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Abstract 

In this paper, an efficient algorithm to diagnose 
design errors in RTL description is proposed. The 
diagnosis algorithm exploits the hierarchy available in RTL 
designs to locate design errors. Using data path to reduce 
the number of error candidates and ensure that true errors 
are included in. According to the estimated probability, the 
most suspected error candidates would be reported first in 
the display. The advantages of the proposed method are 
simple and available. 

Keywords: Data path, Register-Transfer Level, gate level, 
Hardware Description Language. 

1. Introduction 

The speed and complexity of digital circuits has 
increased rapidly. Designers have responded by designing 
at higher levels of abstraction. The increasing complexity 
of VLSI circuit designs, debugging /diagnosis represents 
an important cost in design development. 

Much of the previous work on error diagnosis has 
primarily been targeted at the gate and lower levels of 
design. Traditionally, in the problem of design error 
diagnosis, the implementation is often represented as lower 
level (gate level) circuits and the specification is defined as 
higher level (RTL) circuits. However, most design activity 
presently takes place at the RTL and it is difficult to relate 
errors at the RTL to errors at a lower level. In fact, a 
relatively simple error at the RTL may translate into 
extremely complex errors at a lower level. Hence, it is critical 
to address the diagnosis problem at the RTL. 

In modern design process, most design errors occur in 
the early stage of describing the functional behavior of a 
design in HDLs and tracing the code manually often 
performs design error diagnosis at this stage. However, for 
modern designs with thousands of lines of HDL code, 
debugging such circuits manually is a difficult task. 
Therefore automatic design error diagnosis techniques for 
HDL designs are proposed [1][2][3]. In [1], Vamsi Boppana 
et al exploits hierarchy available in RTL design to locate 
design errors and the information from the simulation of 

Xlists to capture the effects of design errors within 
components of RTL designs. Maisaa Khalil et al [2] 
proposed an approach to point out the exact or likely error 
location with the assumption that both the set of test cases 
and the corresponding simulation results are available. 
However, the number of the error candidates may still be 
too large for designers to debug.  

In this paper, the propose data path  approach to 
search for design error diagnosis for HDL coding in 
compared with [3]. The proposed framework reduce the 
number of error candidates while ensuring true errors are 
included in. According to the estimated probability, the 
most suspected error candidates will be reported first in the 
display such that the efforts of debugging can be further 
reduced. 

The paper is organized as follows. Section 2 
introduces the data path and data path digraph. Section 3 
gives the work overview, describes the reduction of error 
candidates and estimates the probability of correctness for 
each potential error candidate. Finally, the experimental 
results in section 4 and the conclusions in section 5. 

2. Data Path 
The architecture of data paths treated in this paper is 

based on a multiplexed data path architecture [7], can 
regard such a data path as a concatenation of hardware 
elements and lines. A hardware element is an operational 
module (OP), a primary input (PI), a primary output (PO), a 
register (Reg), a multiplexor (MUX). An operation module 
is a combinational circuit and includes no register. Values 
enter into a hardware element through its input ports, and 
exit through its output port. Each line connects between 
one input port of a hard ware element and one output port 
of another. Any number of lines can connect to an output 
port, but only one line can connect to an input port. The 
restrictions the data path as follows: 
♦ For any input port, there exists a path from a primary 

input. 
♦ For any output port, there exists a path to a primary 

output. 
♦ An operation module has only one or more input 

ports and only one output port. 



Further, using a data path digraph to represent 
structure of a data path [4]. Fig. 1 illustrates a data path and 
its data path digraph. Be careful of the dotted line represent 
the MUX’s decision.  
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Figure 1 .A data path and its data path digraph  

3. Work Overview 
User must given something as follows: 

♦ Synchronous digital HDL coding. 

♦ Expected values of all POs. 

♦ Can demonstrate erroneous effects of test pattern. 

Give a synchronous digital HDL coding, which is 
given as the expected values of all POs and registers at all 
clock cycles, and test patterns that can demonstrate 
erroneous effects. The approaches use data path to check 
the simulation values of all POs in each clock cycle. If 
mismatches between the simulation values and the 
expected values, we take the faulty HDL coding as inputs 
and output the set of error candidates in an order, which is 
form the most suspected one to the most innocent one in 
data path. If not, must continue the simulation and the error 
checking until run off the test pattern. The data flow is 
shown Fig. 2. 

