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Abstract

There are more data sets being available in panel form, making the estimation techniques for
the regression model with panel data very popular in applied econometrics. In this presentation,
we consider a partially linear model with fixed-effect, under the framework of panel data. Based on
the ideas of Stock (1989) and Robinson (1988), we proposed a double residual technique to estimate
the fixed-effect and slope coefficients. A simulation study is carried out to assess the finite-sample
performances of the proposed estimators. The results reveal that the estimators can have mild and
reasonable percentage biases. In addition, they tend to be efficient relative to those for correctly
specified parametric models, in terms of their simulated standard error ratios. An empirical study
employing 96 Taiwan’s electronic firms’ data is also conducted. Evidence is found that the partially
linear models considered here are preferable to the parametric ones, due to possible misspecification
of the latter.
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1 Introduction

In the past few decades, there are two main approaches to the studies of efficiency and productivity of
producers for a particular industry. One of them is the mathematical programming or data envelopment
analysis (DEA). The other is referred to as the econometric approach. The DEA approach, dating back
to Farrell (1957), is known as function-free such that the potential specification error on the functional
form avoids. However, this advantage is not without expense. Due to its incapability of disentangling
the impact of random disturbances on efficiency, the estimated efficiency scores may be contaminated
with noise and thus unable to reflect the true performance of a representative firm. On the contrary, the
statistical noise is explicitly incorporated in a regression model as a two-part error component. Thus,
the estimated production efficiency by the econometric approach does not suffer from the same weakness
as the DEA does. But, this approach is frequently criticized as requiring the imposition of a specific
presumption on the functional form of a production technology and/or an optimal cost frontier, as well
as on the distributions of the composed error term.

As noted by Schmidt and Sickles (1984) and Berger (1993), the availablility of a panel data set enables
ones to relax the imposition of strong distributional assumptions on the error components. However, the
likelihood of functional form misspecification remains to be solved in the econometric approach. Recently,
Fan et al. (1996) extended the linear stochastic frontier model, first proposed by Aigner et al. (1977) and
Meeusen and van den Broeck (1977), to a semiparametric frontier model where the production function
takes an unknown form and the composite error term follows the convention1. Li et al. (2002) further
developed a semiparametric smooth coefficient model for studying a general regression association with
varying coefficients, while ignoring the possibility of production inefficiency. The above two works appear
to be suitable only in the context of either cross-sectional or time series data.

Given that the purely parametric and purely nonparametric models have their own strengths and
weaknesses, the current paper proposes an intermediate strategy employing a semiparametric method
– the partial linear model – to estimate either production, or cost, or profit frontiers, as well as to
estimate technical efficiency, under the framework of the fixed-effects model. Specifically, let’s consider
the semiparametric production regression model for the ith firm (i = 1, · · · , n) at period t (t = 1, · · · , T ):

yit = β′zit + f(xit) + ui + vit, (1-1)

where yit is the (log) output level of the ith firm at time t, zit = (z1,it, z2,it, , zp,it) and xit = (x1,it, x2,it, , xq,it)
are, respectively, observations on the continuous independent variable of p and q-dimensional (log) inputs
z and x. Notations β = (β1, β2, · · · , βp) and f are respectively, the unknown slope coefficient vector and
function of x. Notation ui represents the unknown and time-invariant group (firm) specific inefficiency,
and vit denotes the random disturbance with mean zero and constant variance. The ui’s are treated as
fixed effects by this exercise. Incidentally, the use of panel data provides rich source of information about,
e.g., the behaviors of firms in an industry.

Three attractive features of this article are worth mentioning. First, the adoption of the fixed-
effects model allows the inefficiency term to be correlated with the regressors and with the statistical
noise, more compliant with the reality. Second, the employment of the partial linear structure (1-1) is
one of the three types of restrictions, which considerably reduces approximation error derived by the
pure nonparametric case2. Robinson (1988) has shown under regularity conditions that the estimators
generalizing the ordinary least squares (OLS) estimators β̂ are

√
N -consistent for and asymptotically

1In fact, they assumed that the one-sided error term is distributed as a half-normal random variable truncated at zero
from below and the two-sided statistical noise is an independently and identically distributed normal variable with mean
zero and constant variance.

