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Maximum-Likelihood Decoding for Nonorthogonal
and Orthogonal Linear Space—Time Block Codes

Hong-Yu Liu and Rainfield Y. Yen

Abstract—It is a general consensus that an orthogonal
space—time block code can achieve full diversity, and due to its
orthogonal nature, the multiple-input-multiple-output (MIMO)
maximum-likelihood (ML) decoding metrics can be decoupled
into single-input-single-output (SISO) ML metrics based on linear
processing at the receiver, thus greatly reducing the decoding
complexity. In fact, nonorthogonal codes also currently exist that
can achieve better symbol-error-rate performance without rate
reduction and complexity increase for correlated fading channels.
In this paper, we show by detailed derivations that nonorthogonal
linear space-time block codes can also be decoded by ML decou-
pling through receiver linear processing. Our derived expressions
for the decoupled ML metrics automatically contain the design
information for the receiver linear processors.

Index Terms—Antenna diversity, fading channels, linear
space-time block codes (LSTBCs), orthogonal space-time block
codes (OSTBCs).

I. INTRODUCTION

T IS a general impression that due to the orthogonal struc-

ture of the orthogonal space—time block code (OSTBC),
simple maximum-likelihood (ML) decoding based on linear
processing at the receiver can be achieved through decoupling
of transmitted signals [1]-[7]. Moreover, the OSTBC can be
designed to achieve maximum diversity order [5]. Therefore,
it has gained vast popularity. Several codes with a complex
orthogonal design (COD) [5], [8]-[13] and a generalized COD
(GCOD) [5], [14] have been unveiled.

Li et al. [15] then presented a general derivation to de-
couple ML decoding for COD multiple-input—multiple-output
(MIMO) channels into single-input—single-output (SISO) ML
decoding forms. An equivalent proof with more brief deriva-
tion is given in [16]. Later, Xu and Kwak [17] derived the
decoupling of the MIMO ML metric into SISO ML metrics for
GCOD channels.

However, a space-time block code (STBC) can also be
nonorthogonal. As defined in [16], a major category of the
space—time code is the linear STBC (LSTBC) that encompasses
both orthogonal and nonorthogonal codes. An LSTBC becomes
a COD if and only if the code matrices satisfy the amicable
orthogonal design (AOD) [16]. Then, under slightly different
conditions, an LSTBC may become a GCOD code. Recently,
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some researchers have developed a nonorthogonal LSTBC by
precoding an OSTBC [18]—[20]. It is shown in [19] that when
fading channels are correlated, nonorthogonal codes resulting
from optimum precoding of the OSTBC can achieve better
symbol-error-rate (SER) performance than the OSTBC. The
SER is the ultimate system performance measure and is more
important than diversity order. In this paper, we introduce a
more general class of LSTBC with code matrix satisfying
conditions broader than those of the AOD. Such an LSTBC
class may generally encompass orthogonal (including GCOD
and COD) and nonorthogonal codes. In fact, the nonorthogonal
codes of [18]-[20] fall into this class of LSTBC. We then
prove, in a more general way than those given in [15] and
[17], which are only for orthogonal codes, that ML decoupling
through receiver linear processing is also feasible for this class
of LSTBC, whether orthogonal or nonorthogonal. Thus, simple
ML decoupling is not a prerogative of only the orthogonal
codes. A by-product of our proof derivation is the revela-
tion of the design structures of the receiver linear processors.
Moreover, some of the codes discussed here may possess the
following properties: 1) that equivalent virtual channel gains
for the real and imaginary parts of signal symbols are unequal
and 2) that the equivalent additive complex Gaussian noise
may be noncircularly symmetric. In short, our contribution
is to introduce and formulate a general class of LSTBC that
encompasses orthogonal and nonorthogonal designs and prove
that nonorthogonal codes can also be decoded through the
decoupling of ML metrics. Furthermore, the simple derived
forms of the decoupled ML metrics automatically contain de-
sign information for the receiver linear processors.

