting the most appropriate means.  “Apt”
in this sense does not require complete certainty, but the given means must rea-
sonably be expected to reach the given ends.  If risk estimates justify the means,
rationality requires an examination of the quality of the evidence underlying

11. See discussion supra Part III.
12. See BARRY BARNES ET AL., SCIENTIFIC KNOWLEDGE: A SOCIOLOGICAL ANALYSIS 16

(1996).
13. See Douglas Crawford-Brown & Jeffrey Arnold, The Role of Evidential Reason and Epistemic

Discourse in Establishing the Risk of Environmental Carcinogens, in COMPARATIVE ENVIRONMENTAL
RISK ASSESSMENT 261, 264 (C. Richard Cothern ed., 1992).



CRAWFORD_FMT.DOC 06/04/01  1:32 PM

68 LAW AND CONTEMPORARY PROBLEMS [Vol. 64: No. 4

those estimates to demonstrate that the evidence is sufficient to warrant adop-
tion of the risk estimates.

What are the criteria by which a scientific expert may determine whether
the evidentiary basis for a judgment is sufficient to allow a claim to rationality?
Mario Bunge has identified seven desiderata that should be considered before a
judgment is deemed rational:  (1) conceptual clarity; (2) logical consistency; (3)
ontological realism; (4) epistemological reflection; (5) methodological rigor; (6)
practicality; and (7) valuational selection. 14  

Conceptual clarity requires that, to the extent possible, the argument lead-
ing to judgment should employ well-defined terms.  In risk assessment, this de-
sideratum would apply to the key terms of the field such as probability, severity,
and exposure. 

Logical consistency requires that supporting arguments be logically consis-
tent.  Risk estimates should follow deductively from the assumptions and the
data, to the extent possible.  Where default or science policy assumptions are
used to fill gaps in scientific understanding, their status should be noted.  The
line of argument used in obtaining risk estimates should be clear.

Ontological realism requires that the analysis make scientifically support-
able ontological commitments.  All processes and quantities in the analysis
should conform to the best scientific understanding of the phenomenon in ques-
tion.  For example, in cancer risk estimates, the models employed should re-
flect, to the degree possible, the best scientific understanding of the process of
carcinogenesis.  The models should not contain incorrect scientific assumptions
and should employ the full suite of scientifically valid assumptions, to the extent
feasible.

Epistemological reflection requires that all assumptions be scrutinized to de-
termine the overall quality of the risk estimate.15  This quality is a function of
the judgment’s epistemic status, or degree of evidentiary support.  Epistemo-
logical reflection is an uncertainty analysis in which competing assumptions are
assessed for their relative degree of evidentiary support.  Assumptions are in-
troduced into an assessment only if they meet the minimal epistemic status,
meaning the quality of the evidence must be above the level required for their
rational adoption as a scientific belief.

Where appropriate, clearly defined methods proven reliable in past applica-
tions should be employed in selecting from alternative models, developing pa-
rameter values, and specifying confidence intervals on risk estimates.

The process of risk estimation should be selected for its practicality.  It
should use methods that can be completed in a reasonable length of time and
that require only a reasonable amount of resources.  A more scientifically valid

14. See Mario Bunge, Seven Desiderata for Rationality, in RATIONALITY: THE CRITICAL VIEW 5-
16 (Joseph Agassi & Ian Charles Jarvie eds., 1987).  Bunge’s discussion does not consider the science of
risk assessment, so the examples employed are those of the present author.

15. See DOUGLAS CRAWFORD-BROWN, RISK-BASED ENVIRONMENTAL DECISIONS: METHODS
AND CULTURE 14-15 (2000).
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method may, under this desideratum, prove irrational if unreasonable resources
must be expended, or if the method will affect the ability to reach decisions in a
timely manner.16

Finally, the assessment employs valuational selection.  This factor ensures
that the decisionmaker’s highest values are being protected.  For example, if the
decisionmaker values environmental justice, the assessment might be required
to produce an estimate of risk homogeneity in a population, not simply a point
estimate of mean risk.17

Bunge recognizes that a single judgment often cannot satisfy all seven de-
siderata simultaneously in a single belief.18  Some judgments may compare fa-
vorably to other judgments under one desideratum but not another.  Therefore,
the risk assessor must appropriately balance these seven desiderata.

