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 This study investigates the out-of-sample hedging effectiveness and dynamic
 hedge ratios of floor-traded and Ε-mini futures with VAR, ECM, bivariate
 GARCH, Kaiman filter, and Markov regime switching in the S&P500 and
 Nasdaq- 100 markets. The empirical results show that both the floor-traded and
 Ε-mini futures can be good instruments to be used as hedge objectives. The
 correlation coefficient between spot and futures increases and hedge effective-
 ness goes up when the hedging period is extended. Moreover, the bivariate
 GARCH and Markov regime switching show a higher HEI performance in
 short-term and long-term hedging periods, respectively. Furthermore, floor-
 traded futures with an open outcry system surprisingly do better than E-mini
 futures contracts. This study proposes meaningful evidence of hedging strate-
 gies for investors with different spot index, hedging periods, and trading
 mechanisms.

 Introduction

 Over the last few years, more and more stock and futures transactions have

 shifted from an open outcry system to an electronic trading system. There are many

 studies that focus on the issue of the relative price discovery role between open out-

 cry and electronic open auctions. Among those, Grunbichler, Longstaff, and
 Schwartz (1994) found that when futures are traded electronically, the prices lead the
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 spot market. Electronic trading, therefore, can reveal more information for market

 prices.

 Although most futures participants have considered replacing the open outcry

 with electronic trading, the transactions still have a long way to grow. Taking the

 U.S. as an example, most futures trading is still taken by a floor broker, but in order

 to attract more customers, the Chicago Mercantile Exchange (CME), one of the
 world's largest derivatives exchanges, introduced a global electronic trading system
 (GLOBEX) in 1992. CME launched the first electronic-mini (Ε-mini) product in
 September 9, 1997, known as Ε-mini S&P500. It was the first screen-based contract

 to trade during regular trading hours on the floor of a United States exchange. The

 Ε-mini Nasdaq- 100 was launched following this in June 21, 1999. Because the size

 of the Ε-mini is only about one-fifth of a floor-traded contract, the advantage is that

 trading an Ε-mini does not mean needing a prodigious financial account. Hasbrouck
 (2002) showed that the Ε-mini possesses a useful price discovery role on the
 S&P500 and Nasdaq- 100. Ε-mini S&P500 and Ε-mini Nasdaq- 100 are two of the
 fastest growing products CME has ever launched.

 Both floor-traded and Ε-mini contracts function with the same objectives; the

 major difference is that Ε-mini contracts allow for a smaller position and they are

 traded electronically by GLOBEX with excellent liquidity and around-the-clock
 availability. Improving the speed of price discovery, accurate recording in time, and

 high liquidity with sufficient privacy are the advantages of the Ε-mini contracts.
 Because trading with Ε-mini can be completed in just one or two seconds by
 GLOBEX, traders can get an immediate response after completing the trade. By
 contrast, the open outcry system has to be made in a specific place. The commission

 of trading Ε-minis is based upon the basis of contract; that is, larger trading volumes

 have higher costs for every transaction. Therefore, for a smaller investor, trading in

 Ε-mini futures will give them a better advantage than they will give big investors. As
 an institutional investor, however, traditional future contracts will cost less.

 For the last several years, most studies about transaction methods mainly focus

 on the comparison of price discovery between traditional and electronic transactions

 and the power of revealing the information. In 1982 after index futures had been

 launched, investors widened their investment ranges, providing a good risk manage-

 ment strategy for a portfolio manager. One of the major functions is to avoid risks

 that arise owing to price fluctuations in the spot market. Until now, there have been

 no studies discussing hedge effectiveness under different transaction mechanisms.
 Therefore, in order to provide investors a more useful hedging suggestion, the com-

 parison between the two different trading mechanisms from the point of view of
 hedging is the major focus in this study.

 Most of the existing studies concerning hedging take mean variance as the major

 empirical criterion and use OLS to estimate the optimal hedge ratio. Because of the

 existence of autocorrelation in the spot and futures markets, the estimated hedge ratio
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 usually is misleading. In order to drill the hedge ratio more, we use dynamic methods

 to estimate the optimal hedge ratio. Traditional econometric models take the residu-

 als of variance as a constant, but in reality most financial data are characterized with

 high frequency and volatility clusters also commonly are found. That is, the residuals

 of variance are not constant, as they change with time. Traditional hedge theory
 adopts a perfect hedging strategy. In contrast, recent studies such as Figlewski
 (1984), Cecchetti, Cumby, and Figlewski (1988), Gagnon and Lypny (1997), and
 Yeh and Gannon (2000) are devoted to studying the dynamic hedging strategy and
 point out that a traditional hedge strategy may not be able to provide the best result

 to the general public. They consider dynamic hedging to be a more appropriate strat-

 egy. Therefore, we not only look at five different hedge models to estimate the hedge

 ratio, but also add a dynamic idea to make hedging result comparisons among mod-

 els in order to determine the optimal hedge strategy.

 Investors usually take an opposite contract position in the futures market, while

 taking up floor-traded and Ε-mini futures, with their spot market position being used

 as a hedge strategy to reduce risks. To discuss the dynamic hedging effectiveness, we

 first will adopt the vector autoregressive model (VAR), error correction model
 (ECM), bivariate generalized autoregressive conditional heteroskedasticity
 (GARCH), Kaiman filter, and Markov regime switching model to minimize the risk

 in the spot and futures markets to obtain the optimal hedge ratio. In addition, the
 technique of a moving window will be taken into consideration in each model to

 investigate if it could increase hedging effectiveness.

