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Abstract
For edtimating the  regression
coefficients ( ) in a regular regression
model one can easily extend Stein’s idea to
construct  shrinkage estimators  which
dominate the usual least squares estimator
) when the number of coefficients is greater
2 Stein

shrinkage

error-norm

WB-81P ( Ul

(1978)) ,

‘“nor mal

err or-norm
( (B-B)(XX)B-B)
)

than two. But there is a dight disagreement
about the selection of a proper loss function.
Some  researchers especially  the
econometricians have used the ‘ordinary
error-norm square as a loss function
“ordi nggy-g|P), whereas the statisticians have

SAUaT € traditionaly preferred to use the ‘normalized

| ah anotl Weéghtedh error-norm sguare’
( (B-B(XXXB-B) X being the
_ g design matrix) as a loss function. Basicaly,
i ze

0 fthe |?J’\rlo(f)llemgo¥| Tlln& n% a better predictor of
S g uar e thedependent variable in the sense of smaller
PMSE, in a regression set up when the past

data is given, is equivaent to constructing a
better estimator of £ in the sense of smaller

X



risk (for fixed X) in a decision-theoretic set
up. The connection between the above
mentioned two problems has been built up in
this research and show how naturally the
method of ‘ Shrinkage Estimation’ gives one
a better function (ordinary or normalized
error norm square) for estimating the
regression coefficients.). Basically, that is the
main contribution of this research.

Keywords: loss function risk function
shrinkage estimation predicted mean square
error  regression.

PREDICTION AND ESTIMATION OF
REGRESSION COFFICIENTS

Consider a multiple linear regression

model where the
variable Y

response (dependent)
is explained by the vector

) ST Xp)' of

explanatory (independent) variables. We

assume that for fixed X, Y has a normal

distribution of the form

YIX - NX'B o) (3D

where both A00P, and o?00" are
unknown and S, (j" element of pg) is

the coefficient of X,;. We further assume
that X follows a multivariate distribution

0 with some mean vector n and

-~

variance-covariance matrix V. Note that we
are not assuming anything further
regarding the distribution O of X. The

vector 7 and the p.d. matrix V could be

known or unknown and we'll discuss this
later. Our above model, is the simplest
form of "Errors in Variables Modd”
(EVM). A huge literature exists on the

EVM from asymptotic point of view and
one can look at Fuller (1987) for an
extensive literature survey.

CONNECTION BETWEEN
REGRESION SETUP AND DECISION
THEORETIC SETUP

Now, we have n i.i.d. observations of
X sy, X, X, N, X,. For given each

-~

X
distribution N(X' 8, 0°). The augmented

., we observe Y; coming from the

independent vectors
(Yl’ >—.<.1)! (YZ’ >—.(.2)’/\ I(Yn’ >—.<.. n) CongitUte

our data set (or past data set). We are
interested in the future value of Y | X when
X isgiven. Suppose the future value of X
is X

~ hew

(which again comes from the

distribution 0O and is independent of the
past observations). Our main goa is to
predict the value of Y, say Ynew, When
X ey 1S ObSErVEd.

A predictor \?new of Y., (the future

observation of Y) is evauated by its
Prediction Mean Squared Error (PMSE)

defined as

PMSE(Y,.,) = E(Y., = Yo)% (4.1)
where the expectation is taken with respect to
the joint distribution of Y , X, Xpew and
Ynew.

Let the matrix X be the usua design

matrix where i row of X is X'.. Then for
the past data,

Y |X ~N(X g, o’In) (4.2

where Y =(Y,,...,Y,) . Using the least

squares (LS) method our LS estimator of S

~



is B°=(X'X)*XY . As we mentioned
before a future value of X also arises at

random according to a multivariate

probability distribution with mean 7 and

variance covariance matrix V.

