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Summary 

 

Heat shock proteins are a family of genes classically used to measure levels of 

organism stress. We have previously identified two HSP70 genes (HSP70A 

and HSP70B) in subtidal populations of the Antarctic limpet (Nacella 

concinna). These genes are up regulated in response to increased seawater 

temperatures of 15ºC or more during acute heat shock experiments, 

temperatures, which have very little basis when considering the current 

Antarctic ecology of these animals. Therefore the question was posed as to 

whether these animals could express HSP70 genes when subjected to more 

complex environmental conditions, such as those that occur in the intertidal. 

Intertidal limpets were collected on three occasions in different weather 

conditions at South Cove, Rothera Point over a complete tidal cycle and the 

expression levels of the HSP70 genes measured. Both genes showed relative 

up regulation of gene expression over the period of the tidal cycle. The 

average foot temperature of these animals was 3.3°C, far below that of the 

acute heat shock experiments. These experiments demonstrate that the 

temperature and expression levels of HSP production in wild animals cannot 

be accurately extrapolated from experimentally induced treatments, especially 

when considering the complexity of stressors in the natural environment. 

However, experimental manipulation can provide molecular markers for 

identifying stress in Antarctic molluscs, provided it is accompanied by 

environmental validation, as demonstrated here. 
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Introduction 

To successfully colonise and reproduce in a particular environment, any 

organism has to be responsive to, and able to adapt to, changes in their 

physical surroundings. This is particularly crucial for marine intertidal 

invertebrates as they regularly experience conditions that for most species 

would constitute acute, and potentially lethal, stress (for Antarctic intertidal 

stresses see Waller et al 2006). As part of their daily routine, they have to 

cope with periodic tidal emersion and the consequential changes in 

temperature, desiccation, humidity and ultraviolet irradiation. How animals 

cope with regular acute stresses has always been of interest to biologists. In 

particular thermal biologists/ecologists are interested in how tolerance of 

temperature varies between species and the effect this has on setting species 

range boundaries and how species distribution patterns might be affected by 

climate change (Reviewed in Somero 2002 and Hofmann 2005). 

 

A key tool in the investigation of stress tolerance has been the 

characterisation and monitoring of heat shock proteins. These are a family of 

highly conserved proteins, which act as chaperones to stabilise and refold  

denatured proteins,  preventing the formation of cytotoxic aggregates (Parsell 

& Lindquist 1993, Hartl 1996, Fink 1999, Gross 2004). Numerous families of 

heat shock proteins have been identified, the naming of which is related to 

their weight in kiloDaltons. One such is the HSP70 (heat shock protein 70) 

family, which although up-regulated under different stress conditions is 
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classically associated with transcriptional up regulation in response to 

elevated environmental temperatures in most organisms studied to date.  

 

The induction and expression of these HSP70 genes is highly plastic. Levels of 

induction are influenced by thermal history such as seasonal temperature 

cycling, vertical zonation and biogeography (reviewed in Somero 2002; 

Hofmann 2005). Certainly prior exposure to slightly elevated temperatures 

(such as summer verses winter water temperatures) increases the 

temperature at which the HSP70 genes are induced (Buckley et al 2001, 

Tomanek 2002). Also the height of the vertical zonation of animals in the 

intertidal region does influence their heat shock thresholds (Halpin et al 2002, 

Stillman 2002, Tomanek 2002). The animals in the studies described above 

are eurythermal. However this work has lead to great interest in the response 

of Antarctic marine organisms, which are highly stenothermal (Somero & 

DeVries 1967, Peck & Conway 2000, Peck 2002) and lose critical biological 

functions with temperature elevations of only 1-2°C above current summer 

maximum seawater temperatures (0-1.8°C) (Peck et al 2004). 

