
行政院國家科學委員會補助專題研究計畫 √ 成 果 報 告
□期中進度報告

（計畫名稱）

計畫類別：√ 個別型計畫 □ 整合型計畫

計畫編號：NSC 94-2213-E-032 -017－

執行期間：94 年 08 月 01 日至 95 年 07 月 31 日

計畫主持人：施國琛

計畫參與人員： 林宏、葉瑋松、何宗達

成果報告類型(依經費核定清單規定繳交)：√精簡報告 □完整報告

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

□出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、

列管計畫及下列情形者外，得立即公開查詢

 □涉及專利或其他智慧財產權，□一年□二年後可公開查詢

執行單位：淡江大學資訊工程學系

中 華 民 國 95 年 12 月 15 日

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/62489403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

影像瑕疵偵測與修補技術之研究
Photo defect detection and inpainting
計畫編號： NSC 94-2213-E-032 -017
執行期限： 94/08/01 ～ 95/07/31

計畫主持人：施國琛

ABSTRACT

Image inpainting (or image completion) techniques use
textural or structural information to repair or fill
damaged potions of a picture. However, most techniques
request a human to identify the portion to be inpainted.
We developed a new mechanism which can automatically
detect defect portions in a photo, including damages by
color ink spray and scratch drawing. The mechanism is
based on several filters and structural information of
damages. Old photos from the author’s family are used
for testing. Preliminary results show that most damages
can be automatically detected without human involvement.
The mechanism is integrated with our inpainting
algorithms to complete a fully automatic photo defects
repairing system.
Key words: image inpainting, defect detection, structural
features, image processing, image restoration

1. INTRODUCTION
The discussion of image and video inpainting were found
in the literature. In most image inpainting projects, users
have to select the defect area. On the other hand, since it
is impossible to select defects on all video frames, video
inpainting uses motion estimation, shape features, and
Kokaram’s model [1] to detect defects such as line scratch
and spike on video. Unfortunately, motion estimation and
Kokaram’s models can not be used in defect detection of a
single photo image. Thus, we propose a naïve but
effective algorithm to detect photo defects. The detection
of defects is similar but different from color image
segmentation [5] to find fore ground objects. The
detection is also different from finding defects in random
color textures [4], using color cluster scheme. Basically,
ink sprayed on image will destroy the homogeneity of a
photo. Thus, the detection mechanism relies on the
property of ink (e.g., ink color, shape, and decadence of
gradient). Our mechanism can further distinguish the two
types of damages (ink spray and scratch) in different ink
colors. The proposed algorithms contain several filters,
which will be discussed in the next section. The
experimental results include more than 40 damaged
photos. Some old photos are collected from the author’s
family history, with real cases of damages. A few photos
are new photos with real ink spray and scratches scanned
for testing.

2. THE DEFECT DETECTION ALGORITHM

2.1 The Defect Intensity Detector

We propose an algorithm which automatically adjusts
threshold values to achieve the best results of detection.
We use HSI color space since it is closer to human
perception. It has been discussed that RGB color space is
not quite suitable for comparing image colors due to the
discontinuity of color values. Our experiments on
different color spaces also reveal that HSI color space can
be used in several successful examples.

In this paper, we aim at handling the ink spray defects,
with an extension to detect scratch by color pens. There
are plenty type of ink colors, and photo images usually
contains lots of different colors. Hence, if we try to detect
ink with color information, it would be almost impossible.
We consider the intensity and shape of photo defects.
Though, it is almost not possible to discriminate ink
regions from objects in photo images. The intensity
variation of ink regions is usually quite smooth and steady
while comparing with objects in photos. Thus, we use the
HSI color space and use intensity in the first filter. We
decrease the value of I (i.e., intensity) from 255 to 0 at
each step. In each step, we record the number of pixels
detected. It has been mentioned that the intensity variation
of ink is usually low. In decreasing the intensity of a
photo, the ink part will remain while other parts will be
filtered, up to an estimated I value. In the second filter, we
compute a pixel histogram, with pixel numbers on y-axis
and adjustment of I values on x-axis. That means we
record the number of pixels been detected in each I
variation. The histogram is represented as a curve chart in
our tool (see Figure 1). We calculate the variance of pixel
number been detected between two different steps of
adjustment. If the variance is low, it means that pixels
been detected in the last adjustment are not much affected
by the present adjustment of I. And the pixels been
detected are possible to be pixels of ink spray because of
its steady intensity. Keeping on the calculation of variance
of pixels been detected, a collection consists of
consecutive adjustments of I can be constructed. The
collection needs to be analyzed since sometimes the
variance of pixels been detected is low only because it has
low discrimination in a step of I adjustment. Then the
collection been record has no use and we can’t detect the
ink. Thus, if the collection of adjustment contains too

