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Abstract
Madeira Island is a biodiversity hotspot due to its high number of endemic/native plant 
species. In this work we developed and assessed a methodological framework to produce a 
RapidEye-based vegetation map. Reasonable accuracies were achieved for a 26 categories 
classification scheme in two different seasons. We tested pixel and object based approaches 
and the inclusion of a vegetation index band on top of the pre-processed RapidEye bands 
stack. Object based generally showed to outperform pixel based classification approaches 
except for linear or highly scattered classes. The addition of a vegetation index to the 
workflow increased the separability of the Jeffrey-Matusita least separable class pairs, but not 
necessarily the overall accuracy. The Pontius accuracy assessment highlighted class specific 
accuracy tradeoffs related to different combinations of the inputs and methods. The approach 
to be used, in conclusion, should be carefully considered on the basis of the desired result.
Keywords: Land cover mapping, biodiversity assessment, land use assessment, oceanic 
island.

Introduction
Madeira Island (Archipelago of Madeira, Portugal) is the main island of the Autonomous 
Region of Madeira, which is one of the European Union Outermost Regions. The majority of 
European Outermost Regions - except the French Guiana - are small islands or archipelagos 
[Gil et al., 2012]. Madeira Island is located in the Macaronesia biogeographic region, which 
is constituted by five oceanic archipelagos located on the eastern part of the Atlantic Ocean, 
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facing the coasts of the African continent and the Iberian Peninsula. The archipelagos share 
a common geologic origin and several fauna and flora elements [Fernández-Palacios et al., 
2011]. Madeira Island is also considered part of the Mediterranean basin biodiversity hotspot 
[Medail and Quezel, 1997] mainly due to the high degree of endemism and the presence of 
Laurisilva, a laurel forest whose most representative species are nowadays occurring only 
in Macaronesia. Madeira’s Laurisilva, representing the world widest continuous and better 
conserved patch [Fernández-Palacios et al., 2011], was named in 2009 World UNESCO 
Heritage [World Heritage Committee, 2009] and is protected under the Natural Park of 
Madeira framework. Despite the conservation efforts, human influence led to a conspicuous 
recession of these native/endemic species, with the substitution by exotic, invasive and 
sin-anthropic species [Capelo et al., 2004]. Human development is not the only cause for 
relevant changes in land cover. Madeira is subject to violent catastrophic events such as 
landslides with debris streams after winter season flash-floods [Lira et al., 2011, 2013] and 
large wildfires, when the annual grass and the seasonal shrubs curing levels turn them in 
an extremely flammable fuel [Nasa Visible Earth, 2010; Fontinha et al., 2014]. Since the 
year 1803 flood (which caused 800-1000 casualties) at least 30 main events of this kind 
followed, with the most disastrous of our century being dated on 20 February 2010; the 
flood caused 45 casualties and temporary streams with a range of 200-600 m3 s-1 of debris 
transportation (maximum peak of 663 m3 s-1 in Ribeira Brava basin) [Fragoso et al., 2012]. 
Wildfires can sensibly affect main land cover changes, favoring the spread of certain exotic 
species which are on one hand, in critic periods, a more flammable fuel than endemic 
species and on the other, a more aggressive colonizer during the recovery [Fontinha et 
al., 2014]. During the eighth Convention on Biological Diversity in Brazil it was in fact 
established that among the main threats in small islands to sustainable development, nature 
conservation and biodiversity maintainability, there are the climate variability and changes, 
the proliferation of invasive exotic species, the increasing growth of tourist activity, the 
natural catastrophes and the overexploitation of natural resources [CBD, 2006]. Remote 
Sensing data is optimal for vegetation mapping at various scales of interest, as well as time 
saving, cheaper and more timely than traditional field survey methods [Xie et al., 2008]. 
Due to climate constraints and the consequent general lack of free-of-charge satellite remote 
sensing data (e.g. Landsat) covering most oceanic islands, only few examples of vegetation 
mapping in these insular territories have been based on satellite remote sensing data [Gil 
et al., 2011, 2013, 2014; Gil and Abadi, 2015] and none directly applied to Madeira Island. 
RapidEye is the first satellite system on its resolutions (spatial, temporal and radiometric) 
that provides a red-edge channel [Jung-Rothenhäusler et al., 2007]. The red-edge band 
has demonstrated to significantly improve the vegetation species recognition [Schuster et 
al., 2012; Adam et al., 2014], especially when used for the retrieval of RapidEye-specific 
vegetation indices [Eitel et al., 2007; Förster et al., 2011; Fritsch et al., 2012] and the 
monitoring of vegetation sanitary status [Adelabu et al., 2014]. RapidEye multispectral 
imagery also showed good performance in plant communities classification [Förster et 
al., 2012; Elatawneh et al., 2014], isolated-three genera recognition [Tigges et al., 2013], 
forest intra-and-inter species biomass prediction [Dube et al., 2014], damage in biodiversity 
[Cruz-Lopez and Lopez-Saldaña, 2011], species and age specific forest groups [Ivanov et 
al., 2011], burnt areas detection and retrieval of biophysical products [Vuolo et al., 2010; 
Jiali et al., 2012; Asam et al., 2013; Cho et al., 2013; Kross et al., 2015]. A few statistically 
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oriented studies demonstrated that artificial bands derived from combinations of satellite 
data can be more correlated to certain vegetation characteristics than the reflectance values 
originally acquired by the sensor. For example Beckschäfer et al. [2014] showed higher 
correlation of vegetation indices and texture bands retrieved from RapidEye product with 
the Leaf Area Index than its own bands. Lu [2014] found higher correlation of forest stand 
structure and aboveground biomass to an artificially calculated texture band than to the 
reflectance bands used for its calculation. Thus, although the data becomes redundant in 
the set, it has been demonstrated that the implementation of a calculated band in a multi-
spectral dataset improves the final classification accuracy [Schuster et al., 2012; Adelabu 
et al., 2014; Buck et al., 2015; Godinho et al., 2016]. Due to the high spatial resolution of 
RapidEye multispectral imagery (6.5 m), and a set of channels strategically positioned for 
vegetation oriented analysis [Dube et al., 2014], the image processing and classification 
procedures of this type of remote sensing data can be approached either as pixel oriented 
or object oriented. A pixel oriented approach enables the possibility not to lose any spatial 
information, classifying every pixel in the scene; an object oriented approach consists 
in one additional preliminary step before the classification which clusters the pixels 
in segments. A segment is a group of spatially adjacent and spectrally similar pixels 
which, once filtered, will assume a unique spectral value (per band) with a decrease of 
complexity for the classifier [Blaschke, 2010]. This research paper proposes and describes 
a methodological framework which aims to produce a high spatial resolution vegetation 
map with a specific focus on natural vegetation of Madeira Island (Archipelago of Madeira, 
Portugal), especially its native/endemic and invasive vegetation patches, through the use of 
pixel-based and segment-based supervised classifications of RapidEye multispectral bands 
and derived vegetation indices.