A word is in order here. We have not made available how
to construct the said general class of LSTBC. Whether such
LSTBCs can be constructed remains an open and challenging
subject and, hence, needs to be further investigated. Fortu-
nately, as stated earlier, some LSTBCs that indeed fall into
this class have recently appeared in the literature [18]-[20],
and a nonorthogonal code constructed following the technique
given in [19] is delineated in the numerical example section for
demonstration. Although many nonorthogonal codes have yet
to be discovered (just like many orthogonal codes have yet to
be discovered), it does not mean that they do not exist. Our
theory merely opens a door for a further research challenge.

Section II presents the general class of LSTBC with code
matrix satisfying the broad conditions. Section III proves the
ML decoding capability for this class of LSTBC, whether
orthogonal or nonorthogonal. Then, Section IV explores ML
decoding for various special cases by relaxing the broad condi-
tions. Section V gives an example of the existing nonorthogonal
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LSTBC that falls into the general class. Then, the de-
tailed receiver design is presented. Finally, Section VI draws
conclusions.

II. LSTBC WITH CODE MATRIX SATISFYING
BROAD CONDITIONS

We consider a wireless communication system with P
transmit antennas and () receive antennas employing LSTBC
transmission. Let the equivalent baseband path gain from the
pth transmit antenna to the gth receive antenna be hy, 4, p =
1,2,...,P,qg=1,2,...,Q.

The LSTBC transmission can be described by a P x NN code
matrix as [16]

gi1  g12 ginN
g21  g22 92N

G=|". ) ) (D
gr1 gp2 gpPN

Here, g, is the code word transmitted from the pth transmit
antenna at the nth time slot, n = 1,2,..., N, and N time slots
constitute a block. Each code word gy, is a linear combination
of information symbols {x}} and their conjugates {z}}, k =
1,2,..., K, K < N. In other words, a set of K information
symbols over a block of N time slots are chosen for transmis-
sion through P transmit antennas. Thus, the code rate is K/N.
Different blocks may choose different sets of K symbols. The
code matrix G can also be alternatively expressed by another
two P x N code matrices A, and By, as [16]

K

G = Z(xkcAk’ + jrrsBi)
k=1

2

where 2. = Re{xy} and zs = Im{z} }, with Re{-} denoting
the real part of {-} and Im{-} denoting the imaginary part
of {-}.

The received signal vector rq = [r1,4, 72,4, 7Nl s T
denoting transposition, at the gth receive antenna over the block
of N time slots is given by

r, =y, +n,=G"h,+n, 3)

where y, = [y1,4:Y2,q,---,UN,q)" is the noise-free received
signal vector, n, = [n1 4,N2,4,...,MN 4|  is the zero-mean
additive white Gaussian noise vector with the covariance matrix
afLI ~, with Iy being the N x N identity matrix, and h, =
[h1,q:h2,4,--.,hpgT is the channel gain vector for the gth
receive antenna. In (3), we assume that h, remains constant
over one block of N time slots (quasi-static fading).

We now define three P x P Hermitian matrices Wy, 1,
Wk72, and Wk73 as

]T

“)
(&)
(6)

Wi =A A
W, =B;Bf
W5 =7 (BrAf — A,BY)

where H denotes Hermition transposition. Suppose we impose
the following conditions: Fork = 1,2,... . K,1=1,2,... | K,

3
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and i # k
ALAF = — A AT (7
BB/’ = — B,B}/ (8)
B,Af = A,BE 9)

then, we can readily show that

K K
= Z Z(xkcAk +j~risBk) (xch{{ - ]xszfI)

k=1 1i=1

GGH

K
=Y (2} ArAY + 27, BiBY)

Ed
—_

K

+zkerrs »_J (BrAL — AxBY)
k=1

M=

(27 Wi + 27, W2 + Tpetis Wi 3) . (10)

=
Il
-

When the rows of the code matrix G are orthogonal to each
other (resulting in GG being diagonal), the codes transmitted
from different antennas are orthogonal and are, hence, said to
be orthogonal codes. Note that { Ay, By} satisfying conditions
(7)—(9) do not necessarily yield orthogonal codes and form a
broader class than the AOD defined in [16]. The AOD narrows
the aforementioned conditions to allow Wy 1 = Wy, =1p
and Wy, 3 =0, where Ip is a P x P identity matrix, and
hence makes GG diagonal. Thus, (10) becomes GG =
Zszl |z |*I,,, and the AOD code is just the COD code [5]. On
the other hand, if we allow Wy 3 =0 and Wy, 1 = Wy, o =
Ay, where Aj is a diagonal matrix with positive diagonal
entries, the GCOD results [5], [14]. Note that since {Aj, By}
must be subject to the constraints of (7)—(9), this class of
LSTBC is, by no means, the utmost general.

