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Abstract 
Members of the HSP70 gene family comprising the constitutive (HSC70) and 
inducible (HSP70) genes, plus GRP78 (Glucose-regulated protein 78kDa) were 
surveyed for expression levels via Q-PCR after both an acute two-hour heat 
shock experiment and a time course assay in the Antarctic plunderfish 
Harpagifer antarcticus. In general, down regulation of all genes was observed 
during the course of the heat shock experiments. This thermally induced 
down regulation was particularly acute for the GRP78 gene, which at one time 
point was more than 100 fold down regulated. These results demonstrate the 
loss of the heat shock response in H. antarcticus, a basal member of the 
Notothenioidei. This finding is discussed with reference to the survival of 
Notothenioids during observed ocean warming and also the reorganisation of 
cellular protein mechanisms of species living in extreme environments. 
 
Keywords: Antarctic, Climate change, stenothermal, heat shock protein, 
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Introduction 
 
The ability of an organism to survive environmental perturbation is reliant 
upon a whole series of species-specific mechanisms. These may be physical 
barriers, such as impermeable exoskeletons, through physiological adaptation 
to molecular and biochemical responses. All have evolved in tandem with the 
niche adaptation of the species and enable survival within constrained 
environmental limits. So far, the best-characterised transcriptional stress 
response is that of elevated production of heat shock proteins (Gross, 2004). 
These are a family of highly conserved proteins, which act as chaperones to 
stabilise and refold  denatured proteins,  preventing the formation of cytotoxic 
aggregates (Parsell and Lindquist, 1993, Hartl, 1996, Fink, 1999). Numerous 
families of heat shock proteins have been identified, the naming of which is 
related to their weight in kiloDaltons. The most studied of these family 
members is the 70kD heat shock proteins (HSP70s) (Ritossa, 1962), 
comprising constitutive forms (HSC70: heat shock cognate 70) and stress 
inducible family members (HSP70s: heat shock protein 70) (reviewed in 
Morimoto, 1998). Whilst their action has been described in response to a wide 
variety of stresses, the classical activation of the HSP70 genes is in response 
to elevated environmental temperatures.  
 
The induction of these genes does come with a caveat, in that HSP70 gene 
expression is highly plastic. Levels of induction are influenced by thermal 
history such as seasonal temperature cycling, vertical zonation and 
biogeography (Somero, 2002; Hofmann, 2005). This heat shock plasticity 
phenomenon is well characterised in eurythermal organisms, but has also lead 
to great interest in the response of Antarctic marine organisms, which have 
more restricted thermal limits. These animals are highly stenothermal having 
survivable temperature envelopes between 5°C and 12°C above the minimum 
sea temperature of –1.86°C (Somero and DeVries, 1967; Peck and Conway, 
2000; Peck 2002). This range of upper lethal/critical temperatures was 
determined experimentally, as the organisms live almost permanently within a 
4ºC temperature envelope. Data from the RaTS (Rothera Time course Series) 
Long Term Monitoring Programme shows that the waters around the Antarctic 
Peninsula vary between a minimum of –1.8°C in the winter to a maximum of 
+1.7°C in the height of the austral summer (data provided by Professor 
Andrew Clarke). Shallow seawater temperatures along the west Antarctic 
Peninsula have risen in excess of 1°C over the last 50 years (Meredith and 
King, 2005). While the IPCC Third Assessment climate model predicts  a 
further 2oC increase in global seawater temperatures over the next 100 years, 
albeit with large regional variations and confidence intervals.  In light of 
current and predicted seawater temperature increases Antarctic stenotherms 
are therefore at considerable future risk of seasonal exposure to ambient 
water temperatures that exceed those known to result in the loss of critical 
biological functions (Peck et al, 2004). 
 
Given what was known about heat shock protein induction in eurythermal 
fish, the initial prediction for the heat shock induction temperature of 
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Antarctic marine organisms was close to the maximum environmental 
temperature. Surprisingly, it was found that members of the Antarctic 
Nototheniidae family completely lacked the classic heat shock response (up-
regulation of HSP70 expression) (Place and Hofmann, 2005). Although two 
other animal species to date have been shown to lack this response Hydra 
oligactis (Bosch et al, 1988) and an Antarctic ciliate Euplotes focardii (La 
Terza et al, 2001; 2004), the fish situation is complex.  The inducible form of 
HSP70 is permanently expressed (Place et al, 2004). It is thought that 
permanent expression of chaperone proteins is an adaptation to survival in 
the ice-laden Southern Ocean and the consequential biological problems of 
inefficient protein folding at such low temperatures (-1.86°C) (Place et al, 
2004). This observation is substantiated to a certain extent by the constitutive 
expression of HSP70 in the distantly related Antarctic fish Lycodichthys 
dearborni (Figure 1). However, this zoarcid can still up-regulate HSP70 
expression when exposed to 4°C (Place and Hofmann, 2005). 
  