 Literature Review

 As Webb (1987) noted, traders fear high- volatility markets because of the
 enhanced danger of uncontrollable losses due to sudden price swings. Hedging plays
 an essential role in investments. Work (1953) showed that hedging is the most
 important feature of the futures market. Based on the purpose of hedging, Gray and

 Rutledge (1971) categorized hedge theory into four forms, including risk elimina-

 tion, profit maximization, risk reduction, and portfolio approach. In discussing hedge

 theory, Ederington (1979) lists three categories: traditional hedge theory, optimiza-

 tion hedge theory, and variance minimization hedge theory. Because traditional
 hedge theory deviates from a practical situation, optimization hedge theory is
 involved in speculative motivation, while fondamental finance takes minimizing
 risks as ordinary investors' hedging strategy in a financial assumption. Most hedging

 studies take variance minimization hedge theory as the empirical study. Among
 those, Cecchetti, Cumby, and Figlewski (1988) adopted risk minimization and
 maximized expected utility, taking spot and futures prices as a dynamic distribution

 to estimate the optimal futures hedge strategy. Junkus and Lee (1985) used profit
 maximization, risk elimination, risk minimization, and utility maximization as the

 hedging strategy in an empirical study.
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 Investors usually take an opposite contract position in the futures market with

 their spot market position as a hedge strategy to reduce risks. Traditional hedge the-

 ory takes a 100 percent position to hedge. That is, investors take an equivalent and
 opposite position in the futures market as they have in the spot market. They assume

 that prices in the spot market and futures market change with the same direction and

 same magnitude. A perfect hedging position can eliminate the risk of a price fluctua-

 tion in the spot market. The hedge ratio therefore uses the benefits obtained in the

 futures market to compensate the loss suffered in the spot market.

 Several later researchers achieved different empirical results. Ederington (1979),

 under the assumption of minimizing the variance, took the price differences in the

 spot market and futures market to run OLS to estimate the hedge ratio and to make a

 hedging effect comparison in the T-bill and GNMA markets. He found that the
 optimal hedge ratio is always less than one, which is totally different from the
 traditional hedge theory. Junkus and Lee (1985) studied hedging strategy when profit

 maximization, risk elimination, risk minimization, and utility maximization are
 adopted. He found that the predicted capacity of prices in the spot market, prices in

 the future market, and base differentials do affect a hedge strategy's success. A

 hedging strategy also should vary with different hedge objectives and future con-
 tracts. Lindahl (1992) studied MMI and S&P500, discovering that the hedge ratio
 increases as the hedge period grows under the assumption of minimizing the vari-
 ance.

 On the estimation of the hedging ratio, previous studies take the mean- variance

 criterion with OLS to estimate the optimal hedge ratio, but because of the existence

 of the autocorrelation in the spot and future markets, the estimated hedge ratio is

 usually misleading. Baillie and Myers (1991) adopted the bivariate GARCH to esti-

 mate the optimal hedge ratio. They found that the resulting optimal hedge ratio
 varies with time, and its effectiveness is better than those of the OLS constant hedge

 ratio models. Kroner and Sultan (1993) took foreign exchange futures to hedge the

 spot and showed that the hedge effectiveness in the bivariate GARCH is better than

 the others. In addition, after considering transaction costs, the bivariate GARCH still

 could improve a traditional hedge strategy's effectiveness and increase investor's
 hedging management capability over a foreign exchange position. Park and Switzer
 (1995) compared the bivariate GARCH with others in estimating the out-of-sample

 optimal hedge ratio. They found that the bivariate GARCH model performs better

 than the others, even after considering the transaction costs. Koutmos and Pericli

 (1999) compared EC-GARCH with a traditional static regression model for an-inside

 sample and out-of-sample hedge effectiveness. Empirical results showed that
 EC-GARCH performs better than the traditional static ones.

 Over the last decade, several researchers devoted to studying dynamic hedging

 strategy have shown that a traditional hedge strategy may not be the best strategy to

 fit ordinary investor needs. Cecchetti, Cumby, and Figlewski (1988) indicated that in
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 order to look for optimal outcomes, the dynamic relationship between the spot and
 futures contract should be considered. Hunter and Timme (1992) reach the same
 conclusion. Gagnon and Lypny (1997), Koutmos and Pericli (1999), and Yeh and
 Gannon (2000) suggest that the GARCH model outperforms other economic models

 in hedging effectiveness. Koutmos and Pericli (1999) adopted a cross-hedging com-
 parative dynamic EC-GARCH model and traditional regression statistic hedging
 model to compare the hedging effect both within and out-of-sample. He found that

 the dynamic bivariate EC-GARCH model could provide better results. Yeh and
 Gannon (2000) took transaction cost into account to employ the dynamic hedging
 model in order to estimate the optimal hedge ratio, and they showed that the GARCH

 hedge model creates the most profits. In addition, its out-of-sample expected ability

 seems to capture the short-run arbitrage opportunity.