While all rational individuals seek this balance, logically, two rational scien-
tific experts do not have to reach the same balance.  One expert, for example,
might prefer a model based on strong statistical methodology with little biologi-
cal meaning, which satisfies the methodological desideratum but violates the
desideratum of ontological realism.  Another expert, however, might  prefer a
more biologically based model to which statistical methodologies for parameter
estimation cannot be applied.  Rationality requires only that the seven desider-
ata be considered in selecting from alternative risk estimates, but there is room
for human values to guide the weighing of these desiderata because the science
practice does not provide a “standard” weight.  Deborah Mayo argues that
meta-science may guide this choice, and it need not be simply a sociological
one. 19  Still, meta-science provides only rough guidelines for weighing and does
not fully resolve the issue.  Disagreement will remain among scientists as to how
the seven desiderata should be weighed in analyzing competing scientific be-
liefs.  These disagreements are likely traced in part to differences, such as social
affiliation or personal styles of weighing evidence, that are not dealt with di-
rectly in metascientific discussions.  This does not mean that such considera-
tions cannot be accommodated in metascientific principles, only that I have
found no evidence of their having been accommodated to date.

Scientists from the Classical School and the Dialogical School disagree as to
whether there are potentially clear rules for determining the rationality of a
particular scientific risk assessment under these seven desiderata.20  To the Clas-

16. See CARL K. CRANOR, REGULATING TOXIC SUBSTANCES: A PHILOSOPHY OF SCIENCE AND
THE LAW 151 (1993).

17. Homogeneity of risk is a measure of the degree to which risk is the same across all individuals
in a population.  A point estimate of risk is the average risk, ignoring this variability.  Environmental
justice might call for consideration of this homogeneity, seeking a policy that results in greater homo-
geneity.  A point estimate of risk does not provide the information needed to judge homogeneity.

18. See Bunge, supra note 14, at 5-16.
19. See Deborah Mayo, Sociological Versus Metascientific Views of Risk Assessment, in

ACCEPTABLE EVIDENCE: SCIENCE AND VALUES IN RISK MANAGEMENT 249-50 (Deborah Mayo &
Rachelle Hollander eds., 1991).

20. See HAROLD BROWN, RATIONALITY 5-14 (1988).
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sical School, rationality applies formal rules universally.21  These rules of rea-
soning are clearly defined and agreed upon by all members of a rational com-
munity.  Consistent application of the rules ensures that individuals do not se-
lect rules strategically by using a rule only when it leads to a desired conclusion.
A belief must be logically necessary, following deductively from the evidence,
with no room for ambiguity.  Finally, a formal algorithm—for example, a
mathematical or statistical procedure—must be applied to combine evidence in
reaching a belief.  In the example of judging whether a substance is a carcino-
gen, the process of assigning weight to the evidence must be formal.  Therefore,
under the classical theory of rationality, all properly trained rational scientists
who are presented with the same evidence will reach the same conclusions.

The Dialogical School agrees that the rules must be formal rules, but dis-
agrees that the scientific community must uniformly adopt these rules.22  Scien-
tists will rationally disagree over the appropriate rules and when they should be
applied.  Two rational individuals may reach differing conclusions.  The Dia-
logical School believes that rationality lies in the discussion between the indi-
viduals within the scientific community.  Although disagreement may exist
within this community, the individuals agree to compare their methods of ar-
gument, consider the possibility that they are incorrect, and continuously adjust
their beliefs in light of different reasoning offered by others.  Rationality, then,
is established not only by the quality of individual arguments, but also by the
character of the dialogue between individuals.

An individual scientist’s claim that his judgments are scientific depends on
whether he formed his judgments after reflection on the dialogue in the com-
munity.  That dialogue, in turn, refers to at least the following principles culled
from the literature on the philosophy of science for the scientific assessment of
beliefs: empirical validity, conceptual success, axiomatic realism, and falsifiabil-
ity.23  Under the empirical validity principle, beliefs should be tested against
data, and those beliefs that conform best to the data are considered strongest.
For example, exposure-response models with a better fit to exposure-response
data would receive greater weight in developing risk estimates.  It is not
enough, however, that the models simply fit the data; the models must also
make accurate predictions.  The conceptual success principle holds that beliefs
should be tested by considering their ability to explain satisfactorily key phe-
nomena identified by the scientific community.  For example, models capable of
explaining phenomena such as synergism, antagonism, or adaptive response
would be assigned greater weight in forming judgments of risk than would
models incapable of providing such explanations.  Axiomatic realism requires
that beliefs be tested by the degree to which they follow from models employing