Recent data (Clark et al, submitted) on the heat shock response of Antarctic 
marine molluscs has shown that the classical heat shock response is 
significantly and reproducibly initiated in both Nacella concinna and Laternula 
elliptica at 15ºC. This is a temperature far in excess of that which could be 
experienced by either of these molluscs or indeed other Antarctic marine 
organisms even under the most extreme predictions of elevated seawater 
temperatures as a result of global climate change predictions. Previous 
investigations of Antarctic fish species’ heat shock response have only taken 
the animals to a maximum of 10ºC (Hofmann et al 2000). 
 
The questions then arise as to whether up-regulation of HSP70 can occur in 
Antarctic fish at an elevated temperature of 15ºC? Whether constitutive 
expression of HSP70 is a general phenomenon across all Antarctic fish 
species? Is the inability to up-regulate HSP70 in response to heat specific only 
to the Nototheniidae family or is this phenomenon present more widely in the 
infraorder Notothenioidei?  
 
In this study three members of the HSP70 gene family comprising the 
constitutive (HSC70) and inducible (HSP70) members, plus GRP78 (Glucose-
regulated protein, 78kDa) a related HSP70 family member were cloned using 
degenerate PCR from the Antarctic plunderfish Harpagifer antarcticus (family: 
Harpagiferidae). The expression of the HSP70 family members was surveyed 
via Q-PCR after an acute two-hour heat shock experiment at both 10°C and 
15°C and also a time course experiment at 6°C. The data are discussed in the 
context of general cellular metabolic constraints under stressful conditions. 
 
 
 
Methods 
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 Animal sampling and experimental work  
All H. antarcticus used in the experimental work were collected at Rothera 
Research Station, Adelaide Island, Antarctic Peninsula (67o 34״07 ׳ S, 68o 07׳ 
 W) by SCUBA divers during the austral summer. The fish were collected ״30
and immediately returned to the laboratory where they were maintained in a 
through-flow aquarium under a simulated natural light:dark cycle. Predicted 
sunrise and sunset times (POLTIPS 3, Proudman Oceanographic Laboratory) 
were used in conjunction with a mechanical timer to control the lighting 
regime. During the time the animals were held in the aquarium the water 
temperature was 0.75±0.00oC. H. antarcticus were fed chopped white fish 
muscle (Notothenia coriiceps) twice per week to satiation.  
 Acute heat shock experiments: Animals were maintained for 5-7 
days in the aquarium prior to experimental work. Groups of 5 animals were 
transferred to the experimental tanks. The fish were exposed to a thermal 
shock, by immediate transfer to seawater maintained at a range of 
temperatures (-0.5oC (±0.07oC) (control), 10.0oC (10.16±0.07oC) and 15 oC 
(±0.1oC) for 2 hours. After the 2h thermal shock the animals were killed 
according to approved Home Office protocols, weighed (± 0.1g), measured 
(±0.1mm) and tissues collected and placed in RNA-Later (Ambion, USA) for 
subsequent analysis. 200mg samples of white muscle, liver and digestive tract 
were collected from each fish. 
 Time course heat shock experiments: H. antarcticus were 
returned to the UK in a refrigerated transport aquarium and maintained in a 
recirculating aquarium at close to 0 oC until required for experimental work. 
Animals were fed twice per week on chopped white fish or krill to satiation 
and maintained under a light:dark period of 12:12 hours. Thirty five fish were 
transferred to the experimental tank at time zero and maintained at 6.0 ± 

0.08oC. Five animals were killed according to approved Home Office protocols 
at zero, 2, 4, 8, 12, 24 and 48 hours and 200mg of liver removed and placed 
in RNALater for subsequent analysis. Animals were measured and weighed as 
described previously. 
 