 Diebold (1986), Lamoureux and Lastrapes (1990), and Hamilton and Susmel
 (1994) argued that the high volatility persistence also may be due to structural
 changes or regime shifts in the volatility process. Many studies with a regime
 switching model focus on the behavior of a single series: for example, Hamilton
 (1989), Marsh (2000), Dueker and Neely (2002), and Fong and See (2002). Fewer
 research studies have stressed the topic of relationship and hedging, although Sarno

 and Valente (2000) showed that the regime switching model explains the relationship

 between spot and futures prices better. Clarida et al. (2003) wrote that the relation-

 ship between spot and forward is related to the different regimes. For the part of

 hedging, Alizadeh and Nomikos (2004) found that regime switching hedging outper-

 forms the alternative hedge model in lowering portfolio risk in the FTSE100 market

 within sample and out of sample. But in the S&P500 market, the model only per-
 forms better within sample. Other research studies point out that it outperforms the
 GARCH model.

 The existing literature shows many different conclusions. Therefore, in this

 study we adopt four different hedging models to compare their hedging effect. We

 also utilize dynamic hedging to investigate if it could increase the hedging effect. We

 then determine the optimal hedging model and strategy and provide investors with

 the best strategy.

 Data and Models
 Data

 In this study we examine spot indexes and futures contracts through two differ-

 ent transaction mechanisms, including S&P500 and Nasdaq- 100. Table 1 provides a
 basic introduction of the two indexes. Data include S&P500 and Nasdaq- 100 index

 spot, floor-traded futures, and Ε-mini futures that are taken from Bloomberg's data-

 base. All are daily data, and the sample period is from 1999.6.21 to 2004.6.10. As
 long as one of the data is missing on the same day, all the data on the same day will

 be deleted. Some 1251 observations are included in this study. We take the daily
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 stock index with the associated stock index futures to compute its daily rate of return.

 The rate of returns is computed by differentiating the logarithm of the daily stock
 index and futures index.

 AR^flnl^-lnR^xlOO, (1)
 where ARt is the daily return of the spot and futures at time t, and Rt (Rt_i) represents

 the closing prices of the stock index for spot and futures at time t (t - 1), while In Rt

 (In Rn) is the logarithm closing prices of stock the index for the spot and futures at

 timet(t- 1).

 Table 1 - Basic Introduction of S&P500 and Nasdaq-100 Index Futures Contracts

 S&P 500

 Trading Market CME CME
 Value of Contract $250 χ S&P500 index $50 χ S&P500 index

 Month of Contract 3, 6, 9, 12 3, 6, 9, 12
 Trading Hours Floor: 8:30 a.m.- 3:15 p.m. Virtually 24-hour trading (GLOBEX)

 GLOBEX: remaining time
 Min. Price 0. 1 0 index point = $25 per contract 0.25 index point = $ 1 2.5per contract
 Fluctuation

 Last Trading Day The day before the third Friday of the 8:30 a.m. (Chicago time) on the third
 contract month Friday of the contract month

 Nasdaq-100 Floor-traded futures Ε-mini futures
 Trading Market CME CME
 Value of Contract $ 1 00 χ Nasdaq- 1 00 index $20 χ Nasdaq- 1 00 index
 Month of Contract 3, 6, 9, 12 3, 6, 9, 12
 Trading Hours Floor: 8:30 a.m.- 3:15 p.m. Virtually 24-hour trading (GLOBEX)

 GLOBEX: remaining time
 Min. Price 0.50 index point = $50 per contract 0.50 index point = $10 per contract
 Fluctuation

 Last Trading Day The day before the third Friday of the 8:30 a.m. (Chicago time) on the third

 Models

 Estimation of the Hedging Ratio
 Vector Autoregressive Model (VAR)

 Empirical studies usually are based upon a prior theory to build a structured
 econometric model. If the underlying endogenous and exogenous variables are mis-
 specified, then this leads to a useless conclusion. Sims (1980) therefore proposed the

 VAR model to determine the dynamic model through the characteristics of the data

 directly. Sims believed that any economic activities' characteristics can be revealed
 upon the real data and can become a reduced form of a time series model. The model

 need not consider the causality relationship among the variables and no prior theory

 is needed. The model takes every variable as being endogenous and constructs a set
 of regression system of equations. Every variable takes its own possible lag terms

 with the other variables as the explanation variables to become a regression equation.
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 Therefore, the system of equations reveals the relationship among variables as being

 interactive, but not one-way oriented.

 Because of the characteristics of time series data (through the help of appropri-

 ate lagged terms), the model can involve all the information among economic
 variables. Our model can be written as:

 As,=as+£ßsiAsM+irsjAfH+8st (2)
 i=l j=l

 Af, = a, + tß«Asw +Zr5AfH + eft , (3)
 where

 Μ Ω^-ΝίΟ,Η^,ε,βηαε,

 are independent bivariate random variables and have the same distribution respec-

 tively, Var(8st) = σ2& , Var(eft) = σ^ , and Cov(8st,8ft) = asf . The hedge ratio can be
 written as:

 hr = Cov(8st , 8ft |ΩΜ ) / Var(£ft |ΩΜ ) = ^f , (4)

 where ΩΜ is an information set which includes all the applicable information at
 time t-1.