21. See id.
22. See generally RICHARD BERNSTEIN, BEYOND OBJECTIVISM AND RELATIVISM (1983).
23. See DOUGLAS CRAWFORD-BROWN & KENNETH G. BROWN, HAZARD IDENTIFICATION IN

CARCINOGEN RISK ANALYSIS: AN INTEGRATIVE APPROACH, REPORT TO THE UNITED STATES
ENVIRONMENTAL PROTECTION AGENCY (1992).



CRAWFORD_FMT.DOC 06/04/01  1:32 PM

Page 63: Autumn 2001] HUMAN HEALTH RISK ANALYSIS 71

terms with biological, chemical, or physical meaning.  For example, physiologi-
cally and biologically based models would receive greater weight than models
that are simple curve fits to data.  Under the falsifiability principle, beliefs are
rational only if they follow from data analysis that might potentially prove the
beliefs wrong.  For example, a complex exposure-response model with many
unconstrained parameters could be fit to essentially any set of data.  In that case
no set of data would be construed as proving the model wrong.  Therefore, if
the model is too flexible, there is no possibility of showing it to be incorrect, and
the model should not be assigned strong weight.24

These four principles of epistemic reflection are applied with the seven de-
siderata to form specific scientific judgments.  This process occurs in a commu-
nity guided by two further criteria: (1) neutrality and objectivity, and (2) or-
ganized skepticism.  Neutrality and objectivity suggest that beliefs should arise
from a scientific community in which members apply specific principles, theo-
ries, models, and data based on their internal merits, and not whether they
would lead to a predetermined policy position.  Kristin Schrader-Frechette re-
fers to this view as “scientific proceduralism.”25  No individual can be completely
neutral and objective, but rationality still exists because the community carries
on a debate in which it is agreed that objectivity and neutrality are ideals to-
wards which they should strive, however difficult their attainment might be.
Under organized skepticism, all beliefs should be subject to continuous scrutiny
and open to rejection on adoption.  Scientists should understand that any belief
might be false, and a wide range of scientific beliefs should always remain can-
didates for the truth.

In summary, scientific rationality in risk assessment is first a process by
which the scientific community systematically applies the various previously
discussed desiderata to assess alternative risk predictions, assigns rational
measures of confidence to each, and ranks those beliefs by their reliability.
Second, it is a process by which the scientific community discusses the criteria
for judging the epistemic status of beliefs about risks’ magnitude and severity,
debates the relative merits of these desiderata as guides to assigning rational
confidence, and establishes processes to ensure the desiderata are applied rea-
sonably.  This discussion occurs in a well-defined community of qualified scien-
tists and is guided by a principle of organized skepticism.  Third, scientific ra-
tionality is the selection and transmission of well-founded beliefs generated by
the above processes.  If a belief is representative of the judgment of the scien-
tific community and satisfies standards of minimal epistemic status, it not only is
scientifically rational, but also represents “good science.”  Beliefs that do not
meet minimal epistemic status may still be scientifically rational and may serve

24. See generally KARL POPPER, THE LOGIC OF SCIENTIFIC DISCOVERY (1959).  Popper goes so
far as to say that the model is non-empirical.  Since he considers science to be rooted in empiricism, this
leads to the suggestion that such models also are non-scientific.

