
   

 1  

 

Chemical and isotopic characteristics of weathering and nitrogen release in non-glacial 

drainage waters on Arctic tundra 

 

A.M. Tye a, b, *, T.H.E. Heaton b 

 

a University of Nottingham, University Park, Nottingham, NG7 2RD 

b British Geological Survey, Keyworth, Nottingham NG12 5GG 

 

 

*Corresponding author 

British Geological Survey, Keyworth, Nottingham NG12 5GG 

Tel: +44 (0)115 9363229 

e-mail: atye@bgs.ac.uk 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NERC Open Research Archive

https://core.ac.uk/display/62503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


   

 2  

 

Abstract 

Soil-water interactions in coastal tundra soils are a potential source of nutrients for surrounding 

fjordal and coastal ecosystems. Changes in water chemistry and stable isotope composition 

from 3 streams in west Spitsbergen were examined to assess the sources and losses of nitrogen, 

sulfur and carbon in thin organic tundra soils overlying sediments. Studies were undertaken 

from snowmelt (mid June) through to the end of the summer (September) in both 2001 and 

2002. Drainage water chemistry was dominated by the solution of Ca-Mg carbonates with δ13C 

values in the waters being uncharacteristically high (approx. –2 ‰ at the end of the season), 

reflecting a largely open system in which the CO2 is derived equally from the atmosphere and 

plant/soil sources. Early melt waters had δ34S values dominated by sea salt reflecting the close 

proximity to the ocean. However, as the season progressed the marine influence lessened. 

Extrapolation of the data suggests that the origin of non-sea salt δ34S was the oxidation of 

reduced sulfur from coal particles in the subsoil. Concentrations of inorganic N in stream 

waters were generally very low. However, NO3
- values were found to increase as the season 

progressed, possibly through increased microbial activity in the soil and the early senescence of 

tundra plants reducing demand. Dual isotope analysis of δ15N and δ18O suggested that the vast 

majority of snow-pack NO3
- was assimilated by the soil microbial biomass before being 

released, recycled and lost to drainage waters. Organic N concentrations in drainage waters 

were generally equal to or greater than losses of inorganic N from tundra soils. The study 

demonstrated the effectiveness of stable isotope data for understanding biogeochemical cycling 

and soil-water interactions in tundra ecosystems. The implications of the results are discussed 

in relation to climate warming.      
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1. INTRODUCTION  

Studies of chemical budgets and hydrochemistry in the European High Arctic have largely 

focused on glacial catchments (Tranter et al. 2002; Wadham et al. 2004; Hodson et al. 2005; 

Wynn et al. 2006). These systems have major roles in (i) regulating the biogeochemical cycling 

of nutrients that may impact both freshwater and marine ecosystems and (ii) in our 

understanding of cryosphere-atmosphere interactions and the potential feedbacks that 

contribute to climate regulation (Tranter et al. 2002). The evolution of snowmelt chemistry in 

these glacial catchments is largely influenced by the presence of meltwater derived from stored 

glacial ice and snow and the substantial contribution of solutes released during the weathering 

and leaching of underlying rock and glacial tills (Hodson et al. 2005). In contrast, relatively 

little published work exists regarding the chemistry of soil-water interactions in those parts of 

the polar tundra free of the complications of glacial systems in the European High Arctic. In 

Spitsbergen, Stutter & Billett (2003) undertook chemical analysis on a range of stream and 

drainage waters draining different tundra vegetation types from Dicksonland, whilst Pecher 

(1994) examined temporal changes in surface and soil pore waters in Liedefjorden. Hodson et 

al. (2002) and Cooper et al. (2002) both examined changes in the hydrochemistry of glacial 

meltwater streams that had major drainage contributions from tundra.  

 

This paper reports work examining the hydrochemistry of drainage waters from low-lying 

coastal tundra. These areas are generally drained via small streamlets or drainage gulleys that 

often include an element of overland flow. Sources of water include melting snow, springs that 

are generated partially from melting soil moisture, and precipitation. These areas are often 

characterised by thin organic soils overlying sediments, and are a potential source of nutrient 

enrichment to fjords and the ocean. Changes in the major element hydrochemistry of the 

drainage waters in conjunction with their stable isotope composition were analysed from the 

onset of snowmelt and through the snow free period that occurs during the summer in the High 

Arctic.  
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It is anticipated that weathering processes of the sub-soil sediment, and biogeochemical cycling 

within the thin organic soil will determine the solute composition of the waters draining tundra 

soils. However, some nutrient enrichment of fjordal and coastal waters from tundra soils may 

also occur from the long-range transport of pollutants such as reactive nitrogen deposited and 

later released from the snowpack. A key aim of this study was to assess the relative 

contributions in the drainage waters of atmospheric (snowpack) and soil (microbially) derived 

NO3
-. Increased deposition of atmospheric reactive N, emitted and transported from 

industrialised areas (Mosier et al. 2001), has been recorded and may impact delicate N-limited 

ecosystems. Evidence of this increased deposition has been found in firn ice cores from many 

parts of the Arctic, where a doubling of inorganic N concentrations has occurred since the 

industrial revolution (Laj et al. 1992; Fischer et al. 1998; Simoes and Zagorodnov, 2001). The 

inputs of reactive N have been found to vary with geographical position and proximity to 

anthropogenic sources (Jaffe and Zukowski, 1993). Consequently, yearly atmospheric N 

deposition is estimated to be ~1.2 kg ha-1 yr-1 in the Norwegian high Arctic, but ~10 kg ha-1 yr-1 

on the Taymyr Peninsular in Russia and parts of northern Alaska (Woodin, 1997). Research 

has shown that during winter, reactive N is deposited in the snowpack and is released at 

snowmelt in the early summer. It then contributes to a pulse of N to terrestrial ecosystems that 

are effectively ‘switching on’ for the summer growing period (Russell, 1990). Initial research, 

largely on alpine tundra and high elevation catchments, suggested that this pulse of N was 

either a result of: (a) preferential elution of snowpack NO3
- and/or; (b) the flushing of NO3

- 

produced by microbial nitrification throughout the winter. However, recent research has 

suggested that atmospherically derived NO3
- may enter a period of temporary storage in the 

soil microbial biomass (Sickman et al. 2003) or in plants (Bilborough et al. 2002) before being 

re-released as organic forms of N, back into the terrestrial N cycle. Therefore, this work 

attempts to quantify the inputs of snowpack deposited N and its subsequent fate in a High 

Arctic location.   
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2. SITE DESCRIPTIONS AND METHODS 

2.1 Streams 

Sampling was undertaken at 3 streams on the shores of Kongsfjorden, close to the research 

settlement of Ny Ålesund, Svalbard (78o54′N, 11o53′E; Figure 1). Kongsfjorden is 20 km long 

and varies in width between 4 and 20 km. The landscape surrounding the fjord has been shaped 

by glacial activity with active glacial, hydro-glacial, periglacial and coastal processes still 

continuing (Svendsen et al. 2002). Mean annual precipitation is 412 mm. The prevailing wind 

direction is from the south east with a second mode from the north-west (Svendsen et al. 2002). 

Average air temperatures start to drop below freezing in early September, reaching a mean 

monthly temperature of -17oC in February, before rising above freezing in early June to reach a 

mean monthly temperature of +5oC in July (http://isohis.iaea.org). Snow starts to accumulate 

from December onwards, building to depths of ~ 0.5 m in flat, shoreline areas, and melting in 

June. Thawing of the soil during the summer extends to a permafrost depth of about 1m (Roth 

and Boike, 2001).  

 

2.1.1. Stream 1. 

The principal site, sampled in 2001 and 2002, was a small catchment draining into 

Kohamnlaguna, on the shore south of Brandalpynten, about 2 km north west of Ny Ålesund 

(Stream 1, Figure 1). The site has a maximum altitude of 25 m, covers about 2 ha, and in 

summer comprises a low gradient, boggy basin bounded on the north and south by drier, 

slightly raised gravelly areas, and on the west, at the head of the catchment, by the slopes of a 

series of rock and gravel terraces. These terraces represent raised beach sequences, which are a 

major geomorphological feature of the Bröggerhalvöya peninsula, and characterise the late 

Weichselian and Holocene history of sea level in this part of Spitsbergen. The Bröggerhalvoya 

peninsula emerged when glacial-isostatic rebound exceeded the sea level rise leaving three 

large beach ridges that are found at ~29, 37 and 45m altitude. The ridges are between 100 – 

200 m wide with a relief of ~5m. Below 20m, as in this study site, a series of narrow (5-10m) 



   

 6  

and low (< 2m) strandlines are found that reach to the present shoreline where a barrier beach 

ridge is actively forming (Forman et al. 1987). Radiocarbon dating of whalebones has been 

used to date relative sea level change on Bröggerhalvoya. Deglaciation is considered to have 

occurred in two steps. Initial unloading of the ice could have involved the break up of the 

marine-based ice sheet on the Spitsbergen bank in the Barents sea approximately 13000 yrs 

B.P., followed by the second step that resulted in the deglaciation of the major fjords by about 

9000 B.P. (Forman et al. 1987). A thin (typically < 4 cm) organic soil horizon has developed 

on the better drained areas. Vegetation was similar to that of an adjacent study area described 

by Tye et al. (2005). Bryophytes and Salix polaris grow on the organic soil, with a thick moss 

carpet common in the basin along with a cryptogamic crust including species of the blue-green 

algae Nostoc. In summer several streams run east through the basin to the shore. The largest 

stream, Stream 1, was selected for sampling. As the total catchment drainage was over a broad 

area, and not on bedrock, it could not be accurately gauged. 

