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2. 3% ¥ 2 4 & : For estimating the common mean of two normal populations with
unknown and possibly unequal variances the well known
Graybill-Deal estimator (GDE) has been a motivating factor for
research over the last five decades. Surprisingly the literature
doesn’t have much to show when it comes to the maximum
likelihood estimator (MLE) and its properties compared to those
of the GDE. The purpose of this note is to shed some light on
the structure of the MLE, and compare it with the GDE. While
studying the asymptotic variance of the GDE, we provide an
upgraded set of bounds for its variance. A massive simulation
study has been carried out with very high level of accuracy to
compare the variances of the above two estimators results of
which are quite interesting.
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Abstract
For estimating the common mean
normal

of two populations  with

unknown and  possibly  unequal
variances the well known Graybill-Deal
estimator (GDE) has been a motivating
factor for research over the last five
decades. Surprisingly the literature
doesn’t have much to show when it
comes to the maximum likelihood
(MLE) and

compared to those of the GDE. The

estimator its properties
purpose of this note is to shed some light
on the structure of the MLE, and
compare it with the GDE. While
studying the asymptotic variance of the
GDE, we provide an upgraded set of
bounds for its variance. A massive
simulation study has been carried out
with very high level of accuracy to
compare the variances of the above two
estimators results of which are quite

interesting.

Keywords: Admissibility, Inadmissibility,

Asymptotic Variance

1. Introduction

One of the oldest and most

interesting  problems in  statistical

inference, which has dogged the
researchers over the last five decades, is
the estimation of a common mean of two
normal populations with unknown and
possibly unequal variances.

To be specific, let us assume that

we have iid observations

Xil’ e Xin,- from N(/,l, 0[2), i:l, 2.
Define X, and S, as

X, =YX, In, (1.1)

J=1

S, =3, - X,)%,
j=1

where

)?i ~ N(u, (71‘2 In), S, ~ 0[21(2,’[71) (i=12),

and these four statistics are mutually

independent. Throughout this note it is



assumed that n, >2 (i=12) unless
mentioned otherwise.

Note that (X,,X,,S,,S,) is
minimal sufficient for (u, o7, o>) but
not complete. As a result, one can not
get the UMVUE (if it exists) using the
standard Rao-Blackwell theorem on an
unbiased estimator for estimating the
common mean .

The motivation of this problem (i.e.,
estimation of x ) comes from a

balanced incomplete block design
(BIBD) with uncorrelated random block
effects. For the ¢” treatment effect (say,
7,) one has two estimates - namely, the
intra-block estimate and the inter-block
estimate (say, 7, and 7; respectively).
Under the usual design assumptions, 7,
and 7; are independent, have normal
distributions with the common mean 7,
but with unknown and possibly unequal
variances. The problem thus boils down
to derive an efficient estimate of 7, on
the basis of 7,, 7; and their variance
estimates.

Coming back to our original model
(1.1), if the

population variances

(c7,i=1,2) are completely known,
then the optimal estimator of x is
2 —_ 2
H= Z(Hi /o-iz)Xi /Z(nz /O-iz) (1-2)
i=1 i=1

which is the UMVUE, BLUE as well as

the MLE. For the case of equal sample
sizes, one just needs to know the
ratio(c’ /o), apart from X, and
X, to obtain (1.2).

In our present problem, where
c’,i=1,2, are unknown and possibly

unequal, the most appealing unbiased

estimator of u has been the

Graybill-Deal estimator (GDE) given as

fop = (n, 19X, 15 (n,157) (1.3)
i=1 i=1

where s?=81I(n,-1), i=12.

Graybill and Deal (1959) obtained

conditions on n, and n, for which
[, has a smaller variance than X,

i=12.

