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Abstract 
 

 Microalgae are promising microorganisms for the production of food and fine 

chemicals. Several species of microalgae are used in aquaculture with the purpose of 

transfer bioactive compounds up to the aquatic food chain. The main objective of this 

project was to develop a stress–inducement strategy in order to enhance the biochemical 

productivity of Nannochloropsis gaditana, Rhodomonas marina and Isochrysis sp. for 

aquaculture purposes having in account their growth and organizational differences. In 

this regard, two experiments were design: the first one consisted on the alteration of 

overall nutrient availabilities in growth medium; and the second one comprised changes 

in nitrogen and sulfur concentrations maintaining the concentrations of the other 

nutrients present in a commercial growth medium (Nutribloom plus), which is 

frequently used in aquaculture. Microalgae dried biomass was characterized 

biochemically and elemental analysis was also performed for all samples. In first 

experimental design: linear trends between nutrient availability in growth media and 

microalgae protein content were obtained; optimum productivities of eicosapentaenoic 

(EPA) and docosahexaenoic acids (DHA) were attained for both R. marina and N. 

gaditana in growth media enriched with 1000 L L
-1

 of nutrient solution whereas for 

Isochrysis sp. the double of Nutribloom plus was needed; the decrease of glucans and 

total monosaccharides with nutrient availability for R. marina and Isochrysis sp. showed 

the occurrence of a possible depletion of carbohydrates towards lipids and proteins 

biosynthesis. Second experimental desing: N. gaditana exhibited the highest variation in 

their biochemical composition against the applied perturbation; variations observed for 

microalgae in their biochemical composition were reflected in their elemental 

stoichiometry; in N. gaditana the highest nitrogen concentrations lead to overall 

maximum productivities of the biochemical parameters. The results of the present work 

show two stress-inducement strategies for microalgae that may constitute a base for 

further investigations on their biochemical enhancement. 
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Resumo 
 

 As microalgas são microrganismos promissores para a produção de alimentos e 

química fina. Diversas espécies de microalgas são utilizadas na aquacultura com o 

objectivo de transferir compostos bioactivos até ao topo da cadeia trófica aquática. O 

principal objectivo deste projecto consistiu no desenvolvimento  de uma estratégia 

indução–stress de forma a aumentar a produtividade bioquímica da Nannochloropsis 

gaditana, Rhodomonas marina e Isochrysis sp. para aquacultura, tendo em consideração 

o crescimento e diferenças organizacionais. Neste contexto, duas experiências foram 

desenvolvidas: a primeira consistiu na alteração do teor total de nutrientes disponíveis 

no meio de crescimento; e a segunda compreendeu alterações nas concentrações de 

azoto e enxofre mantendo as concentrações dos restantes nutrientes presentes no meio 

de cultivo comercial (Nutribloom plus), frequentemente utilizado em aquacultura. A 

biomassa das microalgas foi caracterizada bioquimicamente e a análise elementar foi 

também efectuada para todas as amostras. Na primeira experiência: foram obtidas 

relações lineares entre a disponibilidade de nutrientes no meio de cultivo e o total de 

proteínas das microalgas;  as produtividades máximas dos ácidos eicosapentaenoico 

(EPA) e docosahexaenoico (DHA) foram atingidas, para a R. marina e N. gaditana, nos 

meios de cultivo enriquecidos com 1000 L L
-1

 de solução nutritiva, enquanto que para 

a Isochrysis sp. foi necessário o dobro para tal; o decréscimo dos glucanos e do total de 

monosacáridos com a disponibilidade de nutrientes demonstrou a ocurrência  de um 

possível consumo dos carbohidratos para a biosíntese de lípidos e proteínas. Na segunda 

experiência: N. gaditana demonstrou ter uma maior variação na sua composição 

bioquímica face ao stress aplicado; as variações observadas relativamente à composição 

bioquímica das microalgas reflectiram-se na sua estequiometria elementar; na N. 

gaditana concentrações superiores de azoto tiveram como consequência o aumento das 

produtividades para os parâmetros bioquímicos em geral. Por fim, os resultados do 

presente trabalho demonstram duas estratégias indução–stress para as microalgas que 

podem servir de base para investigações futuras visando o melhoramento da sua 

composição bioquímica. 