III. ML DECODING FOR THE LSTBC WITH BROAD
CONDITIONED CODE MATRICES

We now explore the ML decoding of the LSTBC with code
matrices satisfying the broad conditions given in Section II.
The ML decision metric is given by

Q
D, = Z(rq - yq)H(rq —¥q)-

q=1

Y

The decision is reached by minimizing the metric Dy, over all
possible information sequences {z1,22,..., Tk }. Assuming
each xj, is selected from an M -ary signal constellation, we must
compute M metrics using (11). As mentioned earlier, if an
LSTBC is of COD or GCOD codes, the ML decoding can be
made separable for the K symbols of xj; so that only M - K
metrics need to be computed [15]-[17]. Here, we investigate
the possibility of this separability property for an LSTBC
class wider than the COD and GCOD, whether orthogonal or
nonorthogonal, i.e., the LSTBC with code matrices satisfying
the broad conditions given in Section II.
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Substituting (3) into (11) and using (10), we obtain

Q
D= Z[rfrq rny_(rfyq)H“‘yfyq}
q=1
Q K
= Zrquq—ZZ(rfAthxkc—i—jrqHBthxks)
q=1 q=1k=1
Q K "
3> (e AT b+l B )
q=1k=1

+ 3> bl (a2 Wi 427 Wi o+ 2o Wi 5) by
(12)

where Z g=1Tq rq is a common term for all M metrics; thus,
it can be discarded. The resulting metric can be written as

K
ML = ZDML,k (13)
k=1
where
Q
Dy = — Z (I‘nghq{Ekc —&—jrfBthmks)
g=1
Q

_ (rngth;kc —&—jrfthqus)H
1

q

D

+ Y by (28 Wiy + 23, Wi o + wreans Wi 5) By

q=1

= —2xpcRp1 — 2245 Ri0 + Ry 3 (14)
with Ry, 1, Ry 2, and Ry, 3, respectively, defined as

1 Q

Rio=5 3 [rl AT + (vl ATh,) "] (15)
q=1
j Q

HQRT HQRT
R“:iZ{th ( Bh)] (16)

a
Q
Ris = th (22 Wiy + 27 Wi o + Zretrs Wi 3) hy.

a7

Itis apparent that Ry, 1 and Ry, o are real. Also, Ry, 3 is easily
seen to be real due to the fact that z7 W; | + 23, W} 5 +
xkcxkswz’g is Hermitian (the Hermitian of a real number is
the real number itself). Thus, the metric Dy, ; of (14) is real,
as it should be. In light of (13) and (14), we see that although
the code may be nonorthogonal, the ML decoding of (11) can
still be decoupled into M - K metrics, as given by (14). Thus,
the simple ML decoupling is not the prerogative of the OSTBC.

However, the expression given by (14) is in an awkward form
and, thus, is not convenient for analysis. We thus seek further
refinement.

4

Observe that

Q Q
> hlwWi hy =Y hl'A;Alh,
g=1

(ATh,)" (Afh,)

I
Me 1

g=1
Q Q
=S JATR[" =D llangl® =ai (18
q=1 q=1
Q
> hl'Wj,h, => hl'B;B/h,
q=1 q=1
Q Q
=Y (Bh,)" (BIh,) Z B h, |

Q
=

Q |

= Ibrgl? = Z 758,417
g=1 q=1

= > [bh [ =02

q=1

D

19)

where we have defined a;, = ATh,, by, =Blh,, and
b}, , = jbk,q. Also, observe that

Q
> Wi sh,

q=1

I
o

b (BiAT - AiB])h,

=)
Il
—

=—J

M@

(B7h,)" (ATh,) - (ATh,)" (BID,)]