Even though Graybill and Deal
pioneered the research on common mean
estimation, it is probably due to Zack’s
(1966, 1970) that

researchers

many  other

paid attention to this
interesting problem and its real-life
applications. In Zack’s own words - “---
In 1963 | was approached by a soil
engineer. He wanted to estimate the
common mean of two populations and
he didn’t know anything about the
variances. But, apriori from his theory
he said that the means should be same,
and here are the two samples from two

different soils. So I thought about this



problem a little bit and | started to
investigate. | realized that there is room
for innovation --
al. (1991)).

For other

- (see Kempthorne et

applications of the
common mean problem, especially in
clinical trials, see Kelleher (1996).

Most of the research so far on the
estimation of a common mean has taken
place on three fonts: (i) comparing the

GDE with the individual sample means
(i.e., X.’s); (ii) studying the optimality

of GDE and its natural generalizations in
suitable classes of estimators; and (iii)
studying the performance of Bayes and
preliminary test-based estimators with
that of the GDE. For a good review of
the literature on this problem and other
generalizations one can see Kubokawa
(1987, 1991) and other
therein. Among some interesting results
pertaining to the GDE, Sinha (1985)

references

obtained an unbiased estimate of the
variance of the GDE in the form of an
infinite series which can be truncated
suitably to get an approximate unbiased
estimate up to any desired order. This

result is helpful because the studentized
version  [(Ag, — 1) 1Var(fig, )31,

which follows N(0,1) asymptotically,

can be used for testing as well as for

interval estimation of 1.

Quite surprisingly there hasn’t been
any discussion about the MLE and its
performance relative to the other
estimators, especially the GDE. It should
be pointed out that the GDE (in (1.3)) is
not the MLE, contrary to the statement
made by Kelleher (1996) or Sinha
(1979).

The purpose of this note is to focus
on the MLE and its properties which
have long been neglected in the
literature. Even with the availability of
affordable and

resources no comparison has been made

efficient computing
so far to see how the GDE performs
relative to the MLE. An important
component of our study has been to see
how the variances of the GDE and the
MLE depend on the parameters as well
as the sample sizes. The numerical
results that are reported in the literature
didn’t take this aspect seriously. As a
result, the reported numerical studies
have been haphazard, or incomplete at
best.

In Section 2 we study the structure
of the MLE and provide a useful
representation. Also we find its bias
(exact) and variance expressions. Further,
we upgrade the existing results to obtain
tighter bounds for the variance of the

GDE. In Section 3 we report the results



of our extensive numerical study
comparing the variances of the GDE and
the MLE. A large number of replications
has been used to ensure a very high level
of accuracy of our results. Also, the
numerical  results provide some
interesting and useful trends.

Before going to the next section we

clarify some of the notations which have

been used heavily in the rest of the paper.

The other notations will be mentioned

later as they are adopted.

Notations: Define

y = 012 /022, a=yl(kk), (1.4)

where

ko =(n,In,), k, =(n, —1)/(n, -1).

Also assuming n, >3,i=1, 2,

k, =(n, —3)/(n, -1) and
k, = (n, —=1)/(n, - 3)

2. The MLE of the Common Mean

The reason why the MLE of u

has eluded the interest of many
researchers is probably its complicated
structure. It doesn’t have any closed
expression, and as a result the exact
sampling distribution is impossible to
derive.

The log-likelihood function of the

minimal sufficient statistics (1.1) is

2
L =Y [constant — (n, /2) In(c?) .

{8, + (X, - ) }(207)] (2.1)

Differentiations of L w.rt. u, o7 and

o5, and setting them equal to O yield
the MLES [, 614, G5uny, Which

must satisfy

A ~2
Oymry = (Sy/ny) +{n201(ML)

~2 A2 2 2
/(nZO-l(ML) +”10'2(ML))} D~

(2.2)

A ~2
Oomry = (Sy1ny) +{”102(ML)

~2 A2 2 2
/(nZO-l(ML) +”10'2(ML))} D~

(2.3)

Hog :{ﬁi(ni /o’:i(ML)))?i}/{i(ni /&i(ML) )2
(15) -
(2.4)

where D =(X,-X,).

