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Abstract

Stochastic frontier models are often used to measure the extent of inefficiency of
a firm. However, it is found that such a measure is sensitive to the specification of
the functional form on the frontiers. As a result, misspecifications in the technology
(frontier function) may lead to incorrect conclusions drawn from the resulting frontier
even if the distributions of the composed-errors are correctly specified. This study
considers a nonparametric stochastic frontier model in which the restrictive assump-
tions on the parametric specifications are relaxed. The inference is carried out via
the Bayesian Markov chain Monte Carlo algorithm (the Gibbs sampler) which pro-
vides estimates exhibiting finite-sample properties. The full conditional distributions
required in the implementation of the Gibbs sampler are derived. An empirical ap-
plication to the real data is conducted to illustrate the practical use of our proposed
model and estimation technique.

Keywords: stochastic frontier, nonparametric, Gibbs sampler, Metropolis-Hastings



1 Introduction

Stochastic frontier models, developed by Aigner, Lovell and Schmidt (1977) and

Meeusen and van den Broeck (1977), have been commonly used in the estimation

of firms’ technical (production or cost) inefficiencies. By definition, the production

frontier denotes the maximum amount of output that can be produced by a certain

technology with a given level of inputs. However, in practice, the actual output of

a firm will typically fall below the maximum that is technically feasible. Thus, the

deviation of actual from maximum output can be used as a measure of inefficiency

and is the main focus of interest in many studies. For instance, the recent empirical

applications include banking (Greene, 2005; Kumbhakar and Tsionas, 2005), health

care (Griffin and Steel, 2004; Greene, 2004), life insurance (Greene and Segal, 2004),

investment (Wang, 2003), sports (Koop, 2004; Amos, Beard and Caudill, 2005) and

world production (Tsionas and Kumbhakar, 2004), to name a few.

In its basic form, the stochastic frontier model uses a parametric representation of

technology along with a two-part composed-error term. Within this framework, the

observed output or cost is decomposed into three components — the actual frontier,

which depends on a set of explanatory variables; a symmetric disturbance, which

captures other effects such as measurement error, and a particular one-sided distur-

bance which denotes deviations of the individual unit from the frontier, i.e., a measure

of inefficiency. Existing extensions of the basic stochastic frontier approach include

at least the following aspects. First, a more flexible distributional assumption of

the one-sided disturbance is adopted for measuring inefficiencies. In contrast to the

half-normal distribution of Aigner, Lovell and Schmidt (1977) and the exponential

distribution of Meeusen and van den Broeck (1977), latter generalizations include the

truncated-normal density of Stevenson (1980), the gamma density of Greene (1990)

and the generalized gamma distributions and mixtures of generalized gamma distri-

butions of Griffin and Steel (2003). In contrast, Park and Simar (1994) consider a

parametric frontier and are nonparametric on the inefficiency distribution. Griffin

and Steel (2004) propose a semiparametric Bayesian framework in which the dis-
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tribution of inefficiencies is modeled nonparametrically through a Dirichlet process

prior. Second, the distribution of technical inefficiency is allowed to depend on some

exogenous variables. For example, Huang and Liu (1994) and Battese and Coelli

(1995) allow the mean of the distribution to depend on firm-specific characteristics

whereas Caudill, Ford and Gropper (1995) and Hadri (1999) parameterize the vari-

ance of the distribution as a function of appropriate explanatory variables. Recently,

Wang (2002) and Hadri, Guermat and Whittaker (2003) provide a flexible parameter-

ization to allow exogenous influences on both the mean and variance of the technical

inefficiency distribution.