Il
_

q

Q
Z (JPr,q) ak,q‘*‘akH,q(jbk,q)}
g=1

Q
Z Hap g +af bl | =2 (20)

q=1

Using (18)—(20), we can rewrite Ry, 3 as

Q Q )
Ris =27 |langl® + 27, > [|bh|
q=1 q=1

Q
1H H 1/
+ TgeTks Z [bk,qak7q + ak,qbk;q]

q=1

Q
=3 [lokeanall + [sbi | + (onsb )"
=1

2

X (:rkcak,q) + (xkcak,q)H (fksb;q,q) ]

[ €kean,q + zrsbl 4 ||* > 0. 1)

Il
Me

1

<
Il
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Another way to write Ry, 3 is
2, 2 2 2
Ry 3 = apwg, + bpThs + 20k TheTis
[l‘ z ] a% Ck Tke
= kc ks 2 .
Ck bk Tks

Since Ry, 3 > 0, the 2 X 2 matrix in (22) is positive semidefinite
and will have two real nonnegative eigenvalues given by

(22)

1
)\kl,)\mzi {ai+bzi (ai—bi)2+4ci} (23)
The 2 x 2 matrix in (22) can be diagonalized by an orthogonal
matrix as
aj
Ck
where Uy, is the 2 x 2 orthogonal matrix whose columns
consist of orthonormal eigenvectors corresponding to A\i1, Ak2,

respectively. We can now use a linear transformation to obtain
the following new set of symbols:

C’“] — Uy P’“ 0 ]U,’j (24)
2

b? 0 A

[The  Thsl = [The  T1s]Up. (25)
Then, Ry, 3 takes a new form, i.e.,
)\kl 0 x’
R = / ! kc
k,3 [xkc mks] |: 0 >\k2:| |:]’Jks
= A2 + Ao, (26)

Now, the kth ML metric of (14) can be rearranged to become

Dyvig = =22k Ri — 20ksRi2 + Ri3

R
—2[Tke  Tis) {R:j + Ry 3

R
_2[37kc xks]UkUkH|: k’l]

Ry2
R/
= -2 [(E;cc x/ks} |:R5€71:| + Rk’S
k,2

o (Rko —'Ak2$25)2

(27)
where

R;c 1 i | Bra
S =U . 28
{R;@J g Ry 2 @9

In the last line of (27), the last parenthesis term contains no
symbol terms x’kc and 3325 and is, hence, a common term. Thus,
the minimization of (27) is equivalent to the minimizations of
the following two metrics:

Dyvke = (Riy — Aklx?«c)Q

Dyrgs = (Rpo — )\kﬂ,ks)z'

(29a)

(29b)
5

In light of (29a) and (29b), we can picture the system as
formed by equivalent channels having virtual channel gains
Ak1, A\k2 (functions of channel fading and code structure) and
regard x, ., )., as the virtual transmitted signals and R;CJ , ;372
(functions of actual noisy received signals, channel fading, and
code structure) as virtual noisy received signals. Then, (29a)
and (29b) are nothing more than just the minimum distance
metrics; thus, they are more informative than (14). In fact, R;C’l,

272 contain more information. Referring back to (15) and (16),
we see that Rjﬂ, R;Q are actually the respective outputs of two
receiver linear processors and, hence, provide information for
the design structures of the linear processors. Now, denoting
the quantities in the two parentheses in (29a) and (29b) as
. = R, | — A}, and nj = R}w — Mg}, they can be
regarded as the real and imaginary parts of the virtual complex
noise, respectively. Using (24), (25), and (28), we have

/ / /
|:nk:c:| _ |:Rk,1 - )\klwkc:|
/ - / /
Nks Rk,Q - )\kQIks

Riy — @i pe — Cptps

=uf | Tk : 30

k {Rm — e — 2Tk 30)

By applying (2)—(9) and (15) and (16), we can readily prove
that (30) can be rewritten as

