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Abstract

In this paper we study the existence, uniqueness and stability of peri-
odic solutions for a two-neuron network system with or without external
inputs. The system consists of two identical neurons, each possessing
nonlinear feedback and connected to the other neuron via a nonlinear
sigmoidal activation function. In the absence of external inputs but
with appropriate conditions on the feedback and connection strengths, we
prove the existence, uniqueness and stability of periodic solutions by us-
ing the Poincaré-Bendixson theorem together with Dulac’s criterion. On
the other hand, for the system with periodic external inputs, combining
the techniques of the Liapunov function with the contraction mapping
theorem, we propose some sufficient conditions for establishing the ex-
istence, uniqueness and exponential stability of the periodic solutions.
Some numerical results are also provided to demonstrate the theoretical
analysis.

Keywords. neural networks; periodic solutions; Poincaré-Bendixson the-
orem; Dulac’s criterion; Liapunov functions; contraction mapping theo-
rem

AMS subject classifications. 34A34; 34C25; 34D23
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1. Introduction

This paper is concerned with the existence, uniqueness and stability of periodic
solutions for a two-neuron network model which consists of two identical neu-
rons, each possessing nonlinear feedback and connected to the other neuron via
a nonlinear sigmoidal activation function. Assuming instantaneous updating
of each neuron and communication between the neurons, the dynamics of this
netlet is governed by the following system of first-order ordinary differential
equations (cf. [8]):

x′(t) = −x(t) + pf(x(t)) + sf(y(t)) + I1(t),
y′(t) = −y(t) + pf(y(t)) + rf(x(t)) + I2(t),

(1.1)

where x and y represent the voltages of the neurons; the real parameter p is
the feedback strength, while r and s are the connection strengths; the nonlinear
function f is the so-called activation function representing the output or firing
rate; Ii, i = 1, 2, denote the external inputs to the neurons.

In the following we will consider the nonlinear activation function f of sig-
moidal type. More specifically, we assume that f is a continuous piecewise
smooth function possessing the following properties:





f : R→ R is an odd function;
f is differentiable at x = 0 with λ := f ′(0) > 0;
f(±∞) = ±M, where M is a positive constant;
f is concave downward on (0,∞).

(1.2)

To be more concrete, two typical examples of f are given by

(i) f(x) = tanh x (ii) f(x) =
1

2
(|x + 1| − |x− 1|),

respectively (cf. Figure 1-1 and Figure 1-2), where the first one is the most
popular choice in mathematical analysis due to the C∞ smoothness (see, e.g.,
[6, 14, 16]), while the second one is only C0 piecewise smooth that arises from
the many engineering models of neural networks for the practicality of circuit
implementation (see, e.g., [3, 4, 5]).

It is well-known that the neural networks possess possibly three interesting
types of dynamic behavior, namely, convergence, oscillation and chaotic behav-
ior. The first dynamic behavior mainly concerns the stability of equilibrium
points. For Hopfield-type neural networks, it was already known that when the
connection strengths are symmetric, i.e., r = s for two-neuron case, all trajecto-
ries tend to some equilibrium and hence exhibit no oscillations; see the pioneer
work [8] of Hopfield in 1984. Consequently, in most of existing literature, suf-
ficient stability conditions of equilibria for asymmetric connection weights and
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Figure 1-1: The sigmoidal activation function f(x) = tanh x
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the mechanism for the onset of instability of equilibria are widely considered.
See [1, 6, 10, 11, 12, 13, 14, 16, 17, 18, 19] and many references therein.

On the other hand, the understanding of the oscillatory and chaotic behav-
ior of neural netlet such as system (1.1) are still not fully documented. The
motivation for studying neural networks which exhibit limit cycle or chaotic
behavior arise in neurobiology [6]. It is pointed out that limit cycle type at-
tractors and chaotic attractors are possible even in simple neural networks of
just two neurons. Thus, it is of great interest to understand the mechanism of
neural networks which cause and sustain such periodic and chaotic activities.
It is the purpose of this article to study the simple two-neuron model network
(1.1) with or without external inputs capable of producing and sustaining tem-
poral periodic behavior. For the numerical simulation of chaotic behavior of the
two-neuron system with a single external periodic input, we refer the reader to
[9] for more detailed discussions.

The main results for the present paper can be summarized as follows. For
the system (1.1) with rs < 0 but in the absence of external inputs, applying
the Poincaré-Bendixson theorem we prove the existence of periodic solutions
under appropriate conditions on the feedback and connection strengths [r, p, s].
In addition, based on the stability analysis of the unique equilibrium point with
Dulac’s criterion, we further prove the uniqueness of periodic solutions for some
suitable feedback and connection strengths with C2 activation function f(x).