2The other two empirically useful restrictions are an additive separable function on f(xit), where xit is a vector, and
smoothness assumptions. See Yatchew (1998) for details
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normal; a consistent estimator of its limiting covariance matrix was also given. Third, our fixed-effects
treatment can be regarded as an extension of Stock (1989) from the setting of cross sections to that of
panel data and from a nonparametric estimation to a semiparametric counterpart. Thus, the critical
element of the “curse of dimensionality”, presented in nonparametric methods, is less of an issue. This
is because the dimension of xit in a semi-parametric model is lowered. It is in turn that the asymptotic
results, obtained by Stock (1989), may be applied in this article.

This paper is organized as follows. Section 2 states the model and proposes the semiparametric
estimation procedures under a panel data setting. Section 3 performs the Monte Carlo simulations and
presents the results of the experiments. An empirical study, using the data of 96 firms in the industry
of the electronics and information in Taiwan over the period 1996-2001, is addressed in Section 4, while
Section 5 concludes the paper.

2 The Econometric Model and the Proposed Estimation Method

Based on equation (1-1), our proposed estimation method follows the vein of Robinson(1988) and
Stock(1989) with the generalizations to panel data and to a semiparametric model. It is assumed that
(zit, xit, yit) are independently and identically distributed (i.i.d.) as the (Rp × Rq × R)-valued random
variable (x, y, z), εit are assumed to be i.i.d. random variable with mean zero and constant variance σ2,
0 < σ2 < ∞. The regressors (zit, xit) are assumed to be independent of the error term. Notation f
is an unknown function continuous in variable x. The purpose of the regression analysis is to use the
observations (zit, xit, yit) to estimate the production function:

y = β′z + f(x) + u (2-1)

Either the time series or the cross-sectional version of population regression function (2-1) has been
examined by, for example, Stock (1989), Engle et al. (1986), and Robinson (1988), among others, for
various objectives. Our own ends are accurate estimation of β, suitably measuring technical efficiency, and
precisely predicting y. The elements β of are the parameters of interest that contain useful information
on production technology when a production or a cost function is under consideration. Some statistical
testing hypotheses may be expressible solely in terms of β. In the area of productivity and efficiency
analysis, how to correctly assess the technical efficiency of a firm is a core issue, concerned not only
by academic researchers, but also by policy makers. Finally, although economic theory might relate
a valid set of independent variables to a dependent variable, it often fails to offer guidance about the
exact functional form to estimate3. A misspecified parametric model will lead to inconsistent parameter
estimates and subsequent statistical inferences. This paper proposes a procedure to predict the dependent
variable when the exact functional form is unknown.

Define Y = (y11, · · · , y1T , y21, · · · , y2T , · · · , · · · , yn1, · · · , ynT )′; and let v, Zd(d = 1, · · · , p) and fx be
similarly defined respectively by vit, zd,it(d = 1, · · · , p) and f(xit), for i = 1, · · · , n and t = 1, · · · , T. Let
N = n× T and Jc(c = 1, · · · , n) be an N × 1 vector having 1’s in the entries from (c− 1)× T to c× T ,
and 0 otherwise. For example, if T = 3, then J2 = (0, 0, 0, 1, 1, 1, 0, 0, 0, · · · , 000)′. Using these notations,
equation (1-1) can be rewritten as

Y =
p∑

d=1

Zdβd + fx +
p∑

d=1

Jcuc + v

= Zβ + fx + JU + v (2-2)

3The commonly used functional forms include the Cobb-Douglas, translog, constant elasticity of substitution, the Leontief,
and so on. These are all approximation to the true but unknown functions.
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where Z = (Z1Z2 · · ·Zp), JN×n = (J1J2 · · · Jn), and U = (u1, u2, · · · , un)′.

Based on the idea of Robinson(1989), Stock(1989) and (2-2), our estimating strategy is simple. Before
addressing the estimation strategy, we need to introduce some notations. Let (δ11, · · · , δ1T , δ21, · · · , δ2T , · · ·
, δn1, · · · , δnT ) be any panel observation of a random variable δ, and w the observation of the q-dimensional
random input x. Given a kernel function K as a symmetric probability density function supported on
Rq, and a bandwidth h, the kernel estimator E[δ|w] is formulated by

E[δ|w] =

n∑
i=1

T∑
t=1

K(xit−w
h )δit

n∑
i=1

T∑
t=1

K(xit−w
h )

(2-3)

Note that local polynomial and other nonparametric smoothers can also serve to formulate E[δ|w],
however, simulation studies in Section 3 demonstrate that ûi and β̂d based on local linear type estimators
suffer larger simulated mean square error. Therefore, a local constant type of estimator (2-3) will be used
throughout this work.