Q H
! 3 21 [anghq + (ng' Afh,) }
kel =uUfl | 1] 31)
Mps g j & I HaT HRpTh \2
) [nq B’h, — (n’Blh,) }
=
For fixed h,, the terms (1/2) Z?Zl[nf Alh, +

(¥ ATh,)"] and (j/2) X, B h, — (n/BLh,)"]
can be shown to be, respectively, Gaussian random variables
(RVs) with zero mean and variances o7, = a?o2/2 and
o7, =0b202/2. Note that since the two variances are not
equal, these Gaussian RVs are not identical. In view of (18)
and (19), we see that a? and b} are both functions of the
fading channel gain vector h,. Thus, with h, being actually
a random vector, o7, and o}, are, in fact, correlated RVs.
From (31), when h, is fixed, we see that [n}, n 7 is
a unitary rotation of a Gaussian vector with nonidentical
RV components; thus, it remains as a Gaussian vector with
nonidentical RV components. Therefore, we have an unusual
case here. For the virtual system, the real and imaginary
components ., x) , of the kth signal symbol will experience
different channel gains Ay, Ax2. Also, the real and imaginary
noise components 7, and 7, are nonidentical Gaussian RVs
(circularly nonsymmetric Gaussian RV [16]) and are generally
correlated.

IV. ML DECODING FOR VARIOUS SPECIAL CASES

Now, suppose that we allow W, 3 = 0. Then, various special
cases can result.

Case 1: Without further condition relaxation, the condition
W, 3 =0 leads to ¢, = 0 and Uy, = I, [see (24)]. The two
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eigenvalues are simply the equivalent channel gains, which are
given as

Q

Q

M=al =Y h¥Wi h, =Y |ATh | (20
q=1 qg=1
Q Q ,

M2 =bf =Y hI'Wj h, => " ||Bih,||". (32b)
q=1 q=1

Thus, xx. and xys will experience unequal channel gains. As
remarked in Section III, these gains a; and b7 are correlated
RVs. The two metrics of (29) become

D ke = (R — adaye)’ (33a)

Dapgs = (Rio — biags) . (33b)

By applying (2)—(9) and (15), (16), and (32) along with W, 3 =
0 onto (33), we can readily show that the two noise components
Ry1 — aixye and Ry, o — bixy, can be expressed as

2
Nke = Ri1 — ATk

1
qu_l[ n”ATh, + (nAlh,) } (34a)
Nks = kaZ - bixks
. Q
%Z::[ n”Blh, — (0Bl h,) } (34b)

We have already shown that for fixed channel realizations, these
two noise components are nonidentical Gaussian RVs with
zero mean and variances o7, = a202/2 and o}, = bi02 /2,
respectively. It should be noted here that although Wk73 =0,
we still have a nonorthogonal code if Wy, ; and Wy, > are not
diagonal matrices.

Case 2: In addition to Wy 3 =0, if Wy 1 = Wy 5 (this
means a? = b2 but not Ry 1 = Ry 2), we have a circularly
symmetric situation. That is, xy. and zjs will experience equal
channel gains, and the equivalent noise is a circularly sym-
metric Gaussian RV [ng. and ny are independent identically
distributed (i.i.d.)]. Again, if W ; and W, 5 are not diagonal
matrices, the code is nonorthogonal.

Case 3: In addition to Wy, 3 = 0, we further let Wy, =
Ap1 and Wy 5 = Ay 9, where Ay ; and Ay o are diagonal
matrices of the following forms:

Ty 0 -+ 0
A= ° (359)
0
L 0 0 A p
B 0 0
Apo=| 0 (35b)
0
L 0 0 Brp

This will make GG diagonal. Thus, we have now an orthogo-
nal code. From (18) and (19), we see that both W, ; and Wy, o
are positive semidefinite, and hence, A ; and Ay 2 must now
be positive semidefinite. Thus, all o, and Sy, are nonnegative.
In addition

Q
aj =Y hl'As1h, _Zzakp\hp,qﬁ (36a)
q=1 qg=1p=1
Q
b? :Z H Ay ohy, _ZZmP\hp,qF. (36b)
q=1 q=1p=1

The ML metrics are

Q P
Dyp ke = (Rk,l — Tge Z Z gp|Pp g |

g=1p=1

2
) (37a)