In contrast, for the system with periodic external inputs, if the ratio ω1/ω2

of the periods of the inputs is rational then combining the techniques of the
Liapunov function with the contraction mapping theorem, we are able to estab-
lish the existence, uniqueness and exponential stability of the periodic solution
when, roughly speaking, the sum of absolute values of the feedback and con-
nection strengths [r, p, s] is small enough (cf. (5.1)). However, if the sum of
absolute values of the strengths is large, numerical evidences show that it may
still have periodic solutions for the system. Finally, we present a numerical ex-
ample showing the existence of the so-called quasi-periodic solutions when the
ratio of the periods of the inputs is irrational.

This paper is organized as follows. In section 2, we give some sufficient
conditions for the uniqueness of equilibrium point and investigate its stability
for system without external inputs. We then prove the existence of periodic
solutions in section 3. If the activation function f is of class C2, the uniqueness
of periodic solutions is established in section 4. In section 5, the existence,
uniqueness, and exponential stability of periodic solutions of system (1.1) with
periodic external inputs are derived. In each case, numerical results are also
provided to demonstrate the theoretical analysis.

5



2. Sufficient conditions for unique equilibrium

In this and next two sections, we shall always assume that Ii(t) ≡ 0 for i = 1, 2.
We study some symmetric properties of solutions of system (1.1), and give some
sufficient conditions for the uniqueness of equilibrium and investigate its stabil-
ity when rs < 0. The uniqueness and stability of equilibrium will play crucial
roles in our analysis for establishing the existence of periodic solutions.

Proposition 2.1. Let Ii(t) ≡ 0 for i = 1, 2.

(i) If (x(t), y(t)) is a solution of (1.1) then (−x(t),−y(t)) is also a solution
of (1.1).

(ii) If (x(t), y(t)) is a solution of (1.1) with feedback and connection strengths
[r, p, s] then (−x(t), y(t)) is also a solution of (1.1) with feedback and con-
nection strengths [−r, p,−s].

Proof. The proof is straightforward.

According to part (ii) of Proposition 2.1, the dynamics of solutions of sys-
tem (1.1) with feedback and connection strengths [r, p, s] is uniquely determined
by the dynamics of solutions of system (1.1) with feedback and connection
strengths [−r, p,−s], and vice versa. Therefore, in the following we may always
consider that the strengths [r, p, s] satisfy s < 0 < r with r + s ≥ 0.

By inspection, we see that (0, 0) is an equilibrium of system (1.1). We now
investigate its local stability by examining the eigenvalues of the Jacobian ma-
trix of the corresponding linearized first-order system at (0, 0).

Proposition 2.2. Let Ii(t) ≡ 0 for i = 1, 2. If s < 0 < r and pλ <
1 (resp., pλ > 1) then the equilibrium (0, 0) is locally stable ( resp., unstable).

Proof. By elementary computations, the characteristic polynomial of the Jaco-
bian matrix of (1.1) linearized at (0, 0) is given by

P (x) = x2 + 2(1− pλ)x + (1− pλ)2 − rsλ2.

Thus the zeros of P (x) are −1 + pλ ± √
rsλ, and then the assertions follow

immediately. This completes the proof.

Next, we are going to give some sufficient conditions for the uniqueness of
equilibrium of system (1.1). Notice that an equilibrium (x̄, ȳ) of (1.1) must
satisfy the following system of equations:

x̄− pf(x̄) = sf(ȳ),
ȳ − pf(ȳ) = rf(x̄).

(2.1)
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Proposition 2.3. Let Ii(t) ≡ 0 for i = 1, 2. If s < 0 < r and pλ < 1 then
(0, 0) is the unique equilibrium of (1.1)

Proof. Let (x̄, ȳ) be a solution of (2.1). By virtue of properties (1.2) of f , we
have

f(x) ≤ λx (resp., ≥ λx) for x ≥ 0 (resp., ≤ 0). (2.2)

We first assume that p ≥ 0 (the case of p < 0 can be achieved in a similar way).
If x̄ ≥ 0 then

sf(ȳ) = x̄− pf(x̄) ≥ x̄− pλx̄ = x̄(1− pλ) ≥ 0,

which implies ȳ ≤ 0 and, in addition,

rf(x̄) = ȳ − pf(ȳ) ≤ ȳ − pλȳ = ȳ(1− pλ) ≤ 0.

Consequently, x̄ ≤ 0, and hence x̄ = 0 and ȳ = 0. On the other hand, if x̄ ≤ 0
then similar arguments show that x̄ = ȳ = 0 again. Therefore, (0, 0) is the
unique equilibrium. This completes the proof.

Remark 2.1. According to Proposition 2.2, the unique equilibrium (0, 0) in
Proposition 2.3 is locally stable. However, if the activation function f is of
class C1, then one can further prove that it is actually globally asymptotically
stable. The underlying ideas are based on the Poincaré-Bendixson theorem with
Dulac’s criterion as follows. We first prove that any solution of (1.1) is bounded
as t → +∞ (see Section 3) and, for f ∈ C1(R), we can verify the divergence of
the vector field of (1.1) satisfying

∇ · (−x + pf(x) + sf(y),−y + pf(y) + rf(x))

= −1 + pf ′(x)− 1 + pf ′(y)

≤
{ −2(1− pλ) if p ≥ 0
−2 if p < 0

< 0 for all (x, y) ∈ R2.

