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多層式高斯混合模型架構的非特定文字語者辨識系統 

作者：陳萬城，謝景堂，賴友仁 

中文摘要： 

本論文主要針對語者辨認系統提出改善系統效能的方法。在語音特徵方面，我們

根據人耳聽覺特性利用小波轉換(Wavelet Transform)技術將語音訊號分解成幾個頻

帶，並萃取出分佈於各個頻帶訊號的線性預估倒頻譜係數(Linear Predictive Cepstral 
Coefficients, LPCC)；除此之外，在求出的語音特徵上作平均正規化 (Mean 
Normalize)處理，以消除不同的環境下所造成的係數偏移情形。在辨識模型上，我

們提出多頻帶特徵結合法(Feature Combination)與多頻帶機率結合法(Likelihood 
Combination)應用於高斯混和式模型(Gaussian Mixture Models, GMM)，以有效利用

所求出之多頻帶語音特徵。多頻帶特徵結合法主要是將各個頻帶語音特徵係數結

合成一個特徵向量再送至 GMM 作辨認。多頻帶機率結合法則是每一個頻帶的語音

特徵送至各個頻帶上的 GMM 作辨認，最後將各個頻帶的辨識機率相乘就可得到此

辨識模型的辨識結果。實驗結果顯示本文所提兩種方法用於非特定文字(Text 
Independent)語者辨認系統，在乾淨語音及雜訊干擾的情形下辨識效能均優於使用

LPCC 與 Mel 刻度倒頻譜係數(Mel-scale Frequency Cepstral Coefficients, MFCC)語音

特徵的 GMM 辨識架構。 

Abstract： 

This paper presents some effective method for improving the performance of a speaker 
identification system. Based on the multi-resolution property of the wavelet transform, 
the input speech signal is decomposed into various frequency bands in order not to 
spread noise distortions over the entire feature space. The linear predictive cepstral 
coefficients (LPCC) of each band are calculated. Furthermore, the cepstral mean 
normalization technique is applied to all computed features. In order to effectively utilize 
these multiband speech features, we use feature recombination and likelihood 
recombination methods to evaluate the task of the text-independent speaker identification. 
The feature recombination scheme combines the cepstral coefficients of each band to 
form a single feature vector used to train the Gaussian mixture model (GMM). The 
likelihood recombination scheme combines the likelihood scores of independent GMM 
for each band. Experimental results show that the proposed both methods outperform the 
GMM model using full-band LPCC and MFCC features in both clean and noisy 
environments. 

Keywords: 

speaker identification, wavelet transform, linear predictive cepstral coefficients (LPCC), 
mel-frequency cepstral coefficients (MFCC), Gaussian mixture model (GMM). 
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1 Introduction 

In general, speaker recognition can be divided into two parts: speaker verification and speaker 
identification. Speaker verification refers to whether or not the speech samples belong to some 
specific speaker. However, in speaker identification, the goal is to determine which one of a 
group of known voices best matches the input voice sample. Furthermore, in both of the tasks the 
speech can be either text-dependent or text-independent. Text-dependent means that the text used 
in the training system must be the same as that used in the test system, while text-independent 
means that there is no limitation on the text used in the test system. Certainly, how to extract and 
model the speaker-dependent characteristics of the speech signal is the key point which seriously 
affects the performance of the speaker recognition system. 

Much research has been done on the task of speech feature extraction. The linear predictive 
cepstral coefficients (LPCC) (Atal, 1974; White and Neely, 1976) were used because of their 
simplicity and effectiveness in speaker/speech recognition. Other widely used feature parameters, 
mel-frequency cepstral coefficients (MFCC) (Vergin et al., 1999), were calculated by using a 
filter-bank approach in which the set of filters had equal bandwidths with respect to the mel-scale 
frequencies. This was based on the fact that the human perception of frequency contents of 
sounds did not follow a linear scale. The above two most commonly used feature extraction 
techniques do not provide an invariant parameterization for speech—the representation of the 
speech signal tends to change due to various noise conditions. The performance of the speaker 
identification systems may severely degrade in the case of a mismatch between training and test 
environments. Various types of speech enhancement and noise elimination techniques have been 
applied to feature extraction. Typically, the nonlinear spectral subtraction (Lockwood and Boudy, 
1992) had provided only minor performance gains after extensive parameter optimization. Furui 
(1981) used the cepstral mean normalization  technique to eliminate the channel bias by 
subtracting off the global average cepstral vector from each cepstral vector. Other way to 
minimize the channel filter effects is to use the cepstrum difference coefficients (Soong and 
Rosenberg, 1988). Cepstral coefficients and their time difference functions were used as the 
features in order to capture the dynamic information and eliminate the time-invariant spectral 
information generally attributed to the interposed communication channel. 

