
  

專題研究計畫成果報告中英文摘要 

計畫名稱：兩常態母群體共同平均數估計式 MLE 和 GDE 之比較 

1. 計畫中文摘要：假設兩常態母群體具有相同平均數的條件底下，在過去幾十 

年當中，被用估計這個共同平均數的估計式，除了最大概似 

估計式(MLE)之外就屬 Graybill-Deal 估計式(GDE) 最受矚目 

了。然而這兩個估計式之間在不同準則底下的統計性質哪一 

個表現較佳，在一般文獻中卻鮮少被討論，原因可能是最大 

概似估計式(MLE)較為複雜，而且在母體變異數未知的情況 

底下無封閉解，所以造成理論發展的阻礙。本研究已變異數 

來比較 MLE 和 GDE 這兩個估計式的表現，另外，在探討 

GDE 的漸近變異數時，本研究一更新了 GDE 變異數的區間 

範圍。 

關鍵詞：變異數、漸近變異數、均方差、PNC、SDC 

2. 計畫英文摘要：For estimating the common mean of two normal populations with 

unknown and possibly unequal variances the well known 

Graybill-Deal estimator (GDE) has been a motivating factor for 

research over the last five decades. Surprisingly the literature 

doesn’t have much to show when it comes to the maximum 

likelihood estimator (MLE) and its properties compared to those 

of the GDE. The purpose of this note is to shed some light on 

the structure of the MLE, and compare it with the GDE. While 

studying the asymptotic variance of the GDE, we provide an 

upgraded set of bounds for its variance. A massive simulation 

study has been carried out with very high level of accuracy to 

compare the variances of the above two estimators results of 

which are quite interesting. 
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Abstract 

For estimating the common mean 

of two normal populations with 

unknown and possibly unequal 

variances the well known Graybill-Deal 

estimator (GDE) has been a motivating 

factor for research over the last five 

decades. Surprisingly the literature 

doesn’t have much to show when it 

comes to the maximum likelihood 

estimator (MLE) and its properties 

compared to those of the GDE. The 

purpose of this note is to shed some light 

on the structure of the MLE, and 

compare it with the GDE. While 

studying the asymptotic variance of the 

GDE, we provide an upgraded set of 

bounds for its variance. A massive 

simulation study has been carried out 

with very high level of accuracy to 

compare the variances of the above two 

estimators results of which are quite 

interesting. 

Keywords: Admissibility, Inadmissibility, 

Asymptotic Variance 

 

1. Introduction 

 

 One of the oldest and most 

interesting problems in statistical 

inference, which has dogged the 

researchers over the last five decades, is 

the estimation of a common mean of two 

normal populations with unknown and 

possibly unequal variances. 

 To be specific, let us assume that 

we have iid observations 

iini XX ,,1 L from .2,1),,( 2 =iN iσμ  

Define iX  and iS  as 
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where 
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 and these four statistics are mutually 

independent. Throughout this note it is 



  

assumed that )2,1(2 =≥ ini  unless 

mentioned otherwise. 

 Note that ),,,( 2121 SSXX  is 

minimal sufficient for ),,( 2
2

2
1 σσμ  but 

not complete. As a result, one can not 

get the UMVUE (if it exists) using the 

standard Rao-Blackwell theorem on an 

unbiased estimator for estimating the 

common mean μ . 

 The motivation of this problem (i.e., 

estimation of μ ) comes from a 

balanced incomplete block design 

(BIBD) with uncorrelated random block 

effects. For the thl  treatment effect (say, 

lτ ) one has two estimates - namely, the 

intra-block estimate and the inter-block 

estimate (say, lτ̂  and *
l̂τ  respectively). 

Under the usual design assumptions, lτ̂  

and *
l̂τ  are independent, have normal 

distributions with the common mean lτ  

but with unknown and possibly unequal 

variances. The problem thus boils down 

to derive an efficient estimate of lτ  on 

the basis of lτ̂ , *
l̂τ  and their variance 

estimates. 