Therefore, Dulac’s criterion ensures that there has no periodic solution. It fol-
lows from the Poincaré-Bendixson theorem that the unique equilibrium (0, 0) is
globally asymptotically stable. ¤

In contrast, if the conditions in Proposition 2.3 fail then there may have
equilibria other than (0, 0). For example, in the case of pλ > 1, some other
conditions are needed for ensuring the uniqueness of equilibrium. For further
details, we first introduce the following technical lemma (cf. Figure 2.2).

Lemma 2.1. Let Ii(t) ≡ 0 for i = 1, 2 and h(x) := x − pf(x). Assume that
s < 0 < r and pλ > 1, then there exist constants B > A > 0 such that
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(i) The continuous function h(·) is negative on (0, B) and positive on (B,∞)
with h(B) = 0.

(ii) The minimum value of h(x) for x ∈ (0,∞) occurs at x = A.

(iii) If (x̄, ȳ) is an equilibrium of (1.1) then we have

f(ȳ) ≤ A− pf(A)

s
for x̄ ≥ 0,

f(x̄) ≥ A− pf(A)

r
for ȳ ≥ 0.

Proof. Since the activation function f is piecewise smooth, the concavity of
f on (0,∞) implies that f ′ is monotonic non-increasing on (0,∞) except for
finitely many points where f ′ does not exist. As a consequence of f ′(∞) = 0,
we have f ′(x) ≥ 0 on (0,∞) whenever it exists. Let

A := sup{x > 0|f ′(x) >
1

p
} and C := inf{x > 0|f ′(x) <

1

p
}. (2.3)

Then we obtain 0 < A ≤ C < ∞ since f ′(0) = λ > 1
p

and f ′(∞) = 0 < 1
p
. By

the concavity of f , we can verify that h′(x) < 0 on (0, A), h′(x) > 0 on (C,∞),
and h′(x) = 0 on (A,C). Since h(0) = 0, it follows that h(x) has a unique zero
on (0,∞), denoted by B, and h(A) is the minimum value of h(x) for x ∈ (0,∞).
Hence, we have the results of part (i) and part (ii). Moreover, by (i) and (ii),
we have

f(ȳ) =
h(x̄)

s
≤ A− pf(A)

s
for x̄ ≥ 0, (2.4)

and

f(x̄) =
h(ȳ)

r
≥ A− pf(A)

r
for ȳ ≥ 0. (2.5)

This completes the proof.

With the help of Lemma 2.1, we obtain the following sufficient condition for
the uniqueness of equilibrium when s < 0 < r and pλ > 1.

Theorem 2.1. Let Ii(t) ≡ 0 for i = 1, 2, s < 0 < r and pλ > 1. If

min{r,−s} ≥ p(pf(A)− A)

B
(2.6)

then (0, 0) is the unique equilibrium of (1.1), and it is unstable.

Proof. According to Lemma 2.1, (2.6) is equivalent to

f(B) ≥ A− pf(A)

s
and f(B) ≥ pf(A)− A

r
. (2.7)
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First, if (x̄, ȳ) is an equilibrium of (1.1) with x̄ ≥ 0 and ȳ ≥ 0, then part (iii) of
Lemma 2.1 implies that

f(ȳ) ≤ A− pf(A)

s
≤ f(B).

Since f is monotonically non-decreasing, we have 0 ≤ ȳ ≤ B which implies
h(ȳ) ≤ 0. Hence,

ȳ − pf(ȳ) ≤ 0 ≤ rf(x̄),

and we can conclude that x̄ = 0 and ȳ = 0 immediately. Secondly, if x̄ ≤ 0 and
ȳ ≥ 0, by part (iii) of Lemma 2.1 again, we have

f(x̄) ≥ A− pf(A)

r
≥ −f(B) = f(−B).

Similarly, we obtain −B ≤ x̄ ≤ 0 and h(x̄) ≥ 0. Thus,

x̄− pf(x̄) ≥ 0 ≥ sf(ȳ),

which forces x̄ = 0 and ȳ = 0. Now, according to Proposition 2.1 (i) and
Proposition 2.2, we can conclude that (0, 0) is the unique equilibrium of (1.1)
and it is unstable. This completes the proof.

Two typical isoclines for s < 0 < r with pλ < 1 and pλ > 1 are depicted in
Figure 2.1 and Figure 2.2, respectively.
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Figure 2.1: Isoclines of (1.1) for s < 0 < r and pλ < 1
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Figure 2.2: Isoclines of (1.1) for s < 0 < r and pλ > 1

Corollary 2.1. Let Ii(t) ≡ 0 for i = 1, 2, s < 0 < r and pλ > 1. If

min{r,−s} ≥ pλ− 1

λ
(2.8)

then (0, 0) is the unique equilibrium of (1.1), and it is unstable.