many passes of adjustment, we just leave it and go on to
analysis the photo image. After the calculation and
analysis, a set of adjustment of I can be found out to
separate pixels of ink from objects in the photo. The
following is our algorithm to find the possible minimal
intensity of a defect area.

Algorithm: Defect Intensity Detector

Let λ be a maximum length of a continuous curve (λ ≥ 5)
Let α be a threshold of difference of pixel number
(initially, α = 100)
Let n be a value of pixel number (n = 100)
Input: Image C
Output: Intensity δ
Algorithm:
Step1: Convert image C to HSI color space
Step2: Compute the number of pixels, w. r. t. each I

variation; Let #Pi represents the number of pixels
in the ith I variation, where 1 ≤ i ≤ 255

Step3: Compute ΔPi = (#Pi – #Pi-1), if ΔPi < α store i in
an index list L

Step4: Search L and store the consecutive elements in set
S, Si = {δ, Mi}∈ S; where δ is the start intensity of
consecutive elements, and Mi is the length of the ith
consecutive elements

Step5: Find Si with the maximal length Mi in the set S,
where the consecutive elements have Mi less than
or equal to λ

Step6: If no Mi < λ then α=α+n; goto Step3
else Return δ

Figure 1: Histogram of Pixel Numbers by Intensity

2.2 The Adaptive Filter

The defect intensity detector operation is not ready to
separate defect object and background object yet. We use
an adaptive filter, which considers the details of object
properties, and decide which part is defect. The intensity
found in the defect intensity detector can be used on
finding the potential defect objects of a photo. The
adaptive filter will detect multiple objects. Each object Oj
in an object set O has two parameters, Aj and Bj, to
represent object size and object boundary, respectively.

We define a threshold of object size, μ. If an object size is
small than the μ then we remove the object from set O.
Two morphological operations, opening and closing, are
then used. The median filter operation with 3×3 filter
windows performs isolate object detection and elimination.

In the adaptive filter algorithm, the adjustment of I is
achieved by decreasing the value of I from δ to carry out
the defect object to be detect by an intensity value of 5 at
each step. In each step of adjustment, we record the size
and locations of object Oj detected in a new set Q. The
parameter n is a number of the objects in set Q. The new
set Q is for intensity iteration while the original set O is
used as a reference. In intensity iteration, an object can be
split. The size of object (includes split objects) can be
reduced. However, the center of the object is not likely to
be altered. To tell whether split objects belong to an
original object, we compare the center of split object
against the boundary of the original object. It is important
to keep track of which split object belong to an original
object since we calculate the decreasing rate of area. If the
decreasing rate is high, the object is not likely to be a
defect. After several intensity iterations, the object left in
Q are defects. We mark the original defect objects in O on
the photo. The Adaptive Filter algorithm follows.

Algorithm: Adaptive Filter
Let O be a set of objects; Oj = {Aj, Bj}∈ O, where Aj and
Bj are the area size and boundary of object Oj, respectively
Let Ω be a percentage threshold of object size (Ω = 50%)
Let μ be a threshold of number of pixels (μ= 5 or 10)
Let ε be a decreasing intensity amount (ε = 10)
Algorithm:
Step1: Store initial objects obtained from color

segmentation in set O
Step2: Remove small objects form set O if the area of

object size Aj < μ
Step3: Use filter Opening(Closing(C)) to remove isolated

objects in O
Step4: Copy set O to a new set Q; Let n be the number of
objects in Q; Let s = δ be an initial intensity value (from
the defect intensity detector)
Step5: Intensity Iteration: Repeat till n has no change
 {
 For all object Oi in Q do

If Ai decreases > Ω from last Intensity Iteration
 and Oi is not split then

remove Oi from Q and update n
 Set s = s – ε

}
Step6: For each element Oj in set O not removed in Q

Mark Oj in image C

3. EXPERIMENTS RESULTS AND DISCUSSION

In this section, we present the experimental results from a
variety of tests. We divide the photos into two categories,
with damages by spray of color ink (blue, red or black)
and scratch by ink pen. Examples of defect pictures and
detections are presented in Figure 2 to 6. Figure 2 shows a
defect photo by blue ink. In this experiment, we set the
threshold of object size μ to 10 pixels. Therefore, there are
some small objects not detected. Figure 3 has defects by
black ink. The threshold of object size μ is also 10 in this
case. Note that, the strings in black of figure 3 (a) is not
changed mostly.