 Error Correction Model (ECM)
 Nelson and Plosser (1982) considered most economic variables to be nonstation-

 ary, and their basic statistic characteristics vary with time. In order to avoid spurious

 regression identification, first-order differentials are needed. To avoid losing long-
 run information when dealing with the issue of nonstationary, Engle and Granger

 (1987) suggested utilizing the cointegration method to illustrate the long-run
 relationship between variables and resolve the possibility of losing information due
 to the differential process. They showed that as long as two economic variables are

 cointegrated (even if the variables are affected by certain factors in the short run and

 turn into a process of random walks), they will return to the long-run equilibrium

 through the process of the dynamic short-run adjustment.

 Assume xt and yt are nonstationary in level, but stationary in the first-order
 differential time series process; that is, xt and yt are 1(1) . If their linear combination

 is 1(0) , then xt and yt are cointegrated. Through the help of the short-run dynamic

 process, the long-run equilibrium could be restored. Hence, based upon the ECM
 hedging model of Krehbiel and Adkins (1993), the model in this study could there-
 fore be rewritten as:
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 As, = α0 + α,μΜ + bAf, + Ë^Af,., + £ e,As,_, + ε, , (5)
 i=l j=l

 where Ast represents the rate of return for the spot market, Aft is the rate of return for

 the futures market, μΜ is the error correction term, 8t shows the stationary errors at

 time t, and b is the hedge ratio.

 Bivariate GARCH Model

 The bivariate GARCH is applicable when a joint normal distribution exists
 between spot and futures. After introducing the mean equation with error correction

 term, (SM -γ FM) , the model becomes a bivariate correction model, as in Engle and
 Granger (1987). On the other hand, Park and Switzer (1995) showed that when the

 joint distribution of spot and futures varies with time and generates a different vari-

 ance, the hedge ratio turns into a dynamic formation. Using the bivariate GARCH
 model, we can calculate the dynamic hedge ratio. In order to take a time-varying

 variance and covariance, we parameterize the second-order moments by the fixed

 coefficient bivariate GARCH(1,1). The mean equation of model can therefore be
 rewritten as:

 Ast=a0+al(ßt_l-y¥t_l) + eA (6)

 Δ^β,+β^-γΡ^ + ε,, (7)

 where Ast and Aft are respectively the rate of return of spot and futures, St and Ft rep-

 resent the logarithm price of spot and futures, and (St_, -γ Ft_,) is the error correction

 term. The error term is [est εΑ]' | ΩΜ - N(0 , Ht) , where ΩΜ is the information
 set at time t-1. Here Ht is the conditional covariance matrix. The variance equation is,

 H'-k KfU mLp do hj (8)
 where hs2t = cs + as£2_j + bgh*_, , h* = cf + af ε*_, + bf h^ , and ρ is the fixed correlation
 coefficient.

 Using the maximum likelihood estimation (MLE) and the above model, the
 dynamic hedge ratio (hr) can be written as:

 hrt=^, (9)
 The conditional covariance hsft and conditional variance h^vary with the newly-
 revealed information. The estimated hedge ratio will change with time also.
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 Kaiman Filter

 The Kaiman filter (1960) not only estimates the parameters on level, but also

 considers the transformation of the state vector space. The major characteristic is its

 stepwise information updating process, which also illustrates the dynamic relation-
 ships between explanatory and dependent variables. In this study we take the Kaiman

 filter with time varying in our model as follows. The observation equation can be
 written as:

 Ast=at+ßtAft+wt, (10)

 where Ast is the pxl observed vector, ßt is endogenous and unobserved of the k*l

 state vector, Aft is the pxk design matrix, which shows the relationship between Ast

 and ßt, and wt are the errors with E(wt ) = 0 , and E(wtwt' ) = σ^ .
 The state equation is:

 β, =φ(β,.,-β) + β + ν,_1, (11)

 where φ is the pxk design matrix which shows the relationship between ßt and ßt_i, vt

 are errors with E(vt) = 0 and E(vtvt') = a2I, and ßt is the state vector at time t.
 Because ßt cannot be observed directly, the optimal estimated output value at time t
 therefore can be used to derive a predicted output value at time t+1, which also must

 minimize the predicted error variance Pt|tl . Applying equations (9) and (10) into the
 hedge model, ßt becomes the hedge ratio in terms of state with the characterization of

 time varying.

 Markov Regime Switching
 Taking a simple case in this study, we assume that the hedge ratios are different

 in two unobservable states (regimes). In other words, the relationship between spot
 and futures markets is different in the two regimes. The equation can be written as,

 Ast=a,+ßltAft+8t.t, (12)

 where et { ~ N(0, σ* ) for it = 1, 2 indicates regime 1 and regime 2, respectively.
 The density function of Ast in each regime is:

 f(As,|i,,a,.l)=1^.xp[-(As'-°;->M')·] (.3,

 and the joint density is:

 f (As, |Ω,_, ) = Σ f (As, | i, , Ω,_, ) · Pr(i, |Ω_ ) , (14)
 it=l

 where Pr(it |Ot_,) is the conditional regime probabilities in a given state.
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 We also set Pr(it = ΐ|ΩΜ) = πΜ and Pr(it = 2|ΩΜ) = π2ι . The log-likelihood of
 the above density function can be defined as

