小(微)衛星總體設計與系統工程分析研究(Ⅲ)-子計畫二:小(微)衛星之任務分析與衛星模擬器之設計

低地太陽同步衛星軌道之模擬計算 Orbit Simulation of Low Altitude Sun-Synchronous Satellite

計劃編號:NSC87-2612-E-032-001 執行期限:86 年 8 月 1 日至 87 年 7 月 31 日 主持人:馬德明 副教授 淡江大學航空太空工程學系

一、摘要

1. 中文摘要(關鍵詞:軌道模擬、低地軌道衛星、太陽 同步衛星)

本研究主要的目的在探討重力場之 $J_2 \cdot J_3 \cdot J_4$ 對太陽同步 衛星軌道的影響並推導其擾動線性方程式以作為星載軌 道定位使用之方程式。由模擬計算可以知道 $J_2 \cdot J_3 \cdot J_4$ 的影響對瞬時的運動而言是很小的,最大的是 J_2 對 Ω 的 影響約在 10^{-7} 左右,其它的都在 10^{-10} 以下,甚至更小, 所以在太陽同步衛星軌道的動力模型上我們只考慮 J_2 對 Ω 的影響。

2. 英文摘要(Keyword:Orbit Simulation, Low Altitude satellite, Sun-Synchronous Satellite)

In the study the effects of gravity harmonic term $J_2 \, \cdot \, J_3 \, \cdot \, J_4$ on the sun-synchronous orbit are investigated. From the simulation results the effect of J_2 is in the order of 10^{-7} and those of J_3 and J_4 are in the order of 10^{-10} . Therefore only the effect of is considered during the derivation of the linearized equation which will be used on the onboard orbit determination.

二、前言 he

衛星在地球外圍運行著,會有其他的作用使得衛星 的軌道產生偏差,當然在設計軌道之初可以將這些擾動 因子考慮,但由於軌道及衛星本身的任務考量,必定會 有部分的援動不會在設計時採用,因此如果需要維持衛 星的使用,衛星本身就必須自行攜帶燃料加以作用力以 修正軌道的運行,一般我們都稱這些作用力爲援動,當 然援動對衛星是不好的,可是太陽同步衛星軌道卻正好 相反,它即利用其中一項援動使得軌道軌跡能夠如預期 的要求進行變化,此項援動即是地球重力場分佈不均所 造成的。下面我們將對重力場之援動及太陽同步軌道作 一模擬。

三、衛星所受的擾動

對於天空運行的衛星主要會受到地球重力場及大 氣阻力所影響;地球的重力場造成了人造衛星的運行, 但也由於地球橢圓的特性,導致重力場分佈不均,使得 人造衛星的軌道運行會有偏差,從參考資料[1]我們可以 了解,一般的重力場位能方程式可以表示為

$$\Phi = \frac{\mu}{r} \tag{1}$$

上面的方程式即表示了在空間某點的重力場強度 和物體的質量成比例,但是實際上,這種點質量的位能 表示方法並不能正確的表示地球或其他不是正團星體的 重力場。取而代之的,重力場應由最接近的橢圓的形狀 及質量分佈來加以推導,而對於橢圓基本的位能推導即 可由此積分開始:

$$\Phi = k^2 \int \frac{dm}{s}$$
 (2)

其中 dm 為星體的每小塊質點, 而 s 則為星體所吸引之質 點(即衛星)到星體每小塊質點的距離, 經由一連串在 對整個星體質量的數學積分, 我們則可得到

$$\Phi = \frac{\mu}{r} \sum_{n=0}^{\infty} \sum_{q=0}^{n} \left(\frac{a_{e}}{r}\right)^{n} P_{n}^{q}(w) (C_{n,q} \cos q\lambda + S_{n,q} \sin q\lambda)$$
(3)

此有限數列的橢團位能方程式以 c_{na} 及 S_{ng} 系數

成**調**合函數構成,其中

a_e = 星體的赤道半徑

$$P_n^q(w)$$
 = Legendre 多項式

 $w = \sin \delta$, $\delta = 衛星傾角(即從地心到衛星位置) 向量與赤道面的灰角)$

λ= 衛星在星體固定座標系上的經度

將上面的公式和以在團座星體的質量質量比較則可以表示爲

$$\Phi = \frac{\mu}{r} \left[1 - \sum_{n=2}^{\infty} \left(\frac{a_e}{r} \right)^n J_n P_n(w) \right]$$
(4)