Let Y = >g§° be the LS predictor of Y
and the fitted value of Y; is

Y =X 8% i=1L2A ,n

Consider a future observation (Ynews X ,an)s

~ new

where Y ey is unknown and X ., 1S given,

and we are interested in Y ey Then

E(View | X0 X)) = E[ E(Vu | X e » X Y]
=08

EVro | X2 X) = E EVrel X o X2 Y)
=B

Var (Y o, | X, X)) =Var (E(Y g | X o X, X))
+ ENVA (Vg | X o X, X))
=5

Var (Y, | X, X)) =Var (E(Y o, | X news X, X))
+ E(Var (Yoey | X e X1 X))
=BV ot

COM (Vi ¥ ) 1X, Y]

= E (Ve ren | X0 X) = E(Y i | X X) (Vi | X, X))

:g'V_[:io, since V = E(X weX ') ~7117'

Therefore, the conditional bivariate

distribution of ( na,\) given the past

data (X, Y) will have mean (7', ')

and variance-covariance matrix

Given the past data (X, Y), our usual guess

for Yoew isY,,, = Y..,. i.e, we follow the

new !

A

line with slope=1 if regress Ypew ON Y, -
But it can be seen, from a simple linear
regression point of view, that for a better
prediction of Y ey, We need to have slope < 1.
Recall that in the smple linear regression set

up, if (Z1, Z;) has mean EZ(,ulnuz) and

variance-covariance

2
. o 1 g 12 .
matrix , | and if we use the
o 21 o 2

simple linear regression model

Z,1Z,=a+bz,+&,where £~(0,0%),
then the optimal values of a and b which

minimize L = (Z, - (@ + bZ,) )* are
a:,ul—a—lzz/JZ, which is the intercept, and
2
bza—lzz, which is the slope of the line.
2

Therefore, instead of using the line
\?new = Y e » WeNeed to use\?new = KY o s

Cov(Y o> .
where K = ( o ”ew) .t s

Var(YneN)

expected wewill show that K should be
strictly between 0 and 1. Note that K is

unknown since it depends on the unknown

parameters 0° and g and so it has to be

estimated by (X,Y). This motivates us to

look at the preshrunk predictor



(4.3)

where K is a suitable estimator of K

dependingon (X, Y) only.

The overadl PMSE of Vnew
(4.3)), defined as
E(Y,, - Y

(given in

- Y,.,)>, can be simplified as below.
-KX' naNﬂO)z

=B +B,-2By(say) (44)
The above terms Bi, B, and Bs.can be
simplified (Lin,(2002)) as following

B = E[Ynew -X gT

EWY. =Y )’ =E(Y, 0

2

=g
, = EI(K B B)' X rouX e (K B°= B)]
=E[(Ré =BV +n1") KB~ B,

since Var (X e =

By = E1(Ynew = X v B) X' (K B°= )]
=0

Hence, if wewrite V, =V + 77 77", then

The expression

=0’ +E[(K B°- B)Vo(K 5°- B)]

=(constant free from ﬁ) + [ risk of

(4.9

eslimating 8 by Kp°

L(B. BIVo) = (B-BVo(B-B)].  (45)

This was also shown by Sclove (1968), but
his main goa was to estimate partitioned
coefficient vectors. Note that if we predict

Yoew by the LS predictor Y., =X'_ 3°,

under the loss

then
E(Y o = Vo)® =07 +EL(B - V(B °- )]

(4.6)
From (4.5) and (4.6), we know that

A

E(Yoay = Yoen)? € E(Voow = Yiu)?

if and only if

E(K B~ B)Vo(K B~ B)

< E(B°- BV, (8- B),
where V, =V +7 7'

e, £ E(KB-PV,(KB-PIX]

< E E(B°- BVo(B°- B)IX]. (47)

Therefore the improvement in terms of
PMSE can be achieved by the improvement

in the risk (under L(é, £’|V0) in (4.5)) of

esimating S by Ké instead of ,80 for

the given design matrix X. Therefore, the
problem of finding a better predictor of Y ey
in the sense of smaller PMSE, in aregression
set up when the past data is given, is
equivalent to constructing a better estimator
of £ in the sense of smaller risk (for fixed

X) in a decision-theoretic set up. So, to have
asmaller PMSE, it is enough to show that

EI(K B°- BYNo(K B°- B)| X]

< E(B-BVe(B-BIX]. (48

where 3° is the LS estimator of S and

~

0<K <1, and this is how the method of
shrinkage estimator is applied to the
prediction of the future in a regression setup.
Then we can apply the well-established
results in shrinkage normal mean estimation
to get the improved results in regression set
up later.
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