 

Palavras–chave: Microalgas, compostos bioactivos, glucanos, EPA, DHA, PUFA
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1. Microalgae 

1.1. Microalgae biodiversity and taxonomy 

 Algae are a highly diversified group of primarily oxygen–releasing 

photosynthetic organisms (1). In divergence to plants these organisms have a simple 

body plan in which roots, stems or leaves are absent (1, 2).  Algae can be divided into 

two main categories: macroalgae (which have complex multicellular structures) and 

microalgae (that encompass unicellular or simple multicellular structures) (1, 3). The 

latest comprises prokaryotic (e.g. Cyanobacteria) and eukaryotic microorganisms which 

are present not only in aquatic environments but also in terrestrial environments (3). 

Microalgae represent a big variety of species across the planet and it’s estimated to 

comprise more than 50,000 species despite of only 30,000 have been studied and 

analyzed (3). 

 Microalgae play a very important role in aquaculture as primary producers of 

bioactive compounds that can enhance fish and fish oils quality through up the food 

chain; since fish diet composition has a marked influence on their growth, development 

of the key organs, and on their tissues chemistry (4, 5). Thus several microalgae genus 

are used to fulfill fish dietary requirements, being Nannochloropsis, Isochrysis, 

Scenedesmus, Dunaliella, Spirulina, Phaeodactylum, Pavlova, Tetraselmis, 

Skeletonema, Chlorella and Thalassiora, the most commonly used (6).  

 Three microalgae species, Nannochloropsis gaditana, Rhodomonas marina and 

Isochrysis sp., often used in aquaculture will be subject of study in this work. The 

taxonomic description are shown below alongside with their morphological appearance 

(Fig. 1 a–c). 

 

Nannochloropsis gaditana (7)  Rhodomonas marina (7) 

 

Isochrysis sp.(7) 

 

Empire: Eukaryota 

Kingdom: Chromista 

Division: Heterokontophyta 

(Ochrophyta) 

Class: Chrysophyceae 

Empire: Eukaryota 

Kingdom: Chromista 

Division: Cryptophyta 

Class: Chryptophyceae 

Order: Pyrenomonadales 

Empire: Eukaryota 

Kingdom: Chromista 

Division: Haptophyta 

Class: Coccolithophyceae 

Order: Isochrysidales 



Enrichment of Bioactive Compounds in Microalgae for Aquaculture 

  
4 

 
  

Figure 1. Photomicrograph of a) N. gaditana; b) R. marina; c) Isochrysis sp. at a total magnification of 600×. 

 

1.2. Microalgae trophy – Photosynthetic processes 

 Microalgae are adapted to scavenge their environments for resources, assuming 

many types of trophy which can be summarized into two main classes: autotrophy 

(where microalgae utilize CO2 as the carbon source) and heterotrophy (in which organic 

compounds, produced from other biomass sources, are used instead of CO2) (3, 8, 9). 

Autotrophs include chemoautotrophs (source of energy obtained from inorganic 

compounds) and photoautotrophs (source of energy obtained from light) (9). Like 

plants, algae convert light into chemical energy through photosynthesis reactions (3). 

Some microalgae (e.g. Ochromonas) can assume both phototrophic and heterotrophic 

growth utilizing both photosynthesis and organic compounds from the environment to 

fulfill their nutritional needs (mixotrophic growth), namely in low light environments 

(1, 2). 