其中

$$\boldsymbol{J}_n = -\boldsymbol{C}_{n,0} = -\boldsymbol{C}_n$$

因此我們可以得知,除了些位能產生的重力場讓衛星運 r

行外,對於地球這樣的橢圓星體還有以*J*_n 為系數的擾動 項。以WGS-84 的資料中(如表 3-1,參考資料[1])我們 可以知道,對於地球重力場擾動最大的就是約大於下一 項*J*₃ 值 400 倍的 *J*₂ 這一項了,也因此對於大部分的軌道 計算上,僅考慮 *J*₂的影響,而太陽同步軌道即利用 *J*₂的 這項擾動,來使得衛星軌道產生預期的軌道變化。

另外空氣阻力方面,當軌道高度小於1000 公里後, 太氣阻力的效應就會明顯增加。大氣阻力,不像其他的 援動力,為一非保守力會連續讓軌道能量損失,因此對 低軌道而言在衛星的活動壽命上有非常大的影響,因為 阻力會使得人造衛星的軌道半徑變小。一般而言,對近 似團的衛星軌道,其大氣阻力可以根據下面的簡單公式 來計算

$$\frac{da}{dt} = -na^2 \left(\frac{\rho g_0}{B}\right) \tag{5}$$

其中

n= 軌道平均運動 (mean motin)

ρ= 在此高度的大氣密度

80 = 海平面的重力加速度

B = 彈道系數 = _{W/D_dA}

而 W 為衛星的總重, A 為有效截面積, C_d 為阻力系數。 但根據參考資料[2]中的研究顯示, 如表 3-2, 地球大氣的 阻力會隨著時間改變, 大氣的密度也會隨著時間的變化

小(微)衛星總體設計與系統工程分析研究(Ⅲ)-子計畫二:小(微)衛星之任務分析與衛星模擬器之設計

而有所不同,因此對阻力所產生的誤差仍為一未能控制的變化,雖然如此,在軌道的計算我們仍以上面的公式為主,考慮阻力為一定値加以計算。四、*J₂、J₃與 J₄*的效應

根據參考資料的討論, $J_2 \times J_3 與 J_4$ 對於軌道參數的影響, 我們可以表示為[3]:

à=0

$$\dot{e} = -\frac{3}{32}nJ_2^2 \left(\frac{R}{p}\right)^4 \sin^2 i(14 - 15\sin^2 i)e(1 - e^2)\sin 2\omega$$

$$-\frac{3}{8}nJ_3 \left(\frac{R}{p}\right)^3 \sin i(4 - 5\sin^2 i)(1 - e^2)\cos \omega$$

$$-\frac{15}{32}nJ_4 \left(\frac{R}{p}\right)^4 \sin^2 i(6 - 7\sin^2 i)e(1 - e^2)\sin 2\omega$$

(7)

$$\dot{i} = +\frac{3}{64} n J_2^2 \left(\frac{R}{p}\right)^4 \sin 2i (14 - 15 \sin^2 i) e^2 \sin 2\omega$$
$$+\frac{3}{8} n J_3 \left(\frac{R}{p}\right)^3 \cos i (4 - 5 \sin^2 i) e \cos \omega$$
$$+\frac{15}{64} n J_4 \left(\frac{R}{p}\right)^4 \sin 2i (6 - 7 \sin^2 i) e^2 \sin 2\omega$$

$$\dot{\omega} = +\frac{3}{4}nJ_2\left(\frac{R}{p}\right)^2 (4-5\sin^2 i) + \frac{3}{16}nJ_2^2\left(\frac{R}{p}\right)^4
\left\{ 48-103\sin^2 i
+\frac{215}{4}\sin^4 i + \left(7-\frac{9}{2}\sin^2 i - \frac{45}{8}\sin^4 i\right)e^2
+6\left(1-\frac{3}{2}\sin^2 i\right) \times (4-5\sin^2 i)\sqrt{1-e^2}
-\frac{1}{4}\left[2(14-15\sin^2 i)\sin^2 i - (28-158\sin^2 i)
+135\sin^4 i)e^2\right]\cos 2\omega \right\}
+\frac{3}{8}nJ_3\left(\frac{R}{p}\right)^3\left[\left(4-5\sin^2 i\right)\frac{\sin^2 i - e^2\cos^2 i}{e\sin i}
+2\sin i(13-15\sin^2 i)e\right]\sin\omega - \frac{15}{32}nJ_4\left(\frac{R}{p}\right)^4
\left\{16-62\sin^2 i + 49\sin^4 i
+\frac{3}{4}\left(24-84\sin^2 i + 63\sin^4 i\right)e^2
+\left[\frac{\sin^2 i(6-7\sin^2 i)}{-\frac{1}{2}(12-70\sin^2 i + 63\sin^4 i)e^4}\right]\cos 2\omega \right\}$$