Conventionally, feature extraction is carried out by computing acoustic feature vectors over 
the full band of the spectral representation of speech. The major drawback of this approach is that 
even a partial band-limited noise corruption affects all feature vector components. The multiband 
approach (Hermansky et al., 1996) coped with this problem by performing the acoustic feature 
analysis independently for a set of frequency subbands. Since the resulting coefficients were 
computed independently, a band-limited noise signal did not spread over the entire feature space. 
The major drawback of a pure subband-based approach may be that information on the 
correlation between various subbands is lost. Therefore, an approach of combining the 
information from full-band and subbands at the recognition stage produced recognition 
improvements (Mirghafori and Morgan, 1998). It is not trivial to decide at which temporal level 
the combination of subband features should be carried out. In the multiband approach (Bourlard 
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and Dupont, 1996; Hermansky and Malayath, 1998), different classifiers for each band were used 
and the likelihood recombination was done at hidden Markov model (HMM) state, phone, or 
word level. In other approach, Okawa et al. (1998) proposed the combination of the individual 
features of each subband into a single feature vector prior to decoding. In our previous study 
(Hsieh and Wang, 2001), we proposed a multiband linear predictive cepstral coefficients 
(MBLPCC) method in which the LPCC features from various subbands and full-band were 
combined to form a single feature vector. This feature extraction method was evaluated for 
speaker identification system using vector quantization (VQ) as the identifier. The experimental 
results showed that this method was more effective and robust than the full-band LPCC and 
MFCC features, particularly in noisy environments. 

In past studies for recognition models, dynamic time warping (DTW) (Furui, 1981), HMM 
(Poritz, 1982; Tishby, 1991), and Gaussian mixture model (GMM) (Miyajima et al., 2001; Alamo 
et al., 1996; Pellom and Hansen, 1998) were used in speaker recognition. The DTW technique is 
effective in the text-dependent speaker recognition, but it is not suitable for the text-independent 
speaker recognition. The HMM is widely used in speech recognition and it is also commonly 
used in the text-dependent speaker verification. The GMM (Reynold and Rose, 1995) provides a 
probabilistic model of the underlying sounds of a person’s voice. It is computationally more 
efficient than HMM and has been widely used in text-independent speaker recognition.  

In this study, the MBLPCC features proposed previously are used as the front end of the 
speaker identification system. Then the cepstral mean normalization is applied to these multiband 
speech features to provide similar parameter statistics in all acoustic environments. In order to 
effectively utilize all multiband speech features, we use the features recombination and the 
likelihood recombination methods in GMM speaker models to evaluate the task of the 
text-independent speaker identification. The experimental results show that the proposed methods 
outperform the GMM using full-band LPCC and MFCC features.  

This paper is organized as follows. The proposed extraction algorithm of speech features is 
described in Section 2. Section 3 gives the proposed speaker recognition models. Experimental 
results and comparisons with conventional full-band GMM are presented in Section 4. 
Concluding remarks are given in Section 5. 

2 Multiresolution Features Based on Wavelet Transform 

On the basis of the time-frequency multiresolution analysis, the effective and robust MBLPCC is 
used as the front end of the speaker identification system. First, the LPCC is extracted from the 
full-band input signal. Then the wavelet transform is applied to decompose the input signal into 
two frequency subbands: a lower frequency approximated subband and a higher frequency 
detailed subband. For capturing the characteristics of an individual speaker, the LPCC of the 
lower frequency subband is calculated. The main reason for using the LPCC parameters is their 
good representation on the envelope of speech spectrum of vowels and their simplicity. Based on 
this mechanism, one can easily extract the multiresolution features from all lower frequency 
subband signals simply iteratively applying the wavelet transform to decompose the lower 
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frequency subband signals, as depicted in Figure 1. In Figure 1, the wavelet transform can be 
realized by using a pair of the finite impulse response (FIR) filters H and G, which are low-pass 
and high-pass filters, respectively, and the down-sampling operation (↓2). The down-sampling 
operation is used to discard the odd-numbered samples in a sample sequence after filtering. 
 

 g 2↓

h 2↓ g 2↓

h 2↓ g 2↓

h 2↓

0V

dj,k 

dj+1,k 

dj-N,k 

cj-N,k  

Figure 1. Two-band analysis tree for a discrete wavelet transform. 
 