 

2.1.2. Streams 2 and 3. 

Two additional streams (Streams 2 and 3 in Figure 1) were sampled in 2002 to provide data 

supplementary to that obtained from Stream 1. Stream 2 was a small stream running to the 

shore to the west of Brandalpynten, and draining ground similar to that surrounding Stream 1 

about 1 km away. Samples were also collected in 2002 from a gauging station of the 

Norwegian Polar Institute (Norsk Polarinstitutt) on a stream draining part of the island of 

Blomstrandhalvøya (Stream 3). This catchment is characterised by a higher altitude (369 m at 

the highest point), steeper gradient slopes, more visible bedrock consisting of the Generalfjella 

Formation Marbles (Harland, 1998) of Devonian age, and relatively little soil cover compared 

with the area drained by Streams 1 and 2.  
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2.2. Sampling and analysis 

The snowpack in the catchment of Stream 1 was sampled in late April of 2001 and 2002. For 

chemical analysis, fifteen snow cores were collected over a 100 x 100 m area using a 4.9 cm 

diameter plastic tube inserted down to the base of the snowpack, and the snow transferred to a 

pre-conditioned plastic bag. Snow depth, volume and weight from each core were determined 

so snowpack density could be calculated. Estimates of NO3
- and NH4 inputs on a kg.ha-1 basis 

were derived by combining depth and density measurements from each core to estimate snow 

water equivalent (SWE). The concentrations of NO3
- and NH4 were multiplied by the SWE to 

obtain snowpack contents (Sickman et al. 2003). Samples for 15N/14N, 34S/32S and 18O/16O 

isotope analysis, of up to 80 kg snow, were collected from a smaller number of pits in the same 

area (Heaton et al. 2004). In 2002, ice samples from the bottom of the snow pack were 

collected by chiselling ice out from known areas. The ice was weighed, allowing the 

calculation of density and SWE. Inputs of NO3
- and NH4 were calculated in a similar manner 

as for the snow.   

 

Samples of drainage waters were collected from Stream 1, at approximately weekly intervals, 

during mid June to early September of 2001, and at Streams 1, 2 and 3 during mid June to early 

September of 2002. For Stream 1 [data for Stream 2 are not presented], estimates of flow rate 

(Figure 2) were determined by damming the drainage channel just above the collection point 

and diverting the flow via guttering pipe from which the volume of water per minute was 

determined. Samples for chemical analysis were collected in 1 L LDPE bottles. Samples of up 

to 100 L in jerry cans were collected for 15N/14N, 18O/16O and 34S/32S analysis, and 500 mL in 

polycarbonate bottles for inorganic 13C/12C analysis. The latter samples, which were free of any 

turbidity, were collected unfiltered to avoid potential loss of CO2, and the TDIC (total 

dissolved inorganic carbon) immediately precipitated as barium carbonate by addition of 

alkaline barium chloride. Two samples filtered before addition of barium chloride showed no 

difference from their unfiltered counterparts. 
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2.2.1. Post Sample Collection Procedures 

On return to Ny Ålesund samples for chemical analysis were filtered through 0.45 μm nylon 

filters into LDPE bottles. Separate sub-samples were taken for major cation (Ca, Mg, K, Na), 

major anion (Cl, NO3-N, SO4-S, HCO3
-) and DOC/DON (dissolved organic carbon / dissolved 

organic nitrogen) analysis, and a further sub-sample was acidified with 10 % HCl for NH4
+ 

analysis.  All samples were stored at <4°C.  Barium carbonate was recovered by filtration and 

washing through 0.8 μm filter paper and dried at 50°C to constant weight. 

Of the large samples for isotope analysis, a small unfiltered portion was retained for water 

2H/1H and 18O/16O analysis, and the remainder passed through ion exchange resins in the 

manner described elsewhere (Heaton et al. 2004). Ammonium recovered from the cation resin 

was converted to ammonium sulfate on quartz filter paper using a static alkaline diffusion 

method (Sigman et al. 1997; Heaton, 2001). Sulfate was eluted from the anion resin and 

converted to barium sulfate (by precipitation with barium chloride). NO3
- was eluted from the 

anion resin using 3M HCl, neutralised with silver oxide (Ag2O) and freeze dried to silver 

nitrate (AgNO3) (Silva et al. 2000; Heaton et al. 2004). 

 

2.2.2. Chemical Analysis 

Alkalinity (predominately HCO3
-) was determined within 10 days of collection through 

colourimetric titration using a BDH pH 4.5 indicator. NO3
- and NH4 were determined 

immedately after collection. Nitrate was determined after reduction to nitrite using the 

colourmetric method of Mackereth et al. (1989) with 4 cm cells (no initial nitrite was 

detectable in any samples during this study). The detection limit was 0.21 μm L-1 and the 

precision errors were calculated at 0.25 to 2 % at 2.85 μm L-1 for different analytical runs. 

Ammonium was determined using salicylate and sodium dichloroisocyanurate solutions 

(HMSO, 1981). Detection limits were 0.21 μm L-1 and analytical precision was < 5 % at 7.13 

μm  L-1. In Nottingham, Ca, Mg, Na, K were determined using flame atomic absorption 
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spectrometery. Analytical precisions were calculated to be between 0.2 – 3.5 % for Ca at 125 

μm L-1, 1.2 to 8.3 % for Mg at 411 μm L-1, 1.4 to 2.3 % for Na at 109 μm L-1 and 0.4 to 2.3 % 

for K at 12.8 μm L-1. Anions (Cl-, SO4
2-) were measured using ion chromatography. Analytical 

precision was between 5 to 8 % for Cl- at 282 μm L-1 and 3.7 to 5 % for SO4
2- at 124 μm L-1. 

Mean charge balance errors (CBE in %) were calculated as  

( )
( )∑ ∑
∑ ∑

−+

−+

+

−
=CBE   

where Σ- and Σ+ are the combined equivalents of the measured anions (HCO3
-, SO4

2-, Cl- and 

NO3
-) and the cations (Ca, Mg, K, Na) respectively. Analysis of DOC and DON was carried 

out using a Shimadzu Total Organic Carbon (TOC) / Total organic nitrogen (TON)-V analyzer. 

Analytical precision was 3.9% for DOC at 166 μm L-1 C and 9.8 % for DON at 36 mμ L-1 N.  

 

2.2.3. Stable Isotope Analysis 

2H/1H, 13C/12C, 15N/14N, 18O/16O and 34S/32S ratios were determined in VG SIRA, VG Optima, 

and Finnigan Delta+ isotope ratio mass spectrometers, and are reported as δ values where: 

δ2Η, δ13C, δ15N, δ18O, δ34S (in per mille) = [(Rsample/Rstandard)–1] x 1000 

for R = 2H/1H, 13C/12C, 15N/14N, 18O/16O and 34S/32S, respectively. 

 

The standards are: VSMOW for δ2Η, and for δ18O of water, NO3
- and SO4

-; VPDB for δ13C, 

and for δ18O of carbonate; atmospheric N2 for δ15N; and VCDT for δ34S. Corrections to these 

standards were undertaken by comparison of samples to within-run materials: waters calibrated 

against VSMOW and SLAP; a calcite calibrated against NBS-19 and NBS-18; IAEA-N-1 

ammonium sulfate (assumed δ15N = +0.4‰); IAEA-NO3 potassium nitrate (assumed δ18O = 

+25.6‰); and a barium sulfate calibrated against NBS-127 (assumed δ18O = +9.3‰, δ34S = 

+20.3‰). 

 



   

 10  

Precision of replicate analyses of samples was generally better than ± 1‰ for δ2ΗH2O, ± 0.3‰ 

for δ13CTDIC, ± 0.1‰ for δ18OH2O, ± 0.3‰ for δ18OSO4, ± 0.3‰ for δ34SSO4, and ± 0.4‰ for 

δ15NNH4. As discussed below, precision for δ15NNO3 and δ18ONO3 was dependent on the degree 

to which the silver NO3
- was contaminated by organics (Heaton et al. 2004); uncontaminated 

samples generally replicate better than ± 0.4‰ for δ15NNO3, and ± 1‰ for δ18ONO3. 