We now propose our method of estimating U and β. Note that (2-1) and (2-2) imply that, based on
the “double residual” idea proposed by Robinson(1988), the residuals from estimating E[y|x], E[J |x],and
E[z|x] can form the following parametric model

y − E[y|x] = u−E[u|x] + (z − E[z|x])β (2-4)

One can use (2-4) and to estimate U and β, simultaneously via ordinary least squares procedure (OLS).
This suggests, for each i = 1, · · · , n and t = 1, · · · , T, producing nonparametric estimates of Ê[y|xit],
Ê[z|xit], i = 1, · · · , n , and Ê[Zd|xit], d = 1, · · · , p, to construct matrices Ê[y|x], Ê[J |x], and Ê[Z|x].
Their elements come from the respective kernel estimates. Based on (2-4), one can write

y − Ê[y|x] ∼= (J − Ê[J |x])u + (Z − Ê[z|x])β + v (2-5)

Let Λ = (Z X) and Ê[Λ|x] = (Ê[J |x] Ê[Z|x]). The simple OLS estimator can be expressed as
(

ui

bn+d

)
=

(
ei

en+d

)
Ω, i = 1, · · · , n and d = 1, · · · , p

where ek, i = 1, · · · , n + p , is the 1× (1 + p) vector having 1 at the kth entry and all other entries 0, and
Ω = {(Λ− Ê[Λ|x])′(Λ− Ê[Λ|x])}−1(Λ− Ê[Λ|x])′(y − Ê[y|x])

Variance as σ2 well as the covariance matrix
∑

ui,bd
of all ui’s and βd’s can be estimated respectively

by (analogous to Robinson 1988)

σ̂2 = 1
N {(y − Ê[y|x]− (Λ− Ê[Λ|x]))(

Û

β̂
)}{(y − Ê[y|x]− (Λ− Ê[Λ|x]))(

Û

β̂
)}′

and
Σ̂ui,bd

= σ̂2{(Λ− Ê[Λ|x])(Λ− Ê[Λ|x])′}−1

where Û = (û1, û2, · · · ûn)′ and β̂ = (β̂1, β̂2, · · · β̂n)′.

To estimate f(xit), one can simply perform a kernel regression of y−(J−Ê[J |x])U +(Z−Ê[z|x])β on
xit. That is, f(xit) is estimated by the kernel estimate f̂(xit) = E( y− (J− Ê[J |x])Û +(Z− Ê[z|x])β̂ | x)
as suggested by Yatchew (2003). Finally, the predicted values of yit and vit are thus given by ŷit =
ûi + β̂′zit + f(xit) and v̂it = yit − ŷit

It is worth mentioning that in Section 5 a bootstrap procedure will be adopted to compute the
bootstrapped p-values, where residuals are used to generate the bootstrapped samples repeatedly.
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3 Monte Carlo Experiments

In this section, Monte Carlo simulations are carried out to give some insights into the finite-sample
performance of our proposed estimators. Subsection 3.1 assumes that the nonparametric function f(.)
depends on a single variable, while Subsection 3.2 extends to two variables.

3.1 Single Variable in f(.)

Regression model (1-1) is arbitrarily chosen as , zit = (z1,it, z2,it, z3,it)′, and β = (15, 10, 5)′. In the
model settings, and f(xit) = 10 + 2

√
xit + xit/20 are independently drawn from a uniform distribution

U(0, 25) and normal distribution N(5, 52), respectively, while and , whose marginal distributions are
respectively N(150, 302) and N(50, 102), are drawn from a bivariate normal distribution with a correlation
coefficient 1/10. The regression error are i.i.d. N(0, σ2) variables, where for all i and t. We consider five
different (n, T ) combinations: (10, 50), (10, 15), (10, 6), (30, 6) and (100, 6). The fixed effect coefficients
ui, i = 1, · · · , n are specified by a random sample drawn from U(5, 25).

The kernel to be employed throughout this current simulation is K(r) = 0.75(1 − r2)1[−1,1](r) with
bandwidth h = cn−1/5sd(x), where sd(x) is the sample standard deviation of regressor x, and constant
c adjusted through the simulation. Note here that, the nonparametric component in the model contains
a constant 10, which serves as the intercept when the parametric OLS estimation method is applied.
We attempt to estimate coefficients β as well as the normalized fixed effect coefficients αi = ui − un,
i = 1, · · · , n. The normalization technique is pivotal if one wants to sidestep multicollinearity. For
each of the above five (n, T ) combinations, 1000 replications of regression data (yit, z1it, z2it, z3it, xit), for
i = 1, . . . , n and t = 1, . . . , T , are generated and thus applied to both the proposed semiparametric and
the parametric OLS estimation methods, assuming the true functional form to be known a priori.