 Coming back to our original model 

(1.1), if the population variances 

)2,1,( 2 =iiσ  are completely known, 

then the optimal estimator of μ  is  
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which is the UMVUE, BLUE as well as 

the MLE. For the case of equal sample 

sizes, one just needs to know the 

ratio ),/( 2
2

2
1 σσ  apart from 1X  and 

2X , to obtain (1.2). 

 In our present problem, where 

2,1,2 =iiσ , are unknown and possibly 

unequal, the most appealing unbiased 

estimator of μ  has been the 

Graybill-Deal estimator (GDE) given as  
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where .2,1),1/(2 =−= inSs iii  

Graybill and Deal (1959) obtained 

conditions on 1n  and 2n  for which 

GDμ̂  has a smaller variance than iX , 

2,1=i . 

    Even though Graybill and Deal 

pioneered the research on common mean 

estimation, it is probably due to Zack’s 

(1966, 1970) that many other 

researchers paid attention to this 

interesting problem and its real-life 

applications. In Zack’s own words - “… 

In 1963 I was approached by a soil 

engineer. He wanted to estimate the 

common mean of two populations and 

he didn’t know anything about the 

variances. But, apriori from his theory 

he said that the means should be same, 

and here are the two samples from two 

different soils. So I thought about this 



  

problem a little bit and I started to 

investigate. I realized that there is room 

for innovation …” (see Kempthorne et 

al. (1991)). 

 For other applications of the 

common mean problem, especially in 

clinical trials, see Kelleher (1996). 

Most of the research so far on the 

estimation of a common mean has taken 

place on three fonts: (i) comparing the 

GDE with the individual sample means 

(i.e., iX ’s); (ii) studying the optimality 

of GDE and its natural generalizations in 

suitable classes of estimators; and (iii) 

studying the performance of Bayes and 

preliminary test-based estimators with 

that of the GDE. For a good review of 

the literature on this problem and other 

generalizations one can see Kubokawa 

(1987, 1991) and other references 

therein. Among some interesting results 

pertaining to the GDE, Sinha (1985) 

obtained an unbiased estimate of the 

variance of the GDE in the form of an 

infinite series which can be truncated 

suitably to get an approximate unbiased 

estimate up to any desired order. This 

result is helpful because the studentized 

version ],)}ˆ(ˆ/)ˆ[( 2/1
GDGD raV μμμ −  

which follows )1,0(N  asymptotically, 

can be used for testing as well as for 

interval estimation of μ . 

 Quite surprisingly there hasn’t been 

any discussion about the MLE and its 

performance relative to the other 

estimators, especially the GDE. It should 

be pointed out that the GDE (in (1.3)) is 

not the MLE, contrary to the statement 

made by Kelleher (1996) or Sinha 

(1979). 

 The purpose of this note is to focus 

on the MLE and its properties which 

have long been neglected in the 

literature. Even with the availability of 

affordable and efficient computing 

resources no comparison has been made 

so far to see how the GDE performs 

relative to the MLE. An important 

component of our study has been to see 

how the variances of the GDE and the 

MLE depend on the parameters as well 

as the sample sizes. The numerical 

results that are reported in the literature 

didn’t take this aspect seriously. As a 

result, the reported numerical studies 

have been haphazard, or incomplete at 

best. 

 In Section 2 we study the structure 

of the MLE and provide a useful 

representation. Also we find its bias 

(exact) and variance expressions. Further, 

we upgrade the existing results to obtain 

tighter bounds for the variance of the 

GDE. In Section 3 we report the results 



  

of our extensive numerical study 

comparing the variances of the GDE and 

the MLE. A large number of replications 

has been used to ensure a very high level 

of accuracy of our results. Also, the 

numerical results provide some 

interesting and useful trends. 