25. See Kristin Schrader-Frechette, Reductionist Approaches to Risk, in ACCEPTABLE EVIDENCE,
supra note 19, at 218, 239.
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as an adequate basis for scientific research, but will not represent “good sci-
ence” in the sense intended here.  “Good science” in this regard means science
that is recognized not only as representing the current state of science, but as
having satisfied standards of epistemic status established by the scientific com-
munity.  Good science, therefore, is roughly equivalent to “scientific rational-
ity,” with the former being used more frequently in the policy arena and the lat-
ter in the scientific literature.26

This conception of scientific rationality also involves the systematic com-
parison of alternative risk estimates.  This comparison distinguishes between
rationalizing and rationality.  Rationalization rhetorically presents evidence to
show that a particular risk estimate is reasonable; such a presentation is likely to
contain only supporting evidence and is unlikely to contain counterevidence.
Rationality recognizes this by requiring that competing risk estimates be ration-
alized in the same manner and that the strengths and weaknesses of each ra-
tionalization be compared to each other.  Rationality then involves selecting
from competing beliefs after this process of rationalization has taken place.27

Thus, “risk assessment provides a highly organized profile of the current state
of knowledge of particular issues and systematically elucidates scientific uncer-
tainties.”28

V

RATIONALITY OF BELIEF IN RISK ASSESSMENT

Scientific reasoning refers to specific bodies of data and reasons from those
data through models and theories.  The quality of that reasoning depends on
the scientist’s ability to satisfy two primary criteria: (1) agreement between any
beliefs and the data; and (2) a satisfactory explanation of why the data exist in
the form they do, that is, the mechanism by which the phenomenon operates.
Stephen Toulmin has characterized these two criteria, respectively, as the prop-
erties of foresight and understanding in well-developed sciences.29  The criteria
are met by various combinations of five categories of evidence used routinely in
risk assessment.  These are described below.

A. Direct Empirical Evidence

This category of evidence includes direct measurements of the phenomenon
of interest under the exposure conditions of interest.  For example, the phe-
nomenon of interest might be excess lifetime probability of cancer in humans
under conditions of low exposure to a pollutant in water.  Direct empirical evi-
dence of risk, typically generated by either epidemiological or clinical studies, is

26. See, e.g., Peter Bush, Uneasy Partners: A History and Analysis of the EPA’s Science Advisory
Board 46 (1990) (unpublished manuscript, on file with the author).

27. See NATIONAL RESEARCH COUNCIL, supra note 6, at 27.
28. Id.
29. See STEPHEN TOULMIN, FORESIGHT AND UNDERSTANDING 18-42 (1961).
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strongest when it is consistent with the criteria of science discussed above and
constitutes the purest example of “good science.”

This evidence results from a study with the following nine features:
(1) clearly articulated objectives or hypotheses and an objective-

appropriate method of analysis;

(2) proper selection and characterization of exposed and control
groups;

(3) adequate characterization of exposure;

(4) follow-up of sufficient length to allow for the appearance of dis-
ease before the study ended;

(5) valid ascertainment of causes of morbidity or mortality;

(6) proper consideration of bias or confounding factors that might
cloud the interpretation of results or skew the risk estimate;

(7) adequate sample size to detect any possible effect;

(8) adequate response rate and handling of missing data to ensure that
the data stand up to a hard look; and

(9) complete and clear documentation of results to ensure that dis-
course concerning the conclusions can take place within the scien-
tific community.30

These criteria determine whether a particular body of data provides an ade-
quate basis to begin the reasoning process; they examine the foundational prop-
erties of the data.  The goal of such an epistemological assessment is to ensure
that only bodies of data that provide a sound foundation for reasoning are in-
troduced.

Having established a firm foundation, the scientist must make the following
five inquiries.  The scientist must first determine whether the exposure and re-
sponse were properly related in time.  This inquiry asks whether the response
follows the effect and whether the time elapsed between exposure and response
is consistent with reasonable expectations.  Second, the scientist asks whether
the available studies are consistent.  No single study may prove sufficient to es-
tablish either causality or the risk estimate.  The conclusions are strengthened,
therefore, if multiple studies obtain similar results.  This consistency is essen-
tially the criterion of coherence in the philosophy of science.  The third step is to
determine the magnitude of an association between exposure and effect.  The
stronger the association, or the higher the risk coefficient, the greater the likeli-
hood that any response is due to the exposure rather than some confounding
factor or bias.  Fourth, the scientist inquires whether the associations are highly
specific.  If an effect occurs only under the exposure conditions of interest, there
is a reduced possibility that the effect is due to either unknown factors or mis-
classifying exposures to known confounding factors.  The scientist’s final inquiry
is whether the effect is a plausible result of the exposure, given the state of

30. See ENVIRONMENTAL PROTECTION AGENCY, GUIDELINES FOR CARCINOGEN RISK
ASSESSMENT (2000).
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knowledge in biology.  This question expresses the criterion of understanding in
science.31  It focuses on the degree to which the scientific community is able to
explain the occurence of an effect through an understood mechanism that could
be expected to yield the outcome.  A scientific judgment of risk based on direct
empirical evidence rests ultimately on the foundational quality of those data
and the answers to the above five questions.