Table 1 provides the simulation results for coefficients estimates β̂1, β̂2, β̂3, and (columns 5 to 7)
and the selected minimal, median, and maximal fixed-effect coefficient estimates α̂1, α̂2, α̂3 (columns
2 to 4), yielded by the 1000 replications. Recall that the parameters marked with “ˆ” represent the
semiparametric estimates, while the parameters with “˜” are the usual OLS estimates. The overheaded
“–” denotes the average of the resulting 1000 coefficient estimates. We report their respective simulated
percentage biases as well as the relative efficiencies in columns 2 to 7. The latter are defined as either
the ratio of simulated standard error se(α̃) to se(α̂) or se(β̃) to se(β̂) and are given in the parentheses.
Column 8 provides the minimal and maximal (in the brackets) relative efficiency selected among all α̂i’s,
which are measured by the ratio of the root mean squared error (RMSE) of α̃i to that of α̂i .

The simulation results indicate that, for a fixed n, the biases and relative efficiency performances
improve as the time period T increases. On the other hand, for T = 6, the estimation biases appear to
be irrelevant to the group size n. It is evident that the semiparametric estimators tend to be as efficient
as their parametric counterparts

[Insert Table 1 here]

For the three different time spans T = 6, 15, and 50, given n = 10, Figure 1a draws the relative
efficiencies of all to , based on the same 1000 replications of data. Figure 1b draws those for n = 10, 30,
and 100, given T = 6. It is clear from the two figures that as T increases, the relative efficiencies tends
to 1, indicating that our semiparametric estimators tend to be as efficient as the parametric ones. On
the other hand, when n is getting larger, both the semiparametric and the OLS estimators become more
volatile and suffer from larger simulated variances. However, our proposed semiparametric estimators
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exhibit less variability as n increases (detailed not reported) than the OLS estimators do. Hence the
improvements in efficiencies are still found.

The foregoing simulation studies suggest the following conclusions. First, the mean square errors
of the coefficient estimates deteriorate substantially when a local linear smoothing kernel is employed.
Therefore, we suggest instead using local constant type estimators (based on higher order kernel or
boundary Jackknifing carpentry when bias reduction is necessary) to establish the proposed estimator.
Second, when n is small, say 10, the percentage biases of the slope estimators are all within about 2%,
and the bias vanishes as T grows. In addition, the fixed-effects estimators perform slightly worse, with the
percentage bias less than at most 6%; the bias decreases quickly as T increases. On the other hand, given
a small T , say 6, similar results are found for the slope estimators when n grows. It can be seen that the
pattern of change in the percentage bias of the fixed-effects parameters is ambiguous, but its magnitude
is at most 8.7%, as n increases to 100. Third, even for a small T , the variances (standard deviations)
of our proposed estimators are still quite close to those of the correctly specified OLS estimators. As n
increases, both semiparametric and OLS estimators become less efficient because their variances enlarge.
It is seen from the last column of Table 1 that the semiparametric estimators are nearly as efficient as the
parametric OLS method, implying that the loss of efficiencies is negligible. The partial linear regression
model proposed by this paper is clearly preferable to the parametric ones due to its efficiency property
and failure to imposing a specific, most likely incorrect, functional form.

[Insert Figures 1a and 1b here]

3.2 Two Variables in f(.)

To understand the dimensional effect of the nonparametric function f(.) on the performance of estimators
α̂i(i = 1, · · · , n) and β̂d(d = 1, · · · , p), a second simulation is conducted, in which variable z1,it is moved
into f(.), leaving z2,it and z3,it unchanged. We use the same 1000 dataset generated in the previous
subsection, but assumed now that the nonparametric component f(.) comprises both z1 and x. Therefore,
regression model (1-1) is now specified as zit = (z2,it, z3,it), and f(z1,,it, xit) = 15z1,it+10+2

√
xit+xit/20.

Note here that the OLS estimates under this context all remains intact due to the linearity of model
(1-1). Note here that a product kernel function for q = 2 has to be applied to (2-3), now let w1

and w2 denote any panel observations of z1 and x, and define r1 = (z1,it − w)/h1, r2 = (xit − w)/h2,
where h1 and h2 are the bandwidths. The product kernel used here is thus formulated as K(r1, r2) =
0.752(1− r2

1)(1− r2
2)1[−1,1]×[−1,1](r1, r2),

Under the above model setting, we attempt to quantify whether the bias and efficiency loss are getting
worse when the nonparametric function f(.) has two variables.