 

The first studies of heat shock responses in Antarctic marine ectotherms 

showed that both microorganisms and fish did not increase HSP70 expression 

when warmed (Carratù et al 1998, Hofmann et al 2000). However, recent 

data (Clark et al, in press) on the heat shock response of Antarctic marine 

molluscs has shown that the classical heat shock response is initiated in the 

Antarctic limpet (Nacella concinna) at 15ºC and the Antarctic clam (Laternula 
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elliptica) at 8ºC. Given that these are temperatures in excess of that which is 

currently experienced by these animals (Waller et al 2006), the obvious 

question to ask is whether these animals express HSP70 when subjected to 

longer, lower levels of elevated temperatures in the natural environment or in 

response to multiple environmental insults? i.e. is there an environmental 

context to this response? 

 

N. concinna is an ideal candidate species with which to pose these questions. 

It is a common Antarctic intertidal species and therefore regularly experiences 

periods of acute stress when it is uncovered at low tide. Intertidal limpets 

were collected on both sunny and cloudy days during the austral summer at 

South Cove, Rothera Point from the high water level over a complete tidal 

cycle. For comparative seasonal data, samples were also collected from the 

same site at the end of spring. The temperatures of the air, water, limpet foot 

and shell were logged and muscle tissue assayed for the expression of 

previously characterized inducible HSP70 genes. The objective of this study 

was to take HSP70 genes, which are known to be up regulated in response to 

temperature with a 15°C threshold temperature in laboratory experiments 

and identify their threshold limits in the field.  
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Materials and Methods 

 

Animal sampling and experimental work  

Nacella conncina were collected from South Cove, Rothera Research Station, 

Adelaide Island (67 34 11S, 068 07 88W) during the austral summer (January 

2004) and the late spring, whilst there was still snow cover (November 2004). 

Each sample batch consisted of 5 animals. Control samples were collected 

using SCUBA from subtidal populations (6M depth). Experimental (intertidal) 

samples were collected from the mean mid-tide water level over a complete 

tidal cycle, and so subsequent batches experienced progressively longer 

exposure to air temperatures (5 collections were made for the sunny day, 

whilst 6 collections were made for each of the cloudy and spring days). Hence 

batch one were just exposed to air, batch two had one hours exposure and 

subsequent batches at hourly intervals until they were re-immersed (see 

Supplemental Tables 2-4 for full details). Only one set of spring samples was 

collected, but two batches of summer samples were collected under sunny 

and cloudy conditions on separate occasions; the air and water temperatures 

were recorded (±0.1oC) at each sampling point. Limpet shell and foot 

temperatures were recorded to an accuracy of ±0.1oC in situ using a 

handheld non-contact infrared thermometer (Supplemental Tables 1, 2, 3 and 

4). The shell temperature of the limpet was recorded prior to the animal 

being gently pried from the rock. After removal animals were carefully placed 

in the shade and the foot temperature, shell length, width and height and 
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recorded using vernier calipers (±0.1mm). The shells were removed and a 

small (ca 200mg) sample of the foot muscle tissue placed in RNA later. These 

samples were stored at 4oC overnight then at –80oC until required.  

 

Sample Analysis 

RNA extraction: Total RNA was extracted from N. concinna whole foot muscle 

using TRI Reagent (Sigma) according to the manufacturer’s instructions. 1μg 

of total RNA was DNAse treated using 0.4U DNase I (Ambion) in 10mM 

DTT/100mM MgCl2 buffer and reverse transcribed using a first strand 

synthesis kit (Promega).  

 

Q PCR: Species-specific HSP and actin sequences had been previously 

characterised (Clark et al, in press) and were amplified using the following 

primer sets: HSP70A: Nco1F: ATTCGATGACGAGACGGTTCA and Nco1Rev2P: 

AACGTCTTCAATTCGCTTTTGTA. HSP70B: Nco3F: 

AGTTCACCGACGACACAGTAC; Nco3Rev: TATTTTAGTCTCTGATTTGTACTC. 