B. Semi-empirical Evidence

Risk assessments for a particular substance and health effect often are based
on semi-empirical evidence. Such evidence is obtained from studies on the
population of interest but differ from the situation of interest in some important
aspects.  The most common example is where the level of exposure is signifi-
cantly above the level of interest to the decisionmaker.  The scientist must ex-
trapolate findings from the situation studied to the one of interest because the
studied exposure level differs from the actual level.  Extrapolation requires
background assumptions, or extrapolation premises.32  The quality of these re-
sulting risk estimates depends on two factors.  The first factor is the quality of
the judgments with respect to estimating the risk under the conditions of expo-
sure found in the study.  The criteria for assessing these judgments are those
discussed in the previous section.33  The second factor is the quality of any ex-
trapolation premises required to estimate risk under the actual conditions of
exposure.

The scientific criteria for judging these extrapolation premises are those
used to judge models in general within science, because models are collections
of assumptions.  In particular, the model should:

(1) agree with a well-defined set of relevant data at least under the
conditions of the study, as measured by a goodness of fit test;

(2) explain key phenomena identified by the scientific community;
(3) have premises that correspond to scientific understanding of the

process by which the effect is produced;
(4) meet the criterion of falsifiability;
(5) allow an understanding of the conditions under which the model’s

strengths and weaknesses will appear;
(6) represent epistemic consensus in that an appropriate scientific

community has judged the model acceptable;
(7) to the extent possible, result from a neutral and objective assess-

ment relative to other models, rather than being selected strategi-
cally; and

(8) be applied under conditions of skepticism and conditional adoption,
recognizing that it may eventually prove incorrect.

31. See Crawford-Brown, supra note 13, at 268.
32. See CRAWFORD-BROWN, supra note 15, at 54.
33. See discussion supra Part VA.
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Risk estimates based on semi-empirical evidence typically do not have an epis-
temic status as high as those based on well-established direct empirical evi-
dence.  They can still, however, represent “good science” so long as the founda-
tional quality of the data on which they are based is high, and the extrapolation
premises are reasonably well established.

C. Empirical Correlations

At times, data in which the effect of interest has been generated will not ex-
ist, but there may be data that encompass other effects correlated with the ef-
fect of interest.  For example, data on carcinogens do not exist, but data are
available on transformation of cells in vitro.  In that case, one might argue that
substances causing such transformation also tend to be carcinogens.  By using
data with correlated effects, one draws inferences based on the empirical cor-
relation between the two types of events, instead of drawing inferences from
observations on the effect of interest.  This process of reasoning and establish-
ing the reliability of the inferences of risk based on empirical correlation re-
quires two judgments: (1) the quality of the observations and (2) the quality of
the association between the measured and target effects.  The criteria for judg-
ing the quality of the observations are precisely those outlined in the discussion
of direct empirical evidence.34  One must remember, however, that such data
justify only the claim that the measured effect occurs, not the claim that the ef-
fect of interest occurs.35  To justify the occurrence of the effect of interest, one
must also judge the quality of the association between the measured and target
effect.  The epistemic status of the risk estimate increases with the strength and
specificity of the association.  Strength and specificity, in turn, increase when
the measured effect is characterized by the appearance of the target effect and
the effect of interest usually appears only if the measured effect appears.

The usefulness of associations is controversial, since an individual’s view on
their role in science may range from the view that all science rests ultimately on
associations to the view that associations provide only the base of experience
from which the process of scientific explanation may begin.  Still, there is a sig-
nificant tradition of using associations in scientific risk assessments.