 L = Ilogf(Ast|Qt_1) (15)
 t=l

 where Τ represents observations. Therefore, the average hedge ratio (hr) is weighted

 according to the respective probabilities. The equation can be written as

 H=ß,A+M2,t. (16)

 The Hedging Performance
 The variance's reduction of the predicted returns in an unhedged spot portion

 can be used to evaluate hedging performance. That is, the greater the reduction is, the

 better the hedge performance will be. By the hedge ratio (hr), we can derive the rate

 of return for the hedge investment combination, which can be written as follows:

 Xt=Ast-hrtAft, (17)

 where Ast and Aft are the daily fluctuation rates of spot and futures markets, respec-

 tively, and Xt is the rate of return for the hedge investment combination under the

 assumption of a short hedge position. The variance of the return for the unhedged
 asset combination can be expressed as:

 Var(U) = a^=Var(Ast). (18)

 The variance of return for the hedged asset combination is

 Var(H) = ^=Var(Xt). (19)

 The hedge performance can be evaluated by equation (20), hedging effectiveness
 (HE). In order to compute the average hedging effectiveness, the method of a mov-

 ing window has been adopted. The overall hedging effectiveness can be evaluated by
 the hedging effectiveness index (HEI), which can be expressed by equation (21),
 where M is the number of rolling MISSING WORD?. The higher the HEI is, the
 better the dynamic hedge performance is.

 HE = Var(U)-Var(H) = a^
 Var(U) σ^

 ΣΗΕϋ>
 HEI = Ü

 M
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 Empirical Results
 Descriptive Statistics

 Table 2 contains statistics for the spot index, floor-traded futures, and E-mini
 futures. Because index futures are the derivatives of the spot index, the statistics for

 the spot and futures should be closely correlated. From the part of S&P500 in Table
 2, we find that the means are similar, but the futures market fluctuated more than the

 spot did, while the Ε-mini futures fluctuated more than floor-traded futures did.
 Unlike S&P500 index, the standard deviation of Nasdaq- 100 spot is higher than
 floor-traded and Ε-mini futures. All the spot and futures markets present fat tails.

 Through the Jarque-Beta normality test, we find that all the indexes reject the null

 hypothesis of normal distribution. Figure 1 presents the trend of three series in each

 index; the three series are consistent in the latest sample period.

 Table 2- Descriptive Statistics

 Mean S.D. Skewness Kurtosis Min. Max. JB

 S&P 500

 Spot Index -0.0137% 1.7049 0.1283 1.5078 -6.0045% 5.5732% 121.8464***
 Floor-traded Futures -0.0143% 1.7345 0.0743 1.5743 -6.2708% 5.7548% 130.2474***
 Ε-mini Futures -0.0143% 1.7857 0.1422** 1.9741 -6.2708% 6.9804% 207.1914***

 Nasdaq- 100

 Spot Index -0.0341% 2.7418 0.2757 2.2200 -10.3089% 17.2029% 272.5438***
 Floor-traded Futures -0.0349% 2.7014 0.1263 2.0546 -10.8153% 15.4447% 223.2047***
 Ε-mini Futures -0.0349% 2.7139 0.1426 2.0760 -10.8153% 15.4447% 228.7055***

 Note: *, **, and *** represent 10 percent, 5 percent, and 1 percent significant levels, respectively. JB
 represents the statistics of the Jarque-Bera normality test and the null hypothesis is normal distribution.
 Kurtosis values have been subtracted by three

 Unit Root, Cointegration, and ARCH Tests
 Unit Root Test

 In order to prevent spurious regression and cointegration problems, it is neces-

 sary to verify stationary before doing any further analysis. Here, we adopt the

 augmented Dickey-Fuller (ADF) test to perform the unit root test. In Table 3 we find
 that all the level terms of spot and futures series cannot reject the null hypothesis of

 unit root. In other words, the level term series are nonstationary. After a first differ-

 ential process, however, all series reject the nonstationary hypothesis under 1 percent
 levels. That is, all these series follow the 1(1) process.

 Cointegration Test
 Before constructing the VAR and error correction model, it is necessary to

 determine the optimal lag terms. In this study the general Akaike information
 criterion (AIC) is adopted, and the one period lag will be chosen. According to the
 Johansen maximum likelihood method, which contains the maximum eigenvalue
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 Figure 1- The Trend of Spot Index, Floor-traded Futures, and Ε-mini Futures.

 The S&P500 Market

 1160 -i

 1080 J

 2004/01 2004/02 2004/03 2004/04 2004/05

 The Nasdaq-100 Market

 1575 η

 1375

 1350 J

 2004/01 2004/02 2004/03 2004/04 2004/03

 (L-max) and trace test, the long-term relationship between spot and futures will be
 examined. In Table 4 the same conclusions appear in the S&P500 and Nasdaq-100
 indexes. All of the results show that the null hypothesis of a zero cointegration rela-

 tionship is not significant, but the hypothesis of one cointegration relationship is

 rejected significantly either in the L-max or trace test. This means that the long-term

 relationships exist between spot and futures in these two markets.