Actin primers: NcoActinF: GAGAAATCGTCCGAGACATCAA; NcoActinRev4: 

CAGCAGATTCCATACCCAAGAA using Brilliant SYBR® Green QPCR Master Mix 

(Stratagene) with Sure Start® Taq DNA polymerase and an MX3000P 

(Stratagene). PCR conditions were as follows: 95°C 10 minutes, 40 cycles of 

95°C 30 seconds, 60°C 1 minute and 72°C for 1 minute with a final 

dissociation curve step as per manufacturers recommendations. The plate set-

up for each Q-PCR experiment consisted of 5 control individuals and 5 

“treated” individuals amplified with a specific HSP primer set (designated Expt 
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1) and an actin control primer set (designated Normaliser).  Each HSP and 

actin amplification was reproduced in triplicate. Each primer set was checked 

to ensure that no primer dimers were produced during the course of the 

amplification reaction. RSq values and PCR efficiencies were checked over a 

four fold 10x dilution series and the values calculated using the MxPro - 

MX3000P v 3.00 Build 311 Schema 74 software (for RSq and efficiency details 

see: Clark et al, in press). Amplifications were analysed using the MxPro - 

MX3000P v 3.00 Build 311 Schema 74 software and Ct (dR) values exported 

into Excel. Relative expression ratios of the HSP genes compared to the actin 

housekeeping genes between the control and treated samples were derived 

using the Relative Expression Software Tool (REST) (http://www.gene-

quantification.info/)  (Pfaffl 2001, Pfaffl et al 2002). This is an excel macro 

that incorporates both a mathematical model to calculate relative expression 

ratios on the basis of the PCR efficiency and crossing point derivation of the 

investigated samples and a two sided  Pair Wise Fixed Reallocation 

Randomisation Test. This test makes no assumptions about distribution (such 

as normality of distribution) and assumes that treatments were randomly 

allocated. The randomisation test repeatedly and randomly reallocates the 

observed values to the two groups and notes the apparent effect (expression 

ratio). The proportion of these effects, which are as great as that actually 

observed in the experiment provides the p-value of the test. 2000 

randomisations were used in the test  (Pfaffl 2001, Pfaffl et al 2002). These 

results were then followed by further statistical analysis  (MINITAB v 14) 

using a 2-way ANOVA to test for the significance of an effect of either gene or 
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batch number. Overall results for each primer pair under each sampling 

regime were subjected to a 2-sample t-test to assign significance of results 

from random variation. 

 

 
Results 

 

Both heat shock protein genes (HSP70A and HSP70B) were induced under all 

intertidal conditions surveyed. A two way ANOVA of the 3 combined datasets 

showed an effect of batch number (at the 10% level) (F4,4 = 2.48, p=0.77), 

but no effect of gene (F1,4 = 1.54, p = 0.229). Analysing the datasets 

individually using a 2 way ANOVA showed no effect of either gene or batch 

number for the sunny day samples (F1,4 = 3.01, p = 0.158; F4,4 = 1.03, p = 

0.49, respectively), although the individual p values for batches 1 and 2 for 

HSP70A were significant at the 10% level (Figure 1). The cloudy day samples 

showed no effect of either gene or batch number (F1,4 = 6.19, p = 0.68; F4,4 

= 2.56, p = 0.193, respectively), but again provided individually significant 

results with batch 1 for HSP70A significant at the 5% level and levels of 

HSP70B significant at the 5% level (batch 4) and 10% level (batches 3 and 6) 

(Figure 2). The spring day samples showed no effect of either gene (F1,4 = 

2.55, p = 0.185), but showed an effect of batch at the 10% level (F4,4 = 4.62, 

p = 0.084). An individually significant result at the 5% level was shown for 

HSP70B, batch 5 only (Figure 3). Within the three groups of samples relative 

gene expression levels varied from 27.70 – 0.41 for HSP70A and 14.22 – 3.90 

for HSP70B, with the highest relative expression levels for HSP70A being 
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more apparent at the early tidal cycle batches where the animals are just 

becoming uncovered. 

 

The average foot temperature of the sunny day animals was 3.3°C with an 

SD of 1.07 and a range of 4.6 (data from Supplemental Table 2). The average 

foot temperature of the animals on a cloudy day was 3.8°C with an SD of 

1.26 and a range of 5.5 (data from Supplemental Table3). The spring 

samples, whilst overall having a lower mean foot temperature of 2.1°C, 

showed a much wider temperature range of 9.4°C, which is reflected in the 

higher SD of 2.0 when compared to the other two samplings (data from 

Supplemental Table 4). In this sampling set, it was noted that some of the 

animals that were taken were in the sun and therefore were exposed to 

higher levels of solar radiation.  