Materials and methods
Study Area
The Archipelago of Madeira is located in the biogeographic region of Macaronesia. It 
includes the islands of Madeira and Porto Santo, as well as the Selvagens islets. Madeira 
Island (32°38′49.96″N 16°54′29.59″W / 32.6472111°N 16.9082194°W) has an extension 
of 742 km2. From a geological perspective, the archipelago formation is considered due 
to Miocene volcanism [Zbyszewski, 1971; Emery et al., 2012]. In this context, Madeira 
has reached the geological evolution stage of “erosion and dismantling” [Fernández-
Palacios et al., 2011] which is characterized by a considerable topographic complexity 
with highly various and often sheer relieves, despite the loss of the summit peaks, turned 
into plateaus, due to erosive phenomena (Fig. 1). Madeira is positioned on the interface 
of Temperate and Mediterranean macro-bio-climates [Rivas-Martinez, 2008] due to 
an East to West mountain range orientation. This configuration, nearly perpendicular to 
the trade winds, that blow from North-East for almost all the year, does characterize a 
relevant difference in temperature and rainfall in the North and South side of the Island 
[Prada et al., 2009]. Hence the southern side is characterized by at least two months of dry 
summer not compensated by the underground water reservoir, while in the north-side a 
cool climate with a distributed precipitation is dominant [Mesquita et al., 2004]. Seasonal 
relevant variations of temperatures and rainfall with altitude and island side contributed 
to the development of a complex mosaic of vegetation across the Island. According to the 
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most recent models [Aguiar et al., 2004; Costa et al., 2012] the natural potential vegetation 
of Madeira corresponds to the following climatophyllous series:
1) Mayteno umbellatae-Oleo maderensis sigmetum (series of madeiran oleaster tree), 
inframediterranean, termophyllous on rocky biotopes, surviving in scarce mosaics in steep 
ravines (south face up to 200 m a.s.l.);
2) Helichryso melaleuci-Sideroxylo marmulanae sigmetum (series of marmulano tree), 
microforest in inframediterranean (north face 0 to 80 m a.s.l., south face, 200-300 m a.s.l.), 
scarcely represented on current vegetation;
3) Semele androgynae-Apollonio barbujanae sigmetum (mediterranean laurel/ barbusano-
tree forest series), thermophillous, infra- and thermomediterranean forest, nowadays mostly 
destroyed (South 300-800 m a.s.l., North 50-450 m a.s.l.);
4) Clethro arboreae-Ocoteo foetentis sigmetum (stink-laurel temperate forest series) Infra 
to mesotemperate, forest series, still covering large areas of the island, mainly on the North 
face (800-1450 m a.s.l. South face; 300-1400 m a.s.l. North face);
5) Polysticho falcinelli-Erico arboreae sigmetum (high altitude tree-heath series), Meso-
supra temperate series of tree-heath forests, mostly destroyed cutting and grazing (Erica 
arborea) (1400 to 1650 m a.s.l.).
In more general terms, Madeira’s biodiversity extent reaches 7571 terrestrial species [Borges 
et al., 2008] with 138 taxa of Madeira’s endemic vascular plant, 67 taxa of Macaronesian 
endemic vascular plant and 448 taxa of Madeira’s native vascular plant [Jardim and 
Sequeira, 2008]. The endemism density level (species per surface unit) in this island is 
the highest in Macaronesia (6.8%), whilst over 400 taxa of vascular plants are considered 
as introduced [Jardim et al., 2008], among which 91 are considered invasive [Kueffer et 
al., 2010]. In light of what stated above and all the cited literature, Madeira should be 
considered a crucial hotspot for biodiversity conservation.

Figure 1 - Geographic position and orographic map of Madeira Island.
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Satellite imagery
Two RapidEye scenes processed at level 1B (L1B), fully covering Madeira Island and 
acquired respectively on December 13th, 2009 (winter) and August 10th, 2011 (summer) 
were used in this study. RapidEye is constituted by a constellation of five Earth Observation 
satellites carrying identical multispectral push-broom sensors. Each sensor records in five 
bands of the spectrum including three visible radiation bands (blue, 440-510 nm; green, 
520-590 nm; red, 630-685 nm), a red-edge band (690-730 nm) and a near infrared band 
(760-850 nm) 
L1B RapidEye products are delivered with a spatial resolution of 6.5 m at nadir, a 
radiometric resolution of 16 bit and with only minimum level of processing. This imagery 
comes radiometrically inter-calibrated, to uniform responses from different sensors in 
different geometric conditions and with the bands co-registered to each other, to guarantee 
the overlap of the bands within a scene. No terrain model is used for the processing of 
L1B imagery thus an ortho-rectification step must be included to increase the accuracy of 
the product. Excluding off-nadir and terrain effects, the root mean square error (RMSE) is 
expected to be of 10m [RapidEye, 2012]. The main characteristics of the scenes used are 
reported in Table 1.

Table 1 - RapidEye scenes dates and acquisition geometry details.

Parameter Scene 1 Scene 2

Acquisition date 2009-12-13 2011-08-10

Hour (UTC) 12:52 12:52

Spacecraft off-nadir view angle (deg) -16.58597 +3.499160

Scan line direction azimuth referred to true 
North (deg) 100.6 279.22

Solar azimuth (deg) 177.5662 163.7326

Solar elevation (deg) 34.2387 72.3995

Other datasets used
A dataset constituted by 387 geo-referenced (GPS) points indicating the occurrence of 
endemic/native and alien invasive plants patches (92 classes at sub community or stand 
level) across whole Madeira Island was used in this study. This dataset comprehends the 
result of several field surveys performed from 2009 to 2011 by the Madeira Botanical Group 
specialists (based at the Department of Life Sciences, University of Madeira, Portugal) - 
However in all these surveys no specific and well-defined statistical sampling design was 
used. Additional datasets used in the work are indicated in Table 2.
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Table 2 - Additional datasets used in this study.

Dataset Data Producer Format Geographical Scale 
/ Spatial Resolution

Use in the 
study

LULC of Madeira 
2007

Regional 
Government 
of Madeira 

Autonomous 
Region (Portugal)

Polygon vector
1:10000; minimum 
cartographic unit: 

0.25 ha

Ground truth 
reference

Madeira Island 
Altimetry layer 

(contour lines) 2010

Regional 
Government 
of Madeira 

Autonomous 
Region (Portugal)

Polyline vector Contour interval: 5m Ortho-
rectification

Madeira Island 
Forest Inventory 

2008 [IFRAM, 2008]

Regional 
Government 
of Madeira 

Autonomous 
Region (Portugal)

Polygon vector 
(Thiessen 
polygons)

Polygon area: 
62500 m2

Ground truth 
reference

Color Ortophoto-
maps 2007

Regional 
Government 
of Madeira 

Autonomous 
Region (Portugal)

Raster RGB 1:5000 Ground truth 
reference

Google Earth Google Inc.

