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Strong Stabilization and Stable H, Controller Design
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1. Abstract

This project investigates
stabilization and the stable H_

the strong

controller
design problems. Solvability conditions for
the two problems are derived in a unified
manner and recast via linear fractional
transformation as positive real controller
synthesis problem and multiobjective
control problem, respectively, which can be
solved via relevant linear matrix inequality
(LMI) programs. In addition, explicit
characterizations of some subsets of the
controllers for the two problems are given.
Finally, numerical examples are provided to
show the effectiveness of the proposed
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methods.
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2. Motivation

Stable controllers are preferable for
feedback control systems whenever it is
possible, for several reasons such as loop
stability, tracking  performance, and
sensitivity to disturbances. In the literature,
the problem of finding a stable stabilizing
controller for a given plant is referred to be
strong stabilization problem.
Nevanlinna-Pick interpolation technique is
one of the several methods to solve the
problem, see, e.g., [1,2].
orders of the resulting controllers by this
approach usually are very high, and the
computational procedure is technically
involved. In [3], a different approach was

proposed. This problem was reduced to a
two-block or one-block H, optimization

However, the

problem. The solution depends on the initial
choice of a unimodular transfer function.
However, no general guidelines were given
on how to select this transfer function.
Stable controller design with certain



performance requirements, such as Lqc |,
H,, Hy,, and mixed H,/H, performance have
also been studied in the literature [4-12]
based on solving certain modified Riccati
equations. However, many technical
assumptions are often made for the existence
of the solutions of the Riccati equations.
Therefore, it’s our purpose of this research
to present a simple, yet general (less
technical assumption being made) approach

to solve the strong stabilization problem and
the H_ strong stabilization problem.

3. Results

3.1 Design and parameterization of
strongly stabilizing controllers

Assume the plant pys)=csi-A7t8 IS
stabilizable and detectable, and is in positive

feedback connection with the controller. Let

Ny and wm, be any left coprime
factorization factors of m such that
p=MN, . Our result for the strong

stabilization problem is stated below.

Fig. 1

Theorem 1. Suppose that the following

positive real controller synthesis problem is
solvable: there exists a s=k, such that, as

shown in Fig. 1,

(i) the closed-loop system is internally

stable,
(ii) the map T,, is strictly positive real.

Then Kq(s)=Cy (sl -A) B +D, IS a strongly
stabilizing controller. Furthermore, every
controller in any of the following sets is
strongly stabilizing.

- 1
Kgp = {H(J .Q):QeRH,, ||, <J~—} ,
|72,
Ky, ={F(3,Q):QeRH,, 1-J,Q is SPR},
where
A+BF 0 |0 -B
7 B.C A |B. O :[iu(s) {12(5)}
DC-F Cy | D | J1(8)  Jp(s)
c R |1 0

For computation, the positive real controller
synthesis problem can be efficiently solved
by the relevant LMI programs in [13,14].

3.2 Design and Parameterization of H_,

strongly stabilizing controllers

In this subsection we assume that the
generalized plant ¢ satisfies the standard
assumptions for the general H, control
problem presented in [15,16]. It has been
shown that all suboptimal H, controllers
K(s) satisfying the suboptimal restriction
|FiG. )|, <» can be parameterized by the

formulak =/ M.,,Q) with

e (8) Mago(S)

1A T8 2L Maa(s) Myg(s

M, = Cil DAll DAlZ _'{szl(s) Mmzz(s)}
C2 D21 D22

where wm,, is constructed from the solutions
of two Riccati equations, QerH, and
Iel, <». Hence the w, strong stabilization



problem becomes that of finding a QerH,,
with Il <~ which internally
stabilizesm,.,,. Let n, and m, be any left
coprime factorization factors of wm.,, such
that M, =M, N, The H, strong

stabilization problem is now recast as a
multiobjective  control  problem  (with
reference to Fig.2) as stated below.

Fig. 2

Theorem 2. Suppose that a suboptimal H,,
controller parameterization is obtained for a
given H, performance level ,. Suppose
that the following multiobjective control
problem is solvable: there exists a controller
s=Q such that, as shown in Fig. 2,

(i) the closed-loop system is internally

stable,
(ii) the channel map T, is strictly positive

real,
(iii) the channel

[re],, <7 -
Then a stable H, controller is given by
K=F(M,. Q). Furthermore, every controller
in the set Kg, IS H, strongly stabilizing

map satisfies

T
Z,W

with H,, performance ,, where
Ke1 = {R(M,.Q +O): QerH,, [d <minm’7’“%“m) -
1= ™ | "

The multiobjective control problem can be
efficiently solved by the relevant LMI
program in [14].

4. Examples

Example 1. Consider the 3rd order unstable

non-minimum-phase plant
(s+3)s—2.6)(s—40.2)
(s+29)s-3)s-11)

It is easy to verify thatp, s satisfies the parity

Po (S) =

interlacing property(pip), thus the existence
of stable stabilizing controllers is guaranteed.
By Theorem 1, we obtain the following

strongly stabilizing controller
—6.865° ~15.765” + 78535 +59690
s® +882.4s% + 93005 +19990

which is of the same order as that of the
plant.

K(s) =

Example 2. The example is taken from
[11]. The minimal H,, performance obtained

via different methods are summarized in the
table,

Methods Y mim Controller | Order
Toolbox 12.014 | unstable 4
[8] 37.551 | stable 8
[11] 43.167 | stable 4
Theorem 2 28.001 | stable 8

which shows that a stable H., controller
with better H,, performance is obtained by
the method we proposed.

5. Conclusions

Sufficient conditions for the strong
stabilization problem and the problems were
given in terms of the solvability of positive
real controller synthesis problem and
multiobjective control problem, respectively,
which can be efficiently solved via the



relevant LMI programs. Besides the
numerical  benefits, our method is
simpler(compared to the Nevanlinna-Pick
interpolation technique) and makes only a
number of assumptions(thus
removes many technical assumptions
imposed on the Riccati-based approaches).
This means that our method could be
applicable to more general cases.

minimal
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