 

Discussion 

 

Previous experiments (Clark et al, in press) have indicated that N. concinna 

has a 15°C induction threshold for the HSP70A and HSP70B genes. The data 

presented here shows that in the natural intertidal environment these genes 

are up regulated when the foot temperatures of the animals are only 3°C. 

Heat shock proteins were named initially because of their role in cellular 

protection from heat stress but are, in fact, generalised stress proteins and 

are activated under several different conditions e.g. hypoxia, cadmium etc 

(reviewed in Sorensen et al 2003). Intertidal animals, in particular, have many 
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different environmental conditions to accommodate: periodic tidal emersion, 

changes in temperature, desiccation, oxygen availability, humidity and 

ultraviolet irradiation (Menge & Branch 2001). In Antarctica these stresses are 

enhanced by physical disturbance from ice, low temperature freezing and 

extreme seasonality of resource availability (Peck et al 2006). The overall 

stress load on intertidal limpets is, therefore great and it may be that the 

combined stress is equivalent to the higher temperatures needed in the 

laboratory to elicit a heat shock response (c.f. Halpin et al 2002, Todgham et 

al 2006).  

 

Overall there is a statistically significant effect (at the 10% level) of batch 

indicating that tidal emersion and immersion play a role in the induction of 

heat shock genes in these animals. Comparing the individual p values and the 

ANOVA analyses, there appears to be a difference in the relative expression 

levels of HSP70A compared to HSP70B over the period of the tidal cycle, with 

HSP70A most highly expressed when the animals are first uncovered and 

significant results for HSP70B present in the latter half of the tidal cycle 

(when the animals are becoming covered again). This difference in expression 

pattern between paralogous genes is not uncommon. The most parsimonious 

explanation for the presence of two closely related HSP70 genes is a gene 

duplication event and maintenance of such duplicates is invariably by a 

process of sub-functionalisation (Force et al 1999), with each gene 

performing a slightly different, but vital cellular function. Work is currently 

underway in our laboratory to identify the triggers of HSP70 expression in 
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these animals, as factors other than heat are clearly involved given the HSP 

threshold induction temperature of 15°C in Clark et al (in press). 

 

The statistical significance of the results under the three different 

environmental conditions is confounded by high individual genetic variability 

(discussed in greater detail in Clark et al, in press). Hence care has to be 

taken with the Q-PCR results and regarding the relative differences in gene 

expression as an absolute figure. In reality, the data has to be examined 

more globally and general trends extracted. Virtually all the different batches 

of animal collections show up-regulation of both HSP70A and HSP70B 

expression. If this was a random event, 50% up-regulation and 50% down-

regulation would be expected. These results are highly significant as shown 

by the results of the 2-sample t-tests. Therefore the environmentally sampled 

animals do show significant up-regulation of both HSP70 genes compared to 

the subtidal control animals, indicating higher endogenous levels of chronic 

stress. Subtidal animals were chosen as the controls as they inhabit a stable 

environment and were the animals shown to have an acute HSP threshold 

temperature of 15°C. The tides at Rothera are normally limited to 0.8M and 

therefore all animals in this zone will experience a wider range of 

temperatures even when covered by water. 

 

For decades it was considered that the Antarctic intertidal zone did not have 

permanent residents and species e.g. N. concinna were merely transient.  