[Insert Table 2 here]

Table 2 summarizes the second simulation results and gives almost the same implications as Table
1. Given n = 10, the estimators are increasingly biased toward 0 as T grows. Although the bias of the
estimator grows slightly as the number of firm increases, when T is fixed at 6, it is nevertheless acceptable.
Generally speaking, the increase in the number of regressor contained by f(.) has insignificant impact on
the bias.

As an additional comparison, we compute the ratio of simulated standard error se(α̃) to se(α̂) or
se(β̃) to se(β̂). The outcomes are shown in the parentheses. Except for the case of small n and T , i.e.,
n = 10 and T = 6, all these relative efficiency measures are above 75% – in some they exceed 90% – and
increase quickly with either n or T grows. For the instance of n = 10 and T = 6, the ratio exceeds 57%.
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As most empirical studies that use panel data contain much more units than 10, the employment of our
semiparametric model appears to be feasible.

It is seen that most of the percentage bias figures in Table 2 are less than those in Table 1. However,
all the relative efficiency measures of Table 2 fall below those of Table 1. The trade-off between the bias
and efficiency is obvious. Evidence is found that the higher is the dimensionality of f(.), the lower the
bias will be, but the less efficient the estimator is in expense.

Again, Table 2 presents the ratio of RMSE of to the RMSE of in the last column. In all cases this
ratio is in excess of 55% and in some it exceeds 85%. The comparison is most favorable to when either
T or n increases. Thus for this model the disadvantage of using the semiparametric estimator is likely to
be moderate. This is in sharp contrast to Table 1, where the same ratio is quite close to unity.

In summary, as far as the bias is concerned, both of the one- and two-variable cases are close to each
other with the former case slightly worse than the latter. Furthermore, the loss of efficiency rises with
the dimension in f(.), but remains modest and, hence, acceptable at least for the two-variable model.
The bias is inclined to be negatively correlated with the loss of efficiency.

4 An Empirical Application

In this section, we exemplify our semiparametric model by estimating a widely used translog production
frontier, which allows for the expenditure on research and development (R&D) entering in an unknown
form. The conventional translog production frontier is also estimated for the sake of comparison. Sub-
section 4.1 describes the data and Subsection 4.2 presents the empirical results.

4.1 The Data Source

(omitted)

[Insert Table 3 Here]

4.2 Empirical Results

The translog part of (1-1) excluding intercept term is specified as

yit =
3∑

d=1

βdzd,it +
1
2

3∑

d=1

3∑

k=1

βd,kzd,itzk,it + βτ t +
1
2
βττ t

2 +
3∑

d=1

βτdzd,itt (4-1)

where the symmetrical constraints, βjk = βkj(∀j 6= k), have to be imposed and linear trend t and
quadratic trend are introduced to account for the possible productivity change over time. It is noteworthy
that fixed parameters are estimated as the coefficients of the firm specific dummies. The last dummy
variable is arbitrarily selected to be omitted in such a way as to avoid the problem of linear dependence
between the dummy variables and nonparametric function . This appears to be understandable, because
the functional from of is completely free such that the intercept term is likely to be included in.

[Insert Table 4 Here]

Table 4 shows the parameter estimates of (4-1) for the partially linear model and the conventional
linear model. The estimated fixed effects are presented in appendix. In addition, the parametric model
incorporates R&D as an extra term of the explanatory variables.
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It is deserved a specific mention that the asymptotic distributions of β̂d and α̂j from the semipara-
metric model are yet to be derived. To test the point null hypothesis H0 : βd = 0 (or H0 : αj = 0)
against the alternative H1 : βd 6= 0 (or H1 : αj 6= 0), we propose using the bootstrap method to examine
whether or not the estimates β̂d and α̂j from our sample of data are compatible with the null hypotheses.
The bootstrap method is a common practice to get the small-sample distribution of the chosen estimator
or test statistic. Table 4 lists the bootstrapped single tail p-values for the semiparametric case, while
the two-tail p-values for the parametric case (not shown) are directly adapted from the t distribution.
Readers are suggested to refer to Yatchew (2002) for the exact resampling procedure adopted by this
exercise.

