
行政院國家科學委員會專題研究計畫  成果報告 

 

 

強穩定以及穩定的 Hinfinity 控制器設計 

 

 
計畫類別：個別型計畫 

計畫編號： NSC92-2213-E-032-008- 

執行期間： 92 年 08 月 01 日至 93 年 07 月 31 日 

執行單位：淡江大學電機工程學系 

 

 

 

 

計畫主持人：周永山 

 

 

 

 

 

報告類型：精簡報告 

 

處理方式：本計畫可公開查詢 

 

 
 

 

中 華 民 國 95 年 10 月 14 日

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/62490564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1

行政院國家科學委員會專題研究計畫成果報告 

強穩定以及穩定的 ∞H 控制器設計 
Strong Stabilization and Stable ∞H  Controller Design 

計畫編號：NSC 92-2213-E-032-008- 
執行期限：92年 8 月 1 日至 93年 7 月 31 日  

主持人：周永山 淡江大學電機系助理教授 

 
一、中文摘要 

本計劃研究強穩定以及穩定 ∞H 控制器的

合成問題。我們以一致性的技巧推導得到

這兩個問題有解的充分條件，利用線性分

式轉換分別轉換為正實控制器的設計問題

以及多目標控制問題，然後採用線性矩陣

不等式的技巧來求解。另外，我們也找出

符合這兩個問題要求的部份控制器所形成

的集合。最後提供數值例子來驗證所提出

方法的實際成效。 

 

關鍵詞：強穩定，穩定 ∞H 控制器設計，

正實控制器設計，多目標控制，線性矩陣

不等式 

 

1. Abstract 
This project investigates the strong 

stabilization and the stable ∞H  controller 

design problems. Solvability conditions for 
the two problems are derived in a unified 
manner and recast via linear fractional 
transformation as positive real controller 
synthesis problem and multiobjective 
control problem, respectively, which can be 
solved via relevant linear matrix inequality 
(LMI) programs. In addition, explicit 
characterizations of some subsets of the 
controllers for the two problems are given. 
Finally, numerical examples are provided to 
show the effectiveness of the proposed 

methods. 
 
Keywords: strong stabilization, stable ∞H  
controller design, positive real controller 
synthesis, multiobjective control, linear 
matrix inequality 
 
 
2. Motivation 

Stable controllers are preferable for 
feedback control systems whenever it is 
possible, for several reasons such as loop 
stability, tracking performance, and 
sensitivity to disturbances. In the literature, 
the problem of finding a stable stabilizing 
controller for a given plant is referred to be 
strong stabilization problem. 
Nevanlinna-Pick interpolation technique is 
one of the several methods to solve the 
problem, see, e.g., [1,2]. However, the 
orders of the resulting controllers by this 
approach usually are very high, and the 
computational procedure is technically 
involved. In [3], a different approach was 
proposed. This problem was reduced to a 
two-block or one-block ∞H optimization 
problem. The solution depends on the initial 
choice of a unimodular transfer function. 
However, no general guidelines were given 
on how to select this transfer function.  

Stable controller design with certain 
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performance requirements, such as LQG , 

2H , ∞H , and mixed ∞HH /2  performance have 
also been studied in the literature [4-12] 
based on solving certain modified Riccati 
equations. However, many technical 
assumptions are often made for the existence 
of the solutions of the Riccati equations. 
Therefore, it’s our purpose of this research 
to present a simple, yet general (less 
technical assumption being made) approach 
to solve the strong stabilization problem and 
the ∞H  strong stabilization problem. 
 
 
3. Results 
 
3.1 Design and parameterization of 

strongly stabilizing controllers 
 

Assume the plant BAsICsP 1
0 )()( −−=  is 

stabilizable and detectable, and is in positive 
feedback connection with the controller. Let 

lN  and lM  be any left coprime 
factorization factors of 0P  such that   

ll NMP 1
0

−= . Our result for the strong 

stabilization problem is stated below. 
 