 Before going to the next section we 

clarify some of the notations which have 

been used heavily in the rest of the paper. 

The other notations will be mentioned 

later as they are adopted. 

Notations: Define 

  ),/(,/ 10
2
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2
1 kkγασσγ ==   (1.4) 

where 

).1/()1(),/( 211210 −−== nnknnk  

Also assuming ,2,1,3 => ini  

)1/()3( 12
*
1 −−= nnk  and 

)3/()1( 12
*
2 −−= nnk  (1.5) 

 

2. The MLE of the Common Mean 
 

The reason why the MLE of μ  

has eluded the interest of many 

researchers is probably its complicated 

structure. It doesn’t have any closed 

expression, and as a result the exact 

sampling distribution is impossible to 

derive. 

 The log-likelihood function of the 

minimal sufficient statistics (1.1) is 
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Differentiations of 2
1

* ,... σμtrwL  and 

,2
2σ  and setting them equal to 0 yield 

the MLEs 2
)(2

2
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where )( 21 XXD −= . 

 Notice that both 2
)(1ˆ MLσ  and 

2
)(2ˆ MLσ  are functions of 1S , 2S  and 

2
21

2 )( XXD −= . Thus it is easy to write 

MLμ̂  as  

          ,ˆˆ 1 MLML DX φμ −=     (2.5) 

where 
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                             (2.6) 

Using the facts that 2D  is independent 

of ),( 21 SS , and the conditional 

distribution of 2| DD  is centered at 0, 

it is easy to obtain the following result. 

Theorem 2.1. The MLE MLμ̂  (in (2.4)) 

is unbiased for the common mean μ . 

 The fact that the MLE is unbiased 

is not surprising. Also, MLμ̂  is a 

member of the class of affine (i.e., 

location and scale) transformations 

given as  

,}1),,(ˆˆ0

,ˆˆ|ˆ{C
2

21
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−==

DSS
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φμμ
 (2.7) 

which is also a class of unbiased 

estimators. The admissibility (or 

otherwise) of the GDE (in (1.3)), under 

the squared error loss function, in C  

has been an open problem for a long 

time. However, Sinha and Mouqadem 

(1982) considered the special case of 

nnn == 21  (say), and showed that GDμ̂  

is extended admissible in C  for ,5≥n  

i.e., there doesn’t exist any C∈μ̂  such 

that εμμ −≤ )ˆ()ˆ( GDVarVar  for all 

),( 2
2

2
1 σσ  and 0>ε . 

 In the rest of the paper we’ll study 

the variances of MLμ̂  and GDμ̂  which, 

among other things, enable us to 

compare them comprehensively. We 

write the variance expression of each 

estimator in a standardized form as 

)/ˆ( 11 σμnVar , and that too through a 

simple representation which allows us to 

see how each expression depends on 

),( 2
2

2
1 σσ  as well as ),( 21 nn . This also 

helps us in our numerical study to 

compare the variances effectively. 

 Characterize the minimal sufficient 

statistics as 

 iii VS 2σ=  and iiii ZnX )/(σμ += ,  

                      2,1=i  (2.8) 

where 2
)1(~ −iniV χ , )1,0(~ NZi , 

2,1=i , and they are independent. 

Further, we write 

  2
2
12 )/1( VS γσ=         and     

  20112 )/()/( ZknX γσμ += . (2.9) 

Now, define the scaled versions of 

2
)(1ˆ MLσ and 2

)(2ˆ MLσ  as 2
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2
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                            (2.10) 

Using (2.8)－(2.10), the equations (2.2) 

and (2.3) can be rewritten as (with 

details omitted)  
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Thus, to obtain the MLEs of 2
1σ  and 

2
2σ  for given ),( 2

2
2
1 σσ  and 

),,,,( 2121 ZZVV  one first needs to solve 

(2.11) and (2.12) to get 2
10σ̂  and ,ˆ 2

20σ  

and then rescale them according to (2.10) 

resulting into 2
)(1ˆ MLσ  and 2

)(2ˆ MLσ . 