(a) The defect photo

(b) The detection result

Figure 2: Detection of Defect with Blue Ink Spray

(a) The defect photo

(b) The detection result

Figure 3: Detection of Defect with Black Ink Spray

(a) The original picture (b) The detection result

Figure 4: Defect Detection with Ink Pen Scratch (some
thin line scratches are not detected)

A simple example of scratching defect is shows in Figure
4. Scratch lines are hard to detect, especially when the line
is very thin. In figure 4, we take an alternative strategy,
which use gray levels of image. The gray value detected is
128. Table 1 summarizes parameters used in our
algorithm for figures 2 to 6.

Table 1: Parameters for Defect Detection
Figures δ α μ Gray value

2 46 300 10
3 37 100 10
4 100 5 128

5(a) 43 100 10
5(b) 19 100 10
5(c) 28 100 10
5(d) 26 100 10
6(a) 50/37 200 10
6(b) 50/40 100 10
6(c) 60/22 200 10

We also consider the type of defects. A naive but effective
strategy is to compute the ratio of area to perimeter on
defect objects. We use a line detection algorithm to find
the approximation of pixel numbers of perimeters.
Roughly speaking, ink sprays will have a ratio higher than
line scratches due to shape. In figure 5, we illustrate four
sets of photos with type of defects separated. We found
that the ratio of ink spray is usually higher than 1 and the
ratio of line scratch is close to 1. However, small ink
spray with a diameter close to line thickness is detected as
a line. A threshold set to 2.0 is used to separate the two
types of defects, using red to show ink spray and blue to
show line scratch. Table 2 shows the ratios of defect
objects in figure 5. Each photo contains from 2 to 3 defect

objects. The numbers of pixels in object area (i.e., OA) and
object perimeter (i.e., OP) are also provided.

(a.1)

(a.2)

(b.1) (b.2)

(c.1)

(c.2)

Figure 5: Separation of Defect Types

Table 2: Ratio of Pixel Numbers
Fig.5 (a) (b) (c)
Oitem #1 #2 #1 #2 #3 #1 #2
OA 2252 2013 1915 2029 48 1636 2902
OP 411 1953 2744 354 48 2085 479
Ratio 5.47 1.03 0.69 5.73 1 0.78 6.05

We also detect multiple ink colors in the same photo. The
strategy detects two different intensity values. The values
detected for blue/black are 50/37 (6a), 50/40 (6b), and
60/22 (6c). As shown in figure 6, the black ink detected is
shown in red and the blue ink detected is shown in yellow.

(a.1)

(a.2)

(b.1)

(b.2)

(c.1) (c.2)

Figure 6: Separation of Defect Ink Colors

4. IMAGE INPAINTING MOTHED

The defect inpainting strategy we used was proposed
in [6,7]. We briefly summarize the multi-resolution
inpainting strategy here. Considering an image or a video
frame as a large Damaged Image Block (DIB), as shown
in Figure 8, a DIB can be subdivided into several Image
Blocks (IBs). Each Image Block may or may not contain
damaged pixels. Furthermore, each Image Block is
subdivided into several Pixel Blocks (PBs). Pixel Blocks
are elementary objects to be inpainted. We believe pixel
color variance has a strong indication of the degree of
details in a block. The threshold α sets the criterion of
whether a multi-resolution inpainting is required. In our
implementation, the value of α is a percentage in the range
between 0 and 100 (the maximum var) of an IB. Another
criterion is the percentage of potential damaged pixels.
We argue that, if the percentage is too high, using
surrounding color information to fix a pixel is less
realistic as compared to using a global average color. In
some severe cases, it is impossible to use neighborhood
colors. Note that, both thresholds are adjustable for the
sake of analysis. The recursive algorithm (see Figure 7)
iterates through each of the IBs in a DIB. If the color