Third, alternative functional forms of the stochastic frontiers are examined. The

most commonly-used specifications include a variant of the Cobb-Douglas or Translog

models. Despite of the simplicity, it is well known that the primary objective of

composed-error models, i.e., measurement of firms’ inefficiencies, can be very sensitive

to the choice of functional form of the frontier. Therefore, Koop, Osiewalski and Steel

(1994) propose the asymptotically ideal model whereas Zhu, Ellinger and Shumway

(1995) and Giannakas, Tran and Tzouvelekas (2003) consider a generalized quadratic

Box-Cox transformation of the stochastic frontiers. However, most of the existing

models explicitly or implicitly assume that all firms under investigation share exactly

the same technology and differ only with respect to their degree of inefficiency. In

practice, however, firms may adopt different technologies for a variety of reasons. As

argued in Tsionas (2002), adoption of a new technology is costly, and firms adopt new

technologies only with considerable lags. If costs related to installation and personnel

training differ across firms, it follows that at any given point in time there will be

some variability in the types of technology used by firms. Therefore, we might expect

the production possibilities to be different in a cross-section of firms. Thus, Tsionas

(2002) and Huang (2004) consider a random-coefficient stochastic frontier to separate

technical inefficiency from technological differences across firms.

Alternative modeling strategies and generalizations are the semiparametric or non-

parametric analysis and inference. For example, Fan, Li and Weersink (1996) extend

the linear stochastic frontier model to a semiparametric stochastic frontier model in
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which the functional form of the frontier is left unspecified but the distributions of

the composite error terms are of known form. They propose semiparametric pseudo-

likelihood estimators based kernel estimation which are robust to possible misspecifi-

cations of the frontier as opposed to existing parametric estimators. Similarly, Huang

and Fu (1999) also advocate a nonparametric specification of the frontier and adopt

a parametric inefficiency distribution. In particular, they utilize the approach of av-

erage derivative to estimate slopes of a stochastic frontier function and the method

of pseudolikelihood to infer inefficiency without making an assumption or approxi-

mation on the functional specification. In contrast, Park and Simar (1994) assume

a parametric frontier and focus on the nonparametric inefficiency distribution. This

setup is extended by Park, Sickles and Simar (1998) to allow for dependence between

inefficiencies and regressors, and by Sickles, Good and Getachew (2002) to model the

multiple output/multiple input technology.

In the same spirits, we propose a novel nonparametric stochastic frontier model

to relax the restrictive assumption on the functional form of the frontier which repre-

sents the production technology. This can be very important since misspecifications

in the technology (frontier function) may lead to incorrect conclusions drawn from

the resulting frontier even if the distributions of the composed-errors are correctly

specified. This study differs from the existing studies in some respects. First, the

analysis and inference are from Bayesian point of view via the Markov chain Monte

Carlo algorithm. The estimation and model comparison are straightforward to im-

plement and intuitively feasible. Second, in contrast to classical approaches, we can

obtain the whole density of the parameters of interests so that the uncertainty of

parameters (or prediction) is taken into account. Third, it is well known that the

classical nonparametric regression analysis relies heavily on large samples. The curse

of dimensionality often makes the nonparametric estimators unreliable using sam-

ple of the regular size. In contrast, our Bayesian approach provides estimates which

exhibit finite-sample properties.
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2 The parametric framework

Since the introduction of Aigner, Lovell and Schmidt (1977) and Meeusen and van

den Broeck (1977), the stochastic production frontier approach often assumes a para-

metric representation of technology along with a two-part composed-error term in

the measurement of firm’s (in)efficiency. Specifically, a standard linear specification

takes the form as,

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ǫi − ui (1)

where yi is the logarithm of the observed output and xi1, xi2, · · · , xik are the loga-

rithms of k inputs for the ‘i’th firm. The symmetric disturbance term ǫi, denoting

either statistical noise or measurement error, is commonly assumed to be distributed

as iid N (0, σ2) for i = 1, 2, · · · , n. Moreover, the one-sided (non-negative) error term

ui represents the extent of technical inefficiency. Obviously, the firm is fully efficient

when ui = 0.