 Using (2.8)－(2.10) in (2.4), the 

estimator MLμ̂  is represented as (with 

details omitted)  
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      MLML HZZVVH == )|,,,( 2121 γ  

                     (say).  (2.13) 

 The following result is now trivial. 

Theorem 2.2. )/ˆ( 11 σμMLnVar  

),( 2
MLHE= where MLH  is given in 

(2.13). 

From (2.13) and the above theorem 

it is now clear that )/ˆ( 11 σμMLnVar  

depends on the parameters solely through 

)/( 2
2

2
1 σσγ = . In fact, this is true for any 

μ̂  in C  (see (2.7)). 

Remark 2.1. The expression (2.13) 

comes handy to study 

)/ˆ( 11 σμMLnVar  numerically through 

simulation. For specific γ  and ),( 21 nn , 

the random vector ),,,( 2121 ZZVVΤ =  

is generated a large number of times, say 

Q  times. Get )|( )()()( γlll ΤHH MLML = , 

where )(lΤ  is the thl  replication of T . 

Note that 

.2,1),1,0(~,~ 2
)1( =− iNZV ini i

χ  Then 

)( 2
MLHE  is approximated by 

∑
=

Q

ML QH
1

2)( }/)({
l

l . 

 Though any further simplification 

of (2.13) seems unlikely, the asymptotic 

variance of MLμ̂  is easy to get. The (1.1) 

element of 1−Ι , where 

),,( 2
2

2
1 σσμΙΙ =  is the )33( ×  

information matrix, is 
12

22
2
11 ))/()/(( −+ σσ nn . The following 

result is immediate. 

Theorem 2.3. 011 )/ˆ( σμMLnAsympVar   

Vk =+= −1
0 })/(1{ γ  (say). 

 The above asymptotic variance of 

MLμ̂ , which has a very simple closed 

form, will come useful to see how close 

the simulated variance (in Theorem 2.2) 

gets to its asymptotic counterpart. 

Though 0k  has been defined as 

)/( 21 nn , for asymptotic purposes it can 



  

be treated as a limiting value of 

)/( 21 nn . 

 We now turn our attention to the 

age-old GDE for comparison to the 

MLE. From (1.3) it is trivial to get 
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 Using the notations in (1.4), (1.5), 

and the representation in (2.8), it is seen 

that (with details omitted)  
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                     (say),  (2.15) 

where ),/( 10 kkγα =  

),/( 2
10 kkγβ = 211 /VVF = and 

12 /1 FF = and

.})()1{( 2/12
2

2
1

−− +++= FFH GD αβα  

Remark 2.2. Again, the expression 

(2.15) will come handy for computing 

)/ˆ( 11 σμGDnVar  through simulation. 

The variance will be approximated by 

),/)((
1

2)(∑
=

Q

GD QH
l

l  after Q  replications 

sHGD ')(l  of .GDH  

 An observation can be made about 

the lower bound of )/ˆ( 11 σμGDnVar  

from (2.15). The two terms of GDH  in 

(2.15) are convex in 1F  and 2F  

respectively. Using Jensen’s inequality 

and using *
11 /1)( kFE = , *

22 )( kFE = , 

we have  
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              ),(* γA=  (say).(2.16) 

 Nanayakkara and Cressie (1991) 

provided an upper bound of 

)/ˆ( 11 σμGDnVar  which simplifies, 

after rearranging the terms in their 

inequality (2.30), as follows: 
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0
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*
211

γ

γσμ
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=
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 (say). (2.17) 

 It is easy to see that as 1n  and 2n  

go to infinity, taking 0k  as the limiting 

value of ),/( 21 nn  both )(* γA  and 

)(* γNCA  converge to 1
0 )}/(1{ −+ kγ  

(defined as 0V  in Theorem 2.3). 