Notice that both &y, and

Gyuuy are functions of S, S, and
D? = (X, - X,)*. Thus it is easy to write
fyy 8S

i, =X,-Dd,.  (25)
where
b = 1 (S0, S5, D?)

= (n, /O’:Z(ML))/{(nl /5-1(ML)) +(n, /5-22(ML))}'



(2.6)

Using the facts that D? is independent
of (S,S,) , and the
distribution of D|D? is centered at O,

conditional

it is easy to obtain the following result.

Theorem 2.1. The MLE 4, (in (2.4))

is unbiased for the common mean .

The fact that the MLE is unbiased
is not surprising. Also, 4, is a
member of the class of affine (i.e.,
location and

scale) transformations

given as

C={/3|/3=X D,

A

<$=4(5,. 5, D’)<1,
is also a class of unbiased

The admissibility  (or
otherwise) of the GDE (in (1.3)), under

which

estimators.

the squared error loss function, in C
has been an open problem for a long
time. However, Sinha and Mougadem
(1982) considered the special case of
n, =n,=n (say), and showed that /.,
is extended admissible in C for n>5,
i.e., there doesn’t exist any 4 eC such
that Var(u) <Var(ig,)—¢ for all
(6f,07) and £>0.

In the rest of the paper we’ll study
the variances of 4, and f, which,
among other things, enable us to
compare them comprehensively. We

write the variance expression of each

estimator in a standardized form as
Var(\Jn, 1 5,), and that too through a

simple representation which allows us to
see how each expression depends on
(o}, 02%) as well as (n, n,). This also
helps us in our numerical study to
compare the variances effectively.
Characterize the minimal sufficient

statistics as

Si:O-iZI/i and)?i :1u+(o-i/\/n_i) Z,,

i=12 (2.8)
where V.~ ., . Z~N(01) ,
(2.7) :
i=1,2 , and they are independent.

Further, we write
S, =c; @A y)V, and

= u+ (o INm Wy 17) Z,. (2.9)
Now, define the scaled versions of
Gl and G5,y 8564, = (1 07) 64y,
and

5'20 (n, /O'z )o O-Z(ML)

(2.10)
Using (2.8) —(2.10), the equations (2.2)
and (2.3) can be rewritten as (with

details omitted)

5'120 :V1+{U10 /(0'1o+(k /7/)020)}
X(Zl_\/(ko/7 Zz)

(2.11)

(”1/0'1) (rlk, )O-Z(ML)'



6_220 =V, +(k, /7/){1‘0&220 /(5'120 + (ko2 /7/)&220 )}Eomes

x(Z, _\/(ko/V) Zz)z-

(2.12)
Thus, to obtain the MLEs of & and

o, for given (o},0) and

", V,, Z,, Z,), one first needs to solve
(2.11) and (2.12) to get &2 and &5,

and then rescale them according to (2.10)
resulting into 6y, and &7,

Using (2.8) —(2.10) in (2.4), the
estimator 4,, is represented as (with
details omitted)

s (= 1) 0,
={ks O Zy +1 ke 51y Z,}
/{ko2 6-220 +75'120}
=H,,(V,V,,Z,,Z,|y)=H,,

(say). (2.13)
The following result is now trivial.

Theorem 2.2. Var(\/n_lftML /o))
=E(H.,),where H,, isgivenin
(2.13).

From (2.13) and the above theorem

it is now clear that Var(\/Z[zML/al)

depends on the parameters solely through
7 =(c210l). In fact, this is true for any
£ in C (see (2.7)).

Remark 2.1. The expression (2.13)

handy to study

Var(\n, &1,,  o;) numerically through
simulation. For specific y and (n,n,),
the random vector 7 =(V,,V,, Z,, Z,)
is generated a large number of times, say
QO times. Get HU) =H(TY|y),
where 7% isthe ¢% replication of T.

