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中文摘要 
  本論文推導M-ary PAM系統的廣義錯誤率公式，並
使用最陡坡降法最小化錯誤率於線性等化器系統，此

稱為GMSER，我們比較GMSER與平方誤差最小化準則

的優劣，以及與由Yeh&Barry提出的AMSER做比較。

為了降低計算複雜度，我们亦提出SGMSER以隨機的

方式做最陡坡降值的估計，當然亦與最小平方誤差、

AMBER做比較。最後以數學分析的方式將字符取樣速

率的等化器，推廣到過取樣速率的等化器系統。 

關鍵詞：等化器，過取樣速率等化器、最小平方誤
差，字符間干擾 

Abstract 

 A generalized formula for the decision error 
probability is derived for an M-ary PAM system. Then a 
GMSER algorithm based on the derived formula is 
proposed to minimize the symbol error rate for linear 
equalization. Comparisons made between the GMSER 
algorithm and the MMSE criterion show that the 
minimum symbol error rate criterion outperforms the 
minimum mean-squared error criterion. Comparisons 
between our GMSER and AMBER as proposed by Yeh 
and Barry is also made. Then a SGMSER algorithm is 
obtained by further simplification of GMSER to reduce the 
computational complexity in GMSER. Comparison is also 
made between the SGMSER algorithm, the MMSE criterion, 
and the AMBER algorithm as proposed by Yeh and Barry. 
Fiannlly, an extension of the GMSER algorithm 
employing fractionally-spaced equalization is presented 
with mathematical formulations. 

Keywords: Equalization, Fractionally- spaced 
Equalizer, MMSE, Intersymbol Interference 

1. Introduction 

It has been shown that an equalizer that directly 
minimizes bit error rate (BER) or symbol error rate 
(SER) may outperform the minimum mean-square error 
(MMSE) equalizer. Chen and Mulgrew have obtained a 

BER expression for a linear-combiner DFE with binary 
signaling under the assumption of linear separable 
decision regions. They then used the gradient algorithm 
to derive a minimum bit error rate (MBER) solution 
[1,2,3]. Yeh and Barry proposed a simplified stochastic  
algorithm called the approximate minimum-BER 
(AMBER) equalization for a linear equalizer with 
binary signaling as well as M-ary PAM transmission 
[4,5,6].  

In this paper, a generalized decision error probability 
is derived for a linear equalizer using M-ary PAM 
transmission. The word “generalized” is used because 
the error probability expression is valid for any 
assignment of the equalizer weight coefficients. That is, 
the equalizer weight coefficients may not be optimized. 
Then, the decision error probability is minimized using 
gradient search to obtain the optimum weight 
coefficients. We shall term the method as generalized 
minimum-SER (GMSER). The drawback of this 
method is that the computational complexity increases 
significantly for high order signaling. A simplified 
process is thus introduced to approximate the gradient 
search to considerably reduce the computations. This 
simplified method will be termed stochastic GMSER or 
SGMSER. An important merit of the GMSER or 
SGMSER algorithm is that the learning process 
converges rather fast. 

We have also added fractionally-spaced equalization 
(FSE) into consideration. It is now well known that the 
advantage of the FSE over SRE (symbol-rate equalizer) 
is its insensitivity to the receiver timing phase [7]-[9]. 
The structure of the over-sampling FSE receiver can be 
viewed as a multiple of SRE receivers connected in 
parallel [10], so the channel model is called SIMO 
(single-input multiple-output) channel.  

This paper is organized as follows. Section 2 derives 
the generalized decision error probability for linear 
equalization employing M-PAM transmissions. Section 
3 presents the GMSER and SGMSER algorithms. Then 
some numerical results are presented in Sec. 4 including 
comparisons made between MMSE and GMSER. The 
GMSER algorithm employing the fractionally-spaced 
equalizer is discussed in section 5. Finally, conclusions 



are made in Sec. 6. 

