
行政院國家科學委員會專題研究計畫 成果報告

以資料路徑為基礎之超大型積體電路暫存器轉移層次描述

的驗證與診斷方法

計畫類別：個別型計畫

計畫編號： NSC93-2215-E-032-002-

執行期間： 93 年 08 月 01 日至 94 年 07 月 31 日

執行單位：淡江大學電機工程學系

計畫主持人：饒建奇

報告類型：精簡報告

處理方式：本計畫可公開查詢

中 華 民 國 94 年 12 月 15 日

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/62490364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Data-Path Based Diagnosis Mechanism for RTL
Description of VLSI Circuits

Jiann-Chyi Rau, Yi-Yuan Chang and Chia-Hung Lin
Department of Electrical Engineering, Tamkang University

151, Ying-Chuan Rd. Tamsui, Taipei Hsien 251, Taiwan, R.O.C
{jcrau , yychang, chlin}@ee.tku.edu.tw

Abstract

In this paper, an efficient algorithm to diagnose
design errors in RTL description is proposed. The
diagnosis algorithm exploits the hierarchy available in RTL
designs to locate design errors. Using data path to reduce
the number of error candidates and ensure that true errors
are included in. According to the estimated probability, the
most suspected error candidates would be reported first in
the display. The advantages of the proposed method are
simple and available.

Keywords: Data path, Register-Transfer Level, gate level,
Hardware Description Language.

1. Introduction

The speed and complexity of digital circuits has
increased rapidly. Designers have responded by designing
at higher levels of abstraction. The increasing complexity
of VLSI circuit designs, debugging /diagnosis represents
an important cost in design development.

Much of the previous work on error diagnosis has
primarily been targeted at the gate and lower levels of
design. Traditionally, in the problem of design error
diagnosis, the implementation is often represented as lower
level (gate level) circuits and the specification is defined as
higher level (RTL) circuits. However, most design activity
presently takes place at the RTL and it is difficult to relate
errors at the RTL to errors at a lower level. In fact, a
relatively simple error at the RTL may translate into
extremely complex errors at a lower level. Hence, it is critical
to address the diagnosis problem at the RTL.

In modern design process, most design errors occur in
the early stage of describing the functional behavior of a
design in HDLs and tracing the code manually often
performs design error diagnosis at this stage. However, for
modern designs with thousands of lines of HDL code,
debugging such circuits manually is a difficult task.
Therefore automatic design error diagnosis techniques for
HDL designs are proposed [1][2][3]. In [1], Vamsi Boppana
et al exploits hierarchy available in RTL design to locate
design errors and the information from the simulation of

Xlists to capture the effects of design errors within
components of RTL designs. Maisaa Khalil et al [2]
proposed an approach to point out the exact or likely error
location with the assumption that both the set of test cases
and the corresponding simulation results are available.
However, the number of the error candidates may still be
too large for designers to debug.

In this paper, the propose data path approach to
search for design error diagnosis for HDL coding in
compared with [3]. The proposed framework reduce the
number of error candidates while ensuring true errors are
included in. According to the estimated probability, the
most suspected error candidates will be reported first in the
display such that the efforts of debugging can be further
reduced.

The paper is organized as follows. Section 2
introduces the data path and data path digraph. Section 3
gives the work overview, describes the reduction of error
candidates and estimates the probability of correctness for
each potential error candidate. Finally, the experimental
results in section 4 and the conclusions in section 5.

2. Data Path
The architecture of data paths treated in this paper is

based on a multiplexed data path architecture [7], can
regard such a data path as a concatenation of hardware
elements and lines. A hardware element is an operational
module (OP), a primary input (PI), a primary output (PO), a
register (Reg), a multiplexor (MUX). An operation module
is a combinational circuit and includes no register. Values
enter into a hardware element through its input ports, and
exit through its output port. Each line connects between
one input port of a hard ware element and one output port
of another. Any number of lines can connect to an output
port, but only one line can connect to an input port. The
restrictions the data path as follows:
♦ For any input port, there exists a path from a primary

input.
♦ For any output port, there exists a path to a primary

output.
♦ An operation module has only one or more input

ports and only one output port.

Further, using a data path digraph to represent
structure of a data path [4]. Fig. 1 illustrates a data path and
its data path digraph. Be careful of the dotted line represent
the MUX’s decision.