Sample Analysis 
 RNA extraction and isolation of Heat Shock Protein (HSP) genes: 
Total RNA was extracted from liver, white muscle and digestive tract using 
TRI Reagent (Sigma) according to the manufacturer’s instructions. 1μg of 
total RNA was DNase treated using 0.4U DNase I (Ambion) in 10mM 
DTT/100mM MgCl2 buffer and reverse transcribed using a first strand 
synthesis kit (Promega). Degenerate primers for HSP70 were designed from a 
protein alignment of HSP70 genes from a variety of species ((H. sapiens to 
molluscs) and amplified a 500 bp fragment comprising amino acids 30-125 
(motifs used for primers: IIANDQGD and TVPAYFNN) (Table 1). PCR cycling 
conditions were as follows: 95°C 5 minutes, 35 cycles of 95°C 20 seconds, 
60°C 20 seconds and 72°C for 40 seconds with a final elongation step of 72°C 
for 5 minutes. Products were subcloned into p-GEMT-easy (Promega), 
transformed into E.coli strain XL-2 Blue MRF’ (Stratagene) and a minimum of 
48 clones sequenced. Sequence data was assembled using the phred, Phrap 
and consed packages  (Ewing et al, 1998; Gordon et al, 1998). Consensus 
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sequences were database searched using WU-blast2 (WU-blastx) (Altschul et 
al, 1997) against Uniprot (Boeckmann et al, 2003; Wu et al, 2006) to assign 
their HSP identity. The nucleotide sequences were aligned using Clustal W 
(Thompson et al, 1994) and specific primers designed for each different 
member of the HSP family, all with an annealing temperature of 60°C. 
Amplified fragment sizes varied between 143bp and 145bp. The specificity of 
each of the primers was checked, by amplification and sequencing of the 
products.  
 Isolation of β actin genes: To allow for a comparative analysis to 
be made between the different HSP genes, a housekeeping sequence β actin 
was isolated from H. antarcticus. Primers previously designed to the Takifugu 
rubripes β actin gene family (Venkatesh et al, 1996) (Table 1) were used to 
amplify 500bp heterologous sequences from H. antarcticus using the following 
PCR conditions: 95°C 5 minutes, 35 cycles of 95°C 20 seconds, 60°C 20 
seconds and 72°C for 40 seconds with a final elongation step of 72°C for 5 
minutes. PCR products were sequenced, assembled and checked as described 
above for the HSP genes. Fragments of two members of the β actin gene 
family were cloned, but primers were designed to the predominating clone 
(86% of clones). Primers were designed to anneal at 60°C. Expression levels 
of β actin between different tissues and different treatment states were 
checked to ensure constant expression and reproducibility. Sequences of all 
primers are listed in Table 1. All HSP sequence fragments have been 
submitted to the EMBL database with the accession numbers AM293602-
AM293604 inclusive. 
 Sequence analysis: Sequence manipulation and analysis was 
performed using the EMBOSS suite of open source software (Rice et al, 2000) 
http://emboss.sourceforge.net. 
 Q PCR: HSP and actin sequences were amplified under each 
treatment condition using specific primers, Brilliant SYBR® Green QPCR 
Master Mix (Stratagene) and an MX3000P (Stratagene). PCR conditions were 
as follows: 95°C 10 minutes, 40 cycles of 95°C 30 seconds, 60°C 1 minute 
and 72°C for 1 minute with a final dissociation curve step as per 
manufacturers recommendations. The plate set-up for each Q-PCR 
experiment consisted of 5 control individuals and 5 experimental (“treated”) 
individuals amplified with a specific HSP primer set (designated Expt 1) and 
an actin control primer set (designated Normaliser).  Actin was used as the 
housekeeping reference sequence as it had previously been shown not to 
change under the experimental conditions used (data unpub). Each HSP and 
actin amplification was performed in triplicate. Each primer set was checked 
to ensure that no primer dimers were produced during the course of the 
amplification reaction. RSq values and PCR efficiencies were checked over a 
four fold 10x dilution series and the values calculated using the MxPro - 
MX3000P v 3.00 Build 311 Schema 74 software (Table 1). Primers producing 
low RSq values were discarded and new primers designed. Amplifications 
were analysed using the MxPro - MX3000P v 3.00 Build 311 Schema 74 
software and Ct (dR) values (threshold cycle of the baseline subtracted 
fluorescent reading) exported into Excel. The differences in Ct (dR) scores for 
the control actin and HSP amplifications and also for the treated actin and 
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HSP amplifications were derived and recalculated to include the PCR 
efficiency. These results were subjected to a 2-sample t-test using MINITAB 
v14 to determine the 95% confidence range. Relative expression ratios of the 
HSP and actin genes between the control and treated samples were derived 
using the Relative Expression Software tool (REST) (http://www.gene-
quantification.info/), which incorporates the Pfaffl method and also uses a 
Pair Wise Fixed Reallocation Randomisation Test (Pfaffl, 2001; Pfaffl et al, 
2002). This Excel macro was also used to calculate the significance level of 
the fold changes. The data was then subjected to Fisher’s method for 
combining probabilities (Fisher, 1954). 
 