Online 
DigitalGlobe 

Quickbird 
pan-sharpened 

imagery

0.65m Ground truth 
reference

Google street view Google Inc. Photos - Ground truth 
reference

Note: Original or re-projected Geographic References: EPSG 3061; projection UTM; Ellipsoid 
International 1924; Datum: Porto Santo 1995; UTM Coordinate System - Zone 28N.

Figure 2 schematically represents the methodological workflow of this study which 
can be divided in three different steps, namely: (1) RapidEye data preprocessing; (2) 
classification scheme set up, training sites collection and spectral separability assessment; 
and (3) concurrent classification process and accuracy assessment. Every step is described 
below.
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Figure 2 - Schematic representation of the methodological workflow followed in this study.
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Preprocessing 
The two RapidEye images were converted to top-of-atmosphere reflectance (radiometric 
correction), and subsequently atmospherically corrected with the Fast Line-of-sight 
Atmospheric Analysis of Hypercubes (FLAASH) algorithm [Adler-Golden et al., 
1998]. FLAASH method is based on the Moderate Atmospheric Transmittance code 
(MODTRAN) [Abreu and Anderson, 1996; Matthew et al., 2000] and adapted to the 
observations made by Kaufman et al. [1997]. Both images were ortho-rectified using 
the Rational Polynomial Coefficients (RPC) provided within the imagery and the digital 
elevation model layer. Since the result was not accurate as expected, the scenes were 
further warped with 30 ground control points each, to fit a polynomial second order 
equation [Richards and Jia, 1999; Jensen, 2005] and further resampled to co-register the 
two scenes to ensure an effective overlay (geometric correction) - The digital elevation 
model was obtained by interpolation of the contour data with ANUDEM technique 
[Hutchinson, 1988]. Cloud masks were manually digitized through on-screen photo-
interpretation. The pixels within the ocean and those covered by cloud masks have been 
reclassified as no data. Shadows originated by clouds and by both relief/sun and relief/
sun/sensor geometries have been left to be posteriorly recognized and mapped by the 
classifier. The imagery was re-projected in the local reference system UTM 28N - Porto 
Santo 1995 (EPSG 3061) 

Classification scheme set up, training sites collection and spectral separability assessment
An “ideal classification scheme” for vegetation mapping in Madeira Island was initially set 
up to be consistent in the representation of dominant plant species within their ecological 
communities for the Island according to the works of Capelo et al. [2004] and Costa et 
al. [2004]. With every point representing a pixel in the RapidEye scene, hence a given 
land-cover’s spectral signature, an iterate process was initialized to obtain a training data 
set formed by at least 45 point elements per class with each class’ spectral response being 
statistically separable from the others. For every classification scheme since the “ideal”, 
the iteration thus included two steps: the collection of new point sets for the classification 
scheme under assessment and the spectral separability assessment of the points for the 
RapidEye scene. The available surveys developed from 2009 to 2011 by the Madeira 
Botanical Group were used as training basis for the photointerpretation process. The 
point elements were collected through visual likelihood of the field survey points within 
the ortophoto-maps. In addition Google Earth and Google Street View online resources 
were used as supplementary sources of information where the ortophoto quality was low 
or the land cover uncertain. The points however were finally accepted only if the result 
was meaningful with respect to the classes of the Land use Land cover map (LULC) of 
Madeira and the Madeira Island Forest Inventory [IFRAM, 2008]. The Jeffries-Matusita 
(JM) spectral separability measure was computed for every pair of classes in order to assess 
the viability of the classification scheme. The Totally Separable class Pairs index (TSP) was 
calculated as initially proposed by Michelson and Seaquist [1995] and modified with the 
higher threshold value of 1.7 for considering a pair separable:
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where JMn are the class pairs with a JM distance ≥ 1.7 (1.4 in the original version of TSP) 
and N is the total number of class pairs. The higher threshold of 1.7 was introduced to better 
split problematic from easily separable classes. In Table 2 are reported the main changes 
operated to the “ideal classification scheme” towards an operational and spectrally viable 
classification scheme. The resulting sample was finally randomly stratified into 30 points 
per class for the training data and 15 points per class for ground truth data.

Data segmentation and classification
The classification step can be divided in three different levels of analysis:

a)	 Winter (December 2009) vs. Summer (August 2011) scenes;
b)	 Pixel-based approach (PBA) vs. object-based approach (OBA);
c)	 Pertinence of using RapidEye-derived vegetation indices as ancillary bands in the 

classification procedure.
Pixel and object-based Maximum Likelihood supervised classifications were applied to 
eight initial datasets including solely RapidEye multispectral bands (from December 2009 
and August 2011, respectively) and also combinations of these same multispectral bands 
with three different vegetation indices - the classic NDVI, the already tested reNDVI and 
a newly tested NDVIre, respectively - in order to test the full potential of the RapidEye 
red-edge band for vegetation studies, as presented in Table 3. Sixteen different input 
combinations and, subsequently, classification maps were thus obtained (see output table 
printed in Fig. 2), assessed and compared.

Table 3 - Vegetation indices used in this study.

Index Acronym Formula Reference

Normalized Difference 
Vegetation Index - Classic 
version: NIR-red bands

NDVI (NIR-Red)/
(NIR+Red) [Rouse et al., 1974]

Normalized Difference 
Vegetation Index - var 1 

Near infrared to red edge 
difference

reNDVI (NIR-RE)/(NIR+RE)
[Tucker, 1979; Gitelson and 

Merzlyak, 1994;
Mutanga et al., 2012]

Normalized Difference 
Vegetation Index - var 2 

Red edge to red difference
NDVIre (RE-Red)/(RE+Red) proposed

NIR: near infrared band, wavelength 760-850 nm, RapidEye band 5; RE: red-edge band, wavelength 
690-730 nm, RapidEye band 4; Red: red band, wavelength: 630-685 nm, RapidEye band 3.

To obtain the segmented scenes for the object-based classification, the watershed 
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segmentation [Roerndink and Meijster, 2000] was performed. Watershed segmentation 
algorithms require the determination of the best fitting combination of two coefficients, the 
scale factor and the merge factor within an iterative process aimed to reach a segment size 
lower than the class object size [Blaschke, 2010]. Several combinations have been assessed 
until reaching a fitting combination for all the scenes, in order to reduce the disturbance 
in accuracy due to segmentation parameters. The scale factor was set to 10 and the merge 
factor to 45.