Note that

Vi~ X6 Z:~N(0,1),i=12. Then

E(HZ,) is  approximated by
Q 0
O(H3)° 10}

Though any further simplification
of (2.13) seems unlikely, the asymptotic

variance of /,, iseasy to get. The (1.1)

element of ) A where
I=1(u,cl,05) is the (3x3)
information matrix, IS
(n, 1)+ (n, 1)),

result is immediate.

The following

Theorem 2.3. AsympVar(\n, i1, 1 67),
={l+ (k)Y =V (say).

The above asymptotic variance of
i, , Which has a very simple closed
form, will come useful to see how close
the simulated variance (in Theorem 2.2)
gets to
Though %, has

its asymptotic counterpart.

been defined as

(n,/n,), for asymptotic purposes it can



be ftreated as a
(n,In,).

limiting value of

We now turn our attention to the
age-old GDE for comparison to the
MLE. From (1.3) it is trivial to get

Var(/&GD) :(0-12 /nl)E(éCZiD)
+ (03 /1)) E(L-d5p)),
(2.14)

where

Bop = (ny 1 s2)H{(ny 1 s2) + (n, 1 s2)},
s?=8I(n,-1),i=12.

Using the notations in (1.4), (1.5),
and the representation in (2.8), it is seen
that (with details omitted)

Var(\Jn, figy 1 0,) = E{+a )}
+ B E{(a+ F,)*}
:E{HéD(Vl’ v, |7)}:E{HéD}

(say), (2.15)

where o =y /(ky k),

B=rlk, klz)!

F, =1/F and

F =01V, and

Hgp :{(1+aF1)_2 + f(a +F2)—2}1/2.

Remark 2.2. Again, the expression

(2.15) will come handy for computing
Var(\/n_l[tGD/O'l) through simulation.

The variance will be approximated by

0
QO (HE)?10), after O replications
=1

HY's of H,.

An observation can be made about
the lower bound of Var(\/n, fig, /o)

from (2.15). The two terms of H, in
(2.15) are convex in F, and F,
respectively. Using Jensen’s inequality
and using E(F)=1/k, , E(F,)=k,,
we have
Var(\n figy 16,) > {l+alk}7 + pla+k,}7
={1+(y/ky)(n, =) I(n, —3)}°
+(rkoy + ko (n, = 1) I(n, = 3)}°
= A4.(7), (say).(2.16)
Nanayakkara and Cressie (1991)

provided an upper bound of
Var(\n, fig,1,)  which  simplifies,

after rearranging the terms in their

inequality (2.30), as follows:

Var(n; fign | 0) <L+ Jk; 1)1 230+ (71 ko)
= Aye (7).
(say). (2.17)
It is easy to see that as », and n,
go to infinity, taking &, as the limiting

value of (n,/n,), both A.(y) and

A7) converge to {L+(y/k,)}"

(defined as ¥, in Theorem 2.3).

Therefore, the following result is
obvious, i.e., the GDE is first order

efficient.



Theorem 2.4. AsympVar(\n, i, 1 0,).
={1+(/k)} " =V,

Another set of bounds for

Var(\/n, fig,1o,) has been suggested

by Korwar (1985) which is presented

below in a much convenient form.

Theorem 2.5. (Korwar (1985)) With «
asin (1.4), define
by = (n, =D{Bn, - T)a +(3n, -1},
b, =2(n, -1)°,
by ={(n, Do +(n, —3)}
x{(n, -3)a +(n, +1)}
+2(n, +)(1- ),

B, =B, (n,, n,, )
={by — /by —4b,b, }(2b,),

B, =B,(n, n,, @) =1-B,(n,, n,, 1/ a),
Co = (n, ~D{a(n, +1)
+(n, =3)}{2a(1-a)(n, -1},
and
C, =[{(n, —Da +(n, -1)}
x{(n, -3)a +(n, +1)}

—-4(1-a)(n, -] {2al-a)(n, -1}

Then,

A (y) <Var(\n, I[IGD lo)) < A;(7)’

where

(@ for O0<a<l, A«x(y)=CB,-C,
and 4, (y) =CB, ~Cy;

(b) for

l<a<w, A« (y)=CB,-C,

and 4,(y)=CB,-C,.