 

3. RESULTS 

3.1 Snow at Site 1 

3.1.1. Chemistry 

The average compositions of the snowpack at Site 1, based on several cores taken over an area 

of about 1 ha in April 2001 and April 2002, are shown in Table 1. Average snow depths and 

densities for the sampled cores were 37 cm (range: 25-60cm) at 0.33 gm.cm-3 in 2001, and 25 

cm (range: 10-45 cm) at 0.31 gm.cm-3 in 2002. Frequent freeze-thaw cycles in the early winter 

commonly lead to the formation of an ice lens at the base of the snowpack (Gerland et al. 

1999), and this was sampled at four core locations in 2002 (Table 1). Mean thickness of the 

basal ice layer sampled in 2002 was 14 cm (range 10-22 cm; SD = 5.5 cm). Basal icing across 

our study area was extensive. In 2001 a walk over survey carried out during snowmelt 

suggested the mean ice layer was approx. 10 cm thick (n = 8). Variations in the thickness of the 

basal ice reflected the undulations of the surface; ice depth being deeper in depressions where 

meltwater or precipitation could accumulate on frozen soil, and little ice appearing on the very 

highest parts on the surface. During the spring melt, much of the ice remained after the 

majority of the snow had melted. However, it was apparent that meltwater collected on top of 

the ice during snowmelt as well as infiltrating beneath it. In addition, single samples of fresh 

snow were collected within a few hours of falling on 23 April 2001, and 5 April 2002 (Table 

1). 
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The major ion chemistry of the snowpack on Brandalspynten was dominated by Na and Cl-, 

with snowpack Na/Cl-, K/Cl- and Mg/Cl- ratios similar to those of seawater, and snowpack 

Ca/Cl- and SO4/Cl- ratios slightly elevated relative to seawater (Table 1). There was less of a 

marine influence found in the chemical analyses of the ice layers and fresh snowfall. NO3
- and 

NH4 concentrations were similar to those reported from other parts of Svalbard (Caritat et al. 

2005; Hodson et al. 2005; Wynn et al. 2006). Combining snowpack chemical and density data, 

inputs of NO3-N and NH4-N from the snow pack were estimated to be 59 and 30 g ha-1 in 2001, 

and 18 and 12 g ha-1 in 2002, respectively. Measurement of the 2002 basal ice-lens, however, 

indicated that it contributed an additional 33 g ha-1 NO3-N and 6 g ha-1 NH4-N. 

 

3.1.2. Isotope data 

The snowpack displayed large spatial variations in δ2HH2O and δ18OH2O values (e.g. up to 5‰ 

range in δ18OH2O between cores). All samples, however, including the ice at the base of the 

2002 snowpack, lay close to the Global Meteoric Water Line (Rosanski et al. 1993) 

collectively defining a relationship δ2HH2O = 7.8·δ18OH2O +12. Weighted mean δ2HH2O and 

δ18OH2O values for the 2001 snowpack were -65‰ and -10.0‰, and for the 2002 snowpack 

plus ice layer were -73‰ and -10.4‰, and may be compared with the long-term weighted 

mean for October to April precipitation at Ny Alesund: δ2HH2O = -78‰; δ18OH2O = -11.3‰ 

(data for 1990-2001 at http://isohis.iaea.org). 

 

 

The δ34SSO4 values and SO4
2-/Cl- ratios of the snowpack were typical of precipitation in coastal 

areas, and suggest a dominant contribution of seawater sulfate with δ34SSO4 = +21‰, together 

with a smaller amount of atmospheric sulfate which normally has lower δ34SSO4 values 

(Wadleigh et al., 1996, 2001). The δ18OSO4 values for the snowpack sulfate were also typical 
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for precipitation, but generally do not allow distinction between marine and non-marine 

sources (Wadleigh et al., 1996). 

 

The δ15NNH4 values for snow (Table 1) were within the range of values typically reported for 

precipitation from a limited number of studies in other areas (c. -8 to +2‰), and δ18ONO3 for 

the snow were within the upper range of values reported for other parts of the globe (c. +20 to 

+80‰; Heaton et al. 1997; Kendall, 1998; Heaton et al. 2004). In contrast, δ15NNO3 values, 

particularly for the 2001 snow, were markedly lower than the typical c. -5 to +5‰ range for 

atmospheric NO3
- from other parts of the globe. The Ny Alesund snow δ15NNO3 values bore 

similarities to atmospheric NO3
- in Antarctica, and may reflect a component of 

stratospherically-derived NO3
- (Heaton et al. 2004). 

 

3.2. Stream 1 

3.2.1. Flow 

The earliest stages of snowmelt resulted in slumping of the snowpack, but with the initial 

liquid water still held within the remaining snow porosity. Stream flow, and the collection of 

stream water could therefore only begin towards the end of the snowmelt, when some bare 

ground or ice was apparent that allowed overland flow to begin. At this point the tundra 

consisted of semi-frozen soil with about 75% of the area covered with a patchwork of snow 

and ice. Figure 1 shows the flow rate of Stream 1 at each sampling time shown on the graphs 

as day number. In Tables 2 & 3 day numbers are presented with equivalent dates. In the earliest 

period of sampling, corresponding to the main snowmelt phase, high flow in the Stream 1 was 

augmented by wide-scale overland flow via several smaller streams. After snowmelt, flow rate 

rapidly declined and was linked to the melting of a snow bank on the gravel terrace escarpment 

slope at the head of the catchment (persisting to mid-July), thawing of frozen soil moisture 

(sometimes appearing as springs at the foot of the escarpment), and summer precipitation of 
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snow or rain (Figure 2). In the summer of 2002, flow completely dried up for 12 days between 

day 189 and 201.  

 

3.2.2. Chemistry 

Table 2 reports concentrations of major cations and anions in Stream 1. Mean charge balances 

for 2001 and 2002 were +3.09 and -0.28 % respectively. To compensate for possible dilution 

effects, and on the assumption that Cl- is conservative, water chemistry is examined relative to 

chloride – i.e. as ion/Cl- ratios. Thus in Figure 3 we display the temporal changes in water 

chemistry of Stream 1 in terms of ion/Cl- ratios, and compare these with measured ion/Cl- 

ratios from the snowpack which are marked arbitrarily at day 150.  

 

Ca/Cl- and Mg/Cl- ratios (Figure 3a & 3b) in the earliest stream samples rose rapidly above 

those of the snowpack, and continued to rise slightly throughout the latter part of the drainage 

period. These increases were closely matched by increases in HCO3
- so that 

2·(Ca + Mg)/HCO3
-, on a molar basis, maintained a value close to 1. Na/Cl- and K/Cl- (Figure 

3c & 3d) ratios in the streamwater showed little change over the 11 week sampling periods, 

with Na/Cl- ratios remaining essentially similar to their seawater ratios in the initial snowpack, 

and K/Cl- ratios being slightly higher than in the initial snowpack. The SO4
2-/Cl- ratio (Figure 

3f) started close to that of the snowpack before increasing progressively with time. 

Concentrations of inorganic N are displayed as NO3
-/Cl- ratios and NH4/Cl- ratios in Figures 

3(g) and 3(h), respectively. During the early part of the summer, from the onset of snowmelt in 

mid-June to about mid-July (2002) or late July (2001), NO3/Cl- ratios remained similar to those 

of the initial snowpack. Thereafter the ratios rose progressively to the end of sampling in early 

September. The rise in NO3
-/Cl- ratios in July reflected an increase in NO3

- concentrations 

(Table 2) whose timing did not appear to correspond to changes in any other chemical 

parameter, but was at a time when the tundra flora was tending towards senescence. In 2002, 
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two samples with particularly high NO3
- concentrations and NO3

-/Cl- ratios (days 201 and 231) 

corresponded to the occurrence of rainfall following prolonged dry periods. 

 

NH4/Cl- ratios in Stream 1 started similar to those of the snowpack, and remained fairly 

constant (2001), or declined slightly (2002) during the summer. The exception was a high 

NH4/Cl- ratio in late June 2001 (day 173), associated with a day of 16 mm rainfall. 

 

Concentrations of both DOC and DON in the stream water peaked during the middle of the 

study period in 2002. However, Figure 3(i) shows that the DON/Cl- ratio remained fairly 

constant during the study period. The DOC/Cl- ratio decreased slightly as the season 

progressed (Fig 3j). The DOC/DON ratio varied between 13-29, generally slightly lower than 

values obtained from high elevation catchment streams reported by Williams et al. (2001) and 

Hood et al. (2003) (Fig 3k). Concentrations of DON, measured in 2002, were almost always 

higher than the total inorganic nitrogen (Table 2). In common with NO3
-, enhanced DON and 

DON/Cl- ratios were associated with rainfall following prolonged dry periods (days 201 and 

231).  