 
Results 
Three members of the HSP70 gene family were cloned and identified from H. 
antarcticus; the inducible form (HSP70, the constitutive form (HSC70) and 
GRP78 (Glucose-regulated protein, 78kDa). These were initially defined 
according to their sequence similarity scores after searching the sequence 
databases using WU-BLASTx (Table 2). The designation of the inducible form 
was narrowed further to HSP70-2 by comparison to the two duplicated 
platyfish HSP70 genes (accession numbers: Uniprot: Q8UWN0 and 
Uniprot:Q8UMM9). The H. antarcticus sequence fragment showed 86.2% 
identity to the platyfish HSP70-2 gene, with a lower level of identity (80.7%) 
to the platyfish HSP70-1 gene. Only one member of the inducible form of 
HSP70 was cloned from H. antarcticus in spite of performing two additional 
sets of PCR amplifications from 10°C treated animals and several 
amplifications from genomic DNA (data not shown). To obtain a crude 
estimate of the relative expression levels of each of the HSP genes in H. 
antarcticus, the genes were assayed using standard PCR and gel 
electrophoresis in a set of control animals (data not shown). All three genes 
were permanently expressed in liver, white muscle and digestive tract with no 
real quantifiable tissue-specific expression. In the 10°C acute 2-hour heat 
shock experiments, 5 out of the 9 tissue sample/primer combinations showed 
down regulation of gene expression, these included both liver and digestive 
tract amplified using HSC70 primers and all of the GRP78 amplifications 
(Figure 2). This result was mirrored in the 15°C acute heat shock experiments 
(Figure 3). Up-regulation of gene expression was minimal (maximum 3.4 fold 
at 10°C and 5.97 fold at 15°C for HSP70) and well within the boundaries of 
experimental variation, when considering the 95% confidence interval ranges. 
Application of Fisher’s method for combining probabilities on each of the two 
datasets is consistent with no detectable effect of temperature on HSP gene 
expression (see figure legends for probability data). Over the period of the 
6°C time course experiment all sample/primer combinations showed effective 
down regulation of gene expression. The general trend in the gene expression 
pattern was of a gradual decrease to a maximum down regulation level, 
followed by recovery. However, even after 48 hours, expression levels of all 
genes under study had not returned to pre-experimental levels. The time 
point at which maximal down regulation occurred varied according to the 
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gene: 8 hours for HSC70, 12 hours for HSP70 and 24 hours for GRP78 (Figure 
4). 
 
 
Discussion 
This study details for the first time, the cloning and expression profiles of 
HSP70 gene family members from an Antarctic fish over both acute heat 
shock experiments and an elevated temperature time course. Two types of 
heat shock were used, the first of which was acute at both 10°C and 15°C for 
two hours. This experiment was carried out to mirror previous Antarctic fish 
heat shock experiments and provide a point of reference for the time course 
assay. Previously Antarctic fish have only been heat shocked to 10°C 
(Hofmann et al 2000). Although the temperatures used are 8°C and 13°C 
above their natural environmental temperature, data from Antarctic 
invertebrates (Clark et al, submitted) shows that these latter organisms 
possess a significant and reproducible heat shock response at 15°C. Whilst 
the heat shock response is an acute phenomenon that occurs within minutes 
of stress (Linquist, 1986), it has also been previously documented that 
Antarctic fish may have a depressed/slowed stress response in terms of 
catecholamine synthesis levels and that cortisol may not be an important 
stress hormone in these species (Davison et al, 1995; Whitely and Egginton, 
1999). Hence they may have a slower stress response compared to that 
measured in temperate animals. Therefore a longer lower temperature heat 
shock (6°C) was carried out as a time course series of 2, 4, 8, 12, 24 and 48 
hours to ensure that a longer mRNA activation time may be detected. This 
temperature was chosen with reference to previous work on the upper lethal 
temperatures of Notothenioids (Somero and DeVries, 1967).  
 