Remark 2.3. Korwar’s (1985) original
result is a bit cumbersome, and discusses
only the case O<a<1. Also, the
bounds don’t exist for « =1. However,
for a =1 exact variance expression
can be derived (from his expression

(2.1), page-357) as

Var(Jn, figy16,)| o ={(n, =D (n, +n, +2)}
/{(nl + nz)(nl tn, — 2)}

Combining all the bounds
discussed above, a set of tighter bounds

are obtained as

max{A.(y), A, ()}

S Var(\/n_]_:&GD In,)
<min{A,(7), 4 (7)}. (2.18)

Remark 2.4. The above upgraded
bounds in (2.18) are the best (to our
knowledge) so far. Our extensive
numerical computations show that the
bounds in (2.18) can be tighter than
those in Theorem 2.5, especially when

y 1S near zero or too large.

3. Numerical Comparison of the

Variances

The expressions in (2.13) and (2.15)



are used to simulate the variances of
i,, and g, in a comprehensive
manner some of which are reported
below. The simulation was massive in
the sense that Q=10 replications
have been used for obtaining each
simulated variance value, and this is
done to achieve a high level of accuracy.
Also, the asymptotic variance ¥V, of the
MLE as well as the GDE is reported
here as a benchmark which is calculated
directly from the formula in Theorem
2.3. For convenience the following
notations are used in the subsequent

tables.
Vi = Var(\/n_llleL o)

Vop =Var(yny igp 1 07).

The values of ¥, are more stable
than the V,, values in the sense that
while the standard error (SE) of the
simulation varied from 0.0051 to
0.00001 for the V,, values, the range
of the SE for the ¥, values has been
0.0005 to 0.00001. This is expected
because z,, is obtained after solving a
system of nonlinear equations which
may add a component of computational
error, however small, to the overall
sampling variation.

The overall picture that emerges

from the simulation study is quite

interesting, and  challenges  the

conjecture  that g, might be
admissible.
First of all, V,, and V,, are

found to be very close to each other,
indicating that probably there isn’t much
difference between these two estimators’
performance. The overall picture shows
three broad trends as presented in the
Apart

the SE of the

following tables. from the
simulated variance,
simulation is provided in brackets under
each value.

Case-l.

For equal sample sizes
(i.e., ky=n,/n,=1), we observe two
subtrends.

(@ When n,=n,=n (say) <
25, the g, is better than 4, for
extreme values of y(i.e. » close to O
or o). For y near or around 1, /i,
has better performance than zx,,. The

Table 3.1 (a) shows this subtrend.

(b) For n,=n, =n (say) > 25,
i,, appears to be better than f,
uniformly over . However, for y
near 1, the dominance of ,, over
L, doesn’t seem to be statistically
significant, since the difference that we
see between the simulated 7,, and
V., is well within 2SE of the difference.
(A simple two sample normal or ¢-test

would strongly indicate that V., and



V,, are equal for y near 1) The
following Table 3.1 (b) testifies this
subtrend. Even though asymptotically
Vipg =Vep =V,, It appears that V, is

converging a bit slowly.

Case-1l. For n, and n, unequal,
but not drastically different (i.e., k, #1,
but roughly 0.2<k,<50 ), the
variance curves of g, and /g,
cross each other only once (from small
values of » to large, or vice-versa). In
this case none dominates the other

uniformly. However, as £k, moves

away from 1, the trend of Case-lll
(discussed later) slowly emerges. This is
shown in the following Table 3.2.
Case-l11l.When »n, and n, are
drastically different from each other (i.e.,
k, is roughly >5.0 or <0.2), the MLE
seems to outperform the GDE uniformly.
In some cases, for y too small or too
large, there may not be any statistical
difference  (taking the SE into
consideration)  between the  two
simulated variances; but for » in the
middle the MLE is certainly better than
the GDE. This is

reported in the

following Table 3.3.