 

3.2.3. Isotope data 

δ2HH2O and δ18OH2O values for Stream 1 waters started off similar to those of the initial 

snowpack, with a change to slightly higher values overall during the summer (Figure 4). The 

relationships between δ2HH2O and δ18OH2O, defined by all the stream waters, were δ2HH2O = 

4.9·δ18OH2O -22 for 2001, and δ2HH2O = 6.0·δ18OH2O -16 for 2002. In both cases these ‘slopes’ 

were lower than those of the snowpack (7.8, above). 

 

Figure 5 displays the δ34S values of sulfate in Stream 1 as a function of the percentage of 

non-sea-salt sulfate (NSSS). The latter was calculated on the assumption that sea-salt has a 
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SO4
2-/Cl- ratio of 0.052 and was the source of all Cl in the stream water; thus 

% NSSS = [1-(0.052 x Cl/SO4)]·100 (Newman et al. 1991). The data for the 2001 and 2002 

Stream 1 samples display very similar, clearly linear trends of decreasing δ34SSO4 with 

increasing NSSS, and collectively define a relationship: δ34SSO4 = -0.21·(% NSSS) + 18.9, 

r2 = 0.93, with snowpack samples lying close to this line (Figure 4). Bearing in mind the 

simplified assumptions in calculating % NSSS, confidence is justified by the fact that the 

intercept at +18.9‰ is close to the δ34SSO4 value for modern seawater (+21‰). The pure, 100% 

NSSS end-member has a calculated δ34SSO4 value of -2.1‰. 

 

The δ18O values for sulfate in all but the first Stream 1 sample of 2001 were between -0.3 and 

+1.4‰, and significantly lower than the values for the snowpack (+9.5 and +9.7‰). Plotted on 

the same basis as above, a linear relationship for the sulfate oxygen: δ18OSO4 = -0.05·(% NSSS) 

+ 4.6, r2 = 0.41, is not as clear as that for sulfate sulfur, with the +4.6‰ intercept being lower 

than the δ18OSO4 value for seawater (+9.5‰). The calculated pure NSSS end-member δ18OSO4 

value of -0.4‰ is within the large range reported for limited data from glacial catchments 

(Bottrell and Tranter, 2002; Wadham et al. 2004). 

 

As pH values were close to neutral, the TDIC should be dominantly present as HCO3
-. Changes 

in δ13CTDIC values are listed in Table 2, and displayed for 2002 in Figure 6. In 2002, the earliest 

drainage waters of Stream 1, occurring during the snowmelt period of high flow and low 

HCO3
-, had δ13CTDIC of -7.5‰. With the higher HCO3

- concentrations found throughout the 

remainder of the season the δ13CTDIC values were maintained between -4.4 and -1.5‰. These 

values are high: considerably higher than those typical of drainage waters in temperate regions 

(usually <-6‰), and at the upper end of ranges reported for water from glaciated catchments 

(Aucour et al. 1999; Telmer and Veizer, 1999; Wadham et al. 2004; Spence and Telmer, 2005). 
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Yields of inorganic N from the 2001 resins were only sufficient for δ15NNO3 analysis of two 

late season samples (Table 3a), and insufficient for δ15NNH4 analysis. For the 2002 samples 

(Table 3b) δ15NNO3 values exhibited a fairly narrow range, -1.9 to +1.9‰, higher than that of 

the initial snowpack (-6.9‰). Six stream water δ15NNH4 values displayed a broader range, -7.2 

to -0.7‰, slightly lower than the snowpack (-0.3‰). 

 

Difficulties associated with the preparation of pure silver nitrate, and the resulting 

consequences for δ18O analysis of NO3
-, have been discussed previously (Heaton et al. 2004). 

Table 3 displays the measured δ15N and δ18O values of silver nitrate samples together with 

their C/N (weight) and N/O (atomic) ratios. The C contents reflect contamination of the silver 

nitrate by organic matter, which should not substantially affect the measured δ15N values but, 

through the presence of relatively large amounts of organic O, does affect the apparent δ18O 

values (Heaton et al. 2004). The presence of contaminant O was evident from the N/O ratios, 

which should be 0.33 for pure nitrate, but were commonly much lower than this in the silver 

nitrate prepared from the Stream 1 samples (Table 3). The measured δ18O values and N/O 

ratios are plotted in Figure 7 and compared with contamination-corrected values for snowpack 

NO3
-. The stream NO3

- samples displayed a well-defined linear trend of δ18O values from -5 to 

0‰ at N/O ratios of 0.33 (i.e. for pure NO3
-), to an extrapolated value between +15 and +25‰ 

at N/O ratios near zero (i.e. for the contaminant end-member). None of the stream NO3
- 

samples had δ18O values deviating significantly from this trend. There is therefore no evidence 

for snowpack NO3
-, with its characteristically high δ18O values of +70 to +80‰, being present 

in the drainage waters of Stream 1. 

 

3.3. Stream 2 and Stream 3 

The 2002 chemistry of Stream 2 is shown in Table 4. Low rainfall meant that samples could 

not be collected during July to mid August. But for the early summer and late summer samples 
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the pattern of major ion concentrations, ion/Cl ratios and isotope compositions were generally 

very similar to those of the nearby Stream 1. Stream 3, on Blomstrandhalvøya, showed 

similarities to Stream 1 in the main weathering processes (Table 5): e.g. a marked increase in 

HCO3
- matched by increased Ca + Mg (though with a lower proportion of Mg in Stream 3); 

very similar δ13C values; and SO4
2- displaying a progressive rise, with the proportions of NSSS 

approaching 90% towards the end of summer. In contrast, Stream 3 had considerably lower 

concentrations of Na and Cl, and quite different abundances of inorganic nitrogen: NO3
- and 

NH4 concentrations being significantly lower in Stream 3 compared with Stream 1. DON 

concentrations were found to be below detection limits whilst DOC concentrations appeared to 

be highest between Day 176 and 194 before declining towards the end of the season, a pattern 

replicated by the DOC/Cl- ratio (results not shown). 

 

4. DISCUSSION 

4.1 General chemistry 

The chemistry of the earliest stream waters, sampled during the period of high overland flow 

during the main snow-melt phase in mid-late June, clearly reflected the chemistry of the 

snowpack, which was dominated by salts of marine origin: high Na and Cl contents, with 

concentrations of Na, Cl, Mg and K, and the δ34SSO4 values, very similar to those of seawater. 

It is possible that much of this salt, sampled in the snowpack in April, resulted from wind 

transfer from the neighbouring Kongsfjorden, rather than by precipitation in snow. Transfer of 

sea salts could have been from sea spray blown from the unfrozen fjord. Alternatively, when 

the fjord is frozen high concentrations of sea salt can accumulate in the surface layers of snow 

covering sea ice, and this snow is readily swept on-shore by the common easterly winds 

(Domine et al. 2004). This mechanism would account for the concentration of marine salt at 

Streams 1 and 2 being higher than those at Stream 3. The latter site has a catchment elevation 

(up to 369 m) much higher than the former sites (up to 25 m), and is therefore less likely to 

intercept wind drift from the fjord. 
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During the remainder of the summer sampling season, July through August, the water sampled 

in Stream 1 represented drainage through the unfrozen ‘active layer’ of tundra over a 

catchment area of about 2 ha. The thermal development of the active layer at a site about 1 km 

away from Stream 1 has been described by Roth and Boike (2001). When air temperatures rise 

above freezing the downward transfer of heat is greatly increased by the infiltration of water 

and water vapour derived from snowmelt. Thus, for their 1999 season, this warming resulted in 

a temperature of 0oC being reached at the soil surface when the snowpack disappeared in mid-

June, 0oC at 0.5 m depth after 20 days; and 0oC at 1 m depth after a further 20 days (late July). 

The depth of the active layer thereafter stabilised at about 1 m for a further 60 days before 

rapid freezing of the whole depth in late September (Roth and Boike, 2001).  

 

Although the flow of the stream clearly responded to occasional summer precipitation (rain or 

snow), this was a hydraulic response; no observations of overland flow after the mid-late June 

snow-melt were recorded. Instead, the relative constancy in the chemical concentrations and 

δ2HH2O and δ18OH2O values of the stream suggests that the sampled waters always passed 

through the active layer. As the stream only represents the surface interception of the water 

table, the measured flow of the stream (Figure 1) will always be an underestimate of the total 

drainage rate from the catchment. The period of very low flow rates for Stream 1 during July to 

mid-August 2002, however, does correspond to a time when the waters had higher δ2HH2O and 

δ18OH2O values (Figure 3), and a relatively low δ2HH2O/δ18OH2O slope of 6 (above). These 

features are probably a result of slight evaporation (Clark and Fritz, 1997). 