D. Theory-based Inference

Under well-developed scientific theories, it is possible to calculate risk based
on observations of phenomena intermediate between exposure and response.36

This calculation is based on the theory or model in which the causal relation-
ships leading from exposure to the effect of interest are well understood.37  This
calculation is not a case of empirical evidence because the effect of interest has

34. See id.
35. See id.
36. For example, this might include observations of DNA breakage or adduct formation.
37. For example, it might be claimed that DNA breakage is the first step in initiation within the

progress of a cell to a full tumor.
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not been observed directly.  Nor is it empirical correlation because the meas-
ured phenomena are not simply correlated with the target effect.  Instead, the
measured phenomena are part of the causal chain leading to the effect, and the
mechanisms linking the elements of this chain are understood well enough to
calculate the final effect.  The epistemic status of predictions from such evi-
dence can be no stronger than the combined epistemic status of the models on
which they are based and the data employed.  As a result, the epistemic status
of risk estimates based on theory-based inference are judged by the same crite-
ria of data and model judgment specified in previous sections.38

E. Existential Insight

Finally, risk estimates, or at least qualitative judgments of risk significance,
may be based on expert opinion.  Presumably, such opinions are the result of
experience and training and, as such, may have a rational basis.  To the extent
the individual offering the opinion has experience and training in relevant areas
of science, these opinions may be instances of scientific rationality.  Robert L.
Winkler claims that evidence of such relevant experience and training includes:
(1) certifications such as degrees or professional training; (2) reputation of the
individual as a reliable guide; (3) impartiality; and (4) multiplicity of view-
points—for example, the judgment was reached only after considering multiple
bodies of data and methods of interpretation.39  The use of existential insight
raises the issue of how these judgments should be elicited to reflect truthfully
the expert’s scientific opinion.  The relevant issues in such elicitations include:
(1) asking only questions whose answers would be formed on the basis of data
(although if data are available, existential insight might not be needed); (2)
forming teams of experts to reflect differences of opinion; (3) calibrating expert
judgments so the scale in which judgments are expressed is understood and ap-
plied consistently; (4) providing a range of summaries of risk judgments, in-
cluding best estimates, means, central tendency, and confidence intervals; and
(5) creating an environment in which the scientific merits of an argument,
rather than the legal or policy implications, are the focus of attention.40

When using existential insight, one must consider that scientists with differ-
ent institutional commitments, such as industry or academia, often differ sys-
tematically in those judgments.41  Again, understanding the communal nature of
scientific judgments is essential for understanding the rational basis for judg-
ments by individuals.

38. See discussions supra Parts VA, VC.
39. See Robert L. Winkler et al., The Quality of Expert Judgment Elicitations, at 2-2, Center for

Nuclear Waste Regulatory Analyses, San Antonio, Texas (1992); supra Part III (discussion of the prin-
ciple of neutrality and objectivity).

40. See id.
41. See generally Frances M. Lynn, The Interplay of Science and Values in Assessing and Regulating

Environmental Risks, 11 SCI. TECH. & HUM. VALUES 40 (1986) (providing a range of examples of risk
assessment questions, such as whether risks have been overstated for Three Mile Island, that are an-
swered differently by scientists in industry, government, and academia).
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F. Combining the Five Categories of Evidence

Typically more than one category of evidence will be available for use in a
risk assessment.  It is difficult to determine how these bodies of evidence and
their lines of reasoning should be combined, especially when they lead to differ-
ent conclusions.  The practice of science does not provide anything but general
guidelines.  The final judgment of a scientific expert will depend on both the
epistemic status of his beliefs formed on the basis of each of the five categories
of evidence and on the weight assigned by that expert to each of these general
categories.  This weight may be viewed as an intellectual obligation assigned to
each category.  The belief formed on the basis of a given category will weigh
more in the final judgment as both the evidence on which that belief is formed
and the intellectual obligation for that category increase.  Still, this general ob-
servation does not completely prescribe the process of forming judgments by
the expert when often conflicting conclusions can be drawn from the five cate-
gories of evidence.  The scientific community has an evident role in forming
these judgments and community discourse provides the stage on which to play
that role.

VI

MARGINS OF SAFETY, UNCERTAINTY, AND DEFAULT ASSUMPTIONS IN
REGULATORY SCIENCE

One of the desiderata of rationality discussed in Part IV is epistemological
reflection, which requires that the quality of scientific claims be analyzed sys-
tematically, strengths and weaknesses noted, and uncertainty characterized.
Consideration of uncertainty does not indicate a weakness in science, needed
only when the science fails to meet some standard of reliability.  Instead, it is a
necessary component of scientific analysis.42  Without such consideration, risk
assessment does not fully incorporate rationality.