Accuracy assessment
The sixteen classifications accuracy results were assessed by overlaying ground truth data 
to each map to compute confusion matrices, from which statistics have been calculated 
such as, class-wise quantity disagreement and allocation disagreement [Pontius and 
Millones, 2011], overall accuracy [Congalton, 1991; Foody, 2002] and Kappa coefficient 
of agreement [Cohen, 1960]. Quantity disagreement (QD) takes into account the difference 
in distribution for every class in a set of classes (the classification scheme) between the map 
in evaluation and the reference given for the accuracy assessment. Allocation disagreement 
(AD) oppositely takes into account the spatial position mismatch for every class in a set of 
classes between the map in evaluation and the reference given for the accuracy assessment. 
Overall accuracy (OA) is the averaged sum of the correct classified pixels proportion per 
class. Kappa coefficient of agreement ( K̂ ) compares the observed proportion of correctly 
classified pixels to the proportion that would accidentally be classified as correct.

Results
Preprocessing
The ortho-rectification process-derived RMSE resulted lower than a pixel for both images: 
6.21 meters for the scene of December 2009 and 4.84 meters for the scene of August 2011. 
The unavailable data in RapidEye for 2011 scene amounted to 4 km2 due to shadow coverage 
and to 22 km2 due to cloud coverage, which aggregated correspond to 3.53% of Madeira’s 
land. For 2009 scene, the unavailable data amounted to 98 km2 due to shadow coverage 
and to 70 km2 due to cloud coverage, which aggregated correspond to an unavailable 
spectral coverage of 22.57% of the island territory. Although the atmospheric correction 
significantly improved the contrast in the visible wavelengths, an over-reflection of the blue 
band remained in the December scene due to haze on the eastern part of the Island.

Classification scheme set up, training sites collection and spectral separability assessment
The final classification scheme was categorized in three levels for a total of 7 first level 
classes, 12 second level classes and 26 third level classes. The classification scheme 
is presented in Table 4. A total of 1244 ground truth points have been collected for the 
December 2009 dataset and a total of 1341 ground truth points have been collected for the 
August 2011 dataset. The random stratification procedure for the August 2011 datasets left 
respectively 931 points for classification and 410 points for accuracy assessment. This same 
procedure for the December 2009 datasets left respectively 851 points for classification and 
393 points for accuracy assessment.
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Table 4 (Continued on the next page) - Land-cover classification scheme adopted with brief class 
description.

Level #1 Level #2 Level #3 Code Brief Description

Water bodies WaB Inner artificial and natural water courses, lakes 
and reservoirs.

Agriculture

Arboriculture

Banana
plantation BaA Banana crops

Fruit
orchards FrA

Orchard of citrus (Citrus spp.), tropical
(e.g. Mangifera indica, Carica papaya, Persea
Americana, Cyphomandra betacea, Passiflora

edulis) and temperate fruits
(e.g. Malus domestica, Prunus spp.)

Herbaceous 
crops

Sugar cane SuA Sugar cane plantations

Irrigated 
crops IrA Annual irrigated and flooded crops

Vineyard Vineyards ViA Vineyards

Forest

Laurisilva
forest

Ocotea 
foetens 

Laurisilva 
forest

LstempF Laurel forest dominated by Ocotea foetens 
with Laurus novocanariensis and Persea indica

Apollonias 
barbujana 
laurisilva 

forest

LsmedF
Laurel forest dominated by Apollonias 

barbujana 
and Laurus novocanariensis

Anthropic or 
synanthropic 

forest

Chestnut 
tree forest ChF Chestnut tree managed forest

Eucalyptus 
forest EuF Patches of Eucalyptus spp. dominated woodland 

to forest

Pine forest PiF Patches of Pinus spp. dominated forest

Woodland

Invasive 
species 

woodland

Acacia 
woodland AcW Acacia spp. woodland and isolated trees

Endemic
species

woodland

Olea 
maderensis 
woodland

OlW Olea maderensis scattered woodland 
to isolated trees

Salix 
canariensis 
woodland

SaW Riparian communities dominated by
Salix canariensis trees

Tree 
heather

woodland
HeW Woodland of tree heater (Erica arborea)
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Table 4 (Continued from preceding page) - Land-cover classification scheme adopted with brief 
class description.

Level #1 Level #2 Level #3 Code Brief Description

Shrubland

Shrubland of 
Arundo donax ArS Dense patches of Arundo donax shrubland

Shrubland of 
Euphorbia 
piscatoria EuS Euphorbia piscatoria single bushes

Shrubland of 
Genista tenera GeS

Shrub communities dominated by Genista 
tenera 

and Teline maderensis

Shrubland of 
Ulex

latebracteatus
UlS Ulex europaeus subsp. latebracteatus and 

Cytisus scoparius subsp. scoparius

Heath 
shrubland HeS Shrubland dominated by Erica platycodon 

subsp. maderincola

Grassland

Permanent 
cultivated 
pastures

Permanent 
pastures PeG Perennial sown pastures

Natural 
grassland

Dry grassland DrG

Grassland which presents as dry and/or scattered 
due to the phenological status or temporary 
unavailability of water (e.g. Hyparrhenia 

sinaica grassland)

Wet grassland WeG
Grassland which presents as wet and generally 

dense due to the phenological status or 
temporary availability of water

Non-vegetated areas

Bare soil Bso Soil not covered by a vegetation plane

Bare rocks Rck Rocky outcrops and cliffs

Built-up areas Bui Civil, commercial and industrial buildings, 
roads, infrastructures

In Table 5 are presented the land cover/vegetation classes ordered by frequency of occurrence 
among the least separable pairs according to Jeffrey-Matusita separability test (JM lower 
than 1.4 and JM lower than 1.7, respectively) - This table shows the most problematic 
classes for the given set of input data.
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Table 5 - Jeffrey-Matusita separability test results for December 2009 and August 2011 imagery: 
TSP1.4 and TSP1.7 resume respectively the percentage of classes with JM separability above the 
threshold of 1.4 and 1.7, thus the easy-to-separate classes. The lists of the classes with separability 
below these thresholds are given. Since the JM results are pairwise, every class in a n classes 
classification scheme has n-1 values of separability. The percentages aside to each class represent 
the frequency with which each class appears in the group of pairs whose separability is below the 
thresholds; the highest values represent classes with separability problems towards many classes.

