行政院國家科學委員會專題研究計畫成果報告

計畫名稱:圖分割成迴圈之研究

計畫編號: NSC 89-2115-M-032-008

執行期限: 88 年 8 月 1 日至 89 年 7 月 31 日

主持人: 高金美

E-mail: cmfu@mail.tku.edu.tw

執行機構及單位名稱:淡江大學數學系

Decomposition of $2K_{p,q,r}$ into most cycles

一、中文摘要

令 $K_{p,q,r}$ 表示一個完全三分圖, C_r 表示一個長度為 r 的基本迴圈又 $2K_{p,q,r}$ 表示一個完全三分圖其每一邊均出現兩 次. 一個圖 G 為<u>可分解成迴圈</u>表示 G 可 被分割成邊均相異的迴圈, 在這計劃 中我們得到的結論是當 $p \le q \le r$ 時, 以 下為產生最多迴圈之分解情形:

- (a) 若 (p+q)r 為偶數時, 2K_{p,q,r}可分解
 成 2pq 個 C₃ 及 [p(r-q)+q(r-p)]/2 個 C₄;
- (b) 若 (p+q)r 為奇數時, 2K_{p,q,r}可分解成
 2pq 個 C₃, [p(r-q)+q(r-p) 1]/2 個 C₄ 及
 一個 C₆.

關鍵詞: 完全三分圖,分解

二、英文摘要

Let $2K_{p,q,r}$ be the 2-fold complete tripartite graph. In this paper, we will show that for each triple p,q,r of positive integers, $p \le q \le r$, $2K_{p,q,r}$ can be decomposed into most cycles as follows: (a) if (p+q)r is even, decompose $2K_{p,q,r}$ into 2pq triangles, and [p(r-q)+q(r-p)]/24-cycles, and (b) decompose $2K_{p,q,r}$ into 2pq triangles, [p(r-q)+q(r-p)-1]/2 4-cycles, and one 6cycles, otherwise.

Keywords: complete tripartite graph, decomposition.

Introduction.

In [2], A. T. White studied the

relationship between block designs and graph embeddings and he pointed out a BIBD on v objects with k = 3 and λ = 2 (a 2-fold triple system) determines a triangular embedding of K_v in some generalized pseudo-surfaces : each block becomes a triangle with vertices labeled by the objects of the block; since λ =2, each pair of vertices appears exactly twice - so that a 2-manifold results from the standard identification procedure of combinatorial topology.

Then he extended the study to group divisible design GDD, thus a balanced complete multipartite graph $K_{n(m)}$ is considered. But, not every $2K_{n(m)}$ can be decomposed into triangles. Therefore, the work of Hanani on GDD [1] completes the generalized pseudocharacteristic for $K_{n(m)}$ in 7/9 of the possible cases. For other cases, we have to decompose $2K_{n(m)}$ into as many cycles as possible (not all triangles).

Instead of considering the cases left in $K_{n(m)}$, in this note, we consider a general complete tripartite graph and we are able to decompose it into most cycles in two different cases.

Let $K_{n,n,n}$ denote the complete tripartite graph with the partite sets $\{r_1, r_2, ..., r_n\}$, $\{c_1, c_2, ..., c_n\}$ and $\{e_1, e_2, ..., e_n\}$ and $L = [\ell(i,j)]$ be a latin square of order n. Then corresponds to a decomposition of $K_{n,n,n}$ into n^2 triangles. Each entry $\ell(i,j)$ of L corresponds to a triangle $(r_i, c_j, e_{l(i,j)})$ of $K_{n,n,n}$ for each $1 \le i$, $j \le n$. Now, we are ready to decompose $2K_{p,q,r}$, the 2-fold complete tripartite graph. Let the partite sets of $K_{p,q,r}$ be $\{r_1, r_2, ..., r_p\}$, $\{c_1, c_2, ..., c_q\}$ and $\{e_1, e_2, ..., e_r\}$. We assume throughout the paper that p, q, r \in N and p \leq q \leq r.

Theorem 1. $2K_{p,q,r}$ can be decomposed into (a) 2pq triangles, and [p(r-q)+q(r-p)]/2 4-cycles, if (p+q)r is even, and

(b) 2pq triangles, [p(r-q)+q(r-p)-1]/2 4-cycles, and one 6-cycle, otherwise.

Corollary 2. Let $\chi''(G)$ denote the generalized pseudo-characteristic of G. Then

 $\chi''(D(K_{p,q,r}))$

= (p+q+r) - (p+q)r/2 if (p+q)r is even (p+q+r) - [(p+q)r-1]/2 if (p+q)r is odd.

Reference.

- H. Hanani, Balanced incomplete block designs and related designs, Discrete Math., 11 (1975) 255-369.
- A. T. White, Block Design and Graph Imbeddings, J. of Combinatorial Theory, (1975),166-183.