$$\dot{\Omega} = -\frac{3}{2}nJ_{2}\left(\frac{R}{p}\right)^{2}\cos i - \frac{3}{2}nJ_{2}^{2}\left(\frac{R}{p}\right)^{4}$$

$$\times \cos i \left[\frac{9}{4} + \frac{3}{2}\sqrt{1 - e^{2}} - \sin^{2}i\left(\frac{5}{2} + \frac{9}{4}\sqrt{1 - e^{2}}\right) + \frac{e^{2}}{4}\left(1 + \frac{5}{4}\sin^{2}i\right) + \frac{e^{2}}{8}(7 - 15\sin^{2}i)\cos 2\omega\right]$$

$$-\frac{3}{8}nJ_{3}\left(\frac{R}{p}\right)^{3}(15\sin^{2}i - 4)e\cot i\sin\omega$$

$$+\frac{15}{16}nJ_{4}\left(\frac{R}{p}\right)^{4}\cos i\left[\frac{(4 - 7\sin^{2}i)\left(1 + \frac{3}{2}e^{2}\right)}{-(3 - 7\sin^{2}i)e^{2}\cos 2\omega}\right]$$
(10)

$$\dot{M} = n \left[1 + \frac{3}{2} n J_2 \left(\frac{R}{p} \right)^2 \left(1 - \frac{3}{2} \sin^2 i \right) \sqrt{1 - e^2} \right] \\ + \frac{3}{2} n J_2^2 \left(\frac{R}{p} \right)^4 \left\{ \left(1 - \frac{3}{2} \sin^2 i \right)^2 \left(1 - e^2 \right) \right. \\ + \left[\frac{5}{4} \left(1 - \frac{5}{2} \sin^2 i + \frac{13}{8} \sin^4 i \right) + \frac{5}{8} \left(1 - \sin^2 i - \frac{5}{8} \sin^4 i \right) e^2 \right. \\ + \frac{1}{16} \sin^2 i \left(14 - 15 \sin^2 i \left(1 - \frac{5}{2} e^2 \right) \cos 2\omega \right) \sqrt{1 - e^2} \right\} \\ + \frac{3}{8} n J_2^2 \left(\frac{R}{p} \right)^4 \frac{1}{\sqrt{1 - e^2}} \\ \times \left\{ 3 \left[3 - \frac{15}{2} \sin^2 i + \frac{47}{8} \sin^4 i + \left(\frac{3}{2} - 5 \sin^2 i + \frac{117}{16} \sin^4 i \right) e^2 \right. \\ - \frac{1}{8} \left(1 + 5 \sin^2 i - \frac{101}{8} \sin^4 i \right) e^4 \right] \\ + \frac{e^2}{8} \sin^2 i \left[70 - 123 \sin^2 i + \left(56 - 66 \sin^2 i \right) e^2 \right] \cos 2\omega \right] \\ \left. + \frac{27}{128} e^4 \sin^4 i \cos 4\omega \right\} \\ - \frac{3}{8} n J_3 \left(\frac{R}{p} \right)^3 \sin i \left(4 - 5 \sin^2 i \right) \frac{1 - 4e^2}{e} \sqrt{1 - e^2} \sin \omega \right] \\ \left. - \frac{45}{128} n J_4 \left(\frac{R}{p} \right)^4 \left(8 - 40 \sin^2 i + 35 \sin^4 i \right) e^2 \sqrt{1 - e^2} \cos 2\omega \right]$$

(11)

根據(6)~(11)公式,我們可以對軌道參數 $e \cdot i \cdot 及\Omega$ 分別計算由 $J_2 \cdot J_3 \subset J_4$ 項所產生的誤差。在圖 4-1~圖 4-3 中,則繪出誤差的變化情形;而公式中使用的符號定義, 則可參閱圖 3-1的說明。圖 4-1~圖 4-3 分別爲公式(6)~(11) 所計算得出,分別獨立出 $J_2 \cdot J_3 \cdot J_4$ 的援動項目來計算, 圖 4-1(a)、(b)、(c)爲此三項分別對偏心率 e的影響,圖 4-2(a)、(b)、(c)爲對傾角 i的影響,圖 4-3(a)、(b)、(c)爲