RapidEye December 2009 RapidEye August 2011

TSP1.4= 94.00% TSP1.7= 82.90% TSP1.4= 94.60% TSP1.7= 87.80%

JM<1.4 JM<1.7 JM<1.4 JM<1.7

IrA 11.90% FrA 11.70% PeG 10.50% FrA 8.10%

FrA 11.90% ArS 7.50% IrA 10.50% IrA 7.00%

ArS 9.50% AcW 6.70% ViA 7.90% LsmedF 7.00%

SaW 9.50% IrA 5.80% FrA 7.90% AcW 7.00%

PeG 7.10% PiF 5.80% AcW 7.90% WeG 7.00%

PiF 7.10% LstempF 5.80% OlW 7.90% GeS 5.80%

EuF 7.10% GeS 5.00% GeS 5.30% PeG 4.70%

AcW 4.80% SaW 5.00% UlS 5.30% ViA 4.70%

SuA 4.80% PeG 4.20% EuF 5.30% UlS 4.70%

GeS 4.80% SuA 4.20% WeG 5.30% OlW 4.70%

WeG 4.80% EuF 4.20% Rck 5.30% ArS 4.70%

BaA 2.40% ChF 4.20% LsmedF 2.60% SaW 4.70%

Bso 2.40% WeG 4.20% ArS 2.60% Bui 3.50%

ChF 2.40% BaA 3.30% Bui 2.60% BaA 3.50%

Rck 2.40% OlW 3.30% Bso 2.60% HeS 3.50%

LstempF 2.40% LsmedF 2.50% LstempF 2.60% EuF 2.30%

UlS 2.40% DrG 2.50% HeW 2.60% Bso 2.30%

LsmedF 2.40% HeS 2.50% PiF 2.60% SuA 2.30%

UlS 2.50% BaA 2.60% HeW 2.30%

Rck 2.50% PiF 2.30%

Bui 1.70% Rck 2.30%

HeW 1.70% ChF 1.20%

Bso 0.80% EuS 1.20%

EuS 0.80% WaB 1.20%

WaB 0.80% LstempF 1.20%

ViA 0.80% DrG 1.20%
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Data segmentation, classification and accuracy assessment
In Table 6 are presented the results in terms of OA of the classification and    .

Table 6 - Overall Accuracy (OA) and Kappa coefficient 
of agreement () for the processed stacks. OBA: Object 
Based Approach; PBA: Pixel Based Approach; [a]: 
RapidEye December scene; [b]: RapidEye August scene. 
The vegetation index reference is reported in Figure 2.

Stack OA

OBA [b]+[NDVI] 74.53% 0.754

OBA [b]+[reNDVI] 74.77% 0.738

OBA [b]+[NDVIre] 73.83% 0.728

OBA [b] +[0] 72.90% 0.718

OBA [a]+[0] 67.52% 0.699

OBA [a]+[NDVI] 67.29% 0.697

OBA [a]+[reNDVI] 66.59% 0.689

PBA [a]+[reNDVI] 65.19% 0.674

OBA [a]+[NDVIre] 65.19% 0.674

PBA [a]+[NDVIre] 64.25% 0.664

PBA [b]+[0] 67.06% 0.657

PBA [a]+[0] 63.32% 0.653

PBA [a]+[NDVI] 63.32% 0.653

PBA [b]+[NDVIre] 66.59% 0.653

PBA [b]+[reNDVI] 65.65% 0.643

PBA [b]+[NDVI] 64.95% 0.636

The best OA and K̂  values have been scored by August scene with an object-based 
classification approach with the utilization of the additional reNDVI band. In Figure 3 are 
presented the Allocation and Quantity Disagreement for each class of the scheme for the 
stacks considered in each scene.

K̂

K̂
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Figure 3 - Accuracy assessment results per class. December results on the left and August on 
the right. For each period have been plotted Pixel-based results versus Object-based reults. 
For each class, approach and period, the stack of four horizontal columns represents the 
Pontius accuracy for - bottom to top - [0], [NDVI], [reNDVI] and [NDVIre]. AD: Allocation 
Disagreement, QD: Quantity Disagreement.

In Figure 4 are represented the best land cover/vegetation map produced for December 
2009 and August 2011. The map for December was obtained by applying an object-based 
Maximum Likelihood supervised classification to the dataset including only the RapidEye 
multispectral bands (OA: 71%) - The map for August was obtained by applying an object-
based Maximum Likelihood supervised classification to the dataset including the RapidEye 
multispectral bands and the reNDVI band (OA: 75%) - The color scheme codifies different 
saturation levels of the same main hue, for family of covers: greys represent masked pixels 
and shadows, reds bare and rocky soils and built-up areas, purples agriculture, yellows 
grasslands, oranges shrublands, light-blues woodlands, greens forests and deep-blue water 
bodies.
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Figure 4 - Best classification maps produced for December 2009 (top) and August 2011 (bottom).

Discussion
Preprocessing
The RapidEye imagery 1B processing level is delivered without geometric and atmospheric 
corrections. The FLAASH model for atmospheric correction is a robust method widely used 
and accepted by the literature and its usage is relatively simple, requiring only information 
about the sensor and the atmospheric conditions [some examples: Matthew et al., 2002; 
Mutanga et al., 2012; Dube et al., 2014; Gerstmann et al., 2016]. The geometric correction 
instead, for rugged terrains as Madeira Island, requires a substantial user input in the form 
of ground control points for a polynomial warping procedure [Richards et al., 1999; Jensen, 
2005]. Since the provided RPC did not determine a satisfactory result it was necessary 
to carry it out manually. The Unusable Data Masks (UDM) provided within the imagery 
data package and delivered as cloud masks, were incomplete, hence both scenes needed 
an effective cloud masking procedure. Furthermore, some clouds reflectances showed to 
be practically inseparable from certain artificial materials’ saturated spectral responses, as 
seen for example in Elatawneh et. al. [2014]. The authors thus opted for a manual on-screen 
digitization for masking the cloud bodies. Regarding the complex shadow coverage across 
the whole study area (especially for the December 2009 scene, which was acquired with 
a relevant spacecraft off-nadir view angle, resulting in a huge amount of shaded areas), it 
was chosen to assume it as a regular class within the classification scheme to be recognized 
by Maximum Likelihood algorithm. In fact, the variability in size and extension and the 
fragmentation of the shaded areas across the whole Island made their manual on-screen 
digitizing too complex and difficult.
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Training sample collection and ancillary data issues
A point sampling-based approach was selected for the training sites collection, in order 
to fully explore the potential of the available GPS-based botanical surveys developed 
from 2009 to 2011 by the Madeira Botanical Group. However some vegetation classes 
have been very difficult to identify and collect, either because mixed, sub-pixel sized or 
spectrally similar to other classes. Through the JM separability test it was possible to 
assess spectral separability for every pair of land cover/vegetation class signatures, in 
order to progressively rearrange the classification scheme to guarantee higher spectral 
homogeneity and coherence within each final class. However, a spectral-based classification 
scheme definition, due to some similarities between classes (see Tab. 5) may have led 
to ecologically senseless land cover/vegetation classes. This lower spectral separability 
between some classes may be mainly derived from the synergistic combination between 
the medium spectral resolution of RapidEye imagery (despite the existence of the red 
edge band) and the extensive and ambitious classification scheme (frequently at the plant 
species/community level) that was adopted in this study. Therefore the final classification 
scheme alteration was stopped when an ecologically meaningful and an inter-class 
spectrally separable classification scheme was obtained (i.e. the loop-stopping condition 
represented in the second part of Fig. 2) - The December 2009 scene was affected by 
relevant lack of spectral data due to the cloudy and shadowy covers which forced to 
concentrate the training data in the reduced ground truth areas. For the August 2011 scene, 
instead, the training data has been collected in a wider range of areas having more ground 
truth examples to base on, resulting in a more scattered set of points. A more various 
training dataset gives more flexibility to the classification algorithm, making it able to 
properly classify pixels whose spectral signature presents slight to relevant differences 
from the average of the training class. A too various training dataset on the other hand can 
confuse the algorithm leading to bad classification results. This gives an introduction to 
the different behaviors of December and August datasets after the increase in variability of 
the spectral signature through the addition of an ancillary vegetation index band, and after 
a decrease in variability through a segmentation process.

