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Abstract

This paper proposes a static (LQR) plus a dynamic compensation scheme for input magnitude

and rate constrained linear system to cope with the windup phenomenon. Given a linear static

controller for such a linear system designed without considering its input constraints, an addi-

tional receding horizon type dynamic compensator based on Pontryagin’s minimum principle

is added to account for the constraints. To determine the required initial condition of the pro-

posed dynamic compensator, a simple iterative scheme is also given in the context. Then the

stability property of the resulting closed-loop system is investigated through a corresponding

Lyapunov function.
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1 Introduction

The input saturation problem is intrinsic to automatic control technology. In fact, no

technological advance can circumvent rate and magnitude constraints on electromechanical ac-

tuator. Furthermore, cost constraints often force control engineers to extract the best possible

performance from components with limited capability, thus increasing the occurrence of satu-

ration. The importance and pervasiveness of saturation is reflected by the extensive research

devoted to the problem. Among them only few researchers studied the problem of magnitude

and rate saturation, for example: [1] (based on LMI), [2] (for neutrally stable system via error

governor), [3] (QFT approach). In constructing the controller, receding horizon control (or

model predictive control) were implemented quite often when the system subjected to input

or(and) state constraints. However, most of the literatures dealt with only the discrete time

system [4–7]. Only very few discuss continuous time system directly, but no constraint is inv-

oled [8] (A unified continuous/discrete time approach), [9]. See also [10] for a historical review

and the references therein.

This paper proposes a static (LQR) plus a dynamic compensation scheme for input magni-

tude and rate constrained linear system to cope with the windup phenomenon. Given a linear

static controller for such a linear system designed without considering its input constraints, an

additional dynamic compensator based on Pontryagin’s minimum principle (with a quadratic

like cost functional) is added to account for the constraints. To determine the required initial

condition of the proposed dynamic compensator, a simple iterative scheme is also given in the

context. Then the stability property of the resulting closed-loop system is investigated through

a corresponding Layapunov function. Finally, a numerical example is given to compare the

performance of the proposed method with that of the LQR controller.
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NOTATION:

Rn set of n × 1 real vectors

Pn×n, DPn×n set of n × n positive-definite matrices, diagonal positive-definite matrices

Nn×n, DNn×n set of n × n nonnegative-definite, diagonal nonnegative-definite matrices

M ≥ 0 symmetric matrix M is positive semidefinite

M > 0,M < 0 symmetric matrix M is positive definite, negative definite, respectively

2 Controller Synthesis for Systems with Input Magni-

tude Constraint

Consider the completely controllable system shown in Figure 1.
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Figure 1: Linear System with Magnitude Saturation

The state space representation for this system can be written as

ẋ(t) = Ax(t) + Bσ(u(t)), x(t0) = x0,

y(t) = x(t),
(2.1)

and the cost functional

J =
1

2
x

T

(t0 + T )Qfx(t0 + T ) +
1

2

∫ t0+T

t0

[

x
T

Qx + u
T

R2σ(u)
]

dt, (2.2)

where x ∈ Rn, u ∈ Rm and A,B are real matrices of compatible dimension, (A,B) is con-

trollable, Qf ∈ Nn×n, Q ∈ Nn×n, R2 ∈ DPm×m, and the finite horizon T > 0 is fixed. The

function σ : Rm → Rm is an independent saturation function, that is,

σ(u)
∆
= [σ1(u1) · · · σm(um)]

T

, (2.3)

where

σi(ui)
∆
= sat(ui), i = 1, . . . ,m, (2.4)
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and

sat(ui) =



















ui, ui ≤ ui ≤ ūi,

ūi, ui > ūi,

ui, ui < ui,

(2.5)

in which ui < 0 < ūi are the lower and and upper bound of saturation function respectively.

For m ≥ 2 the saturation function σ(·) may change the direction of the control input, that is,

σ(u(t)) is not necessarily in the same direction as u(t).