Therefore, the following result is 

obvious, i.e., the GDE is first order 

efficient. 



  

Theorem 2.4. )./ˆ( 11 σμGDnAsympVar  

0
1

0 )}/(1{ Vkγ =+= −  

 Another set of bounds for 

)/ˆ( 11 σμGDnVar  has been suggested 

by Korwar (1985) which is presented 

below in a much convenient form. 

Theorem 2.5. (Korwar (1985)) With α  

as in (1.4), define  
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Then, 

A*K ),()/ˆ()( *
11 γσμγ KGD AnVar ≤≤  

where 

(a) for ,10 << α A*K 011)( CC −Β=γ  

and ;)( 021
* CCAK −Β=γ  

(b) for 

,1 ∞<< α A*K 021)( CC −Β=γ  

and .)( 011
* CCAK −Β=γ  

Remark 2.3. Korwar’s (1985) original 

result is a bit cumbersome, and discusses 

only the case .10 <<α  Also, the 

bounds don’t exist for .1=α  However, 

for ,1=α  exact variance expression 

can be derived (from his expression 

(2.1), page-357) as 

)}.2)(/{(
)}2)(1{()/ˆ(

2121

212111

−++

++−==

nnnn
nnnnVar GD ασμ

 

 Combining all the bounds 

discussed above, a set of tighter bounds 

are obtained as  

)}(),({ ** γγ KAAmax  

     )/ˆ( 11 nnVar GDμ≤  

        )}.(),({ ** γγ KNC AAmin≤  (2.18) 

Remark 2.4. The above upgraded 

bounds in (2.18) are the best (to our 

knowledge) so far. Our extensive 

numerical computations show that the 

bounds in (2.18) can be tighter than 

those in Theorem 2.5, especially when 

γ  is near zero or too large. 

 

3. Numerical Comparison of the 

Variances 
 

 The expressions in (2.13) and (2.15) 



  

are used to simulate the variances of 

MLμ̂  and GDμ̂  in a comprehensive 

manner some of which are reported 

below. The simulation was massive in 

the sense that 510=Q  replications 

have been used for obtaining each 

simulated variance value, and this is 

done to achieve a high level of accuracy. 

Also, the asymptotic variance 0V  of the 

MLE as well as the GDE is reported 

here as a benchmark which is calculated 

directly from the formula in Theorem 

2.3. For convenience the following 

notations are used in the subsequent 

tables. 

        )/ˆ( 11 σμMLML nVarV =  

        )/ˆ( 11 σμGDGD nVarV = . 

 The values of GDV  are more stable 

than the MLV  values in the sense that 

while the standard error (SE) of the 

simulation varied from 0.0051 to 

0.00001 for the MLV  values, the range 

of the SE for the GDV  values has been 

0.0005 to 0.00001. This is expected 

because MLμ̂  is obtained after solving a 

system of nonlinear equations which 

may add a component of computational 

error, however small, to the overall 

sampling variation. 

 The overall picture that emerges 

from the simulation study is quite 

interesting, and challenges the 

conjecture that GDμ̂  might be 

admissible. 

 First of all, MLV  and GDV  are 

found to be very close to each other, 

indicating that probably there isn’t much 

difference between these two estimators’ 

performance. The overall picture shows 

three broad trends as presented in the 

following tables. Apart from the 

simulated variance, the SE of the 

simulation is provided in brackets under 

each value. 

Case-I. For equal sample sizes 

(i.e., 1/ 210 == nnk ), we observe two 

subtrends. 

(a) When nnn == 21  (say) < 

25, the MLμ̂  is better than GDμ̂  for 

extreme values of γ (i.e. γ  close to 0 

or ∞ ). For γ  near or around 1, GDμ̂  

has better performance than MLμ̂ . The 

Table 3.1 (a) shows this subtrend. 
 