Q P 2
DL ks = <Rk,z—mk522ﬁkp|hp,q2> . (37b)

g=1p=1

Therefore, for this orthogonal code, the real and imaginary
signal components will experience different channel gains. It
can also be readily shown that the equivalent virtual noise will
have the real and imaginary components given by

Q P
2
ke =Ry = The Y > iplhp g

(38a)
g=1p=1
Q P

ks = Rio — Tks D Bipllp.ql. (38b)
g=1p=1

Both n.; and ng; have zero mean and variances, respectively,
given by

2 &L
2 _ Yn 2
The = Z Z | hp,q

(39a)
g=1p=1
2 Q P
Uk:s = Z Z 5kp|hp,q (39b)
qg=1p=1

Thus, for this orthogonal code, both noise components ny. and

nis also have different variances and, hence, are not identical.
Case 4: If in Case 3, we let Ay 1 = Ay 2 = Ay, then oy, =

Brp- The metrics for the real and imaginary symbol components

become
2
2) (40a)

Q P
Dt ke = <Rk,1 — Tke Z Z ip| g
2
) . (40b)

q=1p=1
This is equivalent to an order P x () maximal ratio combining
(MRC) system with channel gains {,/@xphp q}. In addition,

Q P
Dy ks = (Rk,z — Tgs Z Z gp| i |

q=1p=1
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nke and ngs are now i.i.d. Gaussian RVs with zero mean and
the same variance (circularly symmetric Gaussian) given by

2 Q P
O—’IZ
0}, =0}, = 5 SO arplhp gl (41)
q=1p=1
Note that from (10), we have in this case
K
GG? =" |z A 42)
k=1

which is a P x P diagonal matrix with the (p, p)th diagonal
element Zszl agp|zk|?. Thus, we have here a GCOD system
[5], [14], [17]. In fact, (40a) and (40b) together are equivalent to
the result given in [17]. However, our derivation here deduced
from the broad conditions is short and concise.

Case 5: If, in Case 4, we further relax the condition to
Ay = 1p, then ayy = Brp = 1. The two metrics can then be
simplified as

Q P 2
Dir e = (Rk,1 — Tke Z Z hpq|2>
q=1p=1
o 2
= (Rm — ke Y ||hq||2> (43a)
q=1
Q P 2
Dy ks = <Rk,2 — Tgs Z Z |hp,q|2>
q=1p=1
Q 2
= (RM — Tk ||hq2> : (43b)
q=1

This is equivalent to an order P x () MRC system with channel
gains {h, ,}. In addition, ny, and ny, are i.i.d. Gaussian RVs
with zero mean and the same variance (circularly symmetric
Gaussian) given by

2 Q@ P
o
Uzc = ais = ?n Z Z |hP7Q|2' (44)
qg=1p=1
Also, we have
K
GG = Z RS (45)
k=1

Thus, we have here a COD system [5], [10]. Also, (43a) and
(43b) together are equivalent to the result given in [15]. Again,
our derivation is obviously short and concise, as compared to
that given in [15].

From the aforementioned, we see that the OSTBC (Cases 4
and 5) is a subclass of the more general class of LSTBC
discussed here. The rest of the cases (Cases 1-3) have not been
given research attention. However, it does not mean that they
do not exist or will never be developed. In fact, as mentioned

7
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earlier, some nonorthogonal codes that belong to Case 2 have
recently appeared in the literature [18]-[20]. In Section V, we
will present such a code following the technique given in [19]
as a demonstration. Without a doubt, a more systematic method
for the construction of the code class of LSTBC discussed
in this paper needs be explored. This may be a challenging
problem. Even for the much familiar OSTBC, a more thorough
code construction method is still needed. The main purpose of
this paper is to show that when codes that fall into the LSTBC
class under discussion can be made available, we show that,
whether the codes are orthogonal or nonorthogonal, they can
be decoded by ML metric decoupling through receiver linear
processing, hence pointing out that ML decoupling is not the
prerogative of only the OSTBC.