Recent intensive sampling has shown that in fact many diverse species occur 
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there and that some, again such as N. concinna, survive below the icefoot 

covering the intertidal in winter (Waller et al 2006).  Although the long term 

monitoring of air temperatures at Rothera shows variation between +5°C and 

-25°C, and seawater at 15m depth ranging from +1.8°C to –1.8°C (Figure 4A 

and B), microhabitat temperatures e.g. rock surfaces can differ considerably 

from this and the animals will be affected by zonation (figure 4C). Few marine 

invertebrates are capable of colonising the high intertidal zone and surviving 

there (Waller et al 2006), so N. concinna probably experiences amongst the 

widest temperature ranges of any marine Antarctic endemic species (Barnes 

et al 2006).  This is true for both subtidal and intertidal N. concinna due to its 

wide geographic and tidal range (Barnes et al 2006).  Therefore despite being 

an Antarctic endemic, the model organism we studied is in some ways 

extreme. 

 

We have now shown that two very distantly related Antarctic molluscs (N. 

concinna and L. elliptica) have the ability to up regulate HSPs (Clark et al, in 

press). We have extended these laboratory-based studies with an 

investigation of HSP expression in wild N. concinna. Which shows that the 

temperature and expression levels of HSP production in wild animals cannot 

be accurately predicted using experimentally induced acute heat shock 

treatments (c.f. Lund et al 2002), especially in this case when considering the 

much more complex stresses of the intertidal zone. However, the controlled 

laboratory based physiological experiments were essential for the cloning of 

the genes and defining the nature of the heat shock response, particularly 
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against a high background of inter-individual genetic variation. Our work on 

N. concinna has provided us with a methodology for identifying molecular 

stress markers in Antarctic molluscs and their validation in environmental 

monitoring studies. These data take advantage of the intertidal ecosystem 

and demonstrate for the first time, the effective combination of field ecology 

and physiology in Polar research. 
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Table Legends 

All should be made available in supplemental on-line format, not in 

the paper text. 

 

Table 1: Details of control animals collected by SCUBA divers from 6M depth, 

South Cove: 17/01/2004. 

 

Table 2: Environmental and morphometric details of intertidal N. concinna 

collected on a summer “sunny” day: 11/01/2004. 

 

Table 3: Environmental and morphometric details of intertidal N. concinna 

collected on a summer “cloudy” day: 07/01/2004. 

 

Table 4: Environmental and morphometric details of intertidal N. concinna 

collected during November (spring): 15/11/2004. 

 

 

 

Figure Legends 

 

Figure 1: Q-PCR results for Nacella concinna HSP70A and HSP70B  genes 

from animals collected on a sunny day in the austral summer. Relative 

expression ratios of the HSP genes from control compared to experimental 

animals are shown both in table format and graphically. Significant individual 
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p values (10% level) with the different batches are shaded. 2-sample t-test of 

HSP70A expression levels in environmental samples compared to controls 

gave a P-Value of 0.000. 2-sample t-test of HSP70B expression levels in 

environmental samples compared to controls gave a P-Value of 0.000.  

 

Figure 2: Q-PCR results for Nacella concinna HSP70A and HSP70B  genes 

from animals collected on a cloudy day in the austral summer. Relative 

expression ratios of the HSP genes from control compared to experimental 

animals are shown both in table format and graphically. Significant individual 

p values (5% and 10% level) with the different batches are shaded. 2-sample 

t-test of HSP70A expression levels in environmental samples compared to 

controls gave a P-Value of 0.062. 2-sample t-test of HSP70B expression levels 

in environmental samples compared to controls gave a P-Value of 0.000.  

 

Figure 3: Q-PCR results for Nacella concinna HSP70A and HSP70B  genes 

from animals collected on a late day in the austral summer. Relative 

expression ratios of the HSP genes from control compared to experimental 

animals are shown both in table format and graphically. Significant individual 

p values (5% and 10% level) with the different batches are shaded. 2-sample 

t-test of HSP70A expression levels in environmental samples compared to 

controls gave a P-Value of 0.011. 2-sample t-test of HSP70B expression levels 

in environmental samples compared to controls gave a P-Value of 0.000.  
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Figure 4: Mean air (A), seawater (B) and intertidal temperatures (C) 

recorded at Rothera Research Station. Air temperature data was provided by 

the British Antarctic Meteorological Department, seawater temperatures (at 

15M depth) were taken from the Rothera oceanographic Time Series (RaTS) 