(b) For nnn == 21  (say) ≥  25, 

MLμ̂  appears to be better than GDμ̂  

uniformly over .γ  However, for γ  

near 1, the dominance of MLμ̂  over 

GDμ̂  doesn’t seem to be statistically 

significant, since the difference that we 

see between the simulated MLV  and 

GDV  is well within 2SE of the difference. 

(A simple two sample normal or t-test 

would strongly indicate that GDV  and 



  

MLV  are equal for γ  near 1.) The 

following Table 3.1 (b) testifies this 

subtrend. Even though asymptotically 

,0VVV GDML ==  it appears that GDV  is 

converging a bit slowly.  
 

 
Case-II. For 1n  and 2n  unequal, 

but not drastically different (i.e., ,10 ≠k  

but roughly 0.52.0 0 << k ), the 

variance curves of MLμ̂  and GDμ̂  

cross each other only once (from small 

values of γ  to large, or vice-versa). In 

this case none dominates the other 

uniformly. However, as 0k  moves 

away from 1, the trend of Case-III 

(discussed later) slowly emerges. This is 

shown in the following Table 3.2. 

Case-III. When 1n  and 2n  are 

drastically different from each other (i.e., 

0k  is roughly >5.0 or <0.2), the MLE 

seems to outperform the GDE uniformly. 

In some cases, for γ  too small or too 

large, there may not be any statistical 

difference (taking the SE into 

consideration) between the two 

simulated variances; but for γ  in the 

middle the MLE is certainly better than 

the GDE. This is reported in the 

following Table 3.3. 

Remark 3.1. Under the Subcase-I (a) 

and the Case-II, the MLE and the GDE 

doesn’t dominate each other uniformly. 

If one performs better on one part of the 

parameter space, then the other does so 

on the remaining parameter space. But 

under the Subcase-I (b) and the Case-III, 

the MLE does show superior 

performance than the GDE uniformly, 

though this may be marginal 

occasionally. This appears to be 

something new since no other estimator 

of the common mean in the literature has 

been reported to be performing better 

than the GDE uniformly. Considering all 

the three cases discussed above, the 

MLE’s overall performance seems more 

appealing than the GDE, barring the fact 

that no explicit expression is available 

for the MLE. 

 
 

4. Concluding Remark and Comments 
 

 The work focuses on the 

performance of the MLE of a common 

mean with unknown and possibly 

unequal variances which has been long 

neglected in the literature. Our 

surprising finding is that the MLE has 

better overall performance than the 

popular GDE, and at least for the 

heavily unbalanced case and the 

asymptotic balanced case the MLE 

seems to outperform the GDE uniformly. 

It is hoped that this paper will stimulate 



  

further research in studying the MLE of 

the common mean. Last but not least, a 

copy of our program and/or further 

simulation results will be made available 

to any interested reader. 
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Table 3.1 (a). Variances of the MLE and the GDE for Case-I )1( 0 =k  with 
.2521 <== nnn  
γ),( 21 nn  Variance 0.1 0.2 0.5 1.0 2.0 5.0 10.0 

MLV 1.0199 1.0023 0.8518 0.6449 0.4274 0.1999 0.1019
 (0 0051) (0 0050) (0 0040) (0 0030) (0 0020) (0 0010) (0 0005)

GDV 1.0985 1.0135 0.8033 0.5997 0.4016 0.2023 0.1098
 (0 0018) (0 0013) (0 0006) (0 0003) (0 0003) (0 0002) (0 0002)

(5, 5) 

0V  0.9091 0.8333 0.6667 0.5000 0.3333 0.1667 0.0909
MLV 0.9431 0.8997 0.7428 0.5627 0.3718 0.1792 0.0948
 (0 0042) (0 0041) (0 0034) (0 0026) (0 0017) (0 0008) (0 0004)

GDV 0.9641 0.9006 0.7310 0.5503 0.3658 0.1802 0.0966
 (0 0005) (0 0005) (0 0003) (0 0002) (0 0001) (0 0001) (0 0001)