 

         Fig. 1 
 
 
Theorem 1. Suppose that the following 
positive real controller synthesis problem is 
solvable: there exists a 0KS =  such that, as 

shown in Fig. 1,  

(i) the closed-loop system is internally 
stable, 

(ii) the map zwT  is strictly positive real. 
Then kkkko DBAsICsK +−= −1)()(  is a strongly 

stabilizing controller. Furthermore, every 
controller in any of the following sets is 
strongly stabilizing. 
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For computation, the positive real controller 
synthesis problem can be efficiently solved 
by the relevant LMI programs in [13,14]. 
 
3.2 Design and Parameterization of ∞H  

strongly stabilizing controllers 
 
In this subsection we assume that the 

generalized plant G  satisfies the standard 
assumptions for the general ∞H  control 
problem presented in [15,16]. It has been 
shown that all suboptimal ∞H  controllers 

)(sK  satisfying the suboptimal restriction 
γ<∞),( KGFl  can be parameterized by the 

formula ),( QMFK l ∞=  with  
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where ∞M  is constructed from the solutions 
of two Riccati equations, ∞∈RHQ  and 

γ<∞Q . Hence the ∞H  strong stabilization 

Z lM lN−

0
w

S

I



 3

problem becomes that of finding a ∞∈RHQ  
with γ<∞Q  which internally 
stabilizes 22∞M . Let lN  and lM  be any left 
coprime factorization factors of 22∞M  such 
that ll NMM 1

22
−

∞ = . The ∞H  strong 
stabilization problem is now recast as a 
multiobjective control problem (with 
reference to Fig.2) as stated below. 
 

 
 
 
 

 
 Fig. 2 
 

Theorem 2. Suppose that a suboptimal ∞H  
controller parameterization is obtained for a 
given ∞H  performance level γ . Suppose 
that the following multiobjective control 
problem is solvable: there exists a controller 

0QS =  such that, as shown in Fig. 2, 

(i) the closed-loop system is internally 
stable, 

(ii) the channel map wzT
1

 is strictly positive 

real, 
(iii) the channel map wzT

2
 satisfies 

γ<
∞wzT

2
. 

Then a stable ∞H  controller is given by 
( )0,QMFK l ∞= . Furthermore, every controller 

in the set SHK  is ∞H  strongly stabilizing 
with ∞H  performance γ , where 
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The multiobjective control problem can be 
efficiently solved by the relevant LMI 
program in [14]. 
 

4. Examples 
 
Example 1. Consider the 3rd order unstable 
non-minimum-phase plant 
       ( )( )( )

( )( )( )11329
2.406.23)(
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=
sss

ssssPo
, 

It is easy to verify that )(sPo satisfies the parity 

interlacing property(pip), thus the existence 
of stable stabilizing controllers is guaranteed. 
By Theorem 1, we obtain the following 
strongly stabilizing controller 

1999093004.882
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which is of the same order as that of the 
plant.  
 
Example 2.  The example is taken from 
[11]. The minimal ∞H  performance obtained 
via different methods are summarized in the 
table,  
 
Methods mimγ  Controller  Order

Toolbox 12.014 unstable 4 
[8] 37.551 stable    8 
[11] 43.167 stable    4 

Theorem 2 28.001 stable    8 
 
which shows that a stable ∞H  controller 
with better ∞H  performance is obtained by 
the method we proposed. 
 
5. Conclusions 

Sufficient conditions for the strong 
stabilization problem and the problems were 
given in terms of the solvability of positive 
real controller synthesis problem and 
multiobjective control problem, respectively, 
which can be efficiently solved via the 
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relevant LMI programs. Besides the 
numerical benefits, our method is 
simpler(compared to the Nevanlinna-Pick 
interpolation technique) and makes only a 
minimal number of assumptions(thus 
removes many technical assumptions 
imposed on the Riccati-based approaches). 
This means that our method could be 
applicable to more general cases. 
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