and intertidal data taken from C Waller PhD thesis, 2007. 
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Gene Batch p value Relative 
Gene 

expression

Range Gene 
Regulation 

HSP70A 1 0.080 18.28 4.88-68.14 up 
HSP70A 2 0.059 27.70 1.54-497.20 up 
HSP70A 3 0.844 5.50 1.11-27.11 up 
HSP70A 4 0.944 7.44 2.54-159.30 up 
HSP70A 5 0.072 7.01 0.77-63.69 up 
HSP70B 1 0.202 8.64 2.59-28.84 up 
HSP70B 2 0.491 4.20 1.01-17.51 up 
HSP70B 3 0.966 5.02 1.93-13.07 up 
HSP70B 4 0.915 9.30 2.78-31.11 up 
HSP70B 5 0.857 3.74 0.57-24.18 up 
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Gene Batch p 
value 

Relative 
gene 

expression 

Range Gene 
Regulation 

HSP70A 1 0.017 17.73 1.16-207.31 up 
HSP70A 2 0.722 1.56 0.11-21.86 up 
HSP70A 3 0.575 1.60 0.05-43.68 up 
HSP70A 4 0.586 4.70 0.72-30.51 up 
HSP70A 5 0.995 0.41 0.03-5.33 -2.43 down regulated 
HSP70A 6 0.536 2.66 0.27-25.93 up 
HSP70B 1 0.147 11.11 5.26-23.46 up 
HSP70B 2 0.409 9.61 2.92-31.61 up 
HSP70B 3 0.070 5.94 1.78-19.79 up 
HSP70B 4 0.016 12.59 3.34-47.38 up 
HSP70B 5 0.249 4.86 1.07-22.11 up 
HSP70B 6 0.022 8.26 1.53-44.52 up 
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Figure 2 



Gene Batch p value Relative 
gene 

expression 

Range Gene 
Regulation 

HSP70A 1 0.187 17.25 0.45-658.75 up 
HSP70A 2 0.609 2.06 0.15-27.02 up 
HSP70A 3 0.710 0.61 0.06-5.43 -1.63 down regulated 
HSP70A 4 0.220 3.05 0.41-22.62 up 
HSP70A 5 0.189 8.67 0.26-288.67 up 
HSP70A 6 0.788 2.48 0.21-28.68 up 
HSP70B 1 0.236 14.22 1.12-179.87 up 
HSP70B 2 0.163 6.93 1.30-36.95 up 
HSP70B 3 0.212 3.90 0.82-18.34 up 
HSP70B 4 0.341 2.78 0.89-8.66 up 
HSP70B 5 0.024 12.52 1.33-117.14 up 
HSP70B 6 0.255 5.64 0.77-41.37 up 
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Air temp: N/A Water temp: 1.5°C 
Limpet No. foot temp shell temp l/mm w h time 
C1 1.5 3.2 27.7 19.0 8.9 11.14 
C2 2.7 2.7 21.4 14.4 6.2 11.18 
C3 2.7 2.7 22.4 15.0 6.2 11.20 
C4 2.0 2.2 26.8 18.3 8.1 11.23 
C5 3.0 3.0 21.7 14.4 6.3 11.26 
 
Table 1_Supplemental on-line 



 

 

Batch  1: subtidal, just covered 
Air temp: 9.2°C Water temp: 2.5°C  
Limpet No. foot temp shell temp l/mm w h time 
B1 3.7 3.7 21.2 15.4 6.2 15.16
B2 1.9 3.9 22.7 15.8 7.1 15.20
B3 5.2 3.3 21.8 15.4 6.9 15.27
B4 3.5 3.8 23.4 16.1 6.3 15.31
B5 3.5 3.7 25.8 17.5 7.1 15.39
 
Batch  2: partially exposed 
Air temp: 10°C Water temp: 2.2°C  
Limpet No. foot temp shell temp l/mm w h time 
B6 2.3 2.4 26.5 19.8 7.9 16.17
B7 1.7 3.3 30.9 21.5 12.1 16.20
B8 2.9 3.3 24.1 16.3 7.5 16.24
B9 2.0 3.0 23.5 16.4 7.2 16.28
B10 2.3 3.4 28.8 20.4 10.2 16.31
 