3.1 Identification Error Space 

In this section, we will show find the error space in this 
thesis. All statements in the error space are potential error 
sources and may cause design errors. Because the error 
space is used to help designers identify errors in the 
design and correct them, the true error sources should be 
included in the error space.  Therefore, the primary concern 
while finding the error space is to ensure that true error 
sources are included in it. If we have tried our best but still 
cannot judge whether the statement is erroneous or not, we 
prefer to keep this statement in the error space to avoid 

losing any possible error source. In other words, to make 
sure that the true error sources are included in the error 
space is much more important than the size of the error 
space for an effective error diagnosis. 
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Figure 2. A data flow 

Our goal is using simple graph (data path) to minimize 
the size of error space and ensuring true errors are included 
in. The reduction of error space can be very helpful 
because its size directly corresponds to the efforts of 
debugging. Although the size is not the first concern for an 
error space, we will still try to make it as small as possible. 
The smaller error space means less efforts to find the 
design errors and would be more helpful to designers. 
There are five steps of our approach as follows: 

1. Draw up a whole data path. 

2. Search for mismatches PO, and back-trace form PO to 
PI according to the relationship in the whole data path. 

3. Executed statements of error occurring clock cycle, in 
which an error appears for the first time to search for 
variation, PI. 

4. The correspondence values of PIs will remove in data 
path. 

5. Search out incomplete OP and make up it in data path. 

In order to explain the above-mentioned five steps 
more clearly, this paper use the Verilog code shown in Fig. 
3 as an example. In Fig. 3 the code is correct design that 
designers expect. But for some reasons, the statement S3 is  
written incorrectly and becomes “r1 = PI1 & PI2;” in 
original coding. Because the simulation values and the 
expect values are not corresponding so have an error 
occurs at PO1 at 30ns. The simulation values and the 
expect values of POs are shown in Fig. 4. 



module com (PI1,PI2,PI3,PI4,PI5,PO1,PO2,PO3);
output PO1,PO2,PO3;
input PI1,PI2,PI3,PI4,PI5;

assign se11 = PI2 ^ PI5; //S1
assign sel2 = PI1 & PI4; //S2
assign r1 = PI1 | PI2; //S3
assign r2 = PI4 & PI5; //S4
assign PO3 = r2 ^ PI5; //S5
assign PO2 = (sel2)? PO1 : r2; //even2,dec2
always @(sel1 or r1 or PI3) //even1
begin

if (sel1) //dec1
PO1 = r1; //S6

else
PO1 =PI3; //S7

end
endmodule

 

Figure 3. Verilog HDL coding 

 

 

Figure 4. The waveform of Fig.3 coding 

 

Step 1: Draw up whole data path shown in Fig. 5. There are 
five OPs and two MUXs in the whole data path. 
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Figure 5. Whole data path 

 

Step 2: Search 
for mismatches 
PO, and back-
trace form PO to 
PI. In Fig.4, the 
PO1 is an error 
occurs. So we 
can search out 

mismatches 
primary output 
and error 

candidates 
shown in Fig.6. 

 

Figure 6. Error occurring of PO1 

Step 3: Executed statements of error occurring clock cycle, 
in which an error appears for the first time to search for 
variation PI. In Fig. 4, the simulation value and the expected 
value are not corresponding, so have an error occurs at 
PO1 at 30ns. At time=30ns, the value change of PI1 and 
PI2. 

Step 4: The 
corresponding 

values of PIs 
will remove in 
data path show 
in Fig. 7. The 
step keeps two 
OPs and one 
MUX in the 
data path. 

 

 

Figure 7. Remove corresponding values of PIs. 

Step 5: Search 
for incomplete 
OPs and make 
up it in data 
path. In Fig. 7, 
the S1 is 
incomplete OP, 
so make up it. 
Finally, the 
final data path 
is show in 
Fig.8. 

 

Figure 8.  Final data path at PO1. 
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In this example, the set of statements {even1,dec1,S1, 
S6,S3} is our error space at PO1 (Fig. 8.).The same as 
above, the simulation values and the expect values are not 
corresponding at PO2 at 35ns, so the set of statements 
{even2,dec2,S2,even1,dec1,S1,S6,S3} is error space at PO2 
(Fig. 9). 
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Figure 9. Final data path at PO2. 

3.2 Debugging Priority 

In this section use a scheme to display the statements 
in error space with a priority, such that the most suspected 
statements are reported first. By estimating the probability 
of correctness for all statements in error space, debugging 
priority can be calculated for debugging purpose. 

This section approach is based on the back-traced 
technique. The first back-tracing origin is the erroneous 
primary output. Sometimes there are more than one 
erroneous primary output at the error-occurring clock 
cycle. In this situation, every erroneous primary output can 
be used to construct its own error space. We will discuss 
some possible manners to construct the error space and 
propose our strategies to this situation. 

We assume that erroneous primary output one (EPO1) 
and erroneous primary output two (EPO2) are two 
erroneous primary outputs at the error-occurring clock 
cycle. The error source of EPO1 is e1 and the error source 
of EPO2 is e2. Fig.10 shows the possible relationship 
between e1, e2, EPO1, and EPO2. The triangle region 
extended by one erroneous primary output denotes its 
error space and “•”denotes an error source. 
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Figure 10. The relationship between errors and EPOs  

In Fig.10(a), e1 and e2 are both in the intersection of 
EPO1 and EPO2. In Fig.10(b), there is no error in the 
intersection of EPO1 and EPO2. In Fig.10(c), show that 
both errors are in the error space of one EPO but only one 
error in the error space of another EPO. 