Remark 3.1. Under the Subcase-l (a)
and the Case-ll, the MLE and the GDE

doesn’t dominate each other uniformly.

If one performs better on one part of the
parameter space, then the other does so
on the remaining parameter space. But
under the Subcase-I (b) and the Case-lllI,
the MLE does show superior
performance than the GDE uniformly,
though  this

may be marginal

occasionally. This appears to be
something new since no other estimator
of the common mean in the literature has
been reported to be performing better
than the GDE uniformly. Considering all
the three cases discussed above, the
MLE’s overall performance seems more
appealing than the GDE, barring the fact
that no explicit expression is available

for the MLE.

4. Concluding Remark and Comments

The work focuses on the
performance of the MLE of a common
mean with unknown and possibly
unequal variances which has been long
neglected in the literature. Our
surprising finding is that the MLE has
better overall performance than the
popular GDE, and at least for the
heavily unbalanced case and the
asymptotic balanced case the MLE
seems to outperform the GDE uniformly.

It is hoped that this paper will stimulate



further research in studying the MLE of
the common mean. Last but not least, a
copy of our program and/or further
simulation results will be made available

to any interested reader.
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Vo 0.9091 0.8333 0.6667 0.5000 0.3333 0.1667 0.0909
Vi 0.9431 0.8997 0.7428 05627 0.3718 0.1792 0.0948
(0 0N42Y (0 0NA1Y (0 NNRRAY (O 0N2RY (0 NON17Y (O NNNKRY (N NNNAN
(10, 10) Vap 0.9641 0.9006 0.7310 05503 0.3658 0.1802 0.0966
(0 0ONNRY (O NNNRY (0 NNNRY (O 0NN2Y (0 0ON1Y (O NNNTY (O NDNNTY
Vo 09091 0.8333 0.6667 0.5000 0.3333 0.1667 0.0909
Vi 0.9286 0.8630 0.7088 0.5380 0.3555 0.1720 0.0927
(0 0N41Y (0 N0NRAY (N NNR2Y (0 NN24Y (0 ON1RY (0O NNNKRY (N NNNAN
(15, 15) Vap 0.9391 0.8729 0.7085 05331 0.3544 0.1747 0.0939
(0 0NN2Y (0 0N0N2Y (0 NNN2Y (O 0NNTY (0 00N1Y (O NNNTY (0 NDNNNY
Vo 09091 0.8333 0.6667 05000 0.3333 0.1667 0.0909
Vi 09172 0.8534 0.6984 05311 0.3496 0.1692 0.0918
(00N41Y (0 0N2RKY (N NNR1Y (O NN24Y (0 ON1RY (O NNNRKRY (O NNNAN
(20, 20) Vo 0.9295 0.8613 0.6977 05249 0.3489 0.1722 0.0929
(0 00N1Y (0 00N02Y (0 0NN1Y (O 0N0NOTY (0 00N1Y (O 0NNNY (O NDNNNY
Vo 0.9091 0.8333 0.6667 _0.5000 _0.3333 _0.1667 _0.0909




Table 3.1 (b). Variances of the MLE and the GDE for Case-1 (k, =1) with

n, =n,=n225.