Science is not monolithic.  Competing data, theories, models, and methods
on which to base scientific estimates of risk always exist.  As a result, there is a
range of answers supported by the available scientific evidence and judgments.
This fact does not imply that all answers are equally valid, or deserve the same
status as “good science.”  Any summary of the state of science, however, must
reflect the existing uncertainty.  Therefore, all competing risk estimates should
be considered, the strengths and weakness of each estimate assessed, some
measure of rational confidence assigned to each, and the results summarized by
an expression of the uncertainty with which the expert is faced in making a
judgment.

42. For example, the National Academy of Sciences calls explicitly for risk assessments to include a
formal uncertainty analysis as part of scientific practice within the EPA.  See COMMITTEE ON RISK
ASSESSMENT OF HAZARDOUS AIR POLLUTANTS, supra note 6, at 12.
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This feature of science in general and of risk assessment in particular has
been formalized in regulatory risk assessment.43  Faced with uncertainty, a strat-
egy akin to the precautionary principle has been adopted, in which a “margin of
safety” is built into the assessment by selecting a reasonable upper bound to the
risk estimate from within the range of possible estimates.44  The theory of this
strategy is that the goal of regulatory decisions is to protect human health
within a margin of safety, and that doing so requires the use of risk estimates
that are likely to be too high if incorrect.  Satisfying this goal has been met his-
torically in two ways.  First, when faced with uncertainty about a key assump-
tion in a line of reasoning, such as the appropriate exposure-response model, a
default assumption is adopted that is likely to be the most protective of health.
This default assumption cannot be totally without scientific merit, but it should
be one that produces risk estimates at the “upper end” of those made possible
by scientific analysis.45  Second, when faced with uncertainty about what pa-
rameter values to use in models, safety factors or uncertainty factors are
adopted.  Again, the resulting risk estimate is likely to lie at the “upper end” of
risk estimates generated by scientific analysis.46  The use of default assumptions
and uncertainty factors thus represents one way to deal with the uncertainty in-
herent in scientific analysis.

Such an approach does not, however, fully meet the requirement of episte-
mological reflection, nor does it fully embody scientific rationality as previously
described.  It may also be inconsistent with the goals of the legal setting, where
standards of proof are not necessarily guided by the precautionary principle.  It
replaces the characterization of uncertainty with a single risk estimate that is
likely to lie at the “upper end” of the range of reasonable estimates.  Those who
use results from these default approaches, therefore, are not confronted with a
full picture of uncertainty, and so cannot determine whether the science is
“good.”  Essential information about the state of that science—information
needed to judge whether the science is capable of providing an apt basis for se-
lecting means—is missing when only a single value is provided based on default
assumptions.  More important, one cannot assess the degree of conservatism
built into the resulting risk estimate, and so cannot judge whether the confi-
dence associated with the risk estimate is appropriate.  This latter weakness oc-
curs because one typically knows only that the default assumptions and uncer-
tainty factors are likely to produce risk estimates at the “upper end” of the
confidence interval.  There is no further specification as to whether this “upper
end” represents the 50th, 99th, or 99.99999th percentile.

To give the risk estimates a more scientific basis, a full uncertainty analysis
is required.  The result is a probability density function, or distribution, of the
predictions of risk, showing the confidence with which any particular statement

43. See id. at 618-19.
44. See id.
45. See id.
46. See id.
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of risk can be made in the face of existing evidence.  Such an analysis provides a
complete picture of the epistemic state of that science, showing the confidence
that may be assigned to each of the competing risk estimates.  If, in the end, a
decisionmaker wishes to use a particular risk estimate from this characterization
of uncertainty, the choice may be justified based on the goals and consequences
of that particular decision.  For this process to follow scientific rationality, how-
ever, it is necessary to understand the percentile represented by this single risk
estimate, at least qualitatively, and to show that this percentile is a reasonable
requirement for protective action or standards of proof.  The simple use of de-
fault assumptions and uncertainty factors containing an unknown degree of
conservatism will not satisfy this requirement, and so the use of such assump-
tions and factors does not generally constitute “good science” or even scientific
rationality—although their use might still be rational in other senses, such as
prudence or expediency.  As risk estimates move between arenas of decision,
such as from the regulatory setting to the court, it is essential to understand how
uncertainty is being treated in the assumptions underlying these estimates, and
whether that treatment is an apt means to reach the ends of that arena.  This
point becomes more difficult considering that the scientific community does not
possess clearly defined rules to specify the point in an uncertainty distribution
that should be transmitted to decisionmakers.