Batch  3: exposed, occasional wave breaking over  them 
Air temp: 8°C Water temp: 3°C  
Limpet No. foot temp shell temp l/mm w h time 
B11 3.7 3.9 22.2 19.1 6.1 17.18
B12 6.3 7.2 30.7 17.1 10.3 17.21
B13 5.2 6.3 20.6 18.8 5.1 17.23
B14 2.6 5.2 25.1 17.0 7.2 17.28
B15 3.7 5.1 26.1 22.0 8.4 17.29
 
Batch  4: mostly covered, some exposed 
Air temp: 12.3°C Water temp: 3.1°C  
Limpet No. foot temp shell temp l/mm w h time 
B16 3.2 3.5 28.7 19.6 10.5 18.18
B17 3.8 4.6 29.2 21.2 9.7 18.21
B18 3.6 4.2 23.7 16.1 6.6 18.24
B19 4.0 4.6 23.9 15.9 6.9 18.27
B20 3.4 3.1 31.7 23.1 11.3 18.29
 
Batch  5: covered 
Air temp: 8.4°C Water temp: 2.3°C  
Limpet No. foot temp shell temp l/mm w h time 
B21 3.5 5.9 28.4 20.0 8.8 19.20
B22 3.4 6.6 21.3 14.2 6.2 19.23
B23 3.4 6.1 25.8 17.9 7.6 19.27
B24 2.4 6.6 24.9 15.6 6.3 19.30
B25 2.6 5.9 20.0 14.2 6.1 19.33

Table 2_supplemental on-line 



 

Batch  1: subtidal, just covered 
Air temp: 6.1°C Water temp:1.5°C  
Limpet No. foot temp shell temp l/mm w h time 
A1 3.4 2.9 29.9 21.2 9.2 12.30 
A2 1.4 2.4 31.8 22.2 10.9 12.35 
A3 4.6 3.3 25.2 21.2 7.4 12.39 
A4 3.3 2.0 25.1 25.1 8.1 12.43 
A5 4.0 2.7 X X X 12.47 
 
Batch  2: exposed 
Air temp: 9.1°C Water temp: 1.7°C  
Limpet No. foot temp shell temp l/mm w h time 
A6 4.3 6.0 27.1 18.9 8.9 13.35 
A7 3.9 4.4 27.4 19.1 8.2 13.42 
A8 3.1 6.3 28.0 20.1 9.0 13.46 
A9 2.8 4.0 20.4 14.1 6.1 13.50 
A10 2.8 3.7 23.2 16.1 8.1 13.55 
 
Batch  3: exposed 
Air temp: 7.2°C Water temp: 1.7°C  
Limpet No. foot temp shell temp l/mm w h time 
A11 4.6 8.2 27.2 19.1 8.5 14.39 
A12 3.5 5.7 24.4 17.1 6.8 14.42 
A13 3.2 5.2 27.0 18.8 8.1 14.46 
A14 2.0 4.1 25.5 17.0 7.8 14.51 
A15 3.5 5.1 30.0 22.0 9.2 14.55 
 
Batch  4: exposed 
Air temp: 9.1°C Water temp: 2°C  
Limpet No. foot temp shell temp l/mm w h time 
A16 5.6 6.7 25.1 17.0 7.2 15.37 
A17 5.4 7.0 26.3 18.8 6.8 15.43 
A18 5.6 7.3 22.6 15.0 6.4 15.46 
A19 6.4 8.1 22.9 15.2 7.6 15.50 
A20 6.9 8.6 26.6 18.5 8.8 15.55 
 
Batch  5: occasionally covered 
Air temp: not recorded Water temp: not recorded  
Limpet No. foot temp shell temp l/mm w h time 
A21 5.1 7.0 24.6 15.8 7.4 16.33 
A22 3.3 5.1 26.7 17.6 8.4 16.36 
A23 3.9 5.4 21.3 15.2 7.2 16.40 
A24 3.9 5.5 22.4 16.0 7.5 16.44 
A25 3.0 3.9 24.2 16.2 8.3 16.48 
 