 

The main changes in chemistry through July and August appear to reflect two types of 

water-mineral interaction: oxidation of reduced sulfur, leading to increases in the proportion of 

NSSS; and, more dominant, the solution of calcium-magnesium carbonates, leading to 

increases in Ca and Mg balanced by HCO3
-. The dominance of Ca and HCO3

- in tundra 

drainage and soil waters from NW Svalbard, as well as their general increase in concentration 
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through the summer has been noted previously (Pecher, 1994; Hodson et al 2002; Stutter & 

Billett, 2003). Weathering of feldspars by reaction with dissolved CO2 is assumed to play only 

a minor role in production of HCO3
- in this catchment, because the concentrations of K and Na, 

major components of feldspar, were essentially unchanged from snow pack values. From the 

results of the current study the mechanisms of these processes can be examined using isotope 

analysis. 

 

4.2 Sulfur oxidation 

Extrapolation of the data in Figure 5 suggests that the NSSS had a δ34SSO4 value of about 

-2.1‰. Results of analyses of different rock types collected as pebbles from the gravel terraces 

of the catchment are shown in Table 6. Fragments of the Tertiary coal formerly mined at Ny 

Alesund are common, and had by far the highest S content (1580 ppm) with a δ34S value of –

0.9‰. As oxidation of reduced S (e.g. pyrite) to SO4: 

4FeS2 + 15O2 + 14H2O → 4Fe(OH)3 + 8H2SO4     (1) 

usually involves very little change in δ34S values (Canfield, 2001), we would expect coal-

derived sulfate to also have δ34S values close to –0.9‰. The isotopic fractionation associated 

with crystallization of sulfate salts is also small (Raab and Spiro, 1991), so episodes of 

precipitation and re-solution of gypsum attending dry or wet periods in the active layer 

(Cooper et al., 2002) should also result in little change in δ34S values. The δ34SSO4 data are 

therefore entirely consistent with the oxidation of reduced sulfur in coal particles in the subsoil 

being the ultimate source of NSSS. 

 

The factors which can influence the δ18O values for sulfate produced by Reaction 1 are more 

complex (van Everdingen and Krouse, 1985; Toran and Harris, 1989; Holt and Kumar, 1991; 

Bottrell and Tranter, 2002). The SO4
2- oxygen atoms are derived from both atmospheric O2 and 

from water. The former has a δ18O value of about +23.5‰ (Kroopnick and Craig, 1977), and 
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the latter averaged about -9‰ for Stream 1 in both 2001 and 2002. This large difference means 

that the δ18OSO4 value is very sensitive to the proportions of atmospheric O2 versus H2O used in 

the oxidation reaction. Calculating these proportions is complicated by uncertainty in the 

magnitude of the oxygen isotope fractionations accompanying incorporation of O2 oxygen or 

H2O oxygen (Holt and Kumar, 1991). However, using the criteria of Bottrell and Tranter 

(2002) for an average Stream 1 δ18OH2O value of -9‰, the δ18OSO4 value of -0.4‰ we have 

calculated for the NSSS end-member sulfate would imply that atmospheric O2 supplied about 

40%, and water about 60% of the sulfate oxygen. This is consistent with the aerobic, oxidising 

conditions required for Reaction 1 (van Everdingen and Krouse, 1985; Bottrell and Tranter, 

2002). 

 

4.3 Carbonate solution 

The sulfuric acid produced by the above oxidation of reduced sulfur has often been cited as 

having a significant influence on carbonate dissolution in glacial systems or other areas with 

high rates of water-rock interaction (Spence and Telmer, 2005): 

 8H2SO4 + 16CaCO3 → 16Ca + 8SO4
2- + 16HCO3

-   (2) 

The amount of NSSS in Stream 1 waters, however, was relatively small compared with the 

bicarbonate concentrations. NSSS/HCO3
-, on an equivalents basis, ranged from 0.02 to 0.12, 

and for the average stream water composition the HCO3
- produced by Equation 2 would only 

account for 6% of the total HCO3
-. Solution of CO2 from the atmosphere or from soil 

respiration, and reaction with the resultant carbonic acid, must therefore represent the main 

mechanism for the solution of carbonate minerals. 

 

Modelling the chemistry and δ13C values of TDIC requires assumptions to be made as to 

whether the system is ‘open’ or ‘closed’ to the soil atmosphere. Since the active layer in the 

catchment of Stream 1 is thought to average only 1 m at its deepest, and the humus layer and 

plant rooting depths are only a few cm, an ‘open’ system is assumed in which the TDIC freely 
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exchanged with the soil atmosphere, and the soil atmosphere was a mixture of atmospheric 

CO2 and plant/soil-respired CO2. The partial pressure of the total gaseous CO2, pCO2TOT, was 

computed from the water chemistry using the PHREEQC programme (Parkhurst, 1995). On 

the basis that the partial pressure of atmospheric CO2 is 360 ppm, the partial pressure due to 

soil-respired CO2 was then calculated as: pCO2SOIL = pCO2TOT - 0.00036. For most of the 

drainage season soil-respired CO2 was estimated to make up 40-60% of the total CO2; i.e. 

soil-respired CO2 and atmospheric CO2 were present in roughly equal amounts. 

 

The δ13C value of atmospheric CO2 is about -8‰. For soil-respired CO2 we assume a δ13C 

value of -23‰. This is based on the δ13C value for organic matter in the soil being -27‰ 

(Table 6), but increased by 4‰ to account for possible isotope fractionation due to diffusion 

(Cerling et al. 1991). From this the δ13C value of the total gaseous CO2 is: 

δ13CCO2TOT = [-23·(pCO2TOT -0.00036) –8·(0.00036)] / pCO2TOT   (3) 

 

Using the carbon isotope fractionations between gaseous CO2 and dissolved carbon species 

given by Zhang et al. (1995), and the proportions of dissolved carbon species computed using 

PHREEQC, the CO2–TDIC isotope fractionation can be calculated and, therefore, the value for 

δ13CTDIC (Figure 6). Skidmore et al. (2004) noted how kinetic, non-equilibrium isotope 

fractionation may have a marked effect on the δ13CTDIC values of fast-flowing glacial streams 

during water-carbonate interaction over a few hours. However, as the slow flow rates of Stream 

1 suggest that the residence time of water in the catchment was at least several days, our 

calculations assume isotope equilibrium. 

 

Figure 6 shows the δ13CTDIC values calculated for Stream 1 waters in 2002, compared with their 

measured values. Over much of the summer calculated and measured values were in qualitative 

agreement. However, there was a tendency for calculated values to be about 2‰ lower than 
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measured value in the earlier part of the summer. This discrepancy suggests that the system 

was not entirely open. Mineral carbonate in the gravels of Site 1 had a δ13C value of +2 to 

+3‰ (Table 6). Solution of this carbonate, under semi-closed conditions where there is not 

complete exchange with soil CO2, would raise the calculated δ13CTDIC values above those 

shown in Figure 5, toward closer agreement with the measured values. 

 

Similar calculations for Stream 2 and Stream 3, assuming an open model system, again yield 

calculated δ13CTDIC values similar to the measured values; typically agreeing to within ± 2‰. 

In contrast to the three streams in 2002, however, calculations for Stream 1 in 2001 yield 

δ13CTDIC values of -16 to -13‰, which are much lower than the measured values. This is a 

consequence of the pH values measured for Stream 1 in 2001 being lower than those in 2002 

(Table 2). This results in higher estimates for pCO2TOT using PHREEQC, and hence lower 

calculated δ13CCO2TOT and δ13CTDIC for 2001. An error in pH measurements in 2001 might 

explain this discrepancy, though we have no way of accounting for this error. 

 

4.4 Nitrogen 

4.4.1. Nitrate 

δ15N values for organic matter in soil near Stream 1 were +1 to +2‰ (Table 6). Since isotope 

fractionation during bacterial mineralisation and nitrification of organic matter in nutrient-poor 

soils is generally thought to be small (Heaton, 1986; Kendall, 1998), similar values might be 

expected for soil-derived NO3
-. On this basis, the δ15N values of NO3

- in Stream 1 waters of 

2002, typically -1 to +2‰ (Table 3), are what might be expected for soil-derived NO3
-, but are 

quite different from the snowpack NO3
- (c. -7‰) (Table 1). 

 

A distinction between soil-derived and atmospherically-derived (i.e. snowpack) NO3
-, 

however, is more easily based on δ18O analysis (Amberger and Schmidt, 1987; Durka et al. 
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1994; Kendall, 1998). On the theoretical assumption that nitrification derives two thirds of its 

oxygen from H2O (average for Stream 1 = -9‰), and one third from atmospheric O2 (+23.5‰ 

(Kroopnick and Craig, 1972)), this would produce NO3
- with δ18ONO3 = +2‰ for Site 1. In 

contrast, the snowpack NO3
- ranged from δ18ONO3 = +60 to +85‰ (Heaton et al. 2004). The 

pure silver nitrate end-member for Stream 1 waters in Figure 7, having δ18ONO3 values of about 

-4 to +1‰, is therefore very similar to the value expected for NO3
- derived entirely from 

nitrification. The linear trend of all Stream 1 samples in Figure 7 indeed suggests that 

throughout the season the source of the stream NO3
- was entirely of microbial origin, with no 

evidence of atmospheric, snowpack NO3
-. Thus, whilst about 50 g NO3-N ha-1 is deposited in 

the winter snowpack, with further deposition in summer precipitation, this NO3
- was entirely 

taken up into the soil bacterial nitrogen pool, and did not run off directly into the stream water. 