Proof. By (2.2), we have f(A) ≤ λA and

A− pf(A)− sf(A) ≥ 1

λ
f(A)− pf(A)− sf(A) =

f(A)

λ
(1− pλ− sλ) ≥ 0,

pf(A)− A− rf(A) ≤ pf(A)− 1

λ
f(A)− rf(A) =

f(A)

λ
(pλ− 1− rλ) ≤ 0.

Hence

A− pf(A)

s
≤ f(A) ≤ f(B) =

B

p
,

pf(A)− A

r
≤ f(A) ≤ f(B) =

B

p
.

The assertion follows Theorem 2.1 and this completes the proof.

Example 2.1. If f(x) = tanh x, p > 1 and s < 0 < r then one can check

that A = ln(p +
√

p− 1) and f(A) =

√
p(p−1)

p
. A condition stronger than (2.6)

is obtained by replacing B with A since A < B. Therefore, if

min{r,−s} ≥ p(
√

p(p− 1)− ln(p +
√

p− 1))

ln(p +
√

p− 1)
,

then (0, 0) is the unique equilibrium of (1.1), and it is unstable.
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3. Existence of periodic solution

In section 2, in the absence of external input terms, we have proposed some
sufficient conditions for ensuring that (0, 0) is the unique equilibrium of (1.1).
More specifically, for pλ > 1 and s < 0 < r, we proved that (0, 0) is the unique
unstable equilibrium whenever the connection strengths s and r are strong
enough (cf. (2.6) or (2.8)). Along this direction, in this section, we are going
to show that there exists an invariant square containing the unique unstable
equilibrium (0, 0), and then the Poincaré-Bendixson theorem [7, 15] guarantees
the existence of periodic solutions of (1.1). To this aim, we first define the
square region Π(r,p,s) in the xy-plane by

Π(r,p,s) = {(x, y) ∈ R2 : |x| ≤ (p− s)M and |y| ≤ (p + r)M}, (3.1)

where M is the bound of the sigmoidal activation function f described in (1.2).
Then we have the following results.

Lemma 3.1. Π(r,p,s) is an invariant set of (1.1) and, moreover, it is also an
attractor of (1.1).

Proof. For convenience, let L1 := (p − s)M and L2 := (p + r)M . By system
(1.1) with the set of properties (1.2) of f , we have

−x(t)− L1 ≤ dx(t)

dt
≤ −x(t) + L1,

−y(t)− L2 ≤ dy(t)

dt
≤ −y(t) + L2,

which implies that

−L1 + (x(0) + L1)e
−t ≤ x(t) ≤ L1 + (x(0)− L1)e

−t,

−L2 + (y(0) + L2)e
−t ≤ y(t) ≤ L2 + (y(0)− L2)e

−t,

where (x(0), y(0)) denotes the initial value of the solution (x(t), y(t)). From
the above, it follows that Π(r,p,s) is an invariant set of (1.1) and it is also an
attractor. This completes the proof.

We are now in the position to state the results of existence of periodic solu-
tions for (1.1) in the absence of external inputs.

Theorem 3.1. Let Ii(t) ≡ 0 for i = 1, 2, s < 0 < r and pλ > 1. If either
(2.6) or (2.8) is satisfied, then there exist periodic solutions of (1.1).

Proof. Since Π(r,p,s) is an invariant set of (1.1), any trajectories starting inside
Π(r,p,s) will always remain in Π(r,p,s). However, Π(r,p,s) just contains one unstable
equilibrium (0, 0). Thus, the Poincaré-Bendixson theorem ensures there is a
periodic orbit lying in Π(r,p,s), and this completes the proof.
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Numerical simulation for the existence of periodic solutions of system (1.1)
with typical sigmoidal activation functions f(x) = tanh x and f(x) = 1

2
(|x +

1| − |x− 1|) are illustrated in Figure 3.1 and Figure 3.2, respectively.

−2 −1 0 1 2

−2

−1

0

1

2

x

y

f(x)=tanh(x)
r=0.9
s=−0.8
p=1.5
λ=1

Figure 3.1: A periodic orbit of (1.1) with f(x) = tanh x

−2.5 −1 0 1 2.5

−2

−1

0

1

2

x

y

f(x)=(|x+1|−|x−1|)/2
r=0.9
s=−0.8
p=1.5
λ=1

Figure 3.2: A periodic orbit of (1.1) with f(x) = 1
2
(|x + 1| − |x− 1|)

4. Uniqueness of periodic solution

In this section we give a criterion (see Theorem 4.1) to ensure the uniqueness of
the periodic solution of (1.1) derived in Theorem 3.1. Throughout this section,
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we always assume that the sigmoidal activation function f is of class C2. Define

E(x, y) = pf ′(x) + pf ′(y)− 2. (4.1)

Then we have

Proposition 4.1. Assume that 1 < pλ < 2. Then γ0 := {(x, y)| E(x, y) = 0}
is a simple closed curve in R2.