For the convenience of analysis, the saturation function is written in the following form

σ(u) = (I − |S(u)|)u + |S(u)|us, (2.6)

where

|S(u)|
∆
= diag(

[

|S11(u1)| · · · |Smm(um)|
]

),

Sii(ui)
∆
= sgn(ui − σi(ui)), i = 1, · · · ,m,

sgn(ui − σi(ui))
∆
=



















1, ui > σi(ui),

0, ui = σi(ui),

−1, ui < σi(ui),

(2.7)

and

us
∆
= [us1

· · · usm
]
T

,

usi

∆
=







ūi, if Sii(ui) = 1,

ui, if Sii(ui) = −1,
i = 1, · · · ,m.

(2.8)

In addition, it is easy to see that

∂σ(u)

∂u
= I − |S(u)|, (2.9)

for all u except that when u = us. Therefore, an alternative form of the system can be

expressed as

ẋ = Ax + Bu − B|S(u)| (u − us) . (2.10)

To determine the optimal controller u, let us consider the corresponding Hamiltonian func-

tion

H(x, u, λ) =
1

2

[

x
T

Qx + u
T

R2σ(u)
]

+ λ
T

[Ax + Bσ(u)], (2.11)
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where λ is the corresponding costate. Next, let u represent the optimal controller, x and λ be

the corresponding optimal state and costate, and v be any admissible control. Then apply the

Pontryagin’s minimum principle [11], we have

H(x, u, λ) ≤ H(x, v, λ),

⇔
1

2
u

T

Rσ(u) + λ
T

Bσ(u) ≤
1

2
v

T

R2σ(v) + λ
T

Bσ(v),

⇔
1

2
[σ(u) + R−1

2 B
T

λ]
T

R2[σ(u) + R−1
2 B

T

λ] +
1

2
σ

T

(u)R2[u − σ(u)]

≤
1

2
[σ(v) + R−1

2 B
T

λ]
T

R2[σ(v) + R−1
2 B

T

λ] +
1

2
σ

T

(v)R2[v − σ(v)],

⇔
1

2
[u + R−1

2 B
T

λ]
T

R2[u + R−1
2 B

T

λ] − [u − σ(u)]
T

R2[u + R−1
2 B

T

λ]

≤
1

2
[v + R−1

2 B
T

λ]
T

R2[v + R−1
2 B

T

λ] − [v − σ(v)]
T

R2[v + R−1
2 B

T

λ],

(2.12)

which in turn shows that the optimal controller u that satisfies the magnitude constraint (2.5)

takes the same form as in the unconstrained case

u = −R−1
2 B

T

λ, (2.13)

where the costate λ satisfies the differential equation

λ̇ = −
∂H

∂x
= −Qx − A

T

λ, λ(t0 + T ) = Qfx(t0 + T ). (2.14)

In order to attempt to determine a closed-loop control, we assume

λ = Px + ξ. (2.15)

Substitute this relation into equation (2.14) and determine the requirements for a solution.

After some manipulations, we easily obtain the following requirement:

0 = (Ṗ +PA−PBR−1
2 B

T

P +A
T

P +Q)x+ ξ̇+(A−BR−1
2 B

T

P )
T

ξ−PB|S(u)| (u − us) . (2.16)

Because this must be satisfied for all x(t) and u(t), we conclude that

Ṗ = −PA − A
T

P + PBR−1
2 B

T

P − Q, P (t0 + T ) = Qf , (2.17)

ξ̇ = −(A + BKx)
T

ξ − K
T

x R2|S(u)| (u − us) , ξ(t0 + T ) = 0, (2.18)
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where

Kx
∆
= −R−1

2 B
T

P. (2.19)

For simplicity, we choose Qf = P∞, where P∞ satisfies the algebraic Riccati equation

0 = P∞A + A
T

P∞ − P∞BR−1
2 B

T

P∞ + Q. (2.20)

Apparently, in this case the solution to differential equation (2.17) is P (t) = P∞, t0 ≤ t ≤ t0+T.