Three HSP70 genes were isolated and nomenclature assigned using database 
sequence similarity searching.  Only one inducible form of HSP70 was 
characterised from H. antarcticus. This is very interesting as evidence from 
other organisms suggests that there are multiple copies of this family member 
in most genomes surveyed to date (Voellmy et al, 1985; Hunt and Morimoto, 
1985; Ali et al, 1996; Milner and Campbell, 1990). Studies in fish indicate that 
at least two HSP70 paralogues are present in each species (Yamishita et al, 
2004), probably the result of a fish-specific gene whole genome duplication 
event (Amores et al, 1998), as the duplicated genes are present across 4 
orders of fishes within the Euteleostei. The H. antarcticus gene corresponds 
to the HSP70-2 isoform. Previous work on Antarctic fish HSP70 gene 
expression has only indicated the presence of a single gene, albeit detection 
was via probe hybridization onto Northern blots and this technique would not 
necessarily be able to discriminate between very closely related paralogues 
(Place et al, 2004; Place and Hofmann, 2005, Hofmann et al, 2005). 
Possession of additional members of the inducible HSP70 gene in H. 
antarcticus cannot be discounted, as they may be present in a very restricted 
tissue or developmental range. However, The identification of only a single H. 
antarcticus HSP70 gene so far, is not surprising given previous examples of 
gene loss in Antarctic fish (c.f. haemoglobin and functional erythrocytes in 
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icefish (Cocca et al, 1995; di Prisco et al, 2002; Hureau et al 1977; Barber et 
al 1981) and the modification of expression patterns from temperate fish 
species (discussed below). But it does suggest a restriction in overall 
functional capacity, the reasons for which remain to be elucidated. 
 
H. antarcticus displays both the constitutive expression of HSP70 and the 
absence of a reproducible classical heat shock response via up-regulation of 
the HSP70 genes in response to increased environmental temperatures as 
demonstrated previously in several other Antarctic fish species (Hofmann et 
al, 2000; Place and Hofmann, 2005). To date the lack of up-regulation of 
HSP70 has only been demonstrated in the Antarctic Nototheniidae. The data 
presented here add another data point for Antarctic fish species extending 
this finding across three members of the Antarctic Notothenioidei (Figure 1). 
This potentially indicates that the mutation resulting in the lack of HSP70 
induction in the Antarctic Notothenioids occurred before their diversification, 
but after the separation of the Bovichtidae (which have the classical heat 
shock response) and the migration of the New Zealand Notothenioids from 
the Southern Ocean (Carpenter and Hofmann, 2000).  
  
In addition to the constitutive expression of the inducible form of HSP70, 
GRP78 is also strongly constitutively expressed (a situation identified in the 
Antarctic molluscs: Nacella concinna and Laternula elliptica (Clark et al, 
submitted)). GRP78 has been shown to be constitutively expressed in rainbow 
trout cell lines, but at a relatively low level, compared that identified in our 
experiments (Ojima et al, 2005). This provides an increasing body of evidence 
to support the theory that constitutive expression of heat shock proteins may 
be a compensatory mechanism for coping with elevated protein damage at 
low temperatures. There is some evidence that protein degradation rates 
appear comparatively higher and protein synthesis rates lower in 
invertebrates at polar water temperatures than in species living at warmer 
temperatures (Fraser et al. 2002; Fraser and Rogers, in press). Other studies 
have also shown elevated levels of ubiquitin-conjugated proteins in polar 
fishes, a likely indication of increased levels of denatured proteins at polar 
water temperatures (Place et al. 2004). Taken together this evidence 
suggests that transcribing, translating and folding proteins at polar water 
temperatures may be problematic. Indeed, cold denaturation of proteins is 
well known (Privalov, 1990) and exposure of endotherm cells and ectotherms 
to cold shock can induce HSP70 expression (Ali et al., 2003; Laios et al. 
1997).  
 
H. antarcticus does not show any significant up-regulation of heat shock 
protein activity above the level of individual variation/experimental noise for 
any of the family members surveyed at either the acute temperatures or over 
the time course. There are wide 95% Confidence Intervals in all the data and 
some results which show large fold increases in gene expression are still not 
significant at the 95% level using the Pair Wise Fixed Reallocation 
Randomisation Test in the REST software (Pfaffl, 2001; Pfaffl et al, 2002) or 
Fisher’s method for combining probabilities. The wide confidence intervals are 
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a result of enforced experimental design and animal sampling: repeat 
sampling of animals before and after treatment was not possible. Thus 
analysis of 5 “paired” results was in fact analysis of ten different individuals. 
The work was carried out on non-interbred, non-model organisms and implicit 
in this is the problem of high inter-individual variability (also noted in Place 
and Hofmann, 2005). So care has to be taken in interpreting Q-PCR results 
from these animals, with general trends being more important indicators 
rather than absolute figures. 
 