 

The lack of evidence for snowpack NO3
- in the Stream 1 waters is considered a result of the 

relatively low NO3
- inputs. The chemistry and δ34SSO4 values of the earliest stream waters 

collected in both 2001 and 2002, which largely consisted of overland flow, had definite 

snowpack characteristics. Therefore, it seems that the size of the input of snowpack NO3
- to the 

tundra was small enough to allow the majority of it to be immobilised by assimilation into the 

plant / soil biomass. Plants and the microbial biomass can start to become active whilst still 

snow covered, and recent work has demonstrated the effectiveness of alpine and arctic tundra 

as sinks for inorganic N released from the snowpack (Bilbrough et al. 2000; Tye et al. 2005). 

Tye et al. (2005) applied 15N-labelled inorganic NO3 and NH4 at the last stages of snowmelt to 

tundra close to Streams 1 and 3 of this study, and subsequently recovered about 60% of this 

nitrogen from the microbial biomass, bryophtyes and lichens, even though the applications of 1 

and 5 kg N ha-1 greatly exceeded snowpack inputs. 
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Earlier studies utilising δ18ONO3 analysis of silver nitrate samples prepared from high elevation 

or alpine tundra catchments have tended not to report sample purity, or consider how organic O 

contaminants might affect interpetation (Burns and Kendall, 2002; Campbell et al. 2002; and 

Sickman et al. 2003). Taken at face value, however, their conclusions differ slightly from those 

for Stream 1, in that they do detect a component (< 50 %) of snowpack NO3
- in stream waters 

draining catchments after snowmelt. This may reflect differences in the soil/plant biomass, 

and/or in the relative amounts of snowpack N. Thus many of the previous studies were in 

catchments with a large amount of bare rock, where biological modification of the snowmelt 

chemistry will be minimised. Sickman et al. (2003) found that ~20-30% of stream water NO3
- 

in the first stages of snowmelt was from the snowpack, but this was for an area where the 

amount of snowpack NO3-N was ~260 g ha-1, almost 5 times the inputs in this study. 

Therefore, in environments with less soil cover, or greater snow depths or NO3
- concentrations 

than those near Stream 1, saturation with respect to the NO3
- assimilation abilities of the 

microbial and plant populations may occur during snow melt. 

 

Hodson et al. (2002) reported an increase in NO3
-/Cl- ratios during mid-July in drainage 

through the developing active layer of moraine soils in a glacial forefield 4 km west of Ny 

Alesund. The increase in NO3
- concentrations in samples from Stream 1 started in mid to late 

July and corresponded to a time of maximum active layer development and increased soil 

dryness when plants were becoming senescent. This increase could be explained by Sickman et 

al.’s (2003) proposal that increased NO3
- concentrations in alpine catchment streams were 

brought about by continued mineralization/nitrification by the soil microbial biomass at a time 

when plant demand for nitrogen uptake was being reduced through senescence. Such a 

microbial nitrification origin is clearly indicated for the unusually high NO3
- concentrations for 

Stream 1 on 20 July and 19 August 2002 (Table 2, Figure 6). In both cases the samples were 

taken on days when rainfall occurred after a prolonged dry spell. The δ18ONO3 values close to 

0‰ rule out any contribution from atmospheric NO3
-, and the lack of increased chloride 



   

 25  

concentrations excludes evaporative enrichment as a cause of the high NO3
-. The microbially-

produced NO3
- had presumably been accumulating in the catchment soils until it was flushed 

out with the start of rainfall. 

 

4.4.2. Ammonium 

Apart from a single early sample in 2001 (day 173), associated with heavy rainfall, NH4 

concentrations and NH4/Cl- ratios remained constantly low (Fig. 2h). Unlike NO3
-, there was 

no rise in NH4 towards the end of summer, and no flush-out of accumulated NH4 by rainfall 

following dry periods. The isotopic characteristics of ammonium in geo-hydrological studies is 

much less well studied than nitrate, and the limited δ15N data for ammonium in Stream 1, six 

samples from 2002 with values -7.2 to -0.7‰, can not be unambiguously interpreted. 

Ammonium produced by mineralisation in N-limited soils is thought to have, like nitrate, a 

δ15N value similar to that of the organic N (Kendall, 1998), and on this basis the δ15N values 

for Stream 1 ammonium were much lower than that of the organic N (+1 to +2‰ in Table 6). 

In addition, the Stream 1 sample δ15NNH4 values were also lower than that of the 2002 

snowpack (-0.3‰); though they are within the range for other snow samples (2001 snowpack, 

and individual snow events in Table 1) and within the published range for rainfall (Heaton et 

al. 1997). It is possible that some process of isotope fractionation has occurred, operating either 

on soil-derived or atmospheric ammonium. 

 

4.4.3. Organic nitrogen 

Consideration of overall N budgets must include the role of dissolved organic nitrogen (Neff et 

al. 2003). No data are available for the snowpack at Site 1, but analyses of snow on nearby 

glaciers found that concentrations of DON were generally less than those of inorganic N 

(Hodson et al. 2005). In contrast, and in common with many low N systems, concentrations of 

DON in the stream generally exceeded those for total inorganic N (Table 2b). A strong 

correlation between DOC and DON (r2= 0.92) in Stream 1, together with the relatively high 
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DOC/DON ratios (Table 2b), suggest that much of this DON may have derived from humic 

substances in soil organic matter. These features accord with studies showing that DON of 

predominantly soil humic origin is the main form of N loss via rivers draining the Arctic tundra 

(Dittmar et al. 2001; Kawahigashi et al. 2004). 

 

Perakis & Hedin (2002) suggested that in ecosystems with low N inputs, inorganic N is largely 

retained within the ecosystem, whereas less biologically-available forms of DON may 

dominate in stream waters. Thus N-limited ecosystems with a high biotic demand for N may 

nevertheless lose DON. The forms of DON lost will tend to be the more complex organic 

components resistant to biochemical breakdown, and the factors controlling their loss may be 

less subject to biotic influences (mineralization or biotic uptake) than factors controlling 

inorganic N. Instead, DON concentrations in streams may be more closely linked to factors 

influencing the organic retentivity of soil mineralogy – sandy soils such as those at Site 1 being 

less retentive - and hydrological parameters (Hedin et al. 1995; Neff et al. 2003). These factors 

may explain the relative constancy of the DON/Cl ratio in Stream 1 throughout the season, and 

the similar response of both NO3
- and DON concentrations to significant rainfall events where 

a positive correlation in molar concentration of NO3
- and DON was found (r2=0.78). However, 

whereas the ratio of DON/Cl- remained relatively constant through the summer, the NO3/Cl- 

ratio clearly increased towards the end of the season. 

 

5. CONCLUSIONS AND IMPLICATIONS 

Results from this study have increased understanding of the mechanisms involved in 

weathering reactions and nitrogen release in thin organic soils overlying sediment in tundra. In 

particular, the stable isotope analyses provide insights into how biogeochemical and 

weathering processes may evolve with climate change and the expected increases in the depth 

of the active layer (Anisimov et al. 1997). Snowpack on a near-shore site in the High Arctic 

has a major element composition dominated by seawater. This seawater chemistry is evident in 
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the earliest stream waters draining the tundra at the onset of snowmelt, but is gradually 

modified by weathering reactions. The main chemical change is associated with solution of 

Ca-Mg carbonate. The δ13C values of the resulting bicarbonate in the streams are unusually 

high, and are presumed to reflect the particular characteristics of these tundra soils. Thus in 

parts of the globe where soils are deeper and better developed, ‘closed system’ carbonate 

solution dominated by plant/soil-respired CO2 is common. In contrast, the chemistry and 

13C/12C ratios of three streams sampled near Ny-Ålesund in 2002 can be accounted for by a 

largely ‘open system’ model in which the CO2 is derived about equally from atmospheric and 

plant/soil sources. As these sources of CO2 are essentially restricted to a very thin plant/soil 

cover in the top few centimetres of the active layer, the progressive deepening of the active 

layer as the permafrost melts during the summer will probably not promote any increase in 

carbonate solution. This may account for the fact that the Ca-Mg-HCO3
- concentrations in the 

stream waters are established early in the season, and display only limited increases in the later 

part of summer. Increases in the depth of the active zone predicted with climate change will 

result in new mineral surfaces and easily soluble minerals being exposed (Keller et al., 2007). 

However, results from this study suggest that the weathering of carbonates in the deepening 

active zone through solution of CO2 from atmospheric or biological sources may be limited by 

its diffusion as demonstrated with the ‘open system’ model.   