Proof. Since f ′ is an even function, it is obvious that E(x, y) is symmetric about
x-axis and y-axis. Therefore, we only need to show that the curve γ0 in the
first quadrant does not intersect itself. In fact, we claim that γ0 in the the first
quadrant is actually the graph of a function. Note that γ0 passes through (A,A)
in which f ′(A) = 1

p
, and E(x, y) = E(y, x). Therefore it suffices to show that

for each x ∈ [0, A] there is exactly one y ≥ 0 satisfying E(x, y) = 0. By the
properties of f , we have

1

p
≤ f ′(x) ≤ λ for x ∈ [0, A] and 0 < f ′(x) ≤ 1

p
for x ∈ [A,∞),

which implies

0 <
2− pλ

p
≤ 2− pf ′(x)

p
≤

2− p1
p

p
=

1

p
for x ∈ [0, A].

Therefore, by the intermediate value theorem, there exists y ≥ A such that

f ′(y) =
2− pf ′(x)

p
.

The uniqueness follows from the fact that f ′ is strictly decreasing on (0,∞),
since f ∈ C2. This completes the proof.

In the following, combining Proposition 4.1 with Dulac’s criterion [7, 15], we
prove the uniqueness and stability of periodic solutions of (1.1). Let (x(t), y(t))
be a solution of (1.1). Then the derivative of E(x, y) with respect to t along
the trajectory (x(t), y(t)) is given by

dE

dt
= pf ′′(x)(−x + pf(x) + sf(y)) + pf ′′(y)(−y + pf(y) + rf(x)). (4.2)

Theorem 4.1. Let Ii(t) ≡ 0 for i = 1, 2, s < 0 < r and 1 < pλ < 2. Suppose
that either (2.6) or (2.8) is satisfied, and dE

dt
given in (4.2) does not change sign

on γ0. Then there exists a unique periodic solution of (1.1) and it is globally
asymptotically stable.
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Proof. Taking the divergence of the vector field of (1.1), we have

∇ · (−x + pf(x) + sf(y),−y + pf(y) + rf(x)) = E(x, y),

which is positive in the interior of γ0 and negative in the exterior of γ0, where
γ0 := {(x, y)| E(x, y) = 0}. Hence, by Dulac’s criterion, (1.1) has no closed
orbit lying entirely in the interior of γ0. Moreover, since dE

dt
does not change

sign on γ0, it follows that there is no periodic orbit crossing γ0. Therefore, the
existence of periodic solutions ensured by Theorem 3.1 must lie in the exterior
of γ0 and in the interior of Π(r,p,s). Now, consider the annular region which
is the intersection of the exterior of γ0 with the interior of Π(r,p,s). Obviously,
the divergence of the vector field of (1.1) does not change sign on this annular
region. Combining Dulac’s criterion with that fact that the unique equilibrium
point (0, 0) is unstable, we can conclude that there exists a unique periodic
solution of (1.1) which is globally asymptotically stable. This completes the
proof.

In the rest of the section, we will concentrate on a concrete example with
the sigmoidal activation function f(x) = tanh x, and determine the feedback
and connection strengths [r, p, s] under which the two-neuron network (1.1) has
a unique globally asymptotically stable periodic solution.

First, for f(x) = tanh x, we have λ = 1, f ′(x) = 1 − (f(x))2, and f ′′(x) =
2f(x)(f 2(x)− 1). Introducing the new variables (u, v) by

u = tanh x and v = tanh y,

then we have

E(x, y) = 0 if and only if u2 + v2 =
2p− 2

p
. (4.3)

For such (u, v) lying on the circle u2 + v2 = 2p−2
p

, we have

1

2p

dE

dt
= u(u2 − 1)

(
−1

2
ln(

1 + u

1− u
) + pu + sv

)

+v(v2 − 1)
(
−1

2
ln(

1 + v

1− v
) + pv + ru

)

= p(u4 + v4)− (2p− 2) + su3v + ruv3 − (s + r)uv

+u(1− u2)
1

2
ln(

1 + u

1− u
) + v(1− v2)

1

2
ln(

1 + v

1− v
)

= K(u, v) + G(u) + G(v)− (2p− 2),

where K and G are defined by

K(u, v) := su3v + ruv3 − (s + r)uv,

G(u) := pu4 + u(1− u2)
1

2
ln(

1 + u

1− u
).
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Now we are going to evaluate maximum values of K(u, v) and G(u) + G(v)
on the circle u2 + v2 = 2p−2

p
, respectively. Applying the method of Lagrange

multiplier, we find that a candidate point (u, v) for the maximum value of
K(u, v) subject to u2 + v2 = 2p−2

p
satisfies:

rv3 + 3su2v − (s + r)v = 2µu,

3ruv2 + su3 − (s + r)u = 2µv,

where µ is the Lagrange multiplier. Therefore, we obtain

rv4 + 3su2v2 − (s + r)v2 = 3ru2v2 + su4 − (s + r)u2,

or equivalently,

rv4 − su4 + 3(s− r)u2v2 + (s + r)(u2 − v2) = 0. (4.4)

To find the root (u, v) of (4.4), since u2 + v2 = 2p−2
p

, we may denote (u, v) by

(u, v) = (` cos θ, ` sin θ) for some θ, where ` :=

√
2p− 2

p
.