 The photosynthetic processes (Fig. 2) which convert the solar energy into 

biomass comprise several steps: i) Capture of light energy by a light harvesting 

antennae; ii) Conversion of solar energy into chemical energy (ATP and NADPH2): 

Transfer of electrons removed from water molecules (oxidized at photosystem II – PSII) 

to a terminal electron acceptor NADP
+
 - which is then reduced at photosystem I (PSI) to 

NADPH2; Development of a pH gradient, from proton translocation, which drives the 

ATP synthesis catalyzed by the protein complex ATP synthase; iii) ATP and NADPH2 

Order: Eustigmatales 

Family: Monodopsidaceae 

Genus: Nannochloropsis 

Species: Nannochloropsis 

gaditana 

 

Family: Pyrenomonadaceae 

Genus: Rhodomonas 

Species: Rhodomonas marina 

 

Family: Isochrysidaceae 

Genus: Isochrysis 

 

   

a) b) c) 
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produced feed the light–independent reactions of photosynthesis (Calvin cycle) that are 

responsible for CO2 fixation into carbohydrates, catalyzed by ribulose-1,5-bisphosphate 

carboxylase oxygenase (RUBISCO) (10-12). The fixed carbon may be stored into 

reserve molecules which can be broken down in order to provide the energy (ATP) or 

carbon skeletons needed for cell reactions (12). 

 

 
Figure 2. Schematic representation of photosynthetic processes that leads to carbon fixation and metabolites 
formation. Based on references (11, 13). 

 The configuration of core metabolic networks is highly varied across distinct 

algae classes (14). This diversity, alongside with organizational differences in the 

photosynthetic apparatus scheme might affect key processes such as photosynthesis, 

carbon allocation and accumulation of high value metabolites by microalgae (14). 

Although all photosynthetic microorganisms have organic pigments for light harvesting, 

the quantity of these molecules as well as the presence of accessory pigments in the 

pigment – protein antennae systems can vary with their phylogeny (2, 14).  

 The representation of the molecular structures of some pigments forming the 

light harvesting antennae complexes are displayed in Figure 3. Pigments can be divided 

into three major classes: Chlorophylls (Chl) which include Chl a, b, c and d; 

Carotenoids that comprise carotenes (hydrocarbons) and xantophylls (oxygenated 

hydrocarbons); and Phycobilins (11).  
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Figure 3. Photosynthetic pigments of light harvesting antennae complexes a) Chlorophyll a; b) Fucoxanthin; c) β – 
Carotene and d) Phycoerythrobilin. 

 Chlorophylls are molecules characterized for having a tetrapyrrole ring with a 

central magnesium ion and a linear terpene alcohol (except for Chl c); whereas 

phycobilins comprise only an open tetrapyrrole in their molecular structure, Fig. 3a and 

Fig. 3c respectively (11). It should be noted, that carotenoids (Fig. 3 b–c), phycobilins 

and Chl b, c and d function as accessory light-harvesting pigments, once they offset the 

range of light absorption not covered by Chl a present in all oxygenic photoautothrophs 

(11).  

 Organizational differences in microalgae had been shaped by endosymbiotic 

acquisitions and evolutionary selection (14). The main groups of algae, classified as 

divisions, are stablished having in account their characteristics, such as: microalgae 

ultrastructure, pigmentation, photosynthetic membranes organization and storage 

products (2). Table 1, shows the main pigments of the algal divisions here studied, 

where it’s possible to visualize that only the Cryptophyta division has phycobilins and 

alloxanthin. Other differences in xantophylls and carotenes nature are present in Table1. 

Table 1. Main pigments of Cryptophyta, Heterokontophyta and Haptophyta, adapted from reference (2). 

   Carotenoids 

Division Chlorophylls Phycobilins Carotenes Xanthophylls 

Cryptophyta Chl a, Chl c Phycoerythrin-545 

r-Phycocyanin 

α-, β-, ε-Carotene Alloxanthin 

Heterokontophyta Chl a, Chl c Absent α-, β-, ε-Carotene Fucoxanthin, 

Violaxanthin 

Haptophyta Chl a, Chl c Absent α-, β-Carotene Fucoxanthin 
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 The limitation of inorganic nutrients in algae growth media affect photosynthetic 

energy conversion once their presence is crucial for photosystems photochemistry (e.g. 