The schematic flow of the proposed feature extraction method is shown in Figure 2. In Figure 
2, after the full-band LPCC is extracted from the input speech signal, the discrete wavelet 
transform (DWT) is applied to decompose the input signal into a lower frequency subband and 
the subband LPCC is extracted from this subband. The recursive decomposition process lets us 
easily acquire the multiband features of the speech signal. According to the concept of the 
proposed method, the number of MBLPCC coefficients depends on the level of decomposition 
process. 

Finally, the cepstral mean normalization is applied to normalize the feature vectors, so that 
their short-term means are normalized to zero as follows: 

kkk txtx µ−= )()(ˆ
 , 

(1)

where xk(t) is the kth component of feature vector at time (frame) t, and µk is the mean of the 
kth component of feature vectors of a specific speaker’s utterance.  

In this paper, the orthonormal basis of the DWT is based on the quadrature mirror filters 
(QMF) introduced by Daubechies (1988). 
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Figure 2. Features extraction algorithm of MBLPCC 

3 Multiband Speaker Recognition Models 

As described in Section 1, the GMM is widely used in the text-independent speaker recognition 
and shows good performances. Here, we use GMM as the classifier. Our initial strategy of 
multiband speaker recognition is based on straightforward recombination of the cepstral 
coefficients from each subband (including full-band) to form a single feature vector, which is 
used to train GMM. We name this identifier model as the feature combination Gaussian mixture 
models (FCGMM). The structure of the FCGMM is shown in Figure 3. The advantages of this 
approach are that: (1) it is possible to model the correlation between feature vectors of each band; 
(2) acoustic modeling becomes simpler. Other approach combines the likelihood scores of 
independent GMM for each band, as illustrated in Figure 4. We name this identifier model as the 
multi-layer Gaussian mixture models (MLGMM). 

For speaker identification, a group of S speakers is represented by MLGMM’s λ1, λ2,…, λS. A 
given speech utterance X is decomposed into L subbands. Let Xi and λki be the feature vector and 
the associated GMM for band i, respectively. After the logarithmic likelihood logP(Xi|λki) of band 
i for a specific speaker k is evaluated, the combined logarithmic likelihood logP(X|λk) for the 
MLGMM of a specific speaker k is determined as the sum of logarithmic likelihood logP(Xi|λki) 
for all bands as follows: 

∑=
=

L

i kiik XPXP
0

)|(log)|(log λλ  , 
(2)

where L is the number of subbands. When i = 0, the functions of the MLGMM and the 
conventional full-band GMM are identical. For a given speech utterance X, X is classified to the 

speaker Ŝ  who has the maximum logarithmic probability )|(log ŜXP λ : 
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 . 

(3)

 

 
         Figure 3. Structure of FCGMM 
 

            
       Figure 4. Structure of MLGMM 

4 Experimental Results 

This section presents the evaluations of the FCGMM and MLGMM for the text-independent 
speaker identification. The first experiment studies the effect of decomposition level. The next 
experiment compares the performance of the FCGMM and MLGMM with that of the 
conventional GMM model using the full-band LPCC and MFCC features. 

4.1 Database Description and Parameters Setting 

The proposed method is evaluated using the KING speech database (Godfrey et al., 1994) for the 
text-independent speaker identification. The KING database is a collection of conversational 
speech from 51 male speakers. For each speaker there are 10 sections of conversational speech 
recorded at different time. The waveform file of each section consists of about 30 seconds of 
actual speech. The speech from a section is recorded from a microphone locally and was 
transmitted over a long distance telephone link, providing a high-quality (clean) version and a 
telephone quality version of the speech. The speech signals are recorded at 8 kHz and 16 bits per 
sample. In our experiments, the noisy speech is generated by adding Gaussian noise to the clean 
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version speech at the desired SNR. In order to eliminate the silence segments from an utterance, a 
simple segmentation based on signal energy of each speech frame is used. The experiments are 
evaluated using five sections of 20 speakers. For each speaker, 90 seconds of speech cut from 
three clean version sections are used as the training utterances. The other two sections are divided 
into nonoverlapping segments of 2 seconds and are used as the test utterances. 