Seasonal RapidEye data acquisition for improving vegetation mapping accuracy in 
Madeira Island: winter vs. summer
General accuracy assessment presented in Table 6 depicts a relevant superiority of the 
August scene, particularly in the OBA (a OA gap of 5.37% between OBA [b]+[0] and 
OBA [a]+[0]) - As shown in Figure 3, forest (ChF, LStempF and PiF), woodland (SaW, 
AcW and OlW) and shrubland (EuS, GeS, HeS and UlS) classes obtained a lower Quantity 
and Allocation Disagreement in the August period mainly due to the summer phenological 
stages, which made the vegetation more reflectant, and to better weather conditions. Instead 
the winter supremacy chiefly regards non-vegetated areas and grasslands. Even though 
unfavorable phenological stages may have negatively affected the accuracy of some classes 
in December, we consider its inferiority in accuracy mostly due to the influence of unclear/
misty atmosphere that remained in the processed data, even if the 23% of the island had 
already been excluded from the analysis.
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Most suitable supervised classification approach for improving vegetation mapping 
accuracy in Madeira Island: pixel versus object based classification
General accuracy assessment presented in Table 6 shows a decisive superiority of the OBA 
over the PBA (5.84% of OA gap between OBA [b] + [0] and PBA [b] + [0] and 4.2% of 
OA gap between OBA [a] + [0] and PBA [a] + [0]) - We conclude that these results are 
due to the enhanced intra-class coherence given by the segmentation process. According 
to Figure 3, it can be resumed that classes with wide and extended objects score better 
results in the OBA (AcW, SaW, LStempF, GeS, EuS, EuF, Bso, BaA, IrA and WeG and less 
noticeably PeG, DrG and ChF) and classes constituted by linear, pointy and very scattered 
objects perform better in PBA (ArS, Bui and WaB) - The segmentation configuration 
procedure however may represent a main issue jointly with the training data collection, 
as both processes are human-driven and directly dependent on the previous and accurate 
knowledge of the case-study area.

Pertinence of using RapidEye-derived vegetation indices as ancillary bands in the 
classification procedure for improving vegetation mapping accuracy in Madeira Island
A vegetation index is a combination of spectral bands that amplifies spectral information of 
high significance for a distinction of different cover classes [Gerstmann et al., 2016]; the data 
carried on a vegetation index band may be more correlated to specific vegetation features 
than the bands that originated it. The vegetation index can be considered a layer carrying 
information such as biomass [Vuolo et al., 2010; Dube et al., 2014], LAI [Beckschäfer et 
al., 2014], leaf pigment absorption [Godinho et al., 2016] and can be used as information 
layer to improve the classification results [Buck et al., 2015]. The 3 vegetation indices 
tested in this study demonstrated to have generally positive effects in the classification 
results for an image of good quality . However some controversial results emerged when 
the vegetation index layer  was used to improve the accuracy of an image affected by high 
atmospheric disturbance. Observing Figure 3, some class accuracy behaviors due to the 
addition of a vegetation index can be pointed out. A gain in accuracy was determined by 
a better discrimination between classes of the same genus and characterized by different 
habitus, at this resolution meaning mainly a difference in canopy density, as observed in HeS 
and HeW (see the decrease of AD+QD of HeS and HeW after the addition of [NDVIre], 
above the other vegetation index, in PBA [b] and [NDVI] or [NDVIre] in OBA [a]). Another 
source of accuracy increase was inspected as the better discrimination among PeG and WeG 
grassland classes, whose spectral and textural differences may be slight (see the decrease 
of AD+QD of PeG and WeG after the addition of [reNDVI] in PBA [b], [NDVI] in OBA 
[b] and [reNDVI] in OBA [a]). Moreover it is observable a possible better detection of 
vegetated/non-vegetated areas transitions, if taken in consideration for example DrG, a very 
low density and low reflectance vegetation class (or EuS, who loses the leaves in summer) 
and Bso (see the decrease of AD+QD of DrG, EuS and Bso after the addition of [NDVI], 
[reNDVI] or, less markedly, [NDVIre] for PBA [b], [reNDVI], [NDVIre] or [NDVI] for 
OBA [b] and [reNDVI] or [NDVIre] for PBA [a]). Furthermore the addition of a vegetation 
index band showed to be useful into rising up the accuracies of the least separable classes for 
both periods: the classes with at least 5% of appearance in the least separable classes (with 
JM<1.4) in Table 5 show an increased accuracy in Figure 3. [NDVI] showed to increase 
accuracy more in the OBA (EuF, FrA, OlW, PeG, Rck, ViA and WeG in [b] and FrA and PiF 
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in [a]), than in the PBA (only FrA in [b]). [reNDVI] showed to increase the accuracy of the 
least separable classes slightly more in the OBA (EuF, FrA, PeG, Rck, UlS and ViA in [b] 
and ArS, IrA and PiF in [a]) than in the PBA (IrA, UlS and WeG in [b] and PiF and SaW in 
[a]). [NDVIre] showed to increase the accuracy of the least separable classes slightly more 
in the OBA (AcW, FrA, PeG, Rck and WeG in [b] and IrA and PiF in [a]) than in the PBA 
(FrA, OlW, UlS and WeG in [b] and EuF and PiF in [a]). The addition of a vegetation index 
guaranteed an increase in general accuracy (see Table 6) in OBA [b] (all vegetation index 
sets better than [0]) of 1.63% of OA for the best set, [NDVI] and in PBA [a] ([reNDVI] 
and [NDVIre] better than [0] and [NDVI] worse than [0]) of 1.87% of OA for the best set, 
[reNDVI]. We assume that the negative results resulting from the addition of a vegetation 
index band to the OBA [a] and PBA [b] sets are due to different reasons: the OBA [a] set 
may have suffered for a too high concentration of the training data, resulting in very little 
variable class’ spectral signature (because collected in the segmented objects with an average 
reflectance value) combined with an aberrant vegetation index value (this at pixel level) due 
to atmospheric disturbance; instead PBA [b] set with the vegetation index additional band 
may have confused the algorithm with too much variance of the spectral signature. However, 
the decrease in accuracy in PBA [b] with vegetation index additional band can be considered 
extremely slight (0.47% of OA for the best set, [NDVIre]) as that in OBA [a] (all vegetation 
index sets worse than [0]) of 0.23% of OA for the best set, [NDVIre].