In some cases we are interested in measuring cost rather than production ineffi-

ciencies. Then, equation (1) can be adapted to be a stochastic cost frontier which

represents the minimum attainable cost of producing a given level of outputs. In a

very similar way, a typical stochastic frontier model may be specified as

yi = β0 + β1xi1 + β2xi2 + · · · + βkxik + ǫi + ui (2)

where so that, if the signs of yi and xi1, xi2, · · · , xik are reversed, all results of the

production frontier can be directly applied to the cost frontier as well.

Extensions of equation (1) include at least two main directions. The first one is

relaxing the distributional assumptions of technical inefficiency. Originally, Aigner,

Lovell and Schmidt (1977) consider a half-normal distribution while Meeusen and van

den Broeck (1977) adopt an exponential distribution for ui. Later, Stevenson (1980)

extends the half-normal assumption to the truncated normal distribution and Greene

(1990) generalizes the exponential distribution to the more flexible gamma density for

measuring the technical inefficiency ui. Recently, Griffin and Steel (2004) consider

generalized gamma distributions and mixtures of generalized gamma distributions
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and Griffin and Steel (2004) model the distribution of inefficiencies nonparametrically

through a Dirichlet process prior.

3 The semi- and/or non-parametric specification

In order avoid possible model mis-specifications which might invalidate the estimation

of technology and the measure of inefficiency in the parametric setup, we can consider

a more flexible nonparametric inference of the stochastic frontier model. In contrast

to conventional parametric models, the nonparametric approaches do not need to

specify the functional forms between output and inputs ex ante and let the data

determine what the relationship looks like.

3.1 The single-input case

For illustrative purpose, we first consider a simple case with only one input, i.e., 1

yi = f(zi) + ǫi − ui (3)

where, in contrast to equation (1), we have only one input zi. More importantly,

the relationship between yi and zi is characterized by the unknown (nonparametric)

function f(·). The distributional assumptions of the error terms are ǫi ∼ N (0, σ2)

and ui ∼ E(θ) = θ exp{−θui}, respectively. The assumption of the exponentially dis-

tributed inefficiency ui can be easily extended to the more general gamma distribution

with some additional effort, e.g., Tsionas (2000) and Huang (2004).

Without loss of generality, the observations are ordered so that z1 ≤ z2 ≤ · · · ≤ zn.

By stacking the observations, we have,
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...
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f(z1)
f(z2)

...
f(zn)











+











ǫ1

ǫ2
...
ǫn











−











u1

u2
...

un











(4)

By defining y = (y1, y2, · · · , yn)
′, ǫ = (ǫ1, ǫ2, · · · , ǫn)′, u = (u1, u2, · · · , un)

′, equation

(4) can be re-written as,

y = γ + ǫ − u (5)

1We use x to denote variables entering the regression parametrically and z to represent inputs
treated nonparametrically.
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where γ = (γ1, γ2, · · · , γn)
′ = [f(z1), f(z2), · · · , f(zn)]

′ denotes the n points on the

nonparametric regression line to be estimated. As noted by Koop and Poirier (2004),

without imposing any additional structure to the above model, we are plagued by

the problem of ‘insufficient observations’ in that we have more unknown parameters

than available observations. However, the problem can be resolved through the use

of prior information about the degree of smoothness of the nonparametric regression

lines.

In Bayesian analysis, we can treat u as additional parameters to be estimated. As

a result, the (augmented) likelihood function becomes,

L(y|γ, σ2, u) = (2π)−
n
2 (σ−2)

n
2 exp

{

−
1

2σ2
(y + u − γ)′(y + u − γ)

}

(6)

All the priors are assumed to be independent. In particular, we follow Koop and

Poirier (2004) to assume

Dγ ∼ N (0, V (η)) (7)

where

D(n−2)×n =











1 −2 1 0 · · · 0 0 0
0 1 −2 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 −2 1











so that Dγ represents the vector of second differences of points on the nonparametric

regression line. 2

For simplicity, we take V (η) = ηIn−2 where η−1 has a gamma prior, i.e.,

η−1 ∼ G(νη,0, δη,0) (8)

Clearly, as η → ∞, the prior becomes diffuse and the resulting estimates will be

undersmoothed. In contrast, as η → 0, prior information will dominate, and will re-

strict the second differences to be identically zero (potentially oversmoothing). In this

2As an alternative, we can consider the first differencing matrix,

D(n−1)×n
=











−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1
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sense, the scalar parameter η acts as a smoothing parameter in spirit to a bandwidth

parameter in classical kernel-based methods.