For all experiments in this paper, each frame of the analyzed utterance has 256 samples with 
128 samples overlapping. Furthermore, 20 orders of LPCC for each frequency band are 
calculated and the first order coefficient is discarded. For our multiband approach, we use 2, 3 
and 4 bands as follows: 

 2 bands: (0-4000), (0-2000) Hz. 
 3 bands: (0-4000), (0-2000), (0-1000) Hz. 

 4 bands: (0-4000), (0-2000), (0-1000), (0-500) Hz. 

4.2 Effects of Decomposition Levels 

As described in Section 2, the number of subbands depends on the decomposition levels of 
wavelet transform. This experiment is to evaluate the effect of number of bands used for the 
FCGMM and MLGMM models with 50 mixtures in both clean and noisy environments. The 
experimental results are shown in Table 1. 

We can see that 3-band FCGMM model has better performance in low SNR conditions (for 
example, 15 dB, 10 dB or 5 dB), but has poorer performance in clean and 20 dB SNR conditions 
in comparing with 2-band FCGMM model. The best identification rate of the MLGMM model 
can be achieved in both clean and noisy environments when the number of bands is set to be three. 
It is shown that when the number of bands greater than three for both models, it not only 
increases the computation time but also decreases the identification rate. In this case, the highest 
layer signals locate at very low frequency subband and the number of samples within highest 
layer subband is so small that it cannot accurately estimate the spectral characteristics of speech. 
Consequently, the poor result in highest layer subband will downgrade the system performance. 

 
Table 1. Effects of number of bands on the identification rate (%) for FCGMM and MLGMM 
models in both clean and noisy environments. 
             SNR 

Model 
clean 20 dB 15 dB 10 dB 5 dB 

2 bands 93.45% 85.55% 72.10% 50.25% 30.76%
3 bands 91.09% 83.87% 76.64% 60.50% 46.22%FCGMM 
4 bands 88.07% 81.18% 74.29% 63.03% 43.36%
2 bands 93.28% 86.39% 76.47% 53.78% 28.24%
3 bands 94.96% 92.10% 86.89% 68.07% 43.53%LCGMM 
4 bands 94.12% 89.41% 84.87% 71.76% 43.19%
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4.3 Comparison with Conventional GMM Models 

In this experiment, the performance of the FCGMM and MLGMM models are compared with 
that of the conventional GMM model using full-band 20 orders LPCC and MFCC features under 
Gaussian noise corruption. For all models, the number of mixtures is set to be 50. 

Here, the parameters of the FCGMM and MLGMM are the same as for Section 4.2 except that 
the number of bands is set to be three. Experimental results in Table 2 show that the performance 
of both GMM models using full-band LPCC and MFCC features is seriously degraded by 
Gaussian noise corruption. However, the MLGMM model gives the best performance among all 
models in both clean and noisy environments, and maintains its robustness in low SNR 
conditions. The GMM model using full-band MFCC features has better performance in clean and 
20 dB SNR conditions, but has poorer performance in lower SNR conditions in comparing with 
3-band FCGMM. The GMM using full-band LPCC features has poorest performance among all 
models. Finally, it can be concluded that the MLGMM model is effective to represent the 
characteristics of individual speaker and is robust to the additive Gaussian noise conditions. 

 
Table 2. Identification rates (%) for GMM using full-band LPCC and MFCC features, FCGMM, 
and MLGMM under white noise corruption. 
              SNR 
Model 

Clean 20 dB 15 dB 10 dB 5 dB 

GMM using full-band LPCC 88.40% 77.65% 61.68% 35.63% 19.50% 
GMM using full-band MFCC 92.61% 85.88% 73.11% 51.60% 32.77% 

3-band FCGMM 91.09% 83.87% 76.64% 60.50% 46.22% 
3-band LCGMM 94.96% 92.10% 86.89% 68.07% 43.53% 

 

5 Conclusion 

In this study, on the basis of the time-frequency analysis of the wavelet transform, the effective 
and robust MBLPCC features proposed in the previous works are used as the front end of the 
speaker identification system. In order to effectively utilize these multiband speech features, we 
examine two different approaches. The FCGMM combines the cepstral coefficients from each 
band to form a single feature vector used to train the GMM. The MLGMM recombines the 
likelihood scores of independent GMM for each band. Finally, the proposed methods are 
evaluated using the KING speech database for the text-independent speaker identification. 
Experimental results show that both multiband schemes are more effective and robust than the 
GMM model using full-band LPCC and MFCC features. In addition, the identification rate of the 
MLGMM is more effective than that of the FCGMM. 
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