(9)

行政院國家科學委員會專題研究計畫成果報告 小(微)衛星總體設計與系統工程分析研究(Ⅲ)-子計畫二:小(微)衛星之任務分析與衛星模擬器之設計

對退行點 Ω 的影響,由上面的計算可以知道 J_{3} 、 J_{4} 的 影響對瞬時的運動而言是很小的,最大的是 J_{2} 對 Ω 的影響約在 10^{-7} 左右,其它的都在 10^{-10} 以下,甚至更小,所 以在太陽同步衛星軌道的動力模型上我們只考慮 J_{2} 對 Ω 的影響,而其他的影響參數則可放入長週期的修正中。

五、太陽同步衛星軌道

太陽同步衛星軌道主要是對衛星觀測地球時能提供 相同的太陽光角度的軌道,因爲對於衛星上的攝影器材 或其它儀器而言,提供不變的觀測反射光是很重要的, 因此大部份的太陽同步衛星其用途都偏向於地球資源或 者是其他相關性質的觀測上。

由於地球不是正圖的,加上地球的重力場會呈環帶調 和(zonal harmonic)分佈,衛星在繞著地球時不同位置 所受的引力有所不同,就會使得衛星在軌道的運行上產 生偏移;經由位能對質量的積分我們可以得知,最後重 力場引力的差異則會呈調和函數表示,其中影響最大的 參數就是 J2 這一項, 而 J2 所影響最大的就是軌道的退行 點 Ω (Regression of Node) 及近日點 ω (Perigee) 的運 動了,這點我們可以在下一節的計算中得知;在地球的 衛星軌道中,太陽同步軌道是非常奇特的一種,它即利 用了地球引力所產生的力矩使得退行點Ω的旋轉和地球 繞太陽的速度相同, 簡單的來說, 太陽同步衛星的軌道 **面會因爲地球繞著太陽而跟著旋轉**,從參考資料中我們 可以了解太陽同步衛星軌道的運作;例如,如果太陽同 步衛星發射後運行在太陽和地球的連線上,如圖 5-1 所 示,那麼它的軌道面就會隨著地球繞太陽而改變,軌道 面會在三百六十五又四分之一天中從太陽線離開 360 度 而完成一完整的旋轉軌道。軌道面會從太陽線開始大約 每天順時針旋轉1度左右,大約90天後軌道面會垂直於 原來的太陽線,因此經由這樣的軌道設計,軌道的昇交 點經度變化率會與太陽相同,因而稱爲太陽同步衛星軌 道;而圖 5-2 則表示太陽同步衛星軌道的旋轉情形,在圖 5-2 的左圖我們可以發現太陽同步衛星軌道相對於地球 慣性座標的:軸旋轉,而右圍則是從起始的團軌道投影 來看。

以 Landsat 太陽同步衛星軌道來說, Landsat-D 位於 傾角 98.2 度,高度 709 公里的軌道上,以 103 分鐘的週 期繞著地球,它的感測器可以觀測從南到北 185 公里的 長條彩表面,衛星在當地時間早上 9 點 30 分會經過赤道 上空,約每 20 天可以涵蓋整個地球表面,在赤道的視幅 為 138 公里,這個軌道可以有連續且固定的光線,因此 對影像系統而言是最好的,也因此 Landsat 衛星的主要用 途在於地表及氣象的觀測上。

所以我們在設計太陽同步軌道時,傾角*i*,半長軸*a*, 偏心率*e*,必須滿足以下關係式:

$$\left(\frac{d\Omega}{dt}\right)_{S} = -\frac{3}{2}nJ_{2}\left(\frac{R}{p}\right)^{2}\cos i = \alpha_{\Theta} = 0.9856 \text{ deg/ } day \qquad (12)$$
此處

$$J_2$$
 = 地球重力場之環帶簡諧參數(Zonal harmonics)
 $n = \sqrt{\mu/a^3}$ 軌道平均運動
 $R = 地球赤道半徑$
 $p = a(1-e^2)$