2.Generalized Probability of Decision 
Error for Linear Equalization 

We consider a bandlimited channel employing M-ary 
PAM transmission having the discrete response 

, , (non-causal filter of length 

). A linear equalizer at the receiving end has tap 
weights  ,  (non-causal filter 
of length 2 ). The entire system (cascade of 
channel and equalizer) thus has tap weight coefficients 

 (length ) given by 
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Here, kη  is a Gaussian random variable with zero 

mean and variance . The source data symbols 
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Since  is a discrete uniformly distributed random 
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Thus, the estimate error probability is the sum of shifted 
Gaussian functions. The probability of equalizer 
decision error  for M-ary PAM transmission can 
now be readily obtained as follows: 
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Equation (9) is in fact a generalized formula. It applies 
to any assignment of equalizer tap weights, whether the 
tap weights are in optimum condition or non-optimum  

condition. It is also valid for any algorithm, whether the 
algorithm is zero-forcing, MSE, or least square, or 
others. However, this formula is not quite informative, 
for the D values of ki,α  are nowhere to be 
determined. 

3.GMSER and SGMSER Algorithms for 



Linear Equalization 

The M-ary symbol error probability can be 
minimized using the gradient method as follows: 
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where µ  is the adaptive step size and the index k here 

denotes the iteration number. The initial value  can 
be chosen to be the MMSE solution. After some 
mathematical manipulation, it can be shown that the 

(n+N+1)th component of the gradient vector 

0w
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given by (11) as shown below, where 
,  is the (n+N+1)th 

component of the weight vector  at the kth 
iteration (notice that, here we have used two subscript 
indices for the components in the vector , since 
now k represents the iteration index, not the sampling 
instant), and 
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α  is an ith outcome of  at the kth 

iteration, . We shall term the above 
method as the GMSER (generalized minimum symbol 
error rate) algorithm. 
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Equation (11) would increase computational 
complexity for high order signaling. When M is large, D 
will also become large which will result in large amount 
of computations. The following method of 
simplification is found to be very efficient and will 
yield satisfactory results to great accuracy. 

Referring to (11), the term within the large bracket is 
summed over i (averaging). If instead of letting  vary 
from 1 to D, one can use much fewer terms as an 
approximation. For example, in each iteration, one 
randomly picks p terms to be summed, p could even be 
chosen to be 1. Uniform distribution is used for the 
random picking. In the end, after numerous iterations, 
an averaging effect takes place. In a sense, this is a 
stochastic gradient method similar to that employed by 
the LMS algorithm. We shall term this method of 

simplification as the stochastic GMSER or SGMSER. 

4. Numerical Examples 

We consider a noisy binary channel having the 
transfer function 

. 
Choosing a linear equalizer of length 

2923077.09105561z.02923077z.0)( zzH

31212 =+=+N 2 122 == ++ NLD
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, we have . 
Assume the SNR is 17dB. With

32
µ , Fig. 1 compares 

a learning curve using a random starting point with the 
curve using MMSE solution as the starting point. It is 
seen that a good convergence rate can be obtained. For 
purpose of comparison, Fig. 2 presents curves of 
symbol error rate vs. SNR for binary signaling (M=2) 
using two different algorithms, e.g., (1) MMSE (2) 
GMSER. It is seen that, the GMSER gives better 
performance than that of MMSE. Note that, although 
the examples presented here are for binary signaling 
only, we have also performed simulations for M-ary 
signaling cases and found similar conclusions.  

We have also compared our GMSER algorithm with 
the AMBER algorithm proposed by Yeh. We found that  
GMSER yields much faster convergence rate than 
AMBER, but both algorithms eventually converge to 
the same MSER level. This is shown in Fig. 3 with 
MMSE solution as the starting point for SNR=17dB. 
We have used a step size  for the GMSER 
algorithm. While for the AMBER, we have used a step 
size  and an update threshold 

05 [6]. 
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Next, SGMSER is considered. Using MMSE solution 
as the starting point, three learning curves are plotted in 
Fig. 4 with  respectively. Adaptation step 
size of 1=µ  has been used. It is seen that, except for 
the 32=p

1

 curve (GMSER) which is rather smooth, 
the other two curves corresponding to p=1 and 4 
(SGMSER) are less smoother. But, all three curves 
eventually converge to the same MSER level which is 
below the MMSE level. Then, with  and 