Mg
2+

 in chlorophylls) and fundamental enzymatic reactions that influence the 

downstream metabolic reactions (15).   

1.2.1. Nutrient requirements – Medium enrichment 

  

 Algae biomass is built up by six major elements: carbon (C), oxygen (O), 

hydrogen (H), nitrogen (N), sulfur (S) and phosphorus (P) (16). These elements 

alongside with others crucial for cells viability and physiology are present in algae cells 

in a species specific structural ratio (Redfield ratio) which determines species nutrient 

requirements (16-18). The extended Redfield formula obtained by Ho (17) is presented 

in equation (1); this average stoichiometry may vary in response to changes on the 

microalgae growth environment (17). Moreover, this formula has been used as a starting 

point to quantify possible nutrient limitations in microalgae and to determine optimum 

nutrient ratios – in which the concentration of one nutrient is such that it won’t affect 

the supply of another (19).    

 

(C124N16P1S1.3K1.7Mg0.56Ca0.5)1000Sr5Fe7.5Zn0.8Cu0.38Co0.19Cd0.21Mo0.03        Eq. (1) 

 

 Furthermore, the inorganic media components can be divided, according to the 

relative amounts required by cells, into two main classes: macronutrients (those that 

must be supplied in large amounts g L
-1

) and micronutrients (those that must be 

supplied in small quantities mg L
-1

) (19-21). Macronutrients comprise the elements 

previously referred as the building blocks elements of algae biomass plus calcium (Ca), 

potassium (K), sodium (Na), magnesium (Mg) and iron (Fe) (16). Whereas 

micronutrients comprise the trace metals, essential as catalytically active cofactors in 

enzymes, protein stabilizers and for their enzyme-activation functions (16, 21). 

1.2.1.1. Nutrient uptake and assimilation 

 

 Nutrients are uptaken by microalgae through the plasma membrane which 

ensures the entry of essential nutrients and metabolites into the alga cell by transporting 

them through diffusion or by a variety of transmembrane transporters (e.g. channel 

proteins) (22, 23). As represented in Figure 4 nutrients can be acquired by microalgae in 
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several forms, being some more energy dispending than others (24). For instance, 

nitrogen can be acquired as nitrate (NO3
−), nitrite (NO2

−), ammonium (NH4
+) and urea; 

albeit NH4
+ assimilation has less energy costs for algae cells (22, 24). Moreover from 

the inorganic forms of nitrogen, NO3
− is the most thermodynamically stable form in the 

aquatic environments liable to oxidation (25). 

 Fig. 4 highlights nitrogen and sulfur uptake, reduction and assimilation 

alongside with their key role in metabolic processes as essential components of proteins. 

It should be noted that nitrogen and sulfur can only be assimilated in the most reduced 

forms, NH4
+ and sulfide (S2−), respectively (22). 

 
Figure 4. Nitrogen and sulfur uptake, reduction and assimilation parts that are highlighted. In the background are 
the metabolic pathways in which these elements and carbon are involved. Adapted from reference (22). 

 The uptake of the essential nutrients from the aquatic environment depends on 

several parameters such as: the bioavailable nutrient concentration (previously referred), 

and light regime and concentrations of other nutrients (17). Cells stoichiometry has a 

tendency to homeostasis across environments and taxa (Eq. 1). However, changes in the 

uptake rates of the chemical elements may lead to direct repercussions in cell 

stoichiometry and consequently, in the organic composition of cells, as well as in the 
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size of metabolic pools (26). Through the background of Fig. 4 is possible to visualize 

the interconnections and some of the metabolic pathways in which nitrogen, sulfur and 

carbon are involved. 

 

1.3. Stress responses 
 

 The survival of microalgae in variable environments is dependent on their ability 

to readily adapt to and tolerate stress (27). Understanding the response mechanisms that 

led to a successful adaptation is important in order to explain not only the patterns of 

microalgae diversity, but also their flexibility under different environments (27).  