The prior of σ−2 is also gamma distributed as,

σ−2 ∼ G(νσ2,0, δσ2,0) (9)

Since we adopt the exponential distribution for the inefficiency term ui, i = 1, 2, · · · , n,

the prior of ui is,

ui ∼ θ exp(−θui) (10)

and the prior of θ is assumed to be,

θ ∼ G(νθ,0, δθ,0) (11)

In order to implement the Gibbs sampler, we have to derive the relevant full condi-

tional distributions for all parameters. As shown immediately, all the full conditionals

are of standard forms and are easy to simulate from.

• The full conditional of γ:

By combining (6) and (7), the full conditional of γ is,

γ|y, η, σ2, u, θ ∼ N (γn, Gn) (12)

where

γn = Gn

[

(y + u)/σ2
]

Gn =
(

D′D/η + I ′
nIn/σ2

)−1

• The full conditional of η−1:

By combining (6) and (8), the full conditional of η−1 is,

η−1|y, γ, σ2, u, θ ∼ N (νη,n, δη,n) (13)

where

νη,n = νη,0 +
n − 2

2

δη,n = δη,0 +
(Dγ)′(Dγ)

2
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• The full conditional of σ−2:

By combining (6) and (9), the full conditional of σ−2 is,

σ−2|y, γ, η, u, θ ∼ N (νσ2,n, δσ2,n) (14)

where

νσ2,n = νσ2,0 +
n

2

δσ2,n = δσ2,0 +
(y + u − γ)′(y + u − γ)

2

• The full conditional of ui, i = 1, 2, · · · , n:

By combining (6) and (10), the full conditional of ui for each i is,

ui|y, γ, η, σ2, θ ∼ N[0,∞]

(

γi − yi − θσ2, σ2
)

(15)

• The full conditional of θ:

By combining (6) and (11), the full conditional of θ is,

θ|y, γ, η, σ2, u ∼ G(νθ,n, δθ,n) (16)

where

νθ,n = νθ,0 +
n

2

δθ,n = δθ,0 +
(y + u − γ)′(y + u − γ)

2

Thus, posterior analysis can be carried out using the Gibbs sampler which sequentially

draws from (12), (13), (14), (15) and (16), and all of these densities are of standard

forms.

3.2 The multiple-input case

However, in reality, the production of output often requires multiple inputs. As a

result, we consider a more general and flexible multiple-input model. In particular,

we assume that a vector of k explanatory variables xi = (xi1, xi2, · · · , xik)
′ are treated
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parametrically while there are p inputs zi = (zi1, zi2, · · · , zip)
′ entering the regression

nonparametrically. The model can be written as,

yi = x′
iβ + f(zi1, zi2, · · · , zip) + ǫi − ui

However, as the dimension of zi increases, we will encounter the problem of “curse of

dimensionality” which might make the preceding estimation approach work poorly.

Thus, instead, our interest focuses on the additive models which do not suffer from

this curse.

Specifically, consider the following partially linear stochastic frontier (PLSF) model

with additive nonparametric components, 3

yi = x′
iβ + f1(zi1) + f2(zi2) + · · ·+ fp(zip) + ǫi − ui (17)

where the output yi is affected by the k × 1 vector of inputs xi with magnitude mea-

sured by the corresponding coefficients β in a parametric and linear way. In contrast,

the p × 1 vector of inputs zi influences the output yi through the nonparametric and

unknown function f1(zi1), f2(zi2), · · · , fp(zip), respectively.