1=µ , Fig. 5 compares a learning curve using a 
random starting point with the curve using MMSE 
solution as the starting point. For purpose of 
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comparison, Fig. 6 presents curves of symbol error rate 
vs. SNR for binary signaling (M=2) using three 
different algorithms, e.g., (1) MMSE, (2) AMBER, and 
(3) SGMSER. It is seen that, the SGMSER and 
AMBER yield the same performance that is better than 
that of MMSE. It is also found that, although AMBER 
has less computational complexity than SGMSER, the 
latter has a much faster convergence rate. In Fig. 6, we 
have used a step size  for the SGMSER 
algorithm which yields a training period of 4,000 
iterations. While for the AMBER, we have used a step 
size  and an update threshold 

05 [6]. The training period for AMBER is 
1,200,000 iterations. We have also tried a smaller step 
size of 0002.0=µ  as done by Yeh and Barry [6], 
and found that an even longer training period would be 
required. With MMSE solution as the starting point, Fig. 
7 compares the SGMSER and AMBER learning curves 
for SNR=17dB. It is seen that SGMSER converges 
much faster than the AMBER, but both algorithms 
eventually converge to the same MSER level. 

2.0=µ

002.0=µ
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5.GMSER for Fractionally-spaced 
Equalizers 

  We now have the understanding that GMSER 
performs better than MMSE for linear equalization. We 
also know that FSE outperforms SRE. But the GMSER 
formula for SRE, i.e., eq. (11), is not directly applicable 
for FSE. We therefore must derive the GMSER formula 
for FSE for interested researchers. 

  Assume the sampling rate at the input of the FSE 
receiver is P times the symbol rate. Thus, 
mathematically, we can model the system as a parallel 
connection of P sub-channels each of which is followed 
by a sub-SRE as depicted in Fig. 8[10].  
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The probability of equalizer decision error  for 
M-ary PAM transmission can now be obtained as 
follows: 
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Comparing (9) and (15), we find that the key to convert 
the linear SRE to FSE is simply to replace ||  

by . 
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 where l  

The gradient factor for the GMSER can be obtained 
as in (17), where denotes the (n+N+1)th 

component of the weight vector  at the kth 
iteration. Again, comparing (11) and (17), it’s apparent 

that substituting for  in (11) 

converts the GMSER for SRE to the GMSER for FSE. 
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6. Conclusions 

Using a generalized formula for the decision error 
probability for an M-ary PAM system, a GMSER 
algorithm is developed for symbol-rate equalization as 
well as for fractionally-spaced equalization by applying 
the gradient algorithm on the generalized formula. It is 
demonstrated that the GMSER algorithm can achieve a 
minimum symbol error rate lower than that obtained by 
the MMSE criterion. Simulations also show that while 
the AMBER may offer less computational complexity, 
the GMSER offers much faster convergence rate. 

Further simplification procedure similar to the 
stochastic gradient method can be employed to reduce 
the computational complexity in GMSER. Thus we 
obtain the SGMSER algorithm. A comparison is also 
made between the SGMSER and the AMBER algorithm 
proposed by Yeh and Barry. While the AMBER may 
offer less computational complexity, the SGMSER 
offers much faster convergence rate and lower error rate 
for higher order signaling. 

This paper only presents the case of linear 
equalization. It is well known that decision feedback 

equalization (DFE) will enhance the performance 
further. We did have performed simulations for DFE 
and found improved results. 
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Fig.1 Learning Curves for GMSER Using
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Fig.3 Comparison of Convergence Rate Between 
GMSER and AMBER with MMSE Starting Point 

 Fig.2 Symbol Error Rate VS. SNR Curves Using 
Binary Signaling for 2 Different Algorithms  

 Fig.4 Learning curves for GMSER and SGMSER.

 

 

 

 



 

 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Fig.8 Equivalent Model for an FSE System.
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Fig.7 Comparison of convergence rate between 
SGMSER and AMBER with MMSE starting 

Fig.6 Symbol error rate vs. SNR curves using
binary signaling for 3 different algorithms.  
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algorithm, the MMSE criterion, and the AMBER algorithm as proposed by Yeh and Barry. 

Further, an extension of the GMSER algorithm employing fractionally-spaced 

equalization is presented with mathematical formulations. 

 

可利用之產業 

及 

可開發之產品 

通訊接收器之等化器設計 

技術特點 
錯誤率比MMSE等化器還低 

推廣及運用的價值
改進通訊品質 
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研發成果推廣單位（如技術移轉中心）。 

※ 2.本項研發成果若尚未申請專利，請勿揭露可申請專利之主要內容。 