V. NUMERICAL EXAMPLE OF A NONORTHOGONAL LSTBC

In this section, we show an example of a nonorthogonal
LSTBC that falls into the class of LSTBC discussed in this
paper. We use the optimum precoding method given in [19].
We start with the following COD OSTBC given in [8]:

—x3 0 z7 z§
G= |-z 27 0 —a} (46)
r1 x5 x5 0

This code uses P = 3 transmit antennas to transmit K =3
symbols over a block of N = 4 time slots. For simplicity, we
will use a single receive antenna (@) = 1). Thus, the order of
diversity is L = P() = 3. Consider correlated Rayleigh fading
channels with the channel power ratio o} :07}, :0j =1:1:0.6,
where o7 = E[|h|*], | = 1,2,3. According to [19], a new
code can be formed by precoding G as

c=(o,uH’ e (47)
where Uy is the orthogonal matrix that diagonalizes
the channel covariance matrix Ry, = F [hhH ], with h=
[h1,ha,...,hr] being the L x 1 channel vector formed by
stacking {hp 4}, L = PQ, and Dy, which is a function of
the signal-to-noise ratio (SNR), is a diagonal matrix whose
diagonal elements are obtained by optimum power loading
[19, eq. (30)]. We assume a constant channel correlation model
[21]. Constant correlation can be obtained by a circularly sym-
metric three-element antenna array with close spacing between
elements [21]. This constant correlation case has been used in
[21] for an order-3 MRC diversity over Nakagami fading. For
the order-3 transmit diversity with constant channel correlation,
the channel covariance matrix is given by

2
T, OhyOhef  OhyOhsP
_ 2
Run = | on,0n,p Thy OhyOhs 48)
2
OhyOhsP  OhyOhsP Oh,

where p is the constant correlation coefficient between any
pair of the three channels. For the aforementioned channel
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power ratio, assuming p = 0.6, the orthogonal matrix Uy, can
be readily calculated as

—-0.6335 0.7071 —0.3141
U, = | -0.6335 —0.7071 —0.3141 (49)
—0.4442 0 0.8959

Then, assuming that the average received SNR per channel is
20 dB, D¢ can be computed as

0.6935 0 0
D;=| 0 05561 0 (50)
0 0 0.4580

while the average received SNR per channel is defined as
(1/L) S, E([li[2)E(jai|?)/02. Using (47), we find

C =|[cicaocsey]

[ —0.14392; — 0.393225 + 0.4393z3
—0.143921 + 0.3932z2 + 0.4393z3
0.4103z; + 0.3081x3

C1 =

0.39322% — 0.1439z} |
—0.39322; — 0.1439z
0.4103z}

[ —0.43932% — 0.1439x% ]
—0.4393x% — 0.1439z3
—0.308127} + 0.4103x% |

C3 =

[—0.439325 — 0.3932z3 ]
—0.4393x3 + 0.39322%
—0.3081z}

&1V

Cq =

Then, using (47), (49), and (50), we find

cc? = (p,ulY' ca! (DUl )
3
> lanPU;DIUY
k=1
5 0.3683 0.0591 0.0763

> " Jakl* [ 0.0591 0.3683 0.0763
=1 0.0763 0.0763 0.2633

(52)

Since the matrix in (52) is not diagonal, C is a nonorthogonal
LSTBC. In fact, C belongs to Case 2, as given in Section IV.
However, as analyzed in [19], this nonorthogonal C will yield
a lower SER than the orthogonal G for the same SNR. We will
not repeat here the analysis of SER performance as our main
subject is to prove the ML decoupling capability of the LSTBC.