The only remaining unknown is the initial condition ξ(t0). To this end, we propose the follow-

ing simple iterative scheme in each finite horizon t0 ≤ t ≤ t0 + T :

Numerical Algorithm:

Step 0 Set counter i = 0, choose initial guess ξ(t0)i = 0, select tolerance ε, finite horizon T .

Step 1 Integrate (2.1), (2.18) with controller

u = Kxx + Kξξ, (2.21)

where

Kξ
∆
= −R−1

2 B
T

. (2.22)

Step 2 Store the predicted control history u(t), σ(u(t)) for t0 ≤ t ≤ t0 + T ,

Step 3 Implement the stored control history in Step 2, integrate (2.18) backwardly to obtain

the updated ξ(t0)i+1.

Step 4 If ‖ξ(t0)i − ξ(t0)i+1‖ < ε then stop, otherwise set i = i + 1, go to Step 1.

The closed-loop system configuration is shown in Figure 2. Note that the initial condition of

ξ is updated in every predetermined time interval.

3 Controller Synthesis for Systems with Magnitude and

Rate Saturation Nonlinearities
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Figure 2: Closed System Configuration of System with Model Predictive Controller.

Consider the nth-order plant shown in Figure 3 subjected to both magnitude and rate

saturation σrs(·) given by

ẋ(t) =Ax(t) + Bσrs(u(t)),

y(t) =x(t).
(3.1)
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Figure 3: Linear System with Magnitude and Rate Saturation

The magnitude-rate saturation function σrs(·) in (3.1) is given in more detail in Figure 4 [12].
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Figure 4: Magnitude, Rate Saturation Model σrs(u)

The magnitude saturation σs shown in Figure 4 is defined as in Section 2. For convenience, we

use the shorthand notation uas(t) to denote σs(u(t)) and urs(t) to denote σrs(u(t)) respectively.

In addition, uas ∈ Rm, v ∈ Rm, urs ∈ Rm, Kr = diag(Kr1, . . . , Krm), Kri � 1, i = 1, . . . ,m,

σr(v)
∆
= [σr1(v1) · · · σrm(vm)]

T

, (3.2)
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and

σri(vi)
∆
= sat(vi), i = 1, . . . ,m, (3.3)

where vi ≤ sat(vi) ≤ v̄i, the rate saturation levels. vi < 0, 0 < v̄i, i = 1, . . . ,m, The rate satu-

ration model shown in Figure 4 is a closed-loop position-feedback-type model with dynamics

u̇rs(t) = σr(Kr[uas(t) − urs(t)]), urs(0) = urs0. (3.4)

As the gain Kr increases, the output from the rate saturation model (3.4) converges to the

output of the rate limiter model of Simulink [12].

The aim of this section is to determine an optimal controller u(t) such that the performance

index (3.5) can be minimized.

J =
1

2
x

T

(t0 + T )P∞x(t0 + T ) +
1

2

∫ t0+T

t0

[

x
T

Qx + u
T

R2σrs(u)
]

dt, (3.5)

where P∞ satisfies equation (2.20), Q ∈ Nn×n, R2 ∈ DPm×m, and the finite horizon T > 0 is

fixed. As shown in [12], the magnitude of the magnitude-rate saturation model (3.4) is also

bounded by the saturation level of σs(·). Hence, if we follow the similar procedure as given in

Section 2, the optimal controller can be obtained in the same form again

u = Kxx + Kξξ, (3.6)

where Kx and Kξ are defined by equations (2.19) and (2.22) respectively, and ξ satisfies

ξ̇ = −(A + BKx)
T

ξ − K
T

x R2 [u − σrs(u)] , ξ(t0 + T ) = 0. (3.7)

The corresponding closed-loop configuration is shown in Figure 5

4 Stability Analysis of the Receding Horizon Control

To save space, we consider the stability analysis of linear system subjected to only input

magnitude constraint. For the case of both input magnitude and rate constraint follows a

similar argument shown in this section. Let the optimal cost functional at x(t) be

V (x(t))
∆
=

1

2
x

T

(t0 + T )Qfx(t0 + T ) +
1

2

∫ t0+T

t

[

x
T

Qx + u
T

R2σ(u)
]

dt. (4.1)
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Figure 5: Closed System Configuration of Linear System with Magnitude and Rate Saturation.