As in (5), equation (17) can be rewritten as,

y = Xβ + γ1 + γ2 + · · · + γp + ǫ − u (18)

where X is a n × k matrix with ith row given by x′
i, and γj = (γ1j , γ2j, · · · , γnp)

′ =

[fj(z1j), fj(z2j), · · · , fj(znj)]
′, j = 1, 2, · · · , p. In the one-input case where zi is a

scalar for i = 1, 2, · · · , n, we can sort the data points so that z1 ≤ z2 ≤ · · · ≤

zn. In contrast, in the multiple-input case, we have a p × 1 vector of explanatory

variables which can be used to order the data, so there is not one simple ordering

which can be adopted. However, as argued in Koop and Poirier (2004), Bayesian

inference can still be carried out in the same manner as in the one-input case by setting

up a Gibbs sampler which involves sequentially drawing from π(γ1|y, γ2, · · · , γp, Θ),

π(γ2|y, γ1, γ3, · · · , γp, Θ), · · · , π(γp|y, γ1, · · · , γp−1, Θ) along with the full conditional

densities of the remaining model parameters Θ = (β, η, σ2, u, θ).

3Please also see Fan, Li and Weersink (1996) for a similar specification.
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The prior of β is chosen to be of natural conjugate form, i.e., β ∼ N (β0, B0). The

other priors are assumed to be independent and comparable to the ones used in the

single-input case, i.e., Dγ
(j)
j ∼ N (0, ηjIn−2), η−1

j ∼ G(νηj ,0, δηj ,0), and the priors of

σ−2, ui and θ are the same as in (9), (10) and (11). Moreover, given u, the complete

likelihood function is,

L(y|γ, σ2, u) = (2π)−
n
2 (σ−2)

n
2 exp{−

1

2σ2
(y + u − Xβ − γ1 − · · · − γp)

′

(y + u − Xβ − γ1 − · · · − γp)} (19)

Let Θ = (u′, θ, β ′, σ−2, γ′, η′)′, where u = (u1, u2, · · · , un)′, γ = (γ′
1, γ

′
2, · · · , γ′

p)
′,

and η = (η1, η2, · · · , ηp)
′ denote the unknown parameters on which we are interested

in drawing inferences. Moreover, let Θ\u1
denote all other the parameters in Θ by

deleting u1. Similar notations are applied to the other cases.

• The full conditional distribution of the latent inefficiency ui for i = 1, 2, · · · , n,

can be shown to follow a truncated normal distribution. Specifically,

ui| y, Θ\ui
∼ N[0,∞](x

′
iβ + γi1 + · · · + γip − yi − θσ2, σ2) (20)

Note that the notation γ\j denotes γ = (γ1, γ2, · · · , γk) by deleting the jth

element γj.

• The full conditional distribution of θ is gamma distributed as,

θ| y, Θ\θ ∼ G(νθ,n, δθ,n) (21)

where

νθ,n = νθ,0 + n

δθ,n = δθ,0 +
n

∑

i=1

ui

• The full conditional distribution of β is normally distributed as,

β| y, Θ\β ∼ N (βn, Bn) (22)
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where

βn = Bn

[

B−1
0 β0 + X ′(y + u − γ1 − · · · − γp)/σ

2
]

Bn =
(

B−1
0 + X ′X/σ2

)−1

• The full conditional distribution of σ−2 is gamma distributed as,

σ−2| y, Θ\σ−2 ∼ N (νσ−2,n, δσ−2,n) (23)

where

νσ−2,n = νσ−2,0 +
n

2

δσ−2,n = δσ−2,0 +
(y + u − Xβ − γ1 − · · · − γp)

′(y + u − Xβ − γ1 − · · · − γp)

2

• In order to derive the full conditional distributions of γj as well as ηj for j =