OP OP

Reg
MUX

PI1 PI2 PI3 PI4

PO1 PO2

dec

PI1 PI2 PI3 PI4

PO1 PO2

dec

(a) a data path (b) a data path digraph

Figure 1 .A data path and its data path digraph

3. Work Overview
User must given something as follows:

♦ Synchronous digital HDL coding.

♦ Expected values of all POs.

♦ Can demonstrate erroneous effects of test pattern.

Give a synchronous digital HDL coding, which is
given as the expected values of all POs and registers at all
clock cycles, and test patterns that can demonstrate
erroneous effects. The approaches use data path to check
the simulation values of all POs in each clock cycle. If
mismatches between the simulation values and the
expected values, we take the faulty HDL coding as inputs
and output the set of error candidates in an order, which is
form the most suspected one to the most innocent one in
data path. If not, must continue the simulation and the error
checking until run off the test pattern. The data flow is
shown Fig. 2.

3.1 Identification Error Space

In this section, we will show find the error space in this
thesis. All statements in the error space are potential error
sources and may cause design errors. Because the error
space is used to help designers identify errors in the
design and correct them, the true error sources should be
included in the error space. Therefore, the primary concern
while finding the error space is to ensure that true error
sources are included in it. If we have tried our best but still
cannot judge whether the statement is erroneous or not, we
prefer to keep this statement in the error space to avoid

losing any possible error source. In other words, to make
sure that the true error sources are included in the error
space is much more important than the size of the error
space for an effective error diagnosis.

start

Test
parrern

any error
occurs ?

Yes

No

have Test
parrenn ?

Yes

end

digital HDL
coding

simulation values

expected
values

error space
collect

executed

debugging
prioity

No

Figure 2. A data flow

Our goal is using simple graph (data path) to minimize
the size of error space and ensuring true errors are included
in. The reduction of error space can be very helpful
because its size directly corresponds to the efforts of
debugging. Although the size is not the first concern for an
error space, we will still try to make it as small as possible.
The smaller error space means less efforts to find the
design errors and would be more helpful to designers.
There are five steps of our approach as follows:

1. Draw up a whole data path.

2. Search for mismatches PO, and back-trace form PO to
PI according to the relationship in the whole data path.

3. Executed statements of error occurring clock cycle, in
which an error appears for the first time to search for
variation, PI.

4. The correspondence values of PIs will remove in data
path.

5. Search out incomplete OP and make up it in data path.

In order to explain the above-mentioned five steps
more clearly, this paper use the Verilog code shown in Fig.
3 as an example. In Fig. 3 the code is correct design that
designers expect. But for some reasons, the statement S3 is
written incorrectly and becomes “r1 = PI1 & PI2;” in
original coding. Because the simulation values and the
expect values are not corresponding so have an error
occurs at PO1 at 30ns. The simulation values and the
expect values of POs are shown in Fig. 4.

module com (PI1,PI2,PI3,PI4,PI5,PO1,PO2,PO3);
output PO1,PO2,PO3;
input PI1,PI2,PI3,PI4,PI5;

assign se11 = PI2 ^ PI5; //S1
assign sel2 = PI1 & PI4; //S2
assign r1 = PI1 | PI2; //S3
assign r2 = PI4 & PI5; //S4
assign PO3 = r2 ^ PI5; //S5
assign PO2 = (sel2)? PO1 : r2; //even2,dec2
always @(sel1 or r1 or PI3) //even1
begin

if (sel1) //dec1
PO1 = r1; //S6

else
PO1 =PI3; //S7

end
endmodule

Figure 3. Verilog HDL coding

Figure 4. The waveform of Fig.3 coding

Step 1: Draw up whole data path shown in Fig. 5. There are
five OPs and two MUXs in the whole data path.

PI1 PI2 PI3 PI4 PI5

PO1 PO2 PO3

S1S2 S3 S4

S5

S6 S7

dec1

dec2

even1

even2

Figure 5. Whole data path

Step 2: Search
for mismatches
PO, and back-
trace form PO to
PI. In Fig.4, the
PO1 is an error
occurs. So we
can search out

mismatches
primary output
and error

candidates
shown in Fig.6.

Figure 6. Error occurring of PO1

Step 3: Executed statements of error occurring clock cycle,
in which an error appears for the first time to search for
variation PI. In Fig. 4, the simulation value and the expected
value are not corresponding, so have an error occurs at
PO1 at 30ns. At time=30ns, the value change of PI1 and
PI2.

Step 4: The
corresponding

values of PIs
will remove in
data path show
in Fig. 7. The
step keeps two
OPs and one
MUX in the
data path.