 Figure 5 shows a hypothetical performance curve for a biological system 

exposed to an increasing perturbation. Stress is a physiological response derived from 

an input that led to a deviation from normal operating conditions producing a positive 

(higher productivity and growth – subsidy effects) or negative output (28, 29).   

 
Figure 5. Hypothetical performance curve for biochemical productivity of a microalgae system upon an increasing 
perturbation. Adapted from references (28, 29). 

 Biological systems have a set of physiological processes that maintain organism 

status quo upon a perturbation, counteracting any tendency to imbalance (Homeostasis) 

(26). However, when this primarily cellular feature doesn’t work several responses can 

be taken up by organisms in order to minimize deviations from normality (26). These 

responses can be categorized into three sets: i) regulation – involves changes in the 

functioning of pre–existing catalysts and as such is dependent on the pre–existing pool 
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of these molecules, occurs in seconds to minutes; ii) acclimation – involves quantitative 

and/or qualitative alterations of the expressed proteome, occurs in minutes to hours; iii) 

adaptation – responses mediated by change in genome occurs after several generations 

(26).  

 Figure 6 is a schematic representation of homeostasis and acclimation response 

that have been triggering much attention as a strategy to enhance microalgae 

composition for industrial and commercial purposes. Through this figure is possible to 

see that the perturbation in homeostasis didn’t influence the metabolic pools 

maintaining their amounts and proportions in cells despite of an alteration in nutrient 

uptake rates had occur, moreover C/N stoichiometry remains constant (26). In 

acclimation a diversion from homeostasis occurs, in order to minimize the impact of 

environmental perturbation. In this case is possible to note alterations in proteins, 

carbohydrates and lipids pools along with C/N stoichiometry as perturbation starts (26). 

However, when perturbation ends cells metabolic pools and cell stoichiometry go back 

to their composition prior to perturbation occur (26).   

 
Figure 6. Schematic representation of homeostatic and acclimation responses to an environmental perturbation. 
Adapted from reference (26). 

 

1.4. Microalgae applications 
 

 Microalgae have been attracting much attention from the industry and scientific 

communities for being promising biomachineries for the production of fine chemicals 
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(30). Thus, the use of microalgae as “green energy carriers” is of increasing interest 

since comprises a solution for a sustainable production of renewable energy (3, 30). The 

advantages of these microorganisms are due to their fast growth, efficient carbon 

dioxide fixation, not competing for arable lands and potable water and metabolic 

flexibility (easy acclimation and accumulation of high amounts of special metabolites) 

(31). Furthermore, the great potential of marine microalgae for several areas of 

application is related with their biomass and/or biochemical composition. Table 2 shows 

some products that can be synthesized by microalgae species and their applications. 

Table 2. Applications and biological activity of compounds synthesized by microalgae, based on references (30-
32). 

Compound Biological activity Application 

β-Carotene Food additive; pro-vitamin A; 

antioxidant 

Health food supplement; 

pharmaceuticals 

Phycoerythrin   Immunofluorescence techniques 

Proteins  Health food supplement 

Vitamins Antioxidant;  

blood cell formation;  

blood clotting mechanism 

Immune system 

Saturated and 

Monounsaturated fatty 

acids; Hydrocarbons 

 Biofuel production 

Eicosapentaenoic acid 

(EPA) 

Nutraceutical; 

antimicrobial; 

anti-inflammatory 

Health food supplement; Therapeutics; 

Immune system 

Arachidonic acid 

(AA) 

Aggregative and 

vasoconstrictive of platelets 

Docosahexaenoic acid 

(DHA) 

Nutraceutical; brain 

development 

β-1,3-glucan  Immune-stimulator; 

antioxidant; reducer of blood 

cholesterol 

Pharmaceuticals; Food technology 

Carbohydrates 
  

Bioethanol production; Food 

technology 
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1.4.1. Polyunsaturated fatty acids (PUFAs) 