The overall trend for all members of the HSP70 gene family examined in this 
study is down regulation. This is particularly the case with the time course 
results, which are a more accurate reflection of thermal stress compared to 
the very quick (in some ways, artificial) acute heat shock experiments at 
elevated temperatures. In the time course, this down regulation is followed 
by indications of recovery to “normal” levels. There is clearly a reaction by H. 
antarcticus  to thermal stress, but there is also evidence that at least some 
Antarctic fish can acclimate successfully to higher temperatures such as 4°C 
(Carpenter and Hofmann, 2000; Lowe and Davidson, 2005; Jin and deVries, 
2006, Podrabsky and Somero, 2006).  
 
The reason for this general down-regulation of HSP genes cannot be 
determined given this set of experiments and the limited gene set. However, 
there are three potential reasons:  

• There is a general down-regulation of all genes under these conditions. 
Although tests on β actin as a housekeeping sequence for Q-PCR show 
no change in expression levels with treatment. 

• Small temperature increases above 0°C may improve protein stability, 
reducing the requirement for HSPs until a higher threshold is released  

• A more selective process is occurring with down regulation of “non-
essential” genes, whilst other genes more vital to cell survival are up 
regulated. Certainly experiments in invertebrates indicate that oxygen 
limitation is a significant factor in physiological responses to 
temperature (Frederich and Pőrtner, 2000) and it may well be that 
hypoxic genes are up regulated at the expense of most others. 

This down regulation trend is particularly acute for GRP78. During the time 
course experiment GRP78 expression falls by over 100 fold and this was 
confirmed by duplicate experiments on both the same samples and newly 
isolated cDNAs. To date, most of the work on this gene has been carried out 
on mammals and the results of work on fish cell lines after heat shocking 
have been contradictory so far. Ojima et al (2005) reported no change in the 
expression of this gene in rainbow trout cell lines, whilst Yamashita et al 
(2004) showed up-regulation of GRP78 protein in heat shocked platyfish cell 
lines. Comparing results from cell line studies and whole animals is 
problematic and should be interpreted with caution. Our results on whole 
animals present a further alternative with constitutive expression at “normal” 
temperatures and down regulation of this gene in immediate response to heat 
shock.  
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GRP78 is located in the endoplasmic reticulum and is a classic marker of the 
unfolded protein response with an HSP-like chaperone function (Sommer and 
Jarosch, 2002). It is up regulated under conditions of glucose starvation 
(Hendershot et al, 1994). Therefore, in addition to the three potential reasons 
for gene down-regulation outlined above, there are two other possible 
reasons, which may contribute to the massive down regulation of GRP78 
compared to the other genes. GRP78 is not classically induced under heat 
stress conditions and in theory would not be expected to alter in expression 
level with thermal stress. However, in marine organisms, any increase in 
water temperature is associated with a decrease in oxygen content of the 
water (an approximate 2% decrease per degree) and therefore hypoxia is 
also potentially an additional stressor (Hochachka et al, 1996). Up-regulation 
of carbohydrate metabolism and production of glucose has been shown in 
hypoxia experiments with Gillichthys mirabilis (Gracey et al, 2001) and daily 
temperature fluctuation in Austrofundulus limnaeus (Podrabsky and Somero, 
2004). Up-regulation of glucose would inhibit GRP78 expression. Also 
preliminary microarray sequence screening provides a further antagonist for 
GRP78 expression with identification of the Diablo gene, a protein which 
activates caspases and is involved in the apoptosis pathway. Gene Ontology 
data (Gene Ontology Consortium, 2000) (http://www.geneontology.org) for 
GRP78 includes not only chaperone activity, but also caspase regulator 
activity (GO:0043028), more specifically caspase inhibitor activity 
(GO:0043027). Potentially these two genes (GRP78 and Diablo) are 
interacting in the activation/inhibition of apoptosis under stress. If Diablo is 
up-regulated, GRP78 would consequently be down regulated. More 
comprehensive microarray analysis will be needed to define this potential 
relationship between these two genes. 
 