For the state initial condition x(t), if there exists the initial condition ξ(t) such that ξ(t+T ) = 0,

we claim that the optimal cost functional at x(t) is indeed a Lyapunov function and can be

expressed as the product of state x and costate λ

V (x) =
1

2
x

T

λ =
1

2
x

T

(P∞x + ξ). (4.2)

This can easily be verified by using the fact that both equations (4.1) and (4.2) render the

same differential equation

V̇ (x) = −
1

2

[

x
T

Qx + u
T

R2σ(u)
]

≤ 0, (4.3)

with the same terminal condition

V (x(t0 + T )) =
1

2
x

T

(t0 + T )Qfx(t0 + T ). (4.4)

In addition, it is can be shown that

• V (x) is positive definite, that is V (x) > 0,∀x 6= 0, and V (x) = 0 only for x = 0.

• The set {x : V̇ (x) = 0} contains only x = 0.

This shows that the proposed optimal controller stabilize the system (2.1) asymptotically.
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5 Numerical Example

Example 5.1. Consider an unstable system containing double poles at ω axis,

ẋ(t) =

















0 1 0 0

0 0 1 0

0 0 0 1

−1 0 −2 0

















x(t) +

















0

0

0

1

















σ(u(t)), x(0) =

















−2

−20

−4

1

















.

The control action is bounded as follows: ū = −u = 5, v̄ = −v = 20, respectively. The

controller is required to drive the system state to the origin from the initial state x(0). Tuning

parameters for the controller are the state weighting Q =

















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

















, and controller

weighting R2 = 1, receding horizon T = 5. For every 0.01 second, the receding horizon controller

is implemented. Figures 6,7 show the system response of the closed system using LQR and

RHC respectively. In both of thses two figures only the magnitude constraints are considered

(the saturation levels are ū = −u = 5). Then we add rate saturation in both of the systems

shown in Figures 8 and 9 (the rate saturation levels are v̄ = −v = 20). From the above

comparison, it is easy to see the superioty of the proposed controller (at the cost of some CPU

time).

6 Conclusion

In this paper, for a static (LQR) type controller designed for unconstrained linear system, we

presented a receding horizon type dynamic compensator based on Pontryagin’s minimum prin-

ciple to cope with the windup phenomenon. To determine the optimal controller, a quadratic

type performance index is used. As in most optimal control problem, the initial condition of

the costate is a key issue. To determine the required initial condition of the proposed dy-

namic compensator, a simple iterative scheme is also given in the context. Then the stability
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property of the resulting closed-loop system is investigated through a corresponding Lyapunov

function. Finally, in the numerical example, we see that the added dynamic controller provides

the information to account for the windup phenomenon.
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Figure 6: Response of the system given in Example 5.1 with LRQ Controller, ū = −u = 5.
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Figure 7: Response of the system given in Example 5.1 with RH Controller, T = 5, ū = −u = 5.
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7 Appendix: MATLAB Codes

%

% system_data file for Receding Horizon Control

%

clear all;

% plant parameters

Ap=[0 1 0 0;

0 0 1 0;

0 0 0 1;

-1 0 -2 0];

Bp=[0 0 0 1]’;

%Bp=[0 0 0 1]’;

[xdim,mAp]=size(Ap);

[nBp,udim]=size(Bp);

Cp=eye(xdim,xdim);

Dp=zeros(xdim,udim);

xp0=[-2 -20 -4 1]’;

xp=xp0;

yp(:,1)=Cp*xp;

Q=eye(xdim,xdim);

R=eye(udim,udim);

S=zeros(xdim,udim);

[K,P]=lqr(Ap,Bp,Q,R,S);

K=-K;

% K=[-1 -1 -2 -1];
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% x1(0)=-2,x2(0)=-1,x3(0)=-4,x4(0)=1;