 

In glacial systems the solution of carbonate by CO2 is limited by the relative scarcity of 

biogenic sources of CO2, and restricted access of atmospheric CO2 to the water-saturated bed 

of a glacier. Sulphide oxidation may therefore be a major contributor to carbonate solution in 

glacially-derived streams (Tranter et al. 2002). Although its role in the non-glacial streams of 

this study appears to be less important, sulphide oxidation nevertheless represents the second 

major weathering reaction whose understanding benefits from isotope data. The δ34S values of 

the stream water sulfate follow a clear two end-member mixing pattern: a seawater sulfate 

component dominant in the earliest part of the summer drainage, with sulfate derived from 
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oxidation of reduced sulfur in coal being progressively added through the rest of the summer. 

If the fragments of coal are uniformly distributed through the subsoil, as might be expected in 

glacialy-derived gravels, more coal will be exposed to sulfur oxidation as the active layer 

deepens. This may explain why SO4
2-/Cl- ratios, unlike HCO3

-/Cl- ratios, rise progressively 

through the summer drainage. The δ18O values of the sulfate are consistent with the oxidation 

being entirely aerobic, which would be expected given the easy exchange of the atmosphere 

with a shallow active layer. This is in contrast to the formation processes ascribed to sulfate in 

glacial runoff, where δ18O data have been used to suggest that sulphide oxidation at the bed of 

a glacier, cut off from the atmosphere, is at least partially anaerobic (Bottrell and Tranter, 

2002; Wynn et al. 2006). Thus, with increases in the depth of the active layer expected with 

increasing temperatures, the distribution and weathering of newly exposed sulphide minerals in 

the sediment underlying the thin soils may play an important role in the production of acidity 

required for carbonate solution and may be a mechanism that increases losses of Ca-Mg-HCO3 

and SO4
2- to surface waters.  

 

In contrast to other studied alpine and arctic catchments, the isotope composition (δ15N and 

δ18O values) of NO3
- in drainage waters in this study suggests that none of it is derived directly 

from atmospheric NO3
-. Possibly because of the low NO3

- input, and the existence of a 

continuous (if thin) soil cover, the snowpack NO3
- was assimilated and re-mineralised before 

being released into the stream. The export of this soil-derived NO3
- increased during the latter 

part of summer as plant senescence progressed and ecosystem demand for NO3
- diminished. 

Results have demonstrated that there are increased losses of NO3
- derived through microbial 

activity from early to mid August. Warmer temperatures would be expected to extend the 

length of time each summer in which high microbial activity is present. It will also produce a 

shorter frozen period when drainage waters would not be present. This would be expected to 

increase NO3
- losses. However, the extent of NO3

- losses in drainage waters may be a balance 
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between microbial activity and the effect of warming on senescence in tundra plants. For 

example, Marchard et al. (2004) suggested that climate warming may extend the growing 

season and postpone senescence in plants of the High Arctic, contrary to previous research 

suggesting that late season phenology is solely controlled by photoperiod. No seasonal change 

was evident in dissolved organic nitrogen, the other major form of N loss to drainage. This 

might be a consequence of the DON being largely unreactive, with its concentrations mainly 

subject to abiological controls. However, increases in microbial activity and the length of the 

drainage period as a result of increasing temperatures will increase the overall losses of organic 

C and N species in drainage waters to aquatic ecosystems.   
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Table 1. Composition of snowpack, ice layers and snowfall at Site 1 
 

 Na K Ca Mg NH4 Cl- SO4
2- NO3

- δ2ΗH2O δ18OH2O δ34SSO4 δ18OSO4 δ15NNO3* δ18ONO3* δ15NNH4 
 −−−−−−−−−−−−−−−−−−−−−−−−−−− μmol/L ----------------------------- 

 
‰VSMOW ‰VSMOW ‰CDT ‰VSMOW ‰AIR ‰VSMOW ‰AIR 

Snowpack, 2001                
Mean 398 9.3 12.8 43.5 1.7 481 34.1 3.1 -65 -10.0 +17.0 +9.7 -13.5 +75.5 -3.1 
±1 SD 112 4.6 5.6 15.0 1.1 157 10.7 2.2 13 1.6 0.4 0.5 1.2 4.7 2.0 

No. of samples 15 15 15 15 15 15 15 15 15 15 4 4 4 4 5 
ion/Cl ratio 0.83 0.019 0.027 0.091  1 0.071         

Seawater ion/Cl 
ratio 

0.86 0.018 0.019 0.098  1 0.052         

                
Snowfall, 
23/04/01 

80 1.6 14.3 11 1.7 59 11 2.3 -58 -9.5 +11.9 +9.7 -17.8 +77.8 -4.3 

                
Snowpack, 2002                

Mean 486 11.5 15.2 47.9 1.2 553 34.5 1.7 -88 -12.4 +18.0 +9.5 -6.9 +76.8 -0.3 
±1 SD 216 4.8 6.5 20.6 0.5 219 17.3 0.8 6 1.1 0.3 1.1 2.0 6.7 1.7 

No. of samples 18 18 18 18 18 18 18 18 4 4 3 3 4 4 4 
ion/Cl ratio 0.87 0.021 0.027 0.085  1 0.061         

Seawater ion/Cl 
ratio 

0.86 0.018 0.019 0.098  1 0.052         

                
Ice layers, 2002                

Mean 199 7.6 28.5 26.2 0.4 328 19.8 1.5 -64 -9.3      
±1 SD 114 3.5 10.8 9.2 0.3 215 15.6 0.5 4 0.4      

No. of samples 4 4 4 4 4 4 3 4 4 4      
                

Snowfall, 
05/04/02 

131 3.4 14.7 33 5.4 144 28 3.9   +12.8 +11.9 -8.6 +73.8 -6.6 

* Data from Heaton et al. (2004) 
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Table 2: Composition of waters sampled from stream 1 in (a) 2001 and (b) 2002.  
(a) 2001 

Date Day no. pH Na K Ca Mg NH4 Cl- SO4
2- NO3

- HCO3
- δ2ΗΗ2Ο δ18ΟΗ2Ο δ34SSO4 δ18OSO4 δ13CDIC 

   −−−−−−−−−−−−−−−−−− μmol/L---------------------------- 
 

‰VSMOW ‰VSMOW ‰CDT ‰VSMOW ‰PDB 

18-06 169 6.7 246 10 249 124 1 395 26 1.6 447 -71 -10.5 +15.1 +6.1 -8.7 

22-06 173 6.9 136 8 306 156 6 144 15 1.4 766 -66 -9.5 +9.0 +1.2 -6.4 

02-07 183 7.0 196 9 417 288 2 216 32 0.7 1284 -61 -8.9 +5.4 +0.6 -2.2 

09-07 190 6.8 202 8 417 288 N/A 177 23 0.1 1284 -65 -9.1 +7.1 -0.3 -2.4 

12-07 193 7.2 215 10 479 363 1 223 34 1.2 1204      

22-07 203 7.1 235 12 671 529 1 259 58 0.9 2161 -63 -8.4   -2.1 

05-08 217 7.2 197 9 585 399 1 246 49 1.8 1683 -80 -11.7 +4.5 +0.9 -2.5 

12-08 224 7.4 227 13 795 542 1 293 84 2.7 2361 -72 -9.5 +1.7 +0.8 -2.9 

21-08 233 7.0 214 12 828 577 1 274 86 7.7 2560 -70 -9.3 +1.7 +1.4 -4.4 

26-08 238 7.2 200 12 784 517 1 271 91 7.9 2281 -70 -9.4 +2.4 +0.2 -1.9 

02-09 245 7.3 157 12 767 517 1 285 99 13.1 2465 -68 -8.8    
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(b) 2002 

 

Date Day no. pH Na K Ca Mg NH4 Cl- SO4
2- NO3

- HCO3
- DOC DON δ2ΗΗ2Ο δ18ΟΗ2Ο δ34SSO4 δ18OSO4 δ13CDIC δ15NNH4 

   −−−−−−−−−−−−−−−−−−−−−−− μmol/L----------------------------------- 
 

‰VSMOW ‰VSMOW ‰CDT ‰VSMOW ‰PDB ‰AIR 

13-06 164 7.3 190 10 250 139 1.3 199 17.8 1.5 686 281 11 -75 -10.3 +8.7 +1.2 -7.5 -1.9 

17-06 168 7.7 234 10 401 235 1.0 219 61.5 0.9 1204 267 9 -87 -11.5 +3.8 -0.2 -2.3  

24-06 175 7.8 215 9.9 411 243 0.7 233 38.4 0.29 1284 250 9 -77 -10.3   -1.5  

28-06 179 8.0 251 14 503 288 1.0 257 39.1 0.79 1483 323 11 -70 -9.1 +4.0 0.0 -2.4  

04-07 185 8.0 317 17 682 387 1.3 300 51.4 7.6 2121 339 14 -71 -7.9   -3.9  

06-07 187 8.0 244 16 714 407 1.0 311 56.6 2.3 2161 292 13 -59 -7.6 +2.0 -0.3 -3.7  