Figure 7. Remove corresponding values of PIs.

Step 5: Search
for incomplete
OPs and make
up it in data
path. In Fig. 7,
the S1 is
incomplete OP,
so make up it.
Finally, the
final data path
is show in
Fig.8.

Figure 8. Final data path at PO1.

PI1 PI2 PI3 PI4 PI5

PO1

S1 S3

S6 S7

dec1
even1

PI1 PI2 PI3 PI4 PI5

PO1

S1 S3

even1
dec1

S6

PI1 PI2 PI3 PI4 PI5

PO1

S1 S3

even1
dec1

S6

In this example, the set of statements {even1,dec1,S1,
S6,S3} is our error space at PO1 (Fig. 8.).The same as
above, the simulation values and the expect values are not
corresponding at PO2 at 35ns, so the set of statements
{even2,dec2,S2,even1,dec1,S1,S6,S3} is error space at PO2
(Fig. 9).

PI1 PI2 PI3 PI4 PI5

PO2

S1S2 S3

S6

dec1

dec2

even1

even2

Figure 9. Final data path at PO2.

3.2 Debugging Priority

In this section use a scheme to display the statements
in error space with a priority, such that the most suspected
statements are reported first. By estimating the probability
of correctness for all statements in error space, debugging
priority can be calculated for debugging purpose.

This section approach is based on the back-traced
technique. The first back-tracing origin is the erroneous
primary output. Sometimes there are more than one
erroneous primary output at the error-occurring clock
cycle. In this situation, every erroneous primary output can
be used to construct its own error space. We will discuss
some possible manners to construct the error space and
propose our strategies to this situation.

We assume that erroneous primary output one (EPO1)
and erroneous primary output two (EPO2) are two
erroneous primary outputs at the error-occurring clock
cycle. The error source of EPO1 is e1 and the error source
of EPO2 is e2. Fig.10 shows the possible relationship
between e1, e2, EPO1, and EPO2. The triangle region
extended by one erroneous primary output denotes its
error space and “•”denotes an error source.

PI1
..
..
..
..
..
..

PIn

EPO1

EPO2

e1=e2

(a)

PI1
..
..
..
..
..
..

PIn

EPO1

EPO2

e1

(b)

PI1
..
..
..
..
..
..

PIn

EPO1

EPO2

e1

(c)

e2 e2

Figure 10. The relationship between errors and EPOs

In Fig.10(a), e1 and e2 are both in the intersection of
EPO1 and EPO2. In Fig.10(b), there is no error in the
intersection of EPO1 and EPO2. In Fig.10(c), show that
both errors are in the error space of one EPO but only one
error in the error space of another EPO.

There are three manners to construct the error space
with multiple erroneous primary outputs. The first one is to
get the union of all individual error space. The error space
constructed by this manner may consist of the most errors
and the size of it may be larger. The second one is to get
the intersection of each individual error space. It is efficient
in getting smaller error space, as shown in Fig.10(a), but it
is possible to get the wrong error space without any error
source in it as shown in Fig.10(b). The third manner, our
strategy, is to select one of the erroneous primary outputs
to construct the error space. Therefore, the error space size
may be much smaller than that of the first manner, and
larger than that of the second one.

We continue the example shown in Fig. 3. We find
that error-occurring clock cycle is from time=25ns to
time=35ns, and have tow error space at PO1 and PO2. First
error space of PO1 is {even1,dec1,S1,S6,S3}. Second error
space of PO2 is {even1,dec1,S1,S6,S3,even2,dec2, S2}.
According to the above three manners, we select one of
the EPO2 to construct the final error space.

The final error space is {even1,dec1,S1,S6,S3,even2,
dec2,S2}. The approach definition the priority of
operational was larger than the priority of multiplexor. In
Fig. 9, can obtain priority by conducting a back-trace from
PO2 to the PIs according to the relationship in the final
data path. According to the above definition, the result
calculations show in Fig.11. A statement with less score is
displayed first for its high probability to be erroneous.

(1)S3 assign r1 = PI1 & PI2;
(1)S6 assign PO1 = r1;
(2)even1 always @(sel1 or r1 or PI3)
(2)dec1 if (sel1) ... else ...
(2)S1 assign sel1 = PI2 ^ PI5;
(3)even2,
 dec2 assign PO2=(sel2)?PO1:r2;
(3)S2 assign sel2=PI1&PI4;

Priority

High

Low

Figure 11. The calculation with priority

In the above example, users can see the error
statement not only in the error space but also displayed in
the priority (1) show in Fig. 11. Therefore, although the
number of statements in the error space is eight, users can
find their design error at the priority (1) in the display. This
paper’s method for quick and correct to find design error is
practicable.

