行政院國家科學委員會專題研究計畫成果報告

計畫名稱:完全多分圖的分割,覆蓋及裝填性的研究

計畫編號: NSC 89-2115-M-032-016

執行期限: 89年8月1日至90年7月31日

主持人: 高金美

E-mail: cmfu@mail.tku.edu.tw

執行機構及單位名稱:淡江大學數學系

Decomposition of 2K_{p,q,r,s} into most cycles

一、中文摘要

令 K_{p,q,r,s} 表示一個完全四分圖, C_r 表示一個長度為 r 的基本迴圈,又 2K_{p,q,r,s}表示一個每一邊均出現兩次的完 全四分圖。一個圖 G 為<u>可分解成迴圈</u> 表示 G 可被分割成邊均相異的迴圈。 在這計劃中我們得到的結論是 2K_{p,q,r,s}產 生最多迴圈之分解情形:

- (1)當 p 為正整數時, 2K_{p,p,p}可分解成
 4p² 個 C₃。
- (2)當 1≤q≤2p時, 2K_{p,p,p,q}可分解成 2p(p+q)個C₃ 當 q>2p時,且pq 為 偶數時, 2K_{p,p,p,q}可分解成 6p²個C₃ 及 3p(q-2p)/2 個C₄; pq 為奇數時, 2K_{p,p,p,q}可分解成 6p²個C₃, (3p(q-2p)-3)/2 個C₄ 及一個C₆。
- (3)當 q > 2p 時,若 p,q 皆為偶數或奇數
 時,2K_{p,p,q,q}可分解成 4pq 個 C₃及

(q-p)²/2 個 C₄; 若 p,q 一為偶數一為
 奇數時, 2K_{p,p,q,q} 可分解成 4pq 個
 C₃, [(q-p)²-3] /2 個 C₄ 及一個 C₆。

關鍵詞:完全四分圖,迴圈,分解。

二、英文摘要

Let 2 $K_{p,q,r,s}$ be the 2-fold complete 4-partite graph and C_r a cycle of length r. If the edge set of a graph G can be partitioned into edge-disjoint cycles, then we call that this graph G can be decomposed into cycles. In this project, we have shown that for each quadruple p,q,r,s of positive integers, $2K_{p,q,r,s}$ can be decomposed into most cycles as follows: (a) $2K_{p,p,p,p}$ can be decomposed into $4p^2$ C₃.

- (b) When 1 ≤ q ≤ 2p, 2K_{p,p,p,q} can be decomposed into 2p(p+q) C₃. When q > 2p, if pq is even, 2K_{p,p,p,q}can be decomposed into 6p² C₃ and 3p(q-2p)/2 C₄; if pq is odd, 2K_{p,p,p,q}can be decomposed into 6p² C₃, (3p(q-2p) 3)/2 C₄ and one C₆.
- (c) When q > 2p, if both p and q are even or odd, then $2K_{p,p,q,q}$ can be decomposed into $4pq C_3$ and $(q-p)^2/2$ C_4 ; if one of p,qis even or odd, then $2K_{p,p,q,q}$ can be decomposed into 4pq C_3 , $[(q-p)^2-3]/2 C_4$ and one C_6

Keywords: complete 4-partite graph, 2-fold complete 4-partite graph, cycle, decomposition.

Introduction.

In [2], A. T. White studied the relationship between block designs and graph embeddings and he pointed out a BIBD on v objects with k = 3 and λ = 2 (a 2-fold triple system) determines a triangular embedding of K_v in some generalized pseudo-surfaces : each block becomes a triangle with vertices labeled by the objects of the block; since λ =2, each pair of vertices appears exactly twice - so that a 2-manifold results from the standard identification procedure of combinatorial topology.

Then he extended the study to group divisible design GDD, thus a balanced complete multipartite graph $K_{n(m)}$ is considered. But, not every $2K_{n(m)}$ can be decomposed into triangles. Therefore, the work of Hanani on GDD [1] completes the generalized pseudo-characteristic for $K_{n(m)}$ in 7/9 of the possible cases. For other cases, we have to decompose $2K_{n(m)}$ into as many cycles as possible (not all triangles).

Instead of considering the cases left in $K_{n(m)}$, in this note, we consider a general complete 4-partite graph in this project.

Let $K_{n,n,n}$ denote the complete tripartite graph with the partite sets {r₁, r₂, ..., r_n}, {c₁, c₂, ..., c_n} and {e₁, e₂, ..., e_n} and L = [l(i,j)] be a latin square of order n. Then corresponds to a decomposition of $K_{n,n,n}$ into n² triangles. Each entry l(i,j) of L corresponds to a triangle (r_i, c_j, e_{l(i,j)}) of K_{n,n,n} for each $1 \le i$, $j \le n$. Now, we are ready to decompose $2K_{p,q,r,s}$, the 2-fold complete 4-partite graph. We assume throughout the paper that p, q, r,s $\in N$.

Theorem 1. $2K_{p,p,p,p}$ can be decomposed into $4p^2 C_3$. **Theorem 2.** When $1 \le q \le 2p$, $2K_{p,p,p,q}$ can be decomposed into $2p(p+q) C_{3o}$ When q > 2p, if pq is even, $2K_{p,p,p,q}$ can be decomposed into $6p^2 C_3$ and $3p(q-2p)/2 C_4$; if pq is odd, $2K_{p,p,p,q}$ can be decomposed into $6p^2 C_3$, (3p(q-2p) - 3)/2 C_4 and one C_6 .

Theorem 3. When q > 2p, if both p and q are even or odd, then $2K_{p,p,q,q}$ can be decomposed into $4pq C_3$ and $(q-p)^2/2 C_4$; if one of p,qis even or odd, then $2K_{p,p,q,q}$ can be decomposed into $4pq C_3$, $[(q-p)^2-3]/2 C_4$ and one C_6

Reference.

- C.C. Chou and C.M. Fu, Decomposition of 2K_{p,q,r} into most cycles, submitted,(2001).
- H. Hanani, Balanced incomplete block designs and related designs, Discrete Math., 11 (1975) 255-369.
- A. T. White, Block Design and Graph Imbeddings, J. of Combinatorial Theory, (1975),166-183.