 ARCH Test

 We must examine the residuals of equations (6) and (7) before applying the
 GARCH model. The Lagrange multiplier (LM) test is used to verify the ARCH
 effect, and the results are reported in Table 5. If the statistical values are significant,

 then we can say with confidence that the ARCH effects exist. All the outcomes are
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 Table 3- ADF Unit Root Test

 Constant with Trend Constant Only

 Lag

 Level Term

 S&P500 Stock Index 0 -1.6734 0 -1.5097
 Floor-traded Futures 0 -1.6706 0 -1.5068
 Ε-mini Futures 0 -1.7058 0 -1.5234

 Nasdaq-100 Stock Index 0 -1.2901 0 -1.0275
 Floor-traded Futures 0 -1.2579 0 -1.0063
 Ε-mini Futures 0 -1.2622 0 -1.0093

 First Difference

 S&P500 Stock Index 0 -35.8639*** 0 -35.8703***
 Floor-traded Futures 0 -22.0962*** 0 -22.0958***
 Ε-mini Futures 0 -22.2426*** 0 -22.2423***

 Nasdaq-100 Stock Index 1 -8.9582*** 1 -8.9582***
 Floor-traded Futures 1 -9.1169*** 1 -9.1168***

 Ε-mini Futures

 Note: *, **, and *** represent 10 percent, 5 percent, and 1 percent significant levels, respectively. Critical
 value refers to Dickey-Fuller (1981)

 significant under the 1 percent level (no matter in S&P500 or in Nasdaq-100); that is,
 ARCH effects obviously exist.

 Hedge Ratio and Hedging Effectiveness
 Benet (1992) studied foreign currency futures and suggested that using out of

 samples or ex-ante to evaluate hedging effectiveness would be more meaningful for
 investors. Hence, we adopt Benet' s suggestion to evaluate hedging performance out-

 of-sample results. The estimated time expansion is 800 days. Utilizing the form of a

 moving window to analyze the effect of the length of hedging periods to the hedging

 performance in different economic models, we take two, four, eight, twelve, 24, and
 48 weeks as the hedging periods in this study and perform daily rolling to hedge.

 Taking two weeks as an example, as shown on Figure 2, the first loop uses the first

 Table 4 - Cointegration Tests
 Critical

 Critical Value Value

 S&P500

 Spot and Floor-traded Futures 0.0619 79.70 81.86 0 10.29 17.79
 0.0017 2.17 2.17 1 7.50 7.50

 Spot and Ε-mini Futures 0.0740 95.99 98.16 0 10.29 17.79
 0.0017 2.17 2.17 1 7.50 7.50

 Nasdaq-100

 Spot and Floor-traded Futures 0.1038 136.80 137.91 0 10.29 17.79
 0.0009 1.11 1.11 1 7.50 7.50

 Spot and Ε-mini Futures 0.1139 150.97 152.08 0 10.29 17.79
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 Table 5- ARCH Effects

 8stforQ(20) 27.7598 28.5366* 53.1721*** 53.7102***

 6^tforQ2(20) 392.7675*** 391.0617*** 554.4713*** 550.6283***
 8st for LM test 140.6672*** 141.3418*** 185.5720*** 182.9177***

 8ftforQ(20) 27.0494 28.0538 44.3821*** 46.1848***

 £ftforQ2(20) 398.7573*** 367.7594*** 555.8979*** 549.6504***
 8ft for LM test 147.1744*** 133.1536*** 164.0668*** 162.2235***
 Note: *, **, and *** represent 10 percent, 5 percent, and 1 percent significant levels, respectively

 Figure 2-Dynamic Hedging Process 800 Day Time Expansion and 10 Day Moving Window

 10 Days
 Day 1

 Lj
 Λ Estimated Period (800 days) Λ Hedge Period Λ

 First Loop ! __ ^= __ ^= __ ^= ^_ ; ^= ___ ^_ ^= ^

 A A A
 Second Loop I ^= ^_ __ ^_ ^= === == ! ^_ ^= ^= ^= L

 Estimated Period (800 Days) Hedge Period

 800 days' spot and futures markets to estimate the hedge ratio and then performs

 hedging for the next two weeks (ten days). At the end of the ten days, the hedging

 performance is evaluated and so on. In this study we take five methods, including
 VAR, ECM, bivariate GARCH(1,1), Kaiman filter, and Markov regime switching, to

 evaluate the dynamic hedging process clearly and completely

 In order to obtain the out-of-sample empirical results, we use the latest informa-

 tion to estimate the next period's hedge ratio. Therefore, the entire hedging ratio we

 derive is a dynamic process, not a constant hedging ratio. Table 6 presents the hedg-

 ing ratio for all possible combinations. It is found that most hedge ratios are less than

 one, especially for the S&P500 index. The results are consistent with the studies of

 Ederington (1979), Junkus and Lee (1985), Lindahl (1992), Park and Switzer (1995),

 and Holmes (1996). This implies that it is not necessary to take up 100 percent
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 hedging of a futures position for a long spot position. This can reduce the hedging
 cost for investors. It is worth noting that the hedge ratio estimated by the GARCH

 model on Nasdaq- 100 is higher than others, and the ratio is close to one. This result

 supports the perfect hedging strategy in the Nasdaq- 100 market.