Next, we want to design the receiver linear processors.
Similar to (2), we may have

K
C=> (wkeAf + jzisBY) . (53)

1

From (53), it is relatively easy to find

[—0.1439 0.3932 —0.4393 0]

A§ = | -0.1439 —0.3932 —0.4393 0
| 0.4103 0 —0.3081 0 |
[—0.3932 —0.1439 0 —0.4393]

AS = 03932 —0.1439 0 —0.4393
| 0 0.4103 0 —0.3081 |
[0.43903 0 —0.1439 —0.3932]

A = 104393 0 —0.1439 0.3932 (54)
103081 0 0.4103 0 |
[—0.1439 —0.3932 0.4393 O]

BY = | —0.1439 0.3932 0.4393 0
| 0.4103 0 0.3081 0 |
[—0.3932  0.1439 0 0.4393]

BY =] 03932 0.1439 0 0.4393
| 0 —0.4103 0 0.3081 |
[0.4393 0 0.1439  0.3932 ]

BY = 04393 0 0.1439 —0.3932 (55)
[0.3081 0 —0.4103 0

Now, applying (15) and (16), we obtain the linear processors as
follows:
Ri1 =Re [h11 (—0.1439r] | +0.3932r5 | — 0.4393r5 ;)
+ ha (—0.1439r7 ; — 0.3932r5 ; — 0.4393r5 ;)
+ s (0.4103r7 ; — 0.3081r5 ;)|
Ry1 =Re [h11 (—0.3932r7 | — 0.1439r5 | — 0.4393r] ;)
+ ha,1 (0.3932r7 ; — 0.1439r5 | — 0.4393r] )
+ hs,1 (0.4103r5 ; —0.308177 4)]
R31 =Re [h11(0.4393r] ; — 0.1439r5 ; — 0.3932r] )
+ a1 (0.4393r7 | — 0.1439r5 | +0.3932r] )
+ hs1 (0.308177 | +0.4103r5 ;)|
Rip = —Im [hy; (—0.1439r] ; — 0.3932r5 ; +0.4393r5 )
+ho1 (—0.1439r] 1 +0.3932r5 ; +0.4393r5 )
+ s (0.4103r7 | +0.3081r5 ;)|
Ry = —1Im[h11 (—0.3932r] ; + 0.143975 | 4 0.4393r] ;)
+ ha,1 (0.3932r7 ; +0.1439r5 | +0.4393r | )
+ hs (—0.4103r3 ; +0.30817; )]
R3 = —1Im [h1 (0.4393r] | +0.1439r5 | + 0.3932r] )
+ a1 (0.4393r7 | +0.1439r5 | —0.3932r] ;)
+ hs (0.308177 ; —0.4103r5 ;)] - (56)

To save space, we will only present the ML decoding for the
estimate 2. Using (4), (5), (54), and (55), we find

H H
Wi =AJAL =B{B =W,
0.3683 0.0591 0.0763

= 1 0.0591 0.3683 0.0763
0.0763 0.0763 0.2633

(57a)

W3 =0. (57b)
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We see that this code belongs to Case 2. Then, using (32),
we find

a% = b%
=0.3683|h1.1|* + 0.3683|ha.1|* + 0.2633|h3 1|?
+ 2Re [0.0591hF 1 ho 1 + 0.0763h5 1 hs

+0.0763R% 1 7y 1] (58)

Now, substituting R ; and R; o from (56) and a? = b? from
(58) into (33), we obtain the ML decoding for the estimate
Z1. Computing (33) using {Zme, Tms, m =0,1,..., M — 1}
and choosing the smallest metrics of (33), we obtain the ML
estimate ;. It is evident that using (33), the linear processing
receiver can be readily implemented.

VI. CONCLUSION

We have introduced and formulated a general class of
LSTBC that encompasses orthogonal and nonorthogonal codes.
Then, we derive decoupled ML metric expressions for these
codes, thus proving that the ML decoupling is not the preroga-
tive of only the orthogonal codes. A by-product of our deriva-
tions is the design information for the receiver linear processor
structure that is automatically contained in the decoupled ML
metric expressions. Although many nonorthogonal codes that
fall into our general class have yet to be discovered, there exist
some nonorthogonal codes that indeed fall into the class. We
show an example of the nonorthogonal LSTBC that appears
in the recent literature and present the receiver design. What
is encouraging is that when fading channels are correlated,
nonorthogonal codes can be generated to outperform orthog-
onal codes in terms of error rate performance. Some of the
codes presented here have the rare properties that channel gains
for the real and imaginary parts of signal symbols are unequal
and that the additive complex Gaussian noise is not circularly
symmetric. These properties should make the problems more
challenging.
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