With these notation, (4.4) can be written as

(r − s) cos 4θ − (1− 2

`2
)(r + s) cos 2θ = 0,

which implies

cos 2θ =
1

4

( −1

p− 1

r + s

r − s
±

√
(

1

p− 1
)2(

r + s

r − s
)2 + 8

)
, (4.5)

and

max
u2+v2= 2p−2

p

K(u, v) =
(p− 1)2

2p2

(
(s− r) sin 4θ +

1− 2p

(p− 1)2
(s + r) sin 2θ

)

:= Γ(r, p, s). (4.6)

As a consequence of (4.6), if r + s = 0 then we have Γ(r, p, s) = Γ(r, p,−r) =
r(p−1

p
)2.

As for the maximum value of G(u) + G(v) on the circle u2 + v2 = 2p−2
p

, a

candidate point (u, v) for the maximum value satisfies

G′(u) = 2µu and G′(v) = 2µv, (4.7)

where µ is the Lagrange multiplier. We first assume that u 6= 0 and v 6= 0. In
this case, (4.7) can be rewritten as

G′(u)

u
=

G′(v)

v
.
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It is obvious that G′(u)
u

is an even function. Next, we claim that G′(u)
u

is one-to-

one for u ∈ (0,
√

2p−2
p

) whenever 1 < p ≤ 3/2. Applying Taylor’s expansion, we

have

d

du

(G′(u)

u

)
=

d

du

(
4pu2 + (u−1 − 3u)

1

2
ln(

1 + u

1− u
)
)

= 8pu− (u−2 + 3)
1

2
ln(

1 + u

1− u
) + (u−1 − 3u)

1

1− u2

= u
(
8p−

∞∑

k=1

(
1

2k + 1
+

3

2k − 1
+ 2)u2k−2

)

> u
(
8p− 16

3
− 16

5

∞∑

k=2

(

√
2p− 2

p
)2k−2

)

= 8u
(
p− 2

3
− 4(p− 1)

5(2− p)

)
.

Hence, if 1 < p ≤ 3/2 then G′(u)
u

is strictly increasing and then it is an one-to-

one function for u ∈ (0,
√

2p−2
p

). Therefore, the nontrivial solutions of (4.7) are

u = ±v = ±
√

p−1
p

and for these (u, v),

G(u) + G(v) = 2G(

√
p− 1

p
). (4.8)

Next, if u = 0 or v = 0 then

G(u) + G(v) = G(

√
2p− 2

p
)

=
4(p− 1)2

p
+

2− p

2p

√
2p− 2

p
ln

(√p +
√

2p− 2√
p−√2p− 2

)
. (4.9)

Finally, to determine the maximum value of G(u)+G(v) on the circle u2 +v2 =
2p−2

p
, we have the following lemma:

Lemma 4.1. Assume that 1 < p ≤ 3/2. Then we have

max
u2+v2= 2p−2

p

(G(u) + G(v)) = G(

√
2p− 2

p
). (4.10)

Proof. It suffices to claim that

G(
√

2u) > 2G(u) for u ∈ (0,

√
p− 1

p
].
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Since for u ∈ (0,
√

p−1
p

), we have 0 < u < 1/
√

3 and

d

du

(
G(
√

2u)− 2G(u)
)

= 8pu3 +
∞∑

k=1

(2k+1 − 2

2k + 1
− 6

2k − 1

2k − 1

)
u2k+1

= 6u3(p− 1− u2) + u3(2p− 42

5
u4) +

∞∑

k=1

(2k+1 − 2

2k + 1
− 6

2k+3 − 1

2k + 5
u6

)
u2k+1

> 6u3(p− 1− u2) + u3(2p− 42

5
u4) +

∞∑

k=1

(2k+1 − 2

2k + 1
− 6

2k+3 − 1

33(2k + 5)

)
u2k+1

> 6
(p− 1)2

p
u3 + (2p− 14

15
)u3 +

∞∑

k=1

(2k+1 − 2

2k + 1
− 6

2k+3 − 1

33(2k + 5)

)
u2k+1

> 0,

where the last inequality is obtained by proving that

2k+1 − 2

2k + 1
− 6

2k+3 − 1

33(2k + 5)
> 0 for all k ≥ 1,

or equivalently,

(6k + 111)2k+1 > 96k + 264 for all k ≥ 1. (4.11)

However, one can verify that the inequality (4.11) holds by mathematics induc-
tion. Since G(

√
2u) − 2G(u) is strictly increasing and equal to zero at u = 0,

we have G(
√

2u)− 2G(u) > 0 for u =
√

p−1
p

, and this completes the proof.