In summary, this work describes for the first time, the cloning and expression 
profiles of HSP70 gene family members from an Antarctic fish, H. antarcticus.  
The metabolic complexity of any organism is balanced within a confined 
biochemical envelope constrained by cellular energetics. In the case of HSPs 
this is a cost-benefit trade-off between successful protein folding (and re-
folding) compared to other essential cellular metabolic activities. Heat shock 
proteins help protect against the unfolded protein response in extreme 
environmental temperatures, but there are potential negative effects, such as 
impacts on growth, development rate and fertility (Krebs and Loeschcke, 
1994; Silbermann and Tatar, 2000; Sorensen et al, 2003). In these Antarctic 
fish, HSP70 proteins are produced continuously whilst in other temperate 
species their production is tightly regulated and they are only produced when 
the organism is under stress. This suggests that Antarctic fish have extra 
housekeeping costs compared to temperate species associated with the 
expression of the inducible HSP70s. The ability to further up-regulate HSPs 
under stressful conditions could potentially have deleterious effects in terms 
of cellular energetic costs if the net benefits of protein stability are 
outweighed by the energetic costs (Sorensen et al, 2003). Experiments are 
on-going in our laboratory to further dissect the intricate nature of the heat 
shock response in this fish species. A DNA microarray containing HSPs has 
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been produced in our laboratory and will be used to provide a more detailed 
description of the complex biochemical reactions underlying this process. 
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Table Legends 
 
Table 1 
Degenerate primers used to clone specific HSP and actin genes in H. 
antarcticus. Q-PCR specific primer sets for HSP family members and actin. 
RSq and PCR efficiency values are included for Q-PCR reactions, as calculated 
using the Stratagene MxPro - MX3000P v 3.00 Build 311 Schema 74 software. 
 
Table 2 
Designation of HSP gene family member status based on BLAST match results 
from database sequence similarity searches. 
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Figure Legends 
 
Figure 1 
Schematic diagram showing relatedness of H. antarcticus and other Antarctic 
Perciformes, which have been studied for their heat shock response (adapted 
from Near et al, 2004), previous data taken from Place and Hofmann, 2005. 
The New Zealand notothenioids investigated in Hofmann et al, 2005 have also 
been annotated. The (+) and (-) after the fish names indicates whether they 
exhibit a heat shock response or not respectively. 
 
Figure 2 
Table shows Q-PCR results for H. antarcticus with an acute 10°C temperature 
heat shock on three different tissues (liver, white muscle and digestive 
gland). Absolute fold change in gene expression level is given, alongside 
REST calculated updown regulation of gene expression level. P values 
calculated using a Pair Wise Fixed Reallocation Randomisation Test (Pfaffl, 
2001; Pfaffl et al, 2002) via the Relative Expression Software tool (REST) 
(http://www.gene-quantification.info/). Graph depicts tabulated results. 
Fisher’s method for combining probabilities: Chi squared test on whole 
dataset: F = 0.449, Df = 18, p = 1.00. 
 
Figure 3 
Table shows Q-PCR results for H. antarcticus with an acute 15°C temperature 
heat shock on three different tissues (liver, white muscle and digestive 
gland). Change in gene expression levels calculated as defined in Figure 2. 
Graph depicts tabulated results. Fisher’s method for combining probabilities: 
Chi squared test on whole dataset: F = 21.576, Df = 18, p = 0.25. 
 
 
Figure 4 
Table shows Q-PCR results for H. antarcticus heat shock experiment at 6°C at 
2, 6, 8, 12, 24 and 48 hour time points. Data are presented only for liver. 
Column headings are as for Figure 2. Graph depicts tabulated results. Fisher’s 
method for combining probabilities: Chi squared test on whole dataset: F = 
44.89, Df = 36, p = 0.15. 
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Primer Set Gene Primer Sequence RSq PCR 
efficiency 

ATCATCGCYAACGACCAGGGMRAC HSP70F & 
HSP70Rev 

Degenerate for 
HSP70 isolation GTTGTTGAAGTARGCDGGSACBGT 

N/A N/A 

ACAGACTACCTCATGAAGATCCT ActinF & 
ActinRev 

Fish Actin 
primers GAGGCCAGGATGGAGCCTCC 

N/A N/A 

CATCAATGACAACACTCGCCC Han1F & 
Han1Rev 

HSC70 
TGTTGACAGTCTTTCCGAGGTA 

0.965 142.90% 

TGGTGGGAGATGGAGGGAAAC Han2F & 
Han2Rev 

HSP70 
TTGGACACAGTTTGGCCAAGG 

0.995 112.10% 

TACTGAGAAGAAGAGCAAGCCT Han3F & 
Han3Rev 

GRP78 
GTGTGACCTTCTTGCCCAGAT 

0.964 146.60% 

AGGTCATCACCATCGGAAACGA HanActin F & 
HanActinRev 

Actin 
ACAGCACGGTGTTGGCGTACA 

0.989 123.00% 

 
 