4. Experimental Results

In this section, we will show the experimental result on
four designs written in Verilog coding. Table 1 shows the
characteristics of these design circuit. Columns “#Line”,
“#PI”, “#PO”, “#MUX” and “#OP” denote the numbers of
lines in the HDL, PIs, POs, MUXs and operational modules
respectively. The design CM42 is SIS standard benchmark
circuit. The design EXM1 is small combinational circuit.
The design AVG_4bit is a design for 4bit average value
production. The design PCPU is a simple 16-bit pipelined
CPU.

Table 2 show is experimental results. The column
“#total cases” is error-occurring the number of time. The
number of statements in error space is recorded in the
column “#Error space Max/Min”. In the column “#Case”,
we report the number of case that the true erroneous
appears for each period in the display list of error space.

According to this paper proposed diagnosis method.
In Table 2, our method cans estimation of the probability of
correctness for each potential error candidate is accurate.

Circuit
#PI #PO #MUX #OP#Line

AVG_4bit 91 4
2 2 465 5
1 0 11

CM42 52 4 10 0 13

Whole data path

EXM1

PCPU 159 2 1 6 18

Table 1 Circuit characteristics

Circuit #PI
Max/Min

#total
cases

AVG_4bit
10 4/4 1/1 2/1 4/3

10 4/4 1/1

4/2

11/11

CM42 10 4/3 2/1 0/0

~30
%

Final data path #Error
space

Max/Min

10/4
0/0

#PO
Max/Min

#MUX
Max/Min

#OP
Max/Min

EXM1

PCPU 10 1/12/2 5/3 6/3
11/11

#Case

30%
~

3/2 10 0

13/8

8 2

6 4

8 2

Table 2 Results of the design error diagnosis

5. Conclusions

In this paper, an effective algorithm for hierarchically
diagnosing RTL circuits is proposed. For the error
candidates use simple data path to search for some
impossible statements in HDL coding. The estimation of
the probability of correctness for each potential error
candidates in error space is conducted by data path.
Finally, our goal is to minimize the size of error space and
the true design errors are always included in. Additionally,
we plan to display the statements in error space with a
simple priority such that users can quick find their design
error in HDL coding.

6. References

[1] V. Boppana, I. Ghosh, R. Mukherjee, J. Jain and M.
Fujita, “Hierarchical error diagnosis targeting RTL
circuit”, In Intl. Conference on VLSI Design, 2000,
PP.436-411.

[2] M. Khalil, Y. Traon, and C. Robach, “Towards an
Automatic Diagnosis for High-level Validation”, In
proceeding Intl. Test Conference, 1998, pp. 1010-1018.

[3] T.Y. Jiang, C.N. Jimmy, and J.Y. Jou, “Effective Error
Diagnosis for RTL Designs in HDLs”, VLSI/CAD
Symposium, 2002, pp. 187-190.

[4] H. Wada, T. Masuzawa, K. K. Saluja, and H. Fujiwara,
“Design for strong testability of RTL data paths to
provide complete fault efficiency”, In proceeding Intl.
Conference on VLSI Design, 2000, pp 300-305.

[5] T. Masuzawa, M. Izutsu, H. wada, and H. Fujiwara,
“Single-control testability of RTL data paths for
BIST”, In proc. Ninth Asian Test Symposium, 2000,
pp.210-215.

[6] K. Yamaguchi, H. Wada, T. Masuzawa, and H. Fujiwara,
“A BIST Method Based on Concurrent Single-Control
Testability of RTL Data Paths”, In proc. Tenth Asian
Test Symposium, 2001, pp.313-318.

[7] Petra Michel, Ulrich Lauther and Peter Duzy, ”The
synthesis approach to digital system design”, Kluwer
academic publishers-group, Dordrecht, 1992.

[8] D. W. Hoffmann and T. Kropf, ”Efficient Design error
correction of digital circuits”, in Intl. Conference on
Computer Design,2000, pp.465-472.

[9] V. Boppana, R. Mukherjee, J. Jain, M. Fujita, and P.
Bollineni, “Multiple Error Diagnosis Based on Xlists”,
in Proc. Design Automation Conf., June 1999, pp.660-
665.

