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Abstract
By using what we call the pre-averaging method, an exact closed form expression for the
symbol error probability (SEP) is derived for arbitrary rectangular M-QAM signaling in OFDM
systems over frequency-selective Rayleigh fading channels. In addition, the channel capacity for
the QAM OFDM transmission over Rayleigh fading environment is obtained.
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Symbol Error Probability for Rectangular M-QAM OFDM Transmission
over Rayleigh Fading Channels

Abstract

By using what we call the pre-averaging method, an
exact closed form expression for the symbol error
probability (SEP) is derived for arbitrary rectangular
M-QAM signaling in OFDM systems over freguency-
selective Rayleigh fading channels. In addition, the
channel capacity for the QAM OFDM transmission
over Rayleigh fading environment is obtained.

1. Introduction

A common signaling scheme used for OFDM
systems is QAM signaing [1]. There have been
numerous research studies to evaluate the error
probability performance for QAM transmission in
digital communication systems (AWGN channels,
multipath fading channels, diversity combining
systems). Most of these QAM error probability
evauations are only for sguare (not rectangular) M-
QAM cases [2-4]. By far, the mostly discussed fading
model is Rayleigh fading. The magor difficulty in
finding the SEP for QAM in fading is the evaluation of
the integral of the squared Gaussian-Q function, which
many times leads to results containing either
hypergeometric functions or unevaluated integrals [3,4]

In this work, by using a pre-averaging method, we
successfully avoid the squared Gaussian-Q function
integral to obtain exact closed-form SEP (containing
no hypergeometric functions nor unevaluated integrals)
for OFDM systems employing arbitrary rectangular M-
QAM over frequency-selective Rayleigh fading
channels. We will aso obtain the channel capacity for
the QAM OFDM system in Rayleigh fading channels.

Section 2 presents the OFDM system model. Section
3 derives the exact closed-form SEP for arbitrary
rectangular  M-QAM OFDM transmission over
frequency-selective Rayleigh fading channels. Section
4 gives ssimulation results. Then, Section 5 derives the
channel capacity for the QAM OFDM transmission
over Rayleigh fading channels. Finally, Section 6
draws the conclusion.

2. The OFDM system model

The equivalent channel frequency response at
subcarrier frequency f, =k/T for an OFDM
system in frequency-selective fading channelsis

v-1 .
H =Y he!™ "N k=012..,N-1, ()
n=0
where T is the duration of a block of N data symbols,
h, is the channel impulse response that spans v

symbols. Assuming independent Rayleigh fading
channdls, { hn} are independent complex Gaussian

RV’s with zero means and variances { Gf} in each
real dimension. It is straightforward to verify that
{H,} arei.i.d. Gaussian RV's with zero means and
v-1
variances O'c2 = Zaf in each real dimension for all
n=0
k. This simply means that OFDM converts a
frequency-selective fading channel into flat fading.
The kth subband output of the FFT at the receiver is

r.=HX, +z, 2
where { X, } are the transmitted data symbols and
{z} aei.i.d. complex white Gaussian noise RV's

with zero means and variances o*z2 in each red
dimension. By dividing (2) by H,, we have the kth
subband estimate as

r y4
X =X, +—= =X, +€. ?3)
Hy Hy
We shall assume that perfect channel state estimate is
available.
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3. SEP for arbitrary rectangular M-QAM
OFDM transmission over frequency-
selective Rayleigh fading channels



To find SEP for fading channels, the usual approach
is to first compute the SEP conditioned on a fixed

channel redlization |H, | (SEP in AWGN), then

average this conditional SEP over channd realization
(we call this the post-averaging method as in contrast
to our pre-averaging method to be described below) to
obtain the final overall SEP. As mentioned earlier, this
post-averaging approach will inevitably involve the
complicated integration of the squared Gaussian-Q
function. What we will do for QAM in OFDM system
over Rayleigh fading can avoid this integration. We

first average (pre-average) p(e,,€y ||H [), the
joint PDF of e, and €, (real and imaginary parts of
€,) conditioned on a given channel redlization | H, |

to obtain the joint PDF P (€, ,€y) . then calculate

the average SEP from this joint PDF. Straightforward
calculationslead to

(0,10.)°
l(o,]0.)" +e§ +€]?
—0<Ey,6y <. (4

pcs (eck ! esk) =

Assume rectangular M, -QAM signaling for the kth
subband with M, =2% =M _ M , where M, -
PAM and M, -PAM are employed respectively for
real and imaginary parts of X, , viz., X, and X
The symbol X, takes on values from the set
{em, -1-M_)d,m_=12,...M_}  with
equal probabilities, while X takes on values from
the set {(2my —1-M_ )d, my =12,... .M}
with equal probabilities. Since al subbands have the
same P (e, €y ), wewill smply drop the subscript
k for these error variables.

For the 4 corner symbol points of the M, -QAM

constellation, due to constellation symmetry, each
point has the identical correct probability given by

P, = Jid J:d P (€., €e,)de.de,
= l + a + a tan

4 2y1+a*> rnyl+a?
where a= (o, /o,)d.

For the 2(M, + Mg —4) border points, not
including the corner points, the correct probability is

L, a
Ji+a?