1, 2, · · · , p, we let y(j) denote the dependent variable ordered according to the

jth input, i.e., z1j ≤ z2j ≤ · · · ≤ znj, and define X(j), γ
(j)
ℓ , ℓ = 1, 2, · · · , p and

u(j) in the same way. In addition, let

ỹ(j) = y(j) −
(

γ
(j)
1 + · · · + γ

(j)
j−1 + γ

(j)
j+1 + · · · + γ(j)

p

)

The full conditional distribution of γj can be shown to be normally distributed

as,

γj| y, Θ\γj
∼ N (γj,n, Gj,n) (24)

where

γj,n = Gj,n

[

(ỹ(j) + u(j) − x
(j)′

i β)/σ2
]

Gj,n =
(

D′D/ηj + I ′
nIn/σ2

)−1

• The full conditional distribution of η−1
j , j = 1, 2, · · · , p, is gamma distributed

as,

η−1
j | y, Θ\ηj

∼ G(νηj ,n, δηj ,n) (25)
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where

νηj ,n = νηj ,0 +
n − 2

2

δηj ,n = δηj ,0 +

(

Dγ
(j)
j

)′ (

Dγ
(j)
j

)

2

Thus, posterior analysis can be carried out via the Gibbs sampling algorithm which

sequentially draws from (20), (21), (22), (23), (24), and (25), and all of these densities

are of standard forms and are easy to simulate from.

4 Empirical applications

In order to illustrate the practicality of our model, we consider the estimation of a

stochastic cost frontier. The theory of firm implies that a firm’s costs should depend

on the quantity of each output produced as well as the input prices faced by the firm.

The data set used to illustrate the technique is collected by Christensen and Greene

(1976) for a total of 123 electric utility companies in the United States in 1970. The

same data set has been previously analyzed by Greene (1990), van den Broeck, Koop,

Osiewalski and Steel (1994), Koop, Steel and Osiewalski (1995) and Tsionas (2002).

For comparison purpose, we first estimate the parametric Cobb-Douglas cost func-

tion which is specified as,

ln

(

c

pf

)

i

= β0 + β1 ln qi + β2(ln qi)
2 + β3 ln

(

pl

pf

)

i

+ β4 ln

(

pk

pf

)

i

+ ǫi − ui (26)

where c is total cost, q is output, and pl, pk and pf are the three unit prices of labor,

capital and fuel, respectively. As above, we assume that the symmetric disturbance

term ǫi ∼ iidN (0, σ2) and the non-negative error ui ∼ iid E(θ).

As an alternative to the parametric setup, we now consider a semiparametric

partially linear stochastic frontier model. In particular, we assume that the inputs

prices, ln(pl/pf) and ln(pk/pf), enter the PLSF regression parametrically as in (26). In

contrast to the quadratic specification of output, ln q, we do not impose any functional

assumption between cost and output. Instead, we let the data speak for themselves
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by estimating a nonparametric component f(ln q) as,

ln

(

c

pf

)

i

= f(ln qi) + β1 ln

(

pl

pf

)

i

+ β2 ln

(

pk

pf

)

i

+ ǫi − ui (27)

or, in term of previous notations,

yi = f(zi) + x′
iβ + ǫi − ui (28)

where yi = ln
(

c
pf

)

i
, zi = ln qi, xi =

[

ln
(

pl

pf

)

i
, ln

(

pk

pf

)

i

]′

, and β = (β1, β2)
′.

Both models are estimated via the Gibbs sampler with data augmentation algo-

rithm by assuming relatively diffuse priors. The Markov chain is then run for 20, 000

iterations. We collect the last 10, 000 sample variates after discarding the first 10, 000

draws. As a result, the following results are based on 10, 000 Gibbs output for making

posterior inference.