20-07 201 8.1 373 26 799 487 1.5 386 89.2 34.7 2440 426 31 -63 -7.6 +2.1 +1.2 -4.4 -5.8 

01-08 213 8.2 457 18 922 563 1.6 459 145.8 8.0 2759 397 22 -55 -6.8 +0.6 +1.1 -3.1  

06-08 218 8.4 472 22 978 582 1.3 450 173.3 10.9 2919 337 16       

15-08 227 8.2 513 24 1072 633 1.6 464 217.8 10.1 3198 337 19 -59 -7.1 -0.9 +1.2 -3.9 -0.7 

19-08 231 8.2 356 19 793 533 1.1 372 113.2 21.1 2400 392 27 -62 -7.8 +0.8 +1.1 -3.8 -7.2 

22-08 234 8.2 304 15 674 440 0.9 307 79.3 11.4 2001 358 18 -73 -9.5 +2.4 -0.2 -3.5 -5.2 

27-08 239 8.2 249 11 525 330 0.5 264 75.8 7.4 1523 302 11 -67 -8.9   -2.8  

29-08 241 8.0 209 13 633 397 0.8 288 94.0 7.9 1842 315 14 -70 -9.1 +1.4 -0.3 -2.3 -2.8 

03-09 246 8.0 296 14 731 465 0.6 301 115.1 12.4 2041 300 13 -68 -8.8     

 

 



   

Table 3. Composition of silver nitrate of varying purity prepared from NO3
- of Stream 1 water 

in (a) 2001 and (b) 2002  

 

(a) 2001 
Date Day no. δ15NNO3 δ18ONO3 C/N N/O 

  ‰AIR ‰VSMOW weight atomic 
18/6 169  +12.3  0.13 

22/6 173  +8.1  0.12 

2/7 183  +12.0  0.04 

9/7 190  +11.2  0.04 

22/7 203  +11.3  0.04 

5/8 217  +10.1  0.09 

12/8 224  +2.4  0.19 

21/8 233 -1.5 -4.4 0.07 0.32 

26/8 238 -1.4 -4.5 0.05 0.33 

 

(b) 2002 
Date Day no. δ15NNO3 δ18ONO3 C/N N/O 

  ‰AIR ‰VSMOW weight atomic 
13/6 164 -1.9 +4.7 0.66 0.22 

17/6 168 -0.9 +1.0 >1 0.16 

28/6 179  +11.0  0.08 

6/7 187 -0.2 +2.8 1.25 0.24 

20/7 201 -0.8 -1.4 0.31 0.31 

1/8 213 +0.2 +1.4 0.44 0.24 

15/8 227 +1.7 +0.9 0.38 0.26 

19/8 231 +1.6 -0.6 0.28 0.33 

22/8 234 +1.9 -1.7 0.25 0.34 

29/8 241 +1.1 -1.5 0.15 0.28 
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Table 4: Composition of  waters sampled from Stream 2 in 2002 

 

Date Day no. pH Na K Ca Mg NH4 Cl- SO4
2- NO3

- HCO3
- δ2ΗΗ2Ο δ18ΟΗ2Ο δ13CDIC

   −−−−−−−−−−−−−−−−−− μmol/L------------------------- ‰VSMOW ‰VSMOW ‰PDB 

13-06 164 7.8 178 15 365 179 0.9 182 23.8 0.4 965 -68 -9.4 -7.8 

17-06 168 7.7 158 11 346 140 0.7 161 12.3 3.1 766 -81 -11.2 -5.2 

24-06 175 7.8 133 13 373 141 0.7 120 14.4 3.1 965 -72 -10.0 -3.4 

28-06 179 7.7 117 12 312 107 0.5 98 13.8 5.1 766   -5.1 

19-08 231 8.1 329 31 966 416 1.1 298 117 17.1 2441 -67 -8.9 -4.9 

22-08 234 8.2 262 29 944 400 0.6 242 103 30.2 2361 -71 -9.6 -5.3 

27-08 239 8.2 233 23 865 377 0.4 179 105 10.6 2161 -81 -9.4 -5.4 

29-08 241 8.2 253 26 950 412 0.5 201 139 11.7 2321 -73 -9.6  

03-09 246 8.2 277 28 993 433 0.7 224 153 12.3 2401 -72 -9.4  
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Table 5: Composition of  waters sampled from Stream 3 in 2002 

 

Date Day no. pH Na K Ca Mg NH4 Cl- SO4
2- NO3

- HCO3
- DOC DON δ13C 

   −−−−−−−−−−−−−−−−−−−−−−−− μmol/L----------------------------------- 
‰PDB

22-06 173 7.9 125 9 548 104 0.5 125 15 3.0 1204 166 <7 -5.3 

25-06 176 7.9 106 8 503 92 0.3 86 12 3.0 1125 200 <7 -4.0 

05-07 186 7.9 83 8 609 114 0.5 59 17 2.0 1364 185 <7 -4.2 

13-07 194 8.0 81 10 676 128 0.2 58 22 3.2 1723 204 <7 -4.3 

20-07 201 8.0 79 9 686 138 0.5 58 25 5.5 1523 191 <7 -4.3 

08-08 220 8.2 95 11 876 183 0.1 73 47 7.5 1922 169 <7 -4.8 

22-08 234 8.2 95 11 971 201 0.2 103 57 10.3 1882 165 <7 -4.3 

28-08 240 8.2 106 11 993 213 0.3 117 67. 8.6 2042 171 <7 -4.7 

 

 

 

 

 

 

 



   

Table 6. Isotopic analyses of rock gravel fragments and soils near Stream 1 

 

Sample  Total S Carbonate  Total organic 

  Amount 

(ppm) 

δ34S 

(‰ CDT) 

 δ13C 

(‰ PDB) 

δ18O 

(‰ PDB) 

 δ13C 

(‰ PDB) 

δ15N 

(‰ AIR) 

Sandstone  <10 - - -  - - 

Granodiorite  <10 - - -  - - 

Schist 1  50 +17.9 - -  - - 

Schist 2  30 +13.6 -2.8 -19.3  - - 

Coal  1580 -0.9 - -  - - 

Limestone 1  - - +3.3 -13.7  - - 

Limestone 2  - - +2.1 -14.1  - - 

Soil 1  - - - -  -27.4 +1.2 

Soil 2  - - - -  -26.5 +2.1 
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Figure Captions 

 

Figure 1: Map of Kongsfjorden showing the sites of the three sampled streams. Snow sampling 

was carried out in a 100 x 100m area in the catchment of stream 1.    

 

Figure 2: Daily precipitation (-) and flow (●) rates measured at the time of sampling for Stream 1 

during the summers of 2001 and 2002. 

 

Figure 3: Temporal changes in the composition of Stream 1 in 2001 (●) and 2002 (□). The 

chemistry is expressed as ion/Cl- molar ratios: (a) Ca/Cl-, (b) Mg/Cl-, (c) Na/Cl-, (d) K/Cl-, (e) 

HCO3
-/Cl-, (f) SO4

2-/Cl-
, (g) NO3

-/Cl-, (h) NH4/Cl-, (i) DON/Cl-, (j) DOC/Cl- and (k) DOC/DON. 

Drainage water values are compared with snowpack chemistry (arbitrarily plotted at day 150) for 

2001 (▲) and 2002 (◊). Bars signify the propagated error associated with the analytical precision 

of the ion and chloride measurements. Where bars are absent the error is less than the symbol 

size. 

 

Figure 4. δ18OH2O values of Stream 1 during 2001 (●) and 2002 (□). The mean values for the 

snowpack (▲, ◊) are arbitrarily plotted at 150 days. 

 

Figure 5. δ34SSO4 values for sulfate in Stream 1 in relation to the percentage of non-sea-salt 

sulfate (calculated from [1 - (0.052·Cl-/SO4
2-)]·100; Newman et al. 1991). ● = 2001; □ = 2002; 

▲, ◊ =  2001 and 2002 snowpack. 

 

Figure 6. Measured δ13C values of dissolved inorganic carbon (DIC) in Stream 1 waters in 2002 

(□), compared with δ13C values calculated for DIC assuming an open system model described in 

the text (stars). 

 

Figure 7: δ18O values of silver nitrate of varying purity prepared from NO3
- of Stream 1 waters 

during 2001 (●) and 2002 (□) with day/month in parentheses. Purity is expressed as N/O atomic 

ratio which equals 0.33 for pure NO3
- and trends towards 0 as proportion of contaminant oxygen 

increases. Bar shows range of δ18ONO3 for 2001 and 2002 snowpack, corrected for 

contamination, from Heaton et al. (2004). 
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Figure 1: 
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Figure 2:  
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Figure 3: 
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Figure 4.  
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Figure 5.  
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Figure 6.  
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Figure 7:  
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