P, =] J Pe (€., €,)de,de,
2a a
2\/1+a m/1+a \/1+ a®
Then, for the M, —2(M 4 + M) +4 inner
points, the correct probability is

Pc3 J. _[ pcs( es)decdes

a
= . @

1+ a® \/1+ a’

The overall average SEP can now be obtained as

Py, = 14— P.) + 2My + My~ (1)

k

(6)

+(M,-2M —2M§(+4)(1—P3)]

1
= M, —1-—2 (M, +M, -2)—
M, ‘ N1+ a? “
@M, -M, -M, +Dtan'—2 ]

71+ a’ VJ1+a?
€S)

If square QAM isused, M, =My =M, , (8

becomes
2a(yM, -1
- M, 1) - — X~
[( ) m

4a(,/ 1) a ]
7Z'\/1+ a’ J1+ a’

Setting M, =M, =2 and M =1, (8) reduces

to the well known result for M, -PAM [5].
It can be readily shown that
o, d 37,

2
0',7 M2 «+M -2
Replacing @ by y, using (10), we can get the SEP

expressionsin terms of SNR asis usualy preferred.
The block or frame error probability is simply given

9)

(10)

by
N-1

P, :1—H(1— Pu.)- (12)
k=0

Further, if Gray coding is used for each group
(subband), we can approximate the average bit error
probability by



1N_1PM
P=—)_—*, 12
, N;nk (12)

At this point, we must note that the noise or error
teem €, =z, /H,in (3) is not Gaussian. We need to

show that the minimum distance detector used here is
optimum.

Let the complex received data symbol and noise
samples out of the correlation demodulator be

Sy =St IS . mM=12..,M | ad
e=e¢e, + jeS respectively subscript k dropped). Then
the total received datasampleis

fh=r.+ jre=(Se +€)+ j(S + ). (13
Assume a priori symbol probabilities { p,,(S,,)} are
equa for al m. Then, if the joint density function
Ps(€.,&) is monotonicaly decreasing with

lel= 1/e02 + e§ , it is readily shown that a minimum
distance detector is equivalent to the optimum

maximum a posteriori probability (MAP) detector or
the maximum-likelihood (ML) detector. Now,

applying the above fact, since P (€, ,€y) given by
(4) is monotonically decreasing with efk + ej( , we

conclude that our minimum distance detector is indeed
optimum.

4. Simulation results

Figure 1 presents the plots of PMk vs. 7, for
various combinations of M, M4 =M, =256. It

is seen that, for agiven M, , the best choice is to use
square QAM, and when rectangular QAM is used, then
as the difference between M, and M 4 gets larger,
the performance gets worse. This can aso be readily
proven anaytically by taking the derivative of P,vIk of
(8) with respect to M, and setting the result to zero,

meanwhile fixing M, and 7, . Also included in Fig.

1 is a curve obtained by Monte Carlo simulations for
the square 256-QAM case. It is seen that this curve is
in excellent agreement with the theoretical curve.

5. Channél capacity

The channel capacity for a Rayleigh fading channel
has been solved by Lee [6]. For average SNR 7 > 2,
the capacity can be expressed as

C =Blog, e-[e‘l’?(ln7+%— E)] bits/sec, (14)
v

where E =0.5772157 is Euler constant. For
OFDM systems, with a very small sub bandwidth
Af =1/T , the overal channel capacity can be
written as

N-1 N-1 B 1
C=>C =Af) log,e[e"*(Iny, +—-E)] .
k=0 k=0 k
(15)
As Af — 0, (15) can be written as

C= (I092e)J':Ve‘““”(Inf(f)+7(—1f)— E)df .
(16)

With AWGN, we want to find the optimum 7 (f) to
get maximum C subject to the power constraint that

W
jo 7(f)df =constant. an
The maximization is obtained by maximizing the

integral

W) (I (F) 4L _
[ le (In7(f)+ =55 B+ a7 ()l
(18)

where A is a Lagrange multiplier. By use of the
calculus of variations, we differentiate the integrand
with respect to 7 () and then set the result to zero.
We get
A73(£)e7 D+ 73(F)
+7(D)[In7(f)-1-E]+1=0. (19)
This transcendental equation is hard to solve.
Fortunately, we need not solve it as evidently by its
look, the solution for (), if exists, will not be a
function of f. It will be a value depending only on A
which is again dictated by the constrained power. We
thus conclude that the best choice for j, is constant

over all subbands.
Now, let the avallable average power of the

transmitter be P,,. Then, each subband has the same
average power P,, / N . Then,
; _OoPuT

= . 20
yk JﬁNZ ( )



Substituting (20) into (19), we find the average
channel capacity in terms of the transmitted signal
power as

w o2N? P, T
C=——[exp(——2 [n—2 2
In2[ 3 agPavT)( olN?
2 2
o:N
+— —F)]. 21
0P T )l (21)

It must be noted here that the received SNR J, is an

overall average vaue. For freguency-selective
channels, the received SNR during each symbol

interval denoted by y, is different for different

subbands and will vary from one symbol interval to
another. Therefore, if one wants to achieve channel
capacity by whatever coding means, one must go
through the painful process of optimizing signal power
distribution by water pouring principle during every
symbol interval.

6. Conclusion

By using what we call the pre-averaging method, we
derive an exact closed-form SEP expression for
arbitrary rectangular M-QAM OFDM transmission
over Rayleigh fading channels. Monte Carlo
simulations are performed to check with the theoretical
results. By using the pre-averaging technique, we
successfully evade the need for integrating the squared
Gaussian-Q function which is unavoidable if using
post-averaging method adopted by most researchers.
As a result, our SEP expression contains no
hypergemetric functions nor unevauated integrals,
hence can be easily computed by the computer. We
have a so obtained the channel capacity in terms of the
transmitted signal power for the QAM OFDM
transmission over Rayleigh fading channels.
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We have successfully devel oped the exact closed-form symbol
error probability for OFDM using arbitrarily rectangular QAM over
Rayleigh fading channels. In fact, we also have successfully extended
our method to the systems with maximal-ratio combining as well as
basic space-time system. The core programs for computer simulation
purpose have been finished.