(10, 10) 

0V  0.9091 0.8333 0.6667 0.5000 0.3333 0.1667 0.0909
MLV 0.9286 0.8630 0.7088 0.5380 0.3555 0.1720 0.0927
 (0 0041) (0 0039) (0 0032) (0 0024) (0 0016) (0 0008) (0 0004)

GDV 0.9391 0.8729 0.7085 0.5331 0.3544 0.1747 0.0939
 (0 0002) (0 0002) (0 0002) (0 0001) (0 0001) (0 0001) (0 0000)

(15, 15) 

0V  0.9091 0.8333 0.6667 0.5000 0.3333 0.1667 0.0909
MLV 0.9172 0.8534 0.6984 0.5311 0.3496 0.1692 0.0918
 (0 0041) (0 0038) (0 0031) (0 0024) (0 0016) (0 0008) (0 0004)

GDV 0.9295 0.8613 0.6977 0.5249 0.3489 0.1722 0.0929
 (0 0001) (0 0002) (0 0001) (0 0001) (0 0001) (0 0000) (0 0000)

(20, 20) 

0V  0.9091 0.8333 0.6667 0.5000 0.3333 0.1667 0.0909
 
 
 
 
 
 
\



  

Table 3.1 (b). Variances of the MLE and the GDE for Case-I )1( 0 =k  with 
.2521 ≥== nnn  
γ),( 21 nn  Variance 0.1 0.2 0.5 1.0 2.0 5.0 10.0 

MLV 0.9141 0.8432 0.6868 0.5187 0.3423 0.1696 0.0915
 (0.0041) (0.0038) (0.0031) (0.0023) (0.0015) (0.0008) (0.0004)

GDV 0.9245 0.8550 0.6911 0.5201 0.3458 0.1710 0.0924
 (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000)

(25, 25) 

0V  0.9091 0.8333 0.6667 0.5000 0.3333 0.1667 0.0909
MLV 0.9077 0.8383 0.6746 0.5065 0.3369 0.1670 0.0908
 (0.0041) (0.0038) (0.0030) (0.0023) (0.0015) (0.0007) (0.0004)

GDV 0.9159 0.8433 0.6788 0.5100 0.3394 0.1687 0.0916
 (0.0000) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000)

(50, 50) 

0V  0.9091 0.8333 0.6667 0.5000 0.3333 0.1667 0.0909
MLV 0.8999 0.8315 0.6687 0.5015 0.3334 0.1664 0.0906
 (0.0040) (0.0037) (0.0030) (0.0023) (0.0015) (0.0007) (0.0004)

GDV 0.9123 0.8382 0.6727 0.5050 0.3363 0.1676 0.0912
 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

(100, 100) 

0V  0.9091 0.8333 0.6667 0.5000 0.3333 0.1667 0.0909
MLV 0.9072 0.8288 0.6684 0.4955 0.3315 0.1666 0.0908
 (0.0041) (0.0037) (0.0030) (0.0022) (0.0015) (0.0007) (0.0004)

GDV 0.9097 0.8343 0.6679 0.5010 0.3339 0.1669 0.0910
 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

(500, 500) 

0V  0.9091 0.8333 0.6667 0.5000 0.3333 0.1667 0.0909
 
 

 
Table 3.2.  Variances of the MLE and the GDE for Case-II ).0.52.0,1( 00 ≤≤≠ kk  

γ
),( 21 nn  Variance 0.1 0.2 0.5 1.0 2.0 5.0 10.0 

MLV 0.8397 0.7156 0.4866 0.3062 0.1750 0.0757 0.0387
 (0.0038) (0.0032) (0.0022) (0.0014) (0.0008) (0.0003) (0.0002)

GDV 0.8390 0.7081 0.4775 0.3067 0.1773 0.0772 0.0395
 (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000)