 Table 6 - The Hedge Ratios of Different Instruments in Various Models
 Kaiman Kegime

 S&P500

 Floor-traded Futures 2 weeks 0.9713 0.9724 0.9730 0.9835 0.9714

 4 weeks 0.9501 0.9727 0.9627 0.9849 0.9711

 8 weeks 0.9540 0.9722 0.9925 0.9916 0.9705

 12 weeks 0.9549 0.9697 0.9967 0.9917 0.9699

 24 weeks 0.9560 0.9569 1.0214 0.9944 0.9680

 48 weeks 0.9611 0.9584 0.9906 0.9928 0.9639

 Ε-mini Futures 2 weeks 0.9373 0.9530 0.9937 0.9819 0.9629

 4 weeks 0.9419 0.9532 0.9510 0.9832 0.9626

 8 weeks 0.9441 0.9532 0.9899 0.9899 0.9621

 12 weeks 0.9439 0.9519 0.9898 0.9913 0.9623

 24 weeks 0.9461 0.9415 1.0061 0.9890 0.9604

 48 weeks 0.9513 0.9445 0.9317 0.9878 0.9562

 Nasdaq- 100

 Floor-traded Futures 2 weeks 0.9910 0.9893 1.0249 0.9726 0.9998
 4 weeks 0.9905 0.9899 1.0202 0.9696 0.9998

 8 weeks 0.9974 0.9978 1.0009 0.9715 0.9998

 12 weeks 0.9992 1.0050 1.0144 0.9722 0.9998
 24 weeks 0.9866 0.9814 1.0092 0.9623 0.9991
 48 weeks 0.9951 0.9895 1.0165 0.9826 0.9950

 Ε-mini Futures 2 weeks 0.9857 0.9819 1.0250 0.9819 0.9985
 4 weeks 0.9853 0.9824 1.0172 0.9832 0.9987
 8 weeks 0.9923 0.9908 0.9976 0.9899 0.9986
 12 weeks 0.9944 0.9989 1.0002 0.9913 0.9986
 24 weeks 0.9842 0.9788 1.0056 0.9890 0.9972

 Comparing the various models, we calculate all possible HEIs with the moving
 window method. The results are reported in Table 7. The HEI are positive under
 each model and hedging period, indicating that the variance of a hedged portfolio is

 lower than that of an unhedged portfolio. We find that regardless of whether we take

 floor-traded or Ε-mini futures, the bivariate GARCH and Markov regime switching

 have higher HEI performances, while the Kaiman filter is the lowest on average.
 In Table 7, the GARCH model seems to perform better for two weeks, a short-

 term hedging period. For the S&P500, the HEIs of hedging with floor-traded and
 Ε-mini futures are 0.9452 and 0.9385. For the Nasdaq-100 the HEIs are 0.9425 and

 0.9357, respectively. The value is relatively close, but higher than under regime
 switching. Taking a further look into longer periods, we find that almost all regime

 switching have higher HEIs in these two markets. This implies that the GARCH
 model can capture the short-run dynamic effect, and this is consistent with the stud-

This content downloaded from 163.13.36.189 on Tue, 14 Jun 2016 03:21:49 UTC
All use subject to http://about.jstor.org/terms



 64

 ies of Yen and Gannon (2000), who suggest that the performance of GARCH model
 appears on average to persist over a five-day horizon.

 Unlike regime switching, the GARCH model assumes that the data follow the

 unique distribution with the same mean and standard deviation. As the hedging
 period gets longer, the estimation may misspecify while the regime changes. The
 regime switching model outperforms the other models with out-of-sample results and

 a longer hedging period in both S&P500 and Nasdaq- 100 markets. The forecasting

 results in Fong and See (2002) show that the regime switching model performs better

 in the out-of-sample horizon. Nevertheless, these findings are slightly different from

 Alizadeh and Nomikos (2004), who argue that the regime switching model outper-
 forms only within a sample in the S&P500 market. We propose another conclusion

 in the S&P500 market. We find that even though regime switching may be a system-

 atic feature of the data, regime switching may underperform non-regime switching

 models in the short term and with out-of-sample forecasts resulting from the over-

 parameterization problem. The assumption of two unobservable regimes is suitable

 in the long term, however, and the regime switching model performs better than do
 alternative models.

 Table 7- The HEI of Different Instruments in Various Models

 Kaiman Regime

 S&P500

 Floor-traded Futures 2 weeks 0.9442 0.9442 0.9452 0.9314 0.9451

 4 weeks 0.9501 0.9500 0.9511 0.9402 0.9518

 8 weeks 0.9540 0.9540 0.9553 0.9498 0.9555

 12 weeks 0.9549 0.9549 0.9562 0.9477 0.9570

 24 weeks 0.9560 0.9560 0.9576 0.9522 0.9597

 48 weeks 0.9611 0.9609 0.9627 0.9557 0.9641

 Ε-mini Futures 2 weeks 0.9373 0.9370 0.9385 0.9228 0.9379

 4 weeks 0.9419 0.9417 0.9429 0.9293 0.9431

 8 weeks 0.9441 0.9438 0.9452 0.9381 0.9449

 12 weeks 0.9439 0.9447 0.9450 0.9324 0.9458

 24 weeks 0.9461 0.9457 0.9474 0.9391 0.9483

 48 weeks 0.9513 0.9509 0.9528 0.9506 0.9600

 Nasdaq- 100

 Floor-traded Futures 2 weeks 0.9412 0.9408 0.9425 0.9343 0.9422
 4 weeks 0.9479 0.9475 0.9486 0.9426 0.9505