Finally, combining the above results with Theorem 4.1, we obtain

Theorem 4.2. Let Ii(t) ≡ 0 for i = 1, 2, f(x) = tanh x, s < 0 < r and
1 < p ≤ 3/2. Suppose that (2.8) holds with λ = 1, and

2(p− 1)(p− 2)

p
+

2− p

2p

√
2p− 2

p
ln

(√p +
√

2p− 2√
p−√2p− 2

)
+ Γ(r, p, s) < 0,

where Γ(r, p, s) defined in (4.6). Then there exists a unique periodic solution of
(1.1) and it is globally asymptotically stable.

Proof. Since dE
dt

< 0 on the circle γ0, the assertion follows Theorem 4.1.

A numerical example showing the unique periodic solution which is globally
asymptotically stable is depicted in Figure 4.1, where O denotes the unique
periodic orbit and Oi, i = 1, 2, · · · 5, denote the orbits with initial values (1, 2),
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(−2, 1), (−1,−2), (2,−1), and (0.5, 0.5), respectively. One can observe the
asymptotic behaviors of Oi as t →∞ that confirm our theoretical analysis.

−2 −1 0 1 2

−2

−1

0

1

2

x

y

O
1

O
2

O
3

O
4

OE(x,y)=0

f(x)=tanh(x)
r=0.5
s=−0.5
p=1.1
λ=1

Figure 4.1: The unique periodic solution of (1.1)

Finally, for the specific case r + s = 0, the numerical region Ω2 and the
theoretical region Ω1 ⊂ Ω2 corresponding to Theorem 4.1 and Theorem 4.2 for
ensuring uniqueness of periodic solution are given in Figure 4.2, respectively.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

r 
=

 −
s

Ω
2
 

Ω
1
 

Figure 4.2: The regions for uniqueness of periodic solution

5. Periodic solutions for system with periodic
external inputs
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In this section, we study the periodic solution of the two-neuron system (1.1)
with periodic external inputs. More specifically, we assume that Ii : R+ → R
are continuously periodic functions with the periods ωi > 0 for i = 1, 2, respec-
tively. By using the ideas similar to that in [2] with a slight modification, we
have the following results concerning the existence, uniqueness, and stability
of periodic solutions of (1.1) based on the fixed point theory for contraction
mappings.

Theorem 5.1. Consider the two-neuron system (1.1) with ωi-periodic external

inputs Ii(t), for i = 1, 2. Assume
ω1

ω2

=
n

m
for some m,n ∈ N that are relatively

prime. If there exist θ1 > 0 and θ2 > 0 such that

2|p|+ |s|+ θ2

θ1

|r| < 2

λ
and 2|p|+ |r|+ θ1

θ2

|s| < 2

λ
, (5.1)

then we have

(i) The system (1.1) has a unique ω-periodic solution with ω := mω1 = nω2.

(ii) All other solutions of (1.1) converge exponentially to the ω-periodic solu-
tion as t → +∞.

Proof. Let (x0
1, y

0
1), (x0

2, y
0
2) ∈ R2. Denote the solutions of (1.1) with the initial

conditions (x0
1, y

0
1), (x0

2, y
0
2) by (x1(t), y1(t)), (x2(t), y2(t)), respectively. Then it

follows that

(x2(t)− x1(t))
′ = −(x2(t)− x1(t)) + p(f(x2(t))− f(x1(t)))

+s(f(y2(t))− f(y1(t))),

(y2(t)− y1(t))
′ = −(y2(t)− y1(t)) + p(f(y2(t))− f(y1(t)))

+r(f(x2(t))− f(x1(t))).

Due to (5.1), we can choose a sufficiently small ε > 0 such that

ε

2
− 1 +

λ

2

(
2|p|+ |s|+ θ2

θ1

|r|
)

< 0,

ε

2
− 1 +

λ

2

(
2|p|+ |r|+ θ1

θ2

|s|
)

< 0.
(5.2)

We define the following Liapunov function,

U(t) =
eεt

2

(
θ1(x2(t)− x1(t))

2 + θ2(y2(t)− y1(t))
2
)
.

Calculating the rate of change of U(t) along (x2(t) − x1(t), y2(t) − y1(t)), we
have

dU(t)

dt
= θ1

(1

2
(x2(t)− x1(t))

2εeεt + (x2(t)− x1(t))(x2(t)− x1(t))
′eεt

)

+θ2

(1

2
(y2(t)− y1(t))

2εeεt + (y2(t)− y1(t))(y2(t)− y1(t))
′eεt

)
.
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Owing to the fact that f is Lipschitz continuous with the Lipschitz constant λ,
we can verify that for t > 0

dU(t)

dt
≤ eεt

{
θ1

(
(
ε

2
− 1)(x2(t)− x1(t))

2 + λ|p|(x2(t)− x1(t))
2

+λ|s||x2(t)− x1(t)||y2(t)− y1(t)|
)

+θ2

(
(
ε

2
− 1)(y2(t)− y1(t))

2 + λ|p|(y2(t)− y1(t))
2

+λ|r||y2(t)− y1(t)||x2(t)− x1(t)|
)}

.