(10, 25) 

0V  0.8000 0.6667 0.4444 0.2857 0.1667 0.0741 0.0385
MLV 0.9762 0.9508 0.8757 0.7664 0.6059 0.3576 0.2104
 (0.0044) (0.0042) (0.0039) (0.0035) (0.0027) (0.0016) (0.0009)

GDV 0.9879 0.9649 0.8869 0.7668 0.5965 0.3540 0.2097
 (0.0003) (0.0004) (0.0004) (0.0003) (0.0002) (0.0001) (0.0000)

(25, 10) 

0V  0.9615 0.9259 0.8333 0.7143 0.5556 0.3333 0.2000
MLV 0.9788 0.9649 0.9304 0.8686 0.7511 0.5390 0.3525
 (0.0044) (0.0043) (0.0042) (0.0039) (0.0034) (0.0024) (0.0016)

GDV 0.9942 0.9847 0.9491 0.8822 0.7619 0.5322 0.3512
 (0.0002) (0.0003) (0.0004) (0.0004) (0.0003) (0.0001) (0.0001)

(50, 10) 

0V  0.9804 0.9615 0.9091 0.8333 0.7143 0.5000 0.3333
MLV 0.7100 0.5339 0.3046 0.1730 0.0933 0.0390 0.0198
 (0.0032) (0.0024) (0.0014) (0.0008) (0.0004) (0.0002) (0.0001)

GDV 0.7027 0.5320 0.3049 0.1765 0.0949 0.0394 0.0199
 (0.0001) (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000)

(10, 50) 

0V  0.6667 0.5000 0.2857 0.1667 0.0909 0.0385 0.0196
 
 
 



  

 
 

Table 3.3. Variances of the MLE and the GDE for Case-III 2.0( 0 <k  or ).50 >k  
γ),( 21 nn  Variance 0.1 0.2 0.5 1.0 2.0 5.0 10.0 

MLV 0.6040 0.4235 0.2194 0.1208 0.0634 0.0260 0.0132
 (0.0027) (0.0019) (0.0010) (0.0005) (0.0003) (0.0001) (0.0001)

GDV 0.6044 0.4261 0.2236 0.1233 0.0647 0.0264 0.0133
 (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000)

(10, 75) 

0V  0.5714 0.4000 0.2105 0.1176 0.0625 0.0260 0.0132
MLV 0.9888 0.9856 0.9520 0.9136 0.8211 0.6384 0.4525
 (0.0044) (0.0044) (0.0043) (0.0041) (0.0037) (0.0029) (0.0021)

GDV 0.9964 0.9907 0.9691 0.9250 0.8379 0.6390 0.4534
 (0.0002) (0.0002) (0.0003) (0.0004) (0.0003) (0.0002) (0.0001)

(75, 10) 

0V  0.9868 0.9740 0.9375 0.8824 0.7895 0.6000 0.4286
MLV 0.5282 0.3518 0.1725 0.0926 0.0484 0.0197 0.0099
 (0.0024) (0.0016) (0.0008) (0.0004) (0.0002) (0.0001) (0.0000)

GDV 0.5302 0.3550 0.1760 0.0947 0.0489 0.0199 0.0100
 (0.0001) (0.0001) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000)

(10, 100) 

0V  0.5000 0.3333 0.1667 0.0909 0.0476 0.0196 0.0099
MLV 0.9911 0.9822 0.9650 0.9306 0.8686 0.7064 0.5278
 (0.0044) (0.0044) (0.0043) (0.0042) (0.0039) (0.0032) (0.0024)

GDV 0.9970 0.9937 0.9781 0.9469 0.8794 0.7099 0.5303
 (0.0001) (0.0002) (0.0003) (0.0004) (0.0003) (0.0002) (0.0001)

(100, 10) 

0V  0.9901 0.9804 0.9524 0.9091 0.8333 0.6667 0.5000
 