The top panel of Table 1 reports the posterior moments of the parametric stochas-

tic frontier model as specified in (26). First, we find that the posterior means of β

coefficients are all positive as expected. Except for the coefficient of ln(pk/pf), all

the other β coefficients are also highly significant according to either 95% or 90%

Bayesian confidence intervals. Second, both the parameters on ln qi and (ln qi)
2 are

estimated to be significantly positive, indicating that, other things being equal, the

cost is a convex function of the output produced. In other words, linear specification

of the relationship between cost and output appears to be inadequate. These results

are comparable to those found in Koop, Steel and Osiewalski (1995) and Tsionas

(2002). As discussed earlier, our main concern is on the measurement of firm-specific

efficiency. Figure 1 presents the kernel density of the (mean) efficiency measures of all

firms. It is apparent that the efficiency distribution is highly left-skewed and exhibits

large variation over firms.

In contrast, we also report the posterior results of the semiparametric model in the

bottom panel of Table 1. Similar to the results obtained in the parametric model, the

posterior mean of the coefficient on ln(pl/pf) remains positive and highly significant

while the posterior mean of the coefficient on ln(pk/pf) turns out to be negative but is

still insignificantly different from zero. Most notably, the unknown (nonparametric)
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relationship between cost and output is estimated and displayed in Figure 2. It

seems that the estimated nonparametric line is close to an approximately linear line

with positive slope. This is in contrast with the convex function predicted by the

parametric quadratic regression. Finally, we summarize the efficiency distribution

from the semiparametric stochastic frontier model in Figure 3. Clearly, the density is

different from that shown in Figure 1 derived from the parametric stochastic frontier

function.

5 Conclusions

This paper considers the measurement of firm’s specific (in)efficiency while allows for

the possible heterogeneous technologies adopted by different firms. A very flexible

stochastic frontier model with nonparametric specification is proposed to distinguish

technical inefficiency from technological differences across firms. Posterior inference

of the model is made possible via the simulation-based approach, namely, Markov

chain Monte Carlo method.

The full conditionals of the parameters are all in standard forms and can be

easily and directly simulated from using the Gibbs sampler with data augmentation

algorithm. The model is applied to a real data set which has also been considered

in Christensen and Greene (1976), Greene (1990), Tsionas (2002), among others.

Empirical results show that the parametric quadratic specification does not seem tom

be the best representation compared to our estimated nonparametric (approximately

linear) relationship. As a result, we believe that the novel techniques proposed in

this paper might allow for better understanding of firm efficiency than do traditional

methods.
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Table 1: Parametric vs Semiparametric (Partially Linear) Models
The Parametric Results

Mean Std Median 2.5% 5% 95% 97.5%
constant −7.4485 0.3454 −7.4542 −8.1217 −8.0099 −6.8629 −6.7462

ln qi 0.4210 0.0441 0.4211 0.3350 0.3482 0.4926 0.5063
(ln qi)

2 0.0298 0.0029 0.0299 0.0242 0.0251 0.0347 0.0355
ln(pl/pf ) 0.2498 0.0646 0.2506 0.1187 0.1426 0.3560 0.3783
ln(pk/pf) 0.0503 0.0624 0.0491 −0.0708 −0.0506 0.1535 0.1770

σ2 0.0140 0.0043 0.0133 0.0072 0.0080 0.0217 0.0233
θ 13.7278 6.9475 11.3832 7.1908 7.6161 29.8576 34.9799

The Semiparametric Results

Mean Std Median 2.5% 5% 95% 97.5%
f(ln qi) Figure 2

ln(pl/pf ) 0.2603 0.0121 0.2645 0.2261 0.2355 0.2728 0.2755
ln(pk/pf) −0.0109 0.0279 −0.0118 −0.0652 −0.0550 0.0333 0.0467

σ2 0.0003 0.0007 0.0001 0.0000 0.0000 0.0015 0.0022
θ 6.2341 0.7328 6.1916 4.9394 5.1188 7.5080 7.8363

* The posterior means and posterior standard deviations are obtained using 10,000
simulated draws after discarding the first 10,000 variates to mitigate the start-up
effect.
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Figure 1: The efficiency distribution from the parametric specification.
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Figure 2: The estimated nonparametric relationship between ln(c/pf) and ln(q).
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Figure 3: The efficiency distribution from the semi-parametric specification.
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