 $\alpha_{\rm e}$ = 太陽右昇天角變化率

當然除了 J_{2} 項之外,第三、第四的調和函數 J_{3} 、 J_{4} 項也 會對軌道參數有所影響,然而 J_{3} 、 J_{4} 的大小約為 10^{-3} 倍 J_{2} ,所以可以預期的對於短期的援動而言是非常微小的, 因此 J_{3} 、 J_{4} 項通常列為長週期的變化項。

假設有兩個主要類型的援動,即阻力與太陽引力,將 影響這太陽同步軌道的特性和漸漸地改變在地時間,阻 力援動軌道參數 p 與 n,而太陽引力援動軌道傾角 i, 圖 表 1 呈現衛星及在某一時間未援動之軌道相對地球的中 心的位置向置 r 和 r_o,設衛星位置相對於未援動狀態為 ρ,若在此未受援動狀態下加入一直角座標系, y 軸爲半 徑向外方向, s 軸爲指出紙張 · x 軸則爲右手定則 · 此座 標角速率爲 ω。則衛星位置座標爲

$$\mathbf{r} = \mathbf{r}_{\boldsymbol{\rho}} + \boldsymbol{\rho} \tag{13}$$

相對於慣性座標之微分方程為

$$\ddot{\mathbf{r}} = \mathbf{g} + \mathbf{a} \tag{15}$$

而 g 為重力加速度, a 為干擾產生之加速度。從方程(3)

$$\ddot{x} = -g\frac{x}{r} + a_x - 2(\omega_y \dot{z} - \omega_z \dot{y}) - (\dot{\omega}_y z - \dot{\omega}_z y) - [(\omega_x \omega_y y - \omega_y^2 x) - (\omega_z^2 x - \omega_x \omega_z z)] \ddot{y} = -g\left(\frac{y + r_T}{r}\right) + a_y + g_T - 2(\omega_z \dot{x} - \omega_x \dot{z}) - (\dot{\omega}_z x - \dot{\omega}_x z) - [(\omega_y \omega_z z - \omega_z^2 y) - (\omega_x^2 y - \omega_x \omega_y x)] \ddot{z} = -g\frac{z}{r} + a_z - 2(\omega_x \dot{y} - \omega_y \dot{x}) - (\dot{\omega}_x y - \dot{\omega}_y x) - [(\omega_x \omega_z x - \omega_x^2 z) - (\omega_y^2 z - \omega_y \omega_z y)] \mathbf{10}(4) 可以解出 x, y, z 三方向的相對加速度$$

假設援動的距離遠小於未援動狀態時的軌道半徑或

$$\rho^2 = x^2 + y^2 + z^2 \langle \langle r_o^2 \rangle$$
(17)

(16)

接下來的近似關係可以寫成

$$r = [x^{2} + (y + r_{o})^{2} + z^{2}]^{1/2} \approx r_{o}(1 + \frac{y}{r_{o}})$$

$$g = \frac{g_{o}r_{o}^{2}}{r^{2}} \approx g_{o}(1 - \frac{2y}{r_{o}})$$

$$g \frac{x}{r} \approx g_{o} \frac{x}{r_{o}}$$

$$g \frac{z}{r} \approx g_{o} \frac{x}{r_{o}}$$

$$g(\frac{y + r_{o}}{r}) \approx g_{o}(1 - \frac{2y}{r_{o}})$$
(18)

因此, 方程式(16)可以線性化成

(21)

小(微)衛星總體設計與系統工程分析研究(Ⅲ)-子計畫二:小(微)衛星之任務分析與衛星模擬器之設計

$$\ddot{x} = -g_T \frac{x}{r_T} - 2(\omega_y \dot{z} - \omega_z \dot{y}) - (\dot{\omega}_y z - \dot{\omega}_z y) - [(\omega_x \omega_y y - \omega_y^2 x) - (\omega_z^2 x - \omega_x \omega_z z)] j \dot{y} = 2g_T \frac{y}{r_T} - 2(\omega_z \dot{x} - \omega_x \dot{z}) - (\dot{\omega}_z x - \dot{\omega}_x z) - [(\omega_y \omega_z z - \omega_z^2 y) - (\omega_x^2 y - \omega_x \omega_y x)] \ddot{z} = -g_T \frac{z}{r_T} - 2(\omega_x \dot{y} - \omega_y \dot{x}) - (\dot{\omega}_x y - \dot{\omega}_y x) - [(\omega_y \omega_z x - \omega_y^2 z) - (\omega_y^2 z - \omega_y \omega_z y)]$$
(19)