% x1(0)=-2,x2(0)=-20,x3(0)=-4,x4(0)=1;

N=R;

Axi=-(Ap+Bp*K)’;

Bxi=P*Bp;

Cxi=eye(xdim,xdim);

Dxi=zeros(xdim,udim);

xif=zeros(xdim,1); % final value of xi

xi0=xif; % initial guess of xi

xi=xi0; % innitial guess of xi

Kxi=-inv(R)*Bp’;

%

% magnitude saturation level

%

umax=5*ones(udim,1);

umin=-umax;

%

% rate saturation level

%

vmax=20*ones(udim,1);

vmin=-vmax;

input2xp(:,1)=sat(K*xp,umin,umax);

ypnorm(1)=norm(yp(:,1));

%

% auxiliary system parameters

%

17



t0=0; i=1; % initial time

tf=30; % final time

trecede=5; % recede horizon time span

h=1e-2; % max. time step

hmin=h/10; % min. time step

tol=1e-7; % tolerance in numerical integrator

options = odeset(’RelTol’,1e-4,’AbsTol’,tol,’MaxStep’,h);

rtime=linspace(t0,tf,round((tf-t0)/trecede)+1); % total time span for RH

time=linspace(t0,tf,round((tf-t0)/h)+1); % total time span

itime=length(time);

%

% construct state space model

sysxp=ss(Ap,Bp,Cp,Dp);

sysxi=ss(Axi,Bxi,Cxi,Dxi);

sysxib=ss(-Axi,-Bxi,Cxi,Dxi);

% convert to discrete sytem

[sysxpd,Gp]=c2d(sysxp,h,’zoh’);

[sysxid,Gxi]=c2d(sysxi,trecede/20,’zoh’);

[Apd, Bpd] = ssdata(sysxpd); % discrete system

[Axid, Bxid] = ssdata(sysxid); % discrete system
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%

% MAIN PROGRAM

%

clear all;

%

% load system data

%

system_data_5;

trecede=2;

simopt5ps=simset(’Solver’,’ode5’,’FixedStep’,hmin);

simopt5rs=simset(’Solver’,’ode45’,’MaxStep’,hmin);

for it=1:itime-1

tspan=[time(it) time(it+1)];

%

% receding horizon

%

for ihiter=1:20

xiold=xi;

% predict u and sat(u)

[recedespan,dummy,u,satu]=sim(’forward_5ps’,[0 trecede],simopt5ps);

revinput=[reverse(trecede-recedespan,’r’) reverse((u-satu),’r’)];

%

% estimated I.C. of xi

xiout=lsim(sysxib,reverse((u-satu)’,’c’),recedespan,xif); xiout=xiout’;

% [dummy,dummy,xiout]=sim(’backward_5s’,[0 trecede],simopt5rs,revinput); xiout=xiout’;
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xi=xiout(:,end);

xierror=norm(xi-xiold);

xiff=lsim(sysxi,(u-satu),recedespan,xi); xiff=xiff’; xif0=xiff(:,end);

if (xierror < 1e-7);

% if (norm(xif0) < 1e-9);

break;

end;

end;

[tdummy,dummy,y1,y2,y3,y4]=sim(’forward_5rs’,tspan,simopt5rs);

y1=y1’; y2=y2’; y3=y3’; y4=y4’;

input2xp(:,it+1)=y1(:,end); % input history

dt=time(it+1)-time(it); previousinput=input2xp(:,it);

yp(:,it+1)=y2(:,end);

ypnorm(it+1)=y3(end);

xp=yp(:,it+1); xi=y4(:,end);

[time(it+1) norm(xif0) ypnorm(it+1) (input2xp(:,it+1)-previousinput)/dt]

end;

figure(1);

subplot(311); plot(time,yp’); ylabel(’x’)

subplot(312); plot(time,input2xp’);

subplot(313); plot(time,ypnorm); ylabel(’sqrt(x^T x)’)

xlabel(’time (sec)’)

shg;
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