  

 PUFAs, namely the subset HUFA (highy unsaturated fatty acids), are important 

in regulating membranes function and have been recognized essential for processes such 

as brain and eye development at fetus (30, 33). Moreover, some of these fatty acids are 

crucial in determining several physiological and pathological processes since they are 

precursors of pro-inflamatory (prostaglandins – PGs, tromboxanes – TXs; leukotrienes 

– LTs) and/or anti-inflamatory molecules (lipoxins, resolvins) (33). The following 

figure (Fig. 7) displays the metabolic pathway of polyunsaturated fatty acids (PUFAs) 

in human and their relation with pathological processes. 

. 

 
Figure 7. Polyunsaturated fatty acids (PUFAs) synthesis in animals and their relation with the precursors of 
inflammatory responses, the key process of desaturation of oleic acid (C18:1ω9) into the PUFA precursors, made 
in algae, is highlighted. Based on references (33, 34). 

 

 The nutritional requirements of animals in terms of PUFAs is due to their 

inability to synthesize the essential fatty acids: linoleic (LA, C18:2ω6) and alpha 

linolenic (ALA, C18:3ω3) acids, precursors of long chain fatty acids of ω3 and ω6 

series respectively, through the monounsaturated fatty acids desaturation (33). Although 

the human metabolism can proceed to the elongation and desaturation of essential fatty 

acids into their long chain metabolites this process is not very efficient decreasing even 

more with age (33, 35). On the other hand microalgae like plants can convert oleic fatty 
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acid into the precursors of ω3 and ω6 series which is catalyzed by delta 12 desaturase 

and are known for being rich sources of LC–PUFA (34).  

1.5. Objectives of the work 
 

 The main goal of this work was exploit organizational differences between N. 

gaditana, R. marina and Isochrysis sp. to develop a stress–inducement strategy in order 

to enhance their biochemical productivity for aquaculture purposes. In more detail:  

i) The first objectives (Chapter II) were to evaluate the impact of nutrient 

availability on the biochemical composition and growth of microalgae, as 

well as the determination of the optimal ranges of nutrient availability for 

these species. In this chapter, microalgae were exposed to five different 

nutrient availabilities in growth media, in a batch cultivation system, and 

biochemical analysis was performed; 

 

ii) The second goals (Chapter III) were to assess the effect of growth media on 

the qualitative and quantitative fatty acid content as well as the enhancement 

of EPA and DHA contents in microalgae. Samples had the same 

experimental design of chapter II, however, biochemical assessment 

encompassed fatty acid analysis alongside with their productivities; 

 

iii) The third objectives (Chapter IV) were to evaluate the impact of nutrient 

availability on the carbohydrate profile of microalgae and link the 

monosaccharides composition with the carbohydrate of origin based on 

phylogenetic data. Samples had the same experimental design of chapter II 

and monosaccharides were analysed as alditol acetate;  

 

iv) The fourth objectives (Chapter V) were to investigate the effect of nitrogen 

and sulfur availabilities in growth media on biochemical composition, 

growth and elemental stoichiometry of microalgae and to determine the 

optimal growth conditions that lead to the maximum EPA and DHA 

productivities. In this chapter, microalgae were exposed to different nitrogen 

and sulfur concentrations in a batch cultivation system. Biochemical analysis 



Enrichment of Bioactive Compounds in Microalgae for Aquaculture 

  
14 

 
  

was performed comprising proteins, lipids, fatty acid content and 

productivities analysis. 