VII

CONCLUSION

Considerations of scientific rationality, and the link between science, policy
decisions, and the law, led to the creation of the Science Advisory Board (the
“SAB”) and the Science Advisory Panel (the “SAP”) at the Environmental
Protection Agency (the “EPA” or “Agency”).47  The original formation of the
SAB resulted in part from the breakdown in scientific consensus in the late
1960s and early 1970s.48  Faced with this disagreement, decisionmakers recog-
nized uncertainty in the science and sought either to reduce that uncertainty or
better characterize it, while still proceeding toward decisions.49  The belief was
that strong scientific review would in part reduce some of the uncertainty, as
well as provide a justification for selection of particular scientific risk estimates
from within the uncertainty distributions generated by risk assessments.50  The
result of these considerations is a role for the SAB in bringing together diverse
groups of scientists so that competing views can be aired, and ensuring a larger
role for science in policy decisions.  This role of the SAB was championed by
Congress.51

47. See Bush, supra note 26.
48. See id. at 5.
49. See id.
50. See id.
51. See id. at 38.
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Peter Bush raised the issue of how uncertainty, a natural product of scien-
tific analysis, may be used strategically to facilitate or block legal or policy deci-
sions.52  During the years when Anne Gorsuch was Administrator, she repeat-
edly called for the use of “good science” in driving regulatory decisions.53

Presumably, her goal was to raise the standard of minimal epistemic status re-
quired before a risk estimate could form the basis of a regulatory decision.54  She
was concerned that the use of default assumptions and uncertainty factors had
become separated from the available science and no longer reflected standards
of “good science.”55  As a result, she argued for much greater scientific review
by the SAB and other groups, such as the NAS, of risk estimates, and for use of
assumptions and uncertainty factors that were more consistent with the best
available science.56

Industry welcomed this call for stronger use of science.57  The environmental
community and many within the Agency, however, argued that her call for
“good science” was simply a strategic ploy to slow regulation.58  It was possible,
they argued, to raise the standard of minimal epistemic status so high that a
burden of proof could never be satisfied, preventing all regulation.59  Gorsuch
and others countered by arguing that it also was possible to set the bar so low as
to allow essentially all risk estimates, however unsupported, to enter the policy
arena and drive regulatory decisions.60  In this way, she argued, science could be
manipulated by the legal and policy community at the Agency to support pre-
determined positions.

In the end, it is not clear which side was correct, since science provides no
firm rules specifying how scientific rationality is to yield risk estimates in the
face of different evidence.  This historical episode does indicate the need to
consider the role of science in regulatory decisionmaking, and how science’s un-
certainty may be used by one side or the other to support particular approaches
to regulation.  Several lessons are germane here.  First, science provides the
least contentious, and most informative, basis for decisions when it gives a full
characterization of uncertainty to the decisionmaker, rather than ignoring un-
certainty or treating it by default science policy options.  Second, bodies such as
the SAB are essential to provide scientific rationality to regulatory decisions,
especially if they systematically compare alternative bases for risk estimates.
Third, complete certainty is not required for scientific rationality, or even for
“good science.”  At least the epistemic status of risk estimates, however, must
be assessed and a standard of minimal epistemic status met before using that

52. See id. at 47.
53. See id. at 46.
54. See id. at 66.
55. See id. at 46.
56. See id. at 49-50.
57. See id. at 46.
58. See id. at 49.
59. See id. at 47.
60. See id.
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science in decisions.  Finally, science and law will remain “uneasy partners,” due
to a fundamental conflict between how science works and “the public’s thirst
for certitude that is written into the EPA’s laws.”61  Procedures that hide uncer-
tainties in science and fail to recognize the essential role of discourse within the
scientific community significantly weaken the rationality of subsequent deci-
sions.

61. William D. Ruckelshaus, Science, Risk and Public Policy, 221 SCIENCE 1026 (1983).