當衛星在團軌道時,

 $\dot{\omega} = 0$ and $\omega = \sqrt{g_o I r_o}$ (20) 如果考慮 J_2 效應的影響,則我們可以把 ω 寫成

 $(\omega_x, \omega_y, \omega_z) = (\omega_c + \dot{\Omega}_x, \dot{\Omega}_y, \dot{\Omega}_z)$ 其中 $\dot{\Omega}_x, \dot{\Omega}_y, \dot{\Omega}_z 爲(1)$ 式中的 $\frac{\omega_c}{d_T}$ 的三個方向的分量,方程

$$\begin{aligned} \ddot{\mathbf{x}}_{z} &= -\omega_{c}^{2} \mathbf{x} - 2(\dot{\Omega}_{y} \mathbf{z} - \dot{\Omega}_{z} \dot{\mathbf{y}}) \\ &- \left[(\dot{\Omega}_{x} \dot{\Omega}_{y} \mathbf{y} - \dot{\Omega}_{y}^{2} \mathbf{x}) - ((\dot{\Omega}_{z} + \omega_{c})^{2} \mathbf{x} - \dot{\Omega}_{x} (\dot{\Omega}_{z} + \omega_{c}) \mathbf{z}) \right] \\ &= (\dot{\Omega}_{z}^{2} + 2\dot{\Omega}_{z} \omega_{c} + \dot{\Omega}_{y}^{2}) \mathbf{x} - \dot{\Omega}_{x} \dot{\Omega}_{y} \mathbf{y} - (\dot{\Omega}_{x} \dot{\Omega}_{z} + \dot{\Omega}_{x} \omega_{c}) \mathbf{z} \\ &+ 2(\dot{\Omega}_{z} + \omega_{c}) \dot{\mathbf{y}} - 2\dot{\Omega}_{y} \mathbf{z} \\ \ddot{\mathbf{y}} &= 2\omega_{c}^{2} \mathbf{y} - 2((\dot{\Omega}_{z} + \omega_{c}) \dot{\mathbf{x}} - \dot{\Omega}_{x} \mathbf{z}) \\ &- \left[(\dot{\Omega}_{y} (\dot{\Omega}_{z} + \omega_{c}) \mathbf{z} - (\dot{\Omega}_{z} + \omega_{c})^{2} \mathbf{y}) - (\dot{\Omega}_{x}^{2} \mathbf{y} - \dot{\Omega}_{x} \dot{\Omega}_{y} \mathbf{x}) \right] \end{aligned}$$

$$= -\Omega_x \Omega_y x + (\Omega_x^2 + \Omega_z^2 + 2\Omega_z \omega_c + 3\omega_c^2) y - (\Omega_y \Omega_z + \Omega_y \omega_c) z$$

$$-2(\dot{\Omega}_z + \omega_c) \dot{x} + 2\dot{\Omega}_x \dot{z}$$

$$\ddot{z} = -\omega_c^2 z - 2(\dot{\Omega}_x \dot{y} - \dot{\Omega}_y \dot{x})$$

$$-[(\dot{\Omega}_x (\dot{\Omega}_z + \omega_c) x - \dot{\Omega}_x^2 z) - (\dot{\Omega}_y^2 z - \dot{\Omega}_y (\dot{\Omega}_z + \omega_c) y)]$$

$$= -(\dot{\Omega}_x \dot{\Omega}_z + \dot{\Omega}_x \omega_c) x - (\dot{\Omega}_y \dot{\Omega}_z + \dot{\Omega}_y \omega_c) y + (\dot{\Omega}_y^2 - \omega_c^2) z$$

$$+ 2\dot{\Omega}_y \dot{x} - 2\dot{\Omega}_x \dot{y}$$

七、參考資料

- 1. Vladimir A. Chobotov, Orbital Mechanics, AIAA Education Series, AIAA, August 1991.
- Hyung Jin Rim, George W. Davis, and Bob E. Schutz, "Dynamics Orbit Determination for the EOS Laser Altimeter Satellite (EOS ALT/GLAS) Using GPS

八、圖表

表 3-1 前四項的地球重力場調和函數之系數(參考資料[1])