Batch  6: just covered 
Air temp: 10°C Water temp: 1.7°C  
Limpet No. foot temp shell temp l/mm w h time 
A26 3.9 2.8 24.4 16.2 6.8 17.34 
A27 2.7 3.6 23.1 15.5 6.8 17.37 
A28 4.7 1.5 27.3 19.0 7.5 17.41 
A29 3.3 2.9 23.8 16.1 6.8 17.45 
A30 2.3 2.7 25.2 17.1 7.6 17.49 
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Batch  1: just uncovered 
Air temp: 3.3°C Water temp:1.6°C 
Limpet No. foot temp shell temp l/mm w h time 
WA1 0.2 0.6 26.0 17.0 7.0 13.45 
WA2 0.2 0.5 25.0 17.0 7.0 13.47 
WA3 0.3 0.5 21.0 15.0 7.0 13.49 
WA4 -0.2 0.6 32.0 23.0 12.0 13.51 
WA5 -0.6 0.5 32.0 22.0 12.0 13.53 
 
Batch  2: uncovered 
Air temp: 4.3°C Water temp: 3.6°C in rock pool, 1.5°C open to sea 
Limpet No. foot temp shell temp l/mm w h time 
WB1 2.1 1.6 31.0 22.0 19.0 15.10 
WB2 1.4 1.6 28.0 19.5 9.0 15.12 
WB3 1.5 1.6 25.0 18.0 8.0 15.15 
WB4 2.8 1.8 24.0 17.0 7.0 15.18 
WB5 2.7 2.2 24.0 17.0 8.0 15.20 
 
Batch  3: uncovered, 4 and 5 in sun 
Air temp: 2.9°C Water temp: 6.2°C in rock pool, 1.7°C open to sea 
Limpet No. foot temp shell temp l/mm w h time 
WC1 2.4 2.7 32.0 23.0 12.0 16.28 
WC2 1.7 2.3 34.0 25.0 12.0 16.29 
WC3 1.3 1.4 31.0 22.0 10.0 16.30 
WC4 5.2 6.9 30.0 22.0 11.0 16.31 
WC5 3.9 6.4 28.0 18.0 8.0 16.32 
 
Batch  4: uncovered, 4 and 5 in sun 
Air temp: 2.3°C Water temp: 5.3°C in rock pool, 2.2°C open to sea 
Limpet No. foot temp shell temp l/mm w h time 
WD1 1.3 1.9 35.0 25.0 13.0 17.44 
WD2 1.5 1.4 30.0 21.0 10.0 17.45 
WD3 0.8 0.2 30.0 21.0 10.0 17.47 
WD4 4.7 5.3 25.0 12.0 9.0 17.48 
WD5 8.8 11.2 28.0 19.0 8.0 17.50 
 
Batch  5: being lapped by encroaching tide 
Air temp: 1.0°C Water temp: 2.6°C in rock pool, 1.5°C open to sea 
Limpet No. foot temp shell temp l/mm w h time 
WE1 5.4 7.4 31.0 21.0 9.0 18.21 
WE2 1.0 1.7 30.0 22.0 10.0 18.23 
WE3 0.4 0.0 29.5 21.0 9.0 18.24 
WE4 3.6 3.8 26.0 18.0 11.0 18.25 
WE5 4.0 3.6 28.0 20.0 10.0 18.26 
 
Batch  6: covered 
Air temp: 1.9°C Water temp: 1.5°C 
Limpet No. foot temp shell temp l/mm w h time 
WF1 1.6 1.4 27.0 19.5 8.0 19.17 
WF2 1.5 1.4 31.0 22.0 8.0 19.19 
WF3 1.2 1.3 23.5 16.0 7.0 19.20 
WF4 1.3 1.2 26.0 17.0 7.0 19.21 
WF5 1.3 1.2 26.0 17.0 8.0 19.23 

Table 4_supplemental on-line
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