 



 

 

CHAPTER II. Influence of growth medium nutrient availability on 

the biochemical composition of Nannochloropsis gaditana, 

Rhodomonas marina and Isochrysis sp. – three marine microalgae 
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1. Abstract 

 This study aimed to enhance the gross biochemistry of microalgae in protein and 

lipids for aquaculture purposes and study their behaviour upon different nutrient 

conditions. Experiments were conducted with three marine microalgae, N. gaditana, R. 

marina and Isochrysis sp., commonly used in aquaculture that were subjected to a range 

of nutrient availabilities in a batch cultivation system. Overall, maximum cell densities 

were achieved at highest growth media nutrient availabilities and were obtained linear 

trends between protein content and nutrient availability. In general, highest lipid content 

were observed at high growth media nutrient availability (N. gaditana: T5 – 5 % DW; 

Isochrysis sp.: T5 – 26 % DW) and lipid fractions revealed high percentages of 

glycolipids in all microalgae (N. gaditana: 49 – 57 % TL; R. marina: 62 – 73 % TL; 

Isochrysis sp.: 56 – 61 % TL). Towards higher concentrations Isochrysis sp., R. marina 

and N. gaditana channelled their metabolic fluxes for protein accumulation. The 

behaviour of lipid content according to nutrient availability was different for R. marina 

supporting the belive/hypothesys that the response of biological systems at 

environmental stresses is species-specific. 

 

 

Keywords: Nutrient availability, Biochemical composition, N. gaditana, R. marina, Isochrysis sp. 
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2. Introduction 

 In aquaculture several species of microalgae have been used with the purpose of 

zooplankton enrichment in bioactive compounds (like proteins and neutral lipids) for 

feeding fish (5). The selection of microalgae strains for aquaculture is based on 

parameters such as size, digestibility (e.g. cell wall), non-toxicity and nutritional value 

(5, 6). Meeting these criteria Nannochloropsis sp., Rhodomonas sp. and Isochrysis sp. 

are cultured as feed for farmed organisms such as bivalves, crab larvae and zooplankton 

that is then fed for crustacean and fish larvae (5, 6, 36).   

 The microalgae nutritional value is related with their gross biochemical 

composition (lipid, protein and carbohydrate) (37, 38). In order to modulate this 

parameter several strategies have been taken for enhancing the quality of these primary 

producers as food for aquatic organisms (39, 40). The manipulation of biotic and abiotic 

factors related with algae culture conditions, for example temperature, nutrient 

availability and salinity, can induce changes in growth and biochemical composition of 

microalgae (37, 41). It is noteworthy that the response to changes at different 

environmental conditions are species-specific (38). 

 Through photosynthesis microalgae can convert atmospheric CO2 along with 

water and light, into organic matter being carbohydrates the major products (31). 

Carbohydrates and lipids are energy-rich molecules that in stressful conditions are often 

used as an alternative energy source for the production of raw materials required by cell 

(31, 42). In addition, proteins can function as nitrogen storage in some organisms and 

changes in this biochemical parameter can reflect the metabolic rate of actively 

growing/dividing cells (1, 43). The biochemical assessment can provide some insights 

about the structural modifications or molecular mechanisms that can lead to a successful 

adaptation and an accumulation of certain bioactive compounds that can be transferred 

up to the food chain (42, 43). 

 In biological systems nutrient availability has a large impact on the intracellular 

metabolite cycling influencing the biomass chemical composition (29). As with lipid 

synthesis, lipid component are known to be influenced by numerous factors (e.g. 

nitrogen starvation, high salinity), especially neutral lipids (44). This way the present 

study aims to evaluate the impact of nutrient availability on the biochemical 
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composition and growth of three marine microalgae (N. gaditana, R. marina and 

Isochrysis sp.), with special emphasis on their lipid classes, as well as the determination 

of the optimal ranges of nutrient availability for these species commonly used in 

aquaculture. 

3. Materials and Methods 

3.1. Chemicals 

 Methanol, acetone, sodium sulfate and Silica gel were all acquired from Sigma-

Aldrich (St. Louis, MO, USA). Chloroform, potassium chloride and dichloromethane 

were acquired from VWR (Carnaxide, Portugal). Lugols solution was purchased from 

bioMérieux (Linda-a-Velha, Portugal). All the reagents used for analytical