Table 1 



Primer 
Set 

Gene 
Designation 

Closest database match Score % identity Probability

1F & 
1Rev 

HSC70 Q76N60: Paralichthys olivaceus 
(Japanese flounder) 

552 97 1.2e-51

2F & 
2Rev 

HSP70 Q6TDU0: Dicentrarchus labrax 
(European sea bass) 

531 92 2.1e-49

3F & 
3Rev 

GRP78 Q5DW64: Oncorhynchus mykiss 
(Rainbow trout) 

530 92 2.6e-49

 
Table 2 



Perciformes

Zoarcoidei

Notothenioidei

Bovichtidae

Pseudophritidae

Eleginopidae

Harpagiferidae

L. dearborni

Artdidraconidae

Bathydraconidae

Channichthyidae

Nototheniidae

H. antarcticus

T. Bernacchii
P. borchgrevinki

Notothenia angustata (NZ)

Bovichtus variegatus (NZ)

Figure 1

(+)

(+)

(+)

(-)

(-)



Tissue Gene Temp 
REST 

P-value 
Fold 

 

change Range Gene Regulation 
Liver HSC70 10 0.999 0.620 0.21-4.08 -1.07 down regulated

Muscle HSC70 10 0.991 2.200 0.35-15.17 up 
Digestive tract HSC70 10 0.997 0.400 0.11-1.58 -2.38 down regulated

Liver HSP70 10 0.999 1.000 0.06-16.05 up 
Muscle HSP70 10 1.000 3.400 0.75-32.76 up 

Digestive tract HSP70 10 0.994 1.100 0.08-25.07 up 
Liver GRP78 10 0.899 0.100 0.01-1.77 -7.78 down regulated

Muscle GRP78 10 0.995 0.700 0.13-7.90 -1.66 down regulated
Digestive tract GRP78 10 0.911 0.040 0.01-0.33 -14.37 down regulated
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Tissue Gene Temp 
REST 

P-value 
Fold 

 

change Range Gene Regulation 
Liver HSC70 15 0.955 0.950 0.19-4.47 -1.07 down regulated

Muscle HSC70 15 0.860 1.690 0.30-9.56 up 
Digestive tract HSC70 15 0.983 0.810 0.21-3.03 -1.22 down regulated

Liver HSP70 15 0.247 4.570 1.19-40.59 up 
Muscle HSP70 15 0.528 5.970 1.50-73.98 up 

Digestive tract HSP70 15 0.408 4.530 0.79-25.95 up 
Liver GRP78 15 0.021 0.110 0.04-0.33 -8.38 down regulated

Muscle GRP78 15 0.995 0.580 0.06-5.03 -1.70 regulated
Digestive tract GRP78 15 0.023 0.070 0.02-0.20 -13.41 down regulated
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Gene Time Point 
REST 

P-value 
Fold 

 

change Range Gene Regulation 
HSC70 2hrs 0.452 0.137 0.048-0.389 -7.29 down regulated 
HSC70 4hrs 0.388 0.078 0.019-0.306 -12.86 down regulated 
HSC70 8hrs 0.232 0.046 0.005-0.392 -21.58 down regulated 
HSC70 12hrs 0.179 0.178 0.031-1.02 -5.59 down regulated 
HSC70 24hrs 0.355 0.090 0.017-0.501 -10.75 down regulated 
HSC70 48hrs 0.288 0.123 0.157-0.962 -8.12 down regulated 
HSP70 2hrs 0.998 1.346 0.198-9.147 1.34 up regulated 
HSP70 4hrs 0.883 0.617 0.071-5.360 -1.61 down regulated 
HSP70 8hrs 0.907 0.635 0.034-11.61 -1.57 down regulated 
HSP70 12hrs 0.351 0.050 0.014-0.199 -18.55 down regulated 
HSP70 24hrs 0.124 0.100 0.038-0.267 -9.85 down regulated 
HSP70 48hrs 0.167 0.111 0.037-0.324 -9.04 down regulated 
GRP78 2hrs 0.607 0.085 0.015-0.483 -11.69 down regulated 
GRP78 4hrs 0.592 0.090 0.020-0.397 -11.08 down regulated 
GRP78 8hrs 0.490 0.053 0.010-0.266 -18.79 down regulated 
GRP78 12hrs 0.182 0.020 0.001-0.360 -38.01 down regulated 
GRP78 24hrs 0.012 0.008 0.002-0.030 -122.37 down regulated 
GRP78 48hrs 0.071 0.020 0.007-0.015 -34.53 down regulated 
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