 8 weeks 0.9541 0.9536 0.9546 0.9467 0.9553

 12 weeks 0.9560 0.9555 0.9564 0.9526 0.9600

 24 weeks 0.9570 0.9565 0.9570 0.9499 0.9625
 48 weeks 0.9584 0.9579 0.9586 0.9562 0.9670

 Ε-mini Futures 2 weeks 0.9346 0.9341 0.9357 0.9228 0.9356
 4 weeks 0.9410 0.9404 0.9416 0.9293 0.9435
 8 weeks 0.9462 0.9456 0.9467 0.9381 0.9470
 12 weeks 0.9474 0.9468 0.9477 0.9324 0.9514
 24 weeks 0.9488 0.9484 0.9486 0.9391 0.9524
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 Let combine the hedge ratio and the hedging performance in Table 6 and Table

 7. In the S&P500 market, the perfect hedging strategy is not appropriate. Investors

 can lower their portfolio risk with fewer transaction costs, and it is not necessary to

 take up a 100 percent hedging of a futures position for a long spot position. In the
 Nasdaq- 100 market, aside from the short-term hedging period (two weeks), the
 results are consistent with S&P500. With the higher hedging effectiveness, however,

 the optimal hedging ratio is 1.0249 and 1.0250 with floor-traded and Ε-mini futures,

 respectively. This indicates that investors will take higher futures position relative to

 the spot position from the short-term period in order to lower the portfolio risk.
 These results are useful to investors who prefer short-term hedging periods in the

 Nasdaq- 100 market.

 Regardless of the models that have been used, we intend to investigate the
 relationship between the hedging period and hedging effectiveness. Table 7 shows

 that the longer the sample period is, the more effective the hedging effectiveness
 becomes across models. This coincides with the findings of Ederington (1979),
 Figlewski (1984), and Lindahl (1992). Long-term relationships exist between spot
 and futures, although even the reverse relationship probably occurs in short-term

 periods. That is, spot and futures may move in different directions in the short run,

 and hedging could contrarily cause losses. But in the long run (because spots and

 futures being highly correlated), bear hedging can reveal its effectiveness. Therefore,

 as the hedge period is extended, the correlation coefficient between spot and futures

 increases and hedging effectiveness goes up. As a result, a long period hedging strat-

 egy would be the better choice when investors are taking index futures as hedging
 vehicles.

 In terms of hedging objectives, regardless of different hedging periods and hedg-

 ing models, floor-traded futures with an open outcry system perform better than do
 Ε-mini futures contracts. For Ε-mini futures contracts, the electronic platform

 enables the transaction to be made regardless of place and time, and there is no huge

 financial cost for small investors. When there is a big transaction amount, however,

 the cost is relatively high. This means general investment institutions still rely on
 floor-traded futures to do business, implying that a larger investment is more sensi-

 tive to hedging information than is a small investment. In addition, the transaction

 cost is also the major factor to influence hedging effectiveness. Because the transac-
 tion cost of an Ε-mini contract is based on the basement of contracts, larger trading

 volumes have higher costs for every transaction. Because the cost will increase with
 the transaction amount, the hedging effectiveness is therefore relatively small.

 Regardless of floor-traded or Ε-mini futures, the HEI is always greater than 90
 percent. Both can be good instruments to be used as hedging objectives in either the

 S&P500 or the Nasdaq- 100 markets. Through a dynamic hedging process, the vari-

 ances of the investment portfolio can decrease noticeably.
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 Conclusion

 In this study we investigated the out-of-sample hedging effectiveness and hedge
 ratios of floor-traded and Ε-mini futures with the VAR, ECM, bivariate GARCH,

 Kaiman filter, and Markov regime switching in the S&P500 and Nasdaq- 100 mar-

 kets. The moving window technique is adopted to analyze the effect of the length of

 time expansion to the hedging performance in different hedging models. The empiri-

 cal results show that both the floor-traded or Ε-mini futures can be good instruments

 to be used as hedge objectives either in the S&P500 or Nasdaq-100 markets. As the
 hedging period is extended, the correlation coefficient between spot and futures

 increases and hedging effectiveness goes up.

 Second, the bivariate GARCH and Markov regime switching methods have
 higher HEI performances in short-term and long-term hedging periods, respectively,

 while the Kaiman filter is the lowest on average. Third, except for the short-term

 hedging period (two weeks) in the Nasdaq-100 market, we can conclude that a per-

 fect hedging strategy is not appropriate. Investors can lower the portfolio risk with

 fewer transaction costs, and it is not necessary to take a 100 percent hedging of a

 futures position for a long spot position. In the Nasdaq-100 market, however, inves-

 tors will take a higher futures position relative to their spot position in the short-term

 period in order to lower the portfolio risk. Fourth, floor-traded futures with an open

 outcry system do better than Ε-mini futures contracts. The main reason is the higher

 transaction cost of large trading with Ε-mini futures relative to floor-traded futures.

 Finally, this study proposes meaningful evidence of hedging strategies for investors

 with different spot indexes and hedging periods. All the portfolio risk can be lowered

 by different strategies.
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