Under a two-tail test, there are 4 parameter estimates are significant at the 10% level of significance
for the both models. Interesting enough, all the slope parameter estimates of the both models have
the same signs and the magnitudes of each pair of these estimates are close to some extent. Similar
inference can be drawn from the fixed parameter estimates as shown in the appendix. There are only
three out of 95 pairs of the fixed parameters having distinct signs. Since the coefficient estimates of R&D
for the parametric model is insignificant, one is led to conclude that either the variable is an irrelevant
independent variable to the regression model, or the functional form of the regression model is subject
to specification errors. However, as the semiparametric model that introduces the same variable – R&D
– is found to have equal number of significant slope parameter estimates and all these estimates do not
deviate very far from those of the parametric model, variable R&D seems to be an important factor
in the description of the production process for the electronics industry. Hence, the functional form
misspecification may be the primary cause.

5 Concluding Remarks

This paper has proposed a feasible estimation procedure particularly suitable for a fixed-effect panel
data model under the framework of partially linear model settings. For the past few decades, such data
banks having several years of data on a number of firms, households, or geographical areas become more
and more popular. Although there exist several econometric approaches amenable to panel data, it is
nevertheless devoid of valid semiparametric approaches that are able to utilize the enriched sample data
and to yield unbiased and almost the same efficient estimators as the ones obtained by the parametric
approach. The estimation procedure suggested by this paper attempts to help shed some light on filling
up this gap existent in the literature.

According to the results of the Monte Carlo simulations, our procedure appears to be able to result
in desirable estimators in terms of the percentage bias and the relative efficiencies. For the case of single
variable, the slope estimators perform much better than the fixed parameter estimators. However, the
performance of the fixed effects estimators of the semiparametric model is close to those of the correctly
specified parametric model, on the basis of the relative RMSE of to . As far as the instance of two
variables is concerned, the efficiency of the semiparametric estimator deteriorates moderately, while its
bias tends to be lessened somewhat.

To illustrate our estimation procedure, an empirical study on the production function of Taiwan’s
electronic industry is carried out, in the context of both semiparametric and parametric settings. When
the true functional form of the production frontier is not known, a priori, which is usually the case, the
semiparametric model should be more competent than the parametric model. The use of the semiparam-
etic model appears to enhance our empirical capacity for understanding a firm’s production technology
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Figure 1:
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Table 3.1

(n, T ) bα1−α1
α1

bα n
2
−α n

2
α n

2

bαn−αn
αn

bβ1−β1

β1

bβ2−β2

β2

bβ3−β3

β3

RMSE(bαi)
RMSE(eαi)

(10,30) -2.46 0.25 -0.42 0.10 -0.98 0.33 97.65
(97.40) (97.58) (97.54) (99.45) (98.38) (99.01) (99.05)

(10,15) 5.70 0.84 0.32 0.09 2.03 -0.30 95.06
(96.17) (96.16) (97.02) (95.28) (96.53) (95.05) (97.67)

(10,6) 6.10 -3.10 -2.30 -0.14 1.20 0.40 88.26
(92.97) (92.47) (93.51) (92.63) (91.51) (90.19) (93.49)

(30,6) -8.70 1.89 1.35 -0.01 -1.81 0.37 95.06
(95.68) (97.36) (97.41) (96.16) (96.48) (97.12) (98.30)

(100,6) 2.14 6.50 0.96 0.02 -0.15 -0.11 97.20
(98.14) (98.55) (98.45) (99.36) (98.54) (98.57) (99.38)

Table 3.2

(n, T ) bα1−α1
α1

bα n
2
−α n

2
α n

2

bαn−αn
αn

bβ2−β2

β2

bβ3−β3

β3

RMSE(bαi)
RMSE(eαi)

(10,50) -0.61 0.09 -0.99 0.10 -0.20 (98.00)
(91.29) (91.15) (90.02) (91.24) (92.71) (92.69)

(10,15) 1.93 1.56 -0.03 2.66 0.32 77.12
(78.09) (78.63) (82.39) (78.06) (77.11) (82.39)

(10,6) -1.65 -5.42 -0.06 2.82 -0.14 57.40
(60.46) (59.90) (57.40) (59.44) (57.86) (61.65)

(30,6) -4.56 -1.19 -0.76 -0.76 -2.42 77.79
(79.62) (82.3) (79.94) (79.04) (79.54) (82.38)

(100,6) 0.92 4.68 0.27 -0.32 -0.09 87.37
(88.89) (92.39) (89.00) (92.10) (89.63) (92.40)
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