. y
(. n;) | Variance —g 0.2 05 1.0 2.0 50 10.0

Vi 0.9141 08432 06868 0.5187 0.3423 0.1696 0.0915

(0.0041) (0.0038) (0.0031) (0.0023) (0.0015) (0.0008) (0.0004)

(25, 25) Vep | 09245 0.8550 0.6911 0.5201 0.3458 0.1710 0.0924
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000)

v, 0.9091 0.8333 0.6667 0.5000 0.3333 0.1667 0.0909

Vi 0.9077 0.8383 06746 05065 0.3369 0.1670 0.0908

(0.0041) (0.0038) (0.0030) (0.0023) (0.0015) (0.0007) (0.0004)

(50, 50) Vep | 09159 0.8433 0.6788 05100 0.3394 0.1687 0.0916
(0.0000) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000)

v, 0.9091 0.8333 0.6667 0.5000 0.3333 0.1667 0.0909

Vi 0.8999 0.8315 06687 0.5015 0.3334 0.1664 0.0906

(0.0040) (0.0037) (0.0030) (0.0023) (0.0015) (0.0007) (0.0004)

(100,100)| ¥, | 09123 0.8382 0.6727 0.5050 0.3363 0.1676 0.0912
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

v, 0.9091 0.8333 0.6667 0.5000 0.3333 0.1667 0.0909

Vin 0.9072 0.8288 06684 04955 0.3315 0.1666 0.0908

(0.0041) (0.0037) (0.0030) (0.0022) (0.0015) (0.0007) (0.0004)

(500, 500) | Vg 0.9097 0.8343 0.6679 0.5010 0.3339 0.1669 0.0910
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Vo 0.9091 0.8333 _0.6667 _0.5000 _0.3333 _0.1667 _0.0909

Table 3.2. Variances of the MLE and the GDE for Case-1l (k, #1,0.2 <k, <5.0).

: v
() | Variance —g 0.2 05 1.0 2.0 50 10.0
V.. | 08397 07156 04866 03062 0.1750 0.0757 0.0387

(0.0038) (0.0032) (0.0022) (0.0014) (0.0008) (0.0003) (0.0002)

(10,25) | ¥, | 08390 07081 04775 0.3067 0.1773 0.0772 0.0395

(0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000)

v, | 0.8000 0.6667 04444 02857 0.1667 0.0741 0.0385

V.. | 09762 09508 08757 0.7664 0.6059 0.3576 0.2104

(0.0044) (0.0042) (0.0039) (0.0035) (0.0027) (0.0016) (0.0009)

(25,10) | ¥, | 0.9879 0.9649 08869 0.7668 0.5965 0.3540 0.2097

(0.0003) (0.0004) (0.0004) (0.0003) (0.0002) (0.0001) (0.0000)

v, | 09615 09259 08333 07143 05556 0.3333 0.2000

V.. | 09788 09649 09304 08686 07511 05390 0.3525

(0.0044) (0.0043) (0.0042) (0.0039) (0.0034) (0.0024) (0.0016)

(50,10) | V., | 0.9942 09847 09491 08822 07619 0.5322 0.3512

(0.0002) (0.0003) (0.0004) (0.0004) (0.0003) (0.0001) (0.0001)

v, | 09804 09615 09091 0.8333 07143 05000 0.3333

7., | 07100 05339 03046 01730 00933 00390 0.0198

(0.0032) (0.0024) (0.0014) (0.0008) (0.0004) (0.0002) (0.0001)

(10,50) | ¥, | 07027 05320 03049 0.1765 0.0949 0.0394 0.0199

(0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000)

v, | 06667 05000 02857 0.1667 0.0909 0.0385 0.0196




Table 3.3. Variances of the MLE and the GDE for Case-1ll (k, <0.2 or k, >5).

0.1

10.0

0.6040

(0.0027) (0.0019) (0.0010) (0.0005) (0.0003) (0.0001)

0.6044
(0.0001)

0.5714

0.0132
(0.0001)

0.0133
(0.0000)

0.0132

0.9888
(0.0044)

0.9964
(0.0002)

0.9868

0.4525
(0.0021)

0.4534
(0.0001)

0.4286

0.5282
(0.0024)

0.5302
(0.0001)

0.5000

0.0099
(0.0000)

0.0100
(0.0000)

0.0099

0.9911
(0.0044)

0.9970
(0.0001)

0.9901

0.9524 _0.9091

0.5278
(0.0024)

0.5303
(0.0001)

0.5000