variance of IB is below the threshold α, there is not much
difference of pixels in IB. No subdivision is required (i.e.,
no need of looking at the next level of details). Thus, the
algorithm further divides IB into several pixel blocks (i.e.,
PBs). If the percentage of damaged pixels in a PB is too
high (i.e., greater than β2), the mean color of IB is used.
One example is that the entire PB is damaged (thus we
need to use the mean color of IB). Alternatively, if the
percentage is still high (i.e., greater than β1), the mean
color of PB is used. Note that, the computation of mean
colors does not take damaged pixels into the account. If
the percentage is low, neighbor pixels are used for
inpainting. Finally, if the color variance of IB is not below
the threshold α, the algorithm is called recursively to
handle the next level of details. In the article [6], a
complete analysis is given to show the inpainted results
are satisfiable. There are three thresholds in the
algorithm,α, β1 and β2. We use α = 80, β1 = 85, and β2 =
95. The experiments to obtain these values are discussed
in [6].

Algorithm inPaint(block DIB)
 if DIB is a small block then return
 for each image block IB
 if var < α then
 {
 for each PB in the image block
 {
 if the percentage of damaged pixels in PB >
β2
 inpaint the damaged pixels using Mcolor

else
if the percentage of damaged pixels in PB

> β1
 inpaint the damaged pixels using Ncolor
 else
 inpaint the damaged pixels using
neighbor pixels
 }
 for each pixel in the boundary of each PB
 smooth boundary pixels using neighbor
pixels
 }
 else

 call inPaint(IB)

Figure 7. The inpainting algorithm

Figure 8. Damaged Image Block (DIB), Image Block

(IB) and Pixel Block (PB)

5. PRELIMINARY EXAMPLES

Some test results of defect photo inpainting are shown in
Figure 9 and Figure 10. Different categories of real photo
are tested on different types of defects.

(a) The Defect Photo by Ink

(b) The Detected Result

(c) The Inpainting Result

Figure 9. Inpainting Result of Defect Photo with Black
Ink Spray

(a) The Defect Photo by Scratch

(b) The Detected Result (some thin line

scratches are not detected)

(c) The Inpainting Result

Figure 10. Inpainting Result of Defect Photo with Line

Scratches

6. CONCLUSIONS

Digital image inpainting algorithms usually rely on user to
select defect areas to be inpainted. We propose a naive but
effective strategy to detect ink spray and line scratch with
different ink colors. We found that, on different type of
photographic papers, ink spray results in different types of
intensity detection. Also, thickness of ink results
differently. In addition, if scratch lines are very thin, it is
hard to detect. In such case, we may subdivide the photo
into multiple segments for separated detection. Our future
research will detect other types of defects, such as ripped
and frazzled photos.

REFERENCE
[1] Vittoria Bruni and Domenico Vitulano, “A generalized

model for scratch detection,” IEEE Transactions on
Image Procesing, Vol. 13. No. 1, January 2004, pp.
44-50.

[2] L. Joyeux, O. Buisson, B. Besserer, S. Boukir,
"Detection and removal of line scratches in motion
picture films,” IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, June 23-25,
1999, pp. 548-553.

[3] A. Machi, F. Collura, “Accurate spatio-temporal
restoration of compact single frame defects in aged
motion picture,” on Proceedings 12th International
Conference on Image Analysis and Processing, 2003.,
17-19 Sept. 2003, pp. 454-459.

[4] K. Y. Song, J. Kittler and M. Petrou, “Defect detection
in random colour textures,” Image and Vision
Computing, vol. 14, no 9, October 1996, pp. 667-683.

[5] Swee-Seong Wong and Wee Kheng Leow, “Color
segmentation and figure-ground segregation of natural
images,” in Proceedings on International Conference
on Image Processing, ICIP’02, 2000, pp. 120-123.

[6] Timothy K. Shih., Liang-Chen Lu, and Rong-Chi
Chang, “Multi-Resolution Image Inpainting,” in
Proceedings of the 2003 IEEE International
Conference on Multimedia & Expo (ICME'03), July
6 – 9, 2003, pp. 485-488.

[7] Timothy K. Shih., Rong-Chi Chang, Liang-Chen Lu
and Huan-Chi Huang, "Multi-layer Inpainting on
Chinese Artwork," in Proceedings of the 2004 IEEE
International Conference on Multimedia and Expo
(ICME ‘04), 2004, pp. 21-24.