Applying the elementary inequality, 2ab ≤ a2 + b2 for all a, b ∈ R, with (5.2),
we further have

dU(t)

dt
≤ eεt

{
θ1

(
(
ε

2
− 1)(x2(t)− x1(t))

2 + λ|p|(x2(t)− x1(t))
2

+
λ|s|
2

(x2(t)− x1(t))
2 +

λ|s|
2

(y2(t)− y1(t))
2
)

+θ2

(
(
ε

2
− 1)(y2(t)− y1(t))

2 + λ|p|(y2(t)− y1(t))
2

+
λ|r|
2

(y2(t)− y1(t))
2 +

λ|r|
2

(x2(t)− x1(t))
2
)}

.

That is,

dU(t)

dt
≤ eεt

{
θ1

(ε

2
− 1 + λ|p|+ λ|s|

2
+

θ2

θ1

λ|r|
2

)
(x2(t)− x1(t))

2

+θ2

(ε

2
− 1 + λ|p|+ λ|r|

2
+

θ1

θ2

λ|s|
2

)
(y2(t)− y1(t))

2
}

≤ 0,

which implies that
U(t) ≤ U(0) for all t ≥ 0.

Since
eεt

2
min{θ1, θ2}

(
(x2(t)− x1(t))

2 + (y2(t)− y1(t))
2
)
≤ U(t),

for all t ≥ 0 and

U(0) =
1

2

(
θ1(x

0
2 − x0

1)
2 + θ2(y

0
2 − y0

1)
2
)

≤ 1

2
max{θ1, θ2}

(
(x0

2 − x0
1)

2 + (y0
2 − y0

1)
2
)
,

Then we can easily get that

(x2(t)− x1(t))
2 + (y2(t)− y1(t))

2 ≤ Ce−εt‖(x0
2 − x0

1, y
0
2 − y0

1)‖2
2, (5.3)
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for all t ≥ 0, where ‖ · ‖2 is the usual Euclidean norm in R2 and C ≥ 1 is a
constant.

Now, letting ω := mω1 = nω2, we can choose a positive integer k such that

Ce−εkω ≤ 1

2
,

and then define a Poincaré map P : R2 → R2 by

P (x0, y0) = (x(t), y(t)) |t=ω, (5.4)

where (x(t), y(t)) is the solution of (1.1) with the initial value (x0, y0). Then,
by (5.3), we can conclude that P k is a contraction mapping. Hence, there exists
a unique fixed point (x∗0, y

∗
0) ∈ R2 such that P k(x∗0, y

∗
0) = (x∗0, y

∗
0). Notice that

P k(P (x∗0, y
∗
0)) = P (P k(x∗0, y

∗
0)) = P (x∗0, y

∗
0),

which implies that P (x∗0, y
∗
0) is also a fixed point of P k. By the uniqueness of

fixed point of P k, we arrived at P (x∗0, y
∗
0) = (x∗0, y

∗
0).

Let (x∗(t), y∗(t)) be the solution of (1.1) with the initial value (x∗0, y
∗
0). Then,

by (5.3) with (5.4), one can verify that (x∗(t), y∗(t)) is the unique periodic
solution with period ω and, furthermore, all other solutions of (1.1) converge
exponentially to it as t → +∞. This completes the proof.

Next, we give a numerical example in which the conditions in Theorem 5.1
are satisfied and especially the ratio of the periods of the external inputs is
ω1

ω2
= 2 ∈ Q, while in the second example the condition (5.1) fails no matter

what θ1 and θ2 are chosen. Both examples exhibit the uniqueness of globally
exponential stable periodic solutions. See Figure 5.1 and Figure 5.2 below.

−1.5 0 1.5
−1

0

1

x

y

f(x)=tanh(x)

r=0.4

p=0.5

s=−0.2

λ=1
I
1
(t)=15sin(8πt)

I
2
(t)=20cos(16πt)

Figure 5.1: The unique periodic solution of (1.1) satisfying (5.1)
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0
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x

y

f(x)=tanh(x)

r=0.4

p=0.8

s=−0.3

λ=1
I
1
(t)=15sin(8πt)

I
2
(t)=20cos(16πt)

Figure 5.2: The unique periodic solution of (1.1) violating (5.1)

Finally, we conclude this section with a numerical example in which the ratio
of the periods of the external inputs is ω1

ω2
= 9π

2
∈ Qc. It is interesting to note

that, in this case, the so-called quasi-periodic solution seems to be observed.
Unfortunately, in the present paper, we are not able to carry out a theoretical
analysis on it.

−1.5 0 1.5
−1

0
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x

y

f(x)=tanh(x)

r=0.4

p=0.5

s=−0.2

λ=1
I
1
(t)=15sin(8πt)

I
2
(t)=20cos(36t)

Figure 5.3: A quasi-periodic solution of (1.1) with irrational-ratio periodic
external inputs
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