Zonal harmonics				
$J_2 = 1082.6300 \text{ E-6}$				
$J_3 = -2.5321531 \text{ E-6}$				
J ₄ = -1.6109876 e-6				
Tesseral homonics				
C ₂₂ = 1.5747419 E-6	S ₂₂ = -0.90237594 E-7			
$C_{31}^{2} = 2.1946736 \text{ E-6}$	$\tilde{S}_{31} = 2.7095717 \text{ E-}7$			
$C_{32} = 3.0968272 \text{ E-}7$	S_{32}^{-} = -2.1212017 E-7			
$C_{33} = 1.0007897 \text{ E-6}$	$S_{33} = 19734562 \text{ E}-7$			
$C_{42} = 7.7809618 \text{ E-8}$	$S_{42} = 1.4663946 E-7$			
C_{AA}^{+2} = -3.9481643 E-9	$\dot{S}_{44} = 6.540039 \text{ E-9}$			

經線性化後的運動方程式(21)也可寫爲狀況函數的形式

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{f} \tag{22}$$

此處

$$\mathbf{x} = [x, y, z, \dot{x}, \dot{y}, z]^T, \ \mathbf{f} = [0, 0, 0, a_x, a_y, a_z]^T$$

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ \dot{\Omega}_{y}^{2} + 2\dot{\Omega}_{z}\omega_{c} & 0 & 0 & 0 & 0 \\ + \dot{\Omega}_{z}^{2} & 0 & 0 & 0 & 2(\dot{\Omega}_{z} + \omega_{c}) & -2\dot{\Omega}_{y} \\ 0 & \dot{\Omega}_{z}^{2} + 2\dot{\Omega}_{z}\omega_{c} & -\left(\dot{\Omega}_{y}\dot{\Omega}_{z} \\ + \dot{\Omega}_{z}\omega_{c}\right) & -2(\dot{\Omega}_{z} + \omega_{c}) & 0 & 0 \\ 0 & -(\dot{\Omega}_{y}\dot{\Omega}_{z} + \dot{\Omega}_{y}\omega_{c}) & \Omega_{y}^{2} - \omega_{c}^{2} & 2\dot{\Omega}_{y} & 0 & 0 \end{bmatrix}$$

向量 ρ 和 ρ 可以表示在地球中心之慣性座標,此一轉換 矩陣爲

$$\mathbf{R} = \begin{bmatrix} \cos\Omega & -\sin\Omega & 0 & 1 & 0 & 0 \\ \sin\Omega & \cos\Omega & 0 & 0 & \cos i & -\sin i \\ 0 & 0 & 1 & 0 & \sin i & \cos i \end{bmatrix} \begin{bmatrix} \sin\theta & \cos\theta & 0 \\ -\cos\theta & \sin\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(29)

 Ω 爲昇交點經度,i爲太陽同步軌道傾角,而 θ 爲衛星在時間t的真實離角。

六、結論

由上面的計算可以知道 J₂、J₃、J₄的影響對瞬時的 運動而言是很小的,最大的是 J₂對Ω的影響約在 10⁷左 右,其它的都在 10⁻¹⁰以下,甚至更小,所以在推導太陽 同步衛星軌道的線性動力模型上我們只考慮 J₂對Ω的影響。

Measurements", The Journal the Astronautical Sciences, Vol. 44, No. 3, 1996, pp. 409-424.

3. J. J.F. Liu and R. L. Alford, "Semianalytic Theory for a Close-Earth Artificial Satellite", J. Guidance and Contorl, 1980. pp. 304-311.

表 3-2 地球大氣阻力 (參考資料[1])

195 高度 慶小 本1		an a	1993 不均	
高度 最小 工	均 要 +		不朽	
	「 取八	取小い	平門	取八
1300 公里 1 2	3	<1	<1	<l< th=""></l<>
700 公里 65 15	9 311	6	15	28

所有單位爲 10-9 牛頓

小(微)衛星總體設計與系統工程分析研究(Ⅲ)-子計畫二:小(微)衛星之任務分析與衛星模擬器之設計

12.14

圖 4-1(b) J₃ 對偏心率 e 的影響

圖 4-1(c) J_4 對偏心率 e 的影響

圖 4-3(b) *J*₃ 對Ω的影響

小(微)衛星總體設計與系統工程分析研究(Ⅲ)-子計畫二:小(微)衛星之任務分析與衛星模擬器之設計

5-2 太陽同步衛星軌道