There are three manners to construct the error space 
with multiple erroneous primary outputs. The first one is to 
get the union of all individual error space. The error space 
constructed by this manner may consist of the most errors 
and the size of it may be larger. The second one is to get 
the intersection of each individual error space. It is efficient 
in getting smaller error space, as shown in Fig.10(a), but it 
is possible to get the wrong error space without any error 
source in it as shown in Fig.10(b). The third manner, our 
strategy, is to select one of the erroneous primary outputs 
to construct the error space. Therefore, the error space size 
may be much smaller than that of the first manner, and 
larger than that of the second one. 

We continue the example shown in Fig. 3. We find 
that error-occurring clock cycle is from time=25ns to 
time=35ns, and have tow error space at PO1 and PO2. First 
error space of PO1 is {even1,dec1,S1,S6,S3}. Second error 
space of PO2 is {even1,dec1,S1,S6,S3,even2,dec2, S2}. 
According to the above three manners, we select one of 
the EPO2 to construct the final error space.  

The final error space is {even1,dec1,S1,S6,S3,even2, 
dec2,S2}. The approach definition the priority of 
operational was larger than the priority of multiplexor. In 
Fig. 9, can obtain priority by conducting a back-trace from 
PO2 to the PIs according to the relationship in the final 
data path. According to the above definition, the result 
calculations show in Fig.11. A statement with less score is 
displayed first for its high probability to be erroneous. 

(1)S3     assign    r1 = PI1 & PI2;
(1)S6     assign    PO1 = r1;
(2)even1     always @(sel1 or r1 or PI3)
(2)dec1      if (sel1) ... else ...
(2)S1     assign    sel1 = PI2 ^ PI5;
(3)even2,
     dec2     assign    PO2=(sel2)?PO1:r2;
(3)S2          assign  sel2=PI1&PI4;

Priority

High

Low
 

Figure 11. The calculation with priority 



In the above example, users can see the error 
statement not only in the error space but also displayed in 
the priority (1) show in Fig. 11. Therefore, although the 
number of statements in the error space is eight, users can 
find their design error at the priority (1) in the display. This 
paper’s method for quick and correct to find design error is 
practicable. 

4. Experimental Results 

In this section, we will show the experimental result on 
four designs written in Verilog coding. Table 1 shows the 
characteristics of these design circuit. Columns “#Line”, 
“#PI”, “#PO”, “#MUX” and “#OP” denote the numbers of 
lines in the HDL, PIs, POs, MUXs and operational modules 
respectively. The design CM42 is SIS standard benchmark 
circuit. The design EXM1 is small combinational circuit. 
The design AVG_4bit is a design for 4bit average value 
production. The design PCPU is a simple 16-bit pipelined 
CPU. 

Table 2 show is experimental results. The column 
“#total cases” is error-occurring the number of time. The 
number of statements in error space is recorded in the 
column “#Error space Max/Min”. In the column “#Case”, 
we report the number of case that the true erroneous 
appears for each period in the display list of error space.  

According to this paper proposed diagnosis method. 
In Table 2, our method cans estimation of the probability of 
correctness for each potential error candidate is accurate.  

Circuit
#PI #PO #MUX #OP#Line

AVG_4bit 91 4
2 2 465 5
1 0 11

CM42 52 4 10 0 13

Whole data path

EXM1

PCPU 159 2 1 6 18
 

Table 1 Circuit characteristics 

Circuit #PI
Max/Min

#total
cases

AVG_4bit
10 4/4 1/1 2/1 4/3

10 4/4 1/1

4/2

11/11

CM42 10 4/3 2/1 0/0

~30
%

Final data path #Error
space

Max/Min

10/4
0/0

#PO
Max/Min

#MUX
Max/Min

#OP
Max/Min

EXM1

PCPU 10 1/12/2 5/3 6/3
11/11

#Case

30%
~

3/2 10 0

13/8

8 2

6 4

8 2

Table 2 Results of the design error diagnosis 

5. Conclusions 

In this paper, an effective algorithm for hierarchically 
diagnosing RTL circuits is proposed. For the error 
candidates use simple data path to search for some 
impossible statements in HDL coding. The estimation of 
the probability of correctness for each potential error 
candidates in error space is conducted by data path. 
Finally, our goal is to minimize the size of error space and 
the true design errors are always included in. Additionally, 
we plan to display the statements in error space with a 
simple priority such that users can quick find their design 
error in HDL coding.  
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