Main remarks on the output maps
The main objective of this work was to develop and assess a methodological framework to 
produce a RapidEye multispectral imagery-based vegetation map. The OA achieved by the 
best classifications per period (74.8% for OBA [b] + [reNDVI] and 67.52% for OBA [a] + [0]) 
are high enough to be compared to other supervised classifications of RapidEye scene results 
found in literature such as in Adam et al. [2014] was scored an OA of 93.07% for an 11 classes 
scheme and in Polychronaki et al. [2015] were scored OAs of 81% to 86% for a 6 classes 
scheme. The visual analysis of the best December 2009 classification map in Figure 4 recalls 
immediately the high disturbance given by the clouds and the shadows covers. In this map an 
uninterrupted cover is classified only for the South side and the North-East coast of the island. 
The best August 2011 classification map (Fig. 4), with far less masked areas, was nevertheless 
less accurate in detecting shaded areas. However, it constitutes a most reliable output for 
mapping and analyzing vegetation patterns in Madeira Island. This output shows clearly 
the laurel forest patterns on the North side, interrupted on the lower altitudes. Particularly 
interesting in terms of landscape evolution patterns recognition, is the detection of the Curral 
das Freiras fire scar, represented magnified in frame “A” of Figure 4. The fire, visible also in 
a MODIS scene at an informative NASA site [Nasa Visible Earth, 2010] developed in 2010 
and burnt endemic shrubland, woodlands and forests [Fontinha et al., 2014]. Although the 
masked pixels due to shadow covered land and the misclassified deep blue pixels (shadows 
recognized as water bodies) present both in the 2009 and in the 2011 maps, the transition 
between vegetated to bare areas due to the wildfire is evident in frame “A” in a pattern West/
East and allows some speculation about the main vegetation groups wiped out by the fire 
event. Even if in 2009 map are only visible the tallest relieves successively affected by the 
fire (compare Fig. 4 and Fig. 1), they are recognizable, from West to East, a large patch of 
laurisilva forests, heath shrublands, eucalypt forests and mixed laurisilva forest with heath 
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shrubland and agricultural land, that may be misclassified humid grassland. In frame “B” it 
is well shown the seasonal (it is assumed to be non-permanent changes, only related to the 
season) land cover transition on the western plateau of Paul da Serra. In December a large part 
of the plateau is covered in grassland while in August it disappears for bare soil. The heat is 
dominant in the top part of frame B and while in December is mainly detected as woodland, 
in August it is detected as shrubland; this is probably due to different vegetative status in the 
two periods. The green forest strip top left to bottom seems to evolve from mixed endemic 
laurisilva to managed eucalypt. Such change behavior is not uncommon observing the two 
classifications, and it would hold a certain relevance if confirmed by future studies for an 
assessment of the forest management policies. The authors nevertheless prefer to consider 
the data with prudence due to difference in vegetative status possible misclassification. 
Furthermore, as expected, many bare areas (in red) during the winter, then turn in to agriculture 
lands during the summer (in purple). Some grasslands and pastures, inversely disappear with 
the warm season (an example is represented by the dry grassland around Ponta do Pargo, 
the westernmost cape of the island). Generally the natural vegetation follows an altitude 
gradient rule, especially on the southern coast, with three main strips: agriculture, pine forest 
and eucalyptus forest. The northern side of the island is dominated by the laurel forest in 
the wild steep valleys and diversely covered in the flat areas (where it is visible a seasonal 
change from bare to agriculture areas). At the higher altitudes, plateaus and mountains are 
covered by herbaceous, bushy and woody native/endemic species and by the invasive Acacia 
woodlands. According to the Pontius class accuracy in Figure 3, FrA are largely erroneously 
classified; this phenomenon is probably due to the high variety of fruit tree kinds and the 
related differences in phenology, plant density and vegetation spectral reflectance. AcW class 
has been found mainly mixed thus extremely difficult to sample. SaW low accuracy in the best 
December 2009 classification map may be explained by the riparian nature of the class, which 
affected the sampling process, frequently occurring covered by slope-projected shadows in 
this RapidEye scene. Wbo are largely misclassified because of their linear nature with widths 
that often approximate the pixel size. Jointly, the high reflective surrounds of rocky beds, 
which frequently results in water-rock mixed pixels, negatively affect the classifier response, 
both in PBA and OBA. Furthermore some shaded areas are commonly misclassified as water 
bodies. SuA classification quality suffers mainly from a spectral likelihood to ArS. This is 
possibly due to two different reasons: (1) they have the same name in Portuguese (“cana”) 
which may have made these classes subject to on-screen digitizing misinterpretations in 
previous works; (2) the difficulty of collecting ArS training data because it is usually used as 
hedgerow along the border of agricultural land, therefore with very narrow (sub-pixel) width. 
LSmedF achieved low accuracy values because it was not possible to find large patches of this 
class and therefore it was difficult to collect related training data.

Conclusions
The geographic and atmospheric conditions of Madeira Island turn particularly challenging 
any attempt of remote sensing-based vegetation mapping of this insular territory, namely by 
using high spatial resolution RapidEye imagery. Some examples are high cloud coverage, 
with shadow projection caused by relieves, high clouds and off-nadir sensor position. 
Moreover the topographic complexity of the island consists in a major challenge for the 
geometric correction. The Madeira’s unique interface climate pushed for an analysis both 
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of summer and winter imagery. The phenological differences of the vegetation showed not 
to consist in a multi-temporal series classification issue, if taken in consideration also that 
most of the natural/protected vegetation grows on the North side of the island, where the 
humidity is more constant. Nevertheless a main problem remains the availability of quality 
picture in the winter season considering the oceanic aerosol as further disturbance factor in 
addition to the clouds and the mist. Although the high spatial resolution would suggest the 
possibility of a singular tree-by-tree detection (whether the crown is twice the pixel size), 
we demonstrate that for a relatively important area as Madeira Island, with many spectral 
classes, considering the high radiometric depth of the RapidEye data, the best results are 
given by applying an object-based approach to reduce the classificator uncertainty. The 
five spectral bands, with the fourth placed on the wavelength of the vegetation red-edge 
spectral response, demonstrate to give accurate details for vegetation mapping. The use 
of a vegetation index stacked with the RapidEye dataset (pixel-sized and segmented) for 
improving the classification accuracy returned interesting effects of improvement of the 
accuracy of the statistically least separable classes, of different classes of plants from the 
same genus, of very low-reflectance and spread classes (as the dry grassland in summer) on 
the bare soil and classes whose differences may be slight but economically and practically 
necessary (as annual grassland and pastures). The addition of a vegetation index showed to 
be nevertheless a delicate phase whose results depend mainly on the quality of the imagery 
and training data. The maps produced overcome the previous existing cartography offering 
a huge variety of uses. We find relevant to stress the correlation between training step, 
which means certain knowledge of the land cover and accuracy of the classification; as 
observed in this research we conclude that the prior knowledge (and its resolution) of the 
cover in the training areas is the first driver of the map accuracy. Regarding the RapidEye 
imagery we recommend a careful selection of the scenes, with a particular attention to 
the off-nadir position of the sensor, because can lead to a massive data loss especially in 
oceanic islands whereas the topography is rugged.

Final remarks
The main objective of this work was to develop and assess a methodological framework 
to produce a RapidEye multispectral imagery-based vegetation map. RapidEye data 
demonstrated to provide a high value product allowing the classification of a high 
resolution scheme with the use of only one scene, achieving reasonable accuracy levels. 
The addition to the processing of a vegetation index showed potential for the segmentation 
and classification; however the results disagree and it is needed further study to confirm 
this point. Two different seasons have been tested for a classification; the comparison of 
the results showed different seasonal behavior of some classes, particularly grassland and 
agriculture land. The authors recommend therefore, depending on the purpose of the map 
to be produced, caution to choose an image acquisition date in which those classes are 
fully represented. Segmented inputs overcame pixel based approaches demonstrating a 
necessity of homogenizing spectral signatures from this sensor for the maximum likelihood 
classificator. The authors additionally recommend taking in consideration the team pre-
processing capabilities before acquiring a non-geometrically corrected dataset because the 
amount of labor needed for these preliminary adjustments can easily over-pass the price 
difference between a L1B and L3A product.
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Appendices

Appendix 1 (Continued on the next page) - Main  actions operated to the original classification 
scheme through the JM separability assessment and training data adjustment iterative process to 
reach the final classification scheme.

Ideal classification scheme Action Final classification scheme

Natural water streams

Merged(1) Water bodies
Coastal ponds

Natural inner lakes and ponds

Artificial inner lakes and ponds

Fruit orchards Splitted(2)
Fruit orchards

Banana plantation

Irrigated crops Splitted(3)
Irrigated crops

Sugar cane

non-irrigated crops Removed(4) -

Vineyards none(5) Vineyards

Apollonias barbujana laurisilva forest
Merged(6) Apollonias barbujana laurisilva 

forestOpen Apollonias barbujana laurisilva forest

Ocotea foetens Laurisilva forest
Merged(7) Ocotea foetens Laurisilva forest

Open Ocotea foetens laurisilva forest

Persea indica laurisilva forest Removed(8) -

Chestnut tree forest

Merged(9) Chestnut tree forest
Chestnut tree forest with broad-leaf trees

Chestnut tree forest with resinous trees

Open chestnut tree forest

Eucalyptus spp. forest

Merged(10) Eucalyptus spp. forest

Eucalyptus spp. forest with broad-leaf trees

Eucalyptus spp. forest with resinous trees

Open Eucalyptus spp. forest

Open Eucalyptus forest with resinous trees
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Appendix 1 (Continued from preceding page and on the next page) - Main  actions operated 
to the original classification scheme through the JM separability assessment and training data 
adjustment iterative process to reach the final classification scheme.

Ideal classification scheme Action Final classification scheme

Pine forest

Merged(11) Pine forest
Pine forest with resinous trees

Open pine forest

Open pine forest with broad-leaf trees

Forest of other broad-leaf trees Removed(12) -

Forest of other resinous trees Removed(13) -

Open forest of other broad-leaf trees Removed(14) -

Open forest of other resinous trees Removed(15) -

Community of Acacia dealbata

Merged(16) Acacia woodland

Community of Acacia mearnsii

Community of Acacia melanoxylon

Open community of Acacia mearnsii

Open community of Acacia melanoxylon

Olea maderensis woodland
Merged(17) Olea maderensis woodland

Open Olea maderensis woodland

Salix canariensis woodland none(18) Salix canariensis woodland

Tree heather woodland
Merged(19) Tree heather woodland

Open tree heather woodland

Community of Pittosporum undulatum Removed(20) -

Open community of Pittosporum undulatum Removed(21) -

Community of Arundo donax none(22) Community of Arundo donax

Community of Euphorbia piscatoria
Merged(23) Community of Euphorbia 

piscatoriaOpen community of Euphorbia piscatoria

Community of Genista tenera none(24) Community of Genista tenera

Community of Ulex latebracteatus none(25) Community of Ulex latebracteatus

Heath shrubland with Myrtus spp.

Merged(26) Heath shrubland
Heath shrubland with Vaccinium spp.

Open heath shrubland with Myrtus spp.

Open heath shrubland with Vaccinium spp.

Myria faya Shrubland Removed(27) -

Sideroxylum mirmolano community Removed(28) -

Permanent pastures none(29) Permanent pastures
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Appendix 1 (Continued from preceding page) - Main  actions operated to the original 
classification scheme through the JM separability assessment and training data adjustment 
iterative process to reach the final classification scheme.

Ideal classification scheme Action Final classification scheme

High altitude herbaceous community

Rearranged(30)

Dry grassland

Low altitude herbaceous community

Wet grassland

Invasive herbaceous community

Built-up areas
Merged(31) Built-up areasRoad system and associated areas

Reservoirs and cisterns
Beach, dunes and coastal areas Removed(32) -

Burnt areas
Merged(33) Bare rocksQuarries

Bare rock
- Added(34) Bare soil

(1)(20)(27)(28) scarce availability of data for comparison due to low spatial frequency of the object and/or high 
pixel mixture due to very scattered class combined with homogeneous patch size smaller than one pixel; (2)(3)(34) 
existence of stand-alone spectral natural aggregations in the previous class(es) which matched to the interpreter’s 
assessment; (4)(8)(12)(13)(14)(15)(21) unavailability of photo-interpreted data for comparison and impossibility 
to distinguish the class from others; (5)(18)(22)(24)(25)(29) no action required; (6)(7)(9)(10)(11)(16)(17)(19)(23)
(26)  dense, open and/or mixed classes have non relevant spectral difference whether the single object roughly 
approximates the pixel size; (30) unavailability of photo-interpreted data for comparison and impossibility to 
distinguish the class from others but existence of stand-alone spectral natural aggregations in the previous classes 
which matched to the interpreter’s assessment; (31) merged into anthropic impervious areas; (32)(33) non-relevant 
class differences; spectral inseparability of the class due to lack of information in the medium infrared; (34) class 
mainly consequent to seasonal changes between vegetated and non-vegetated areas. Spectrally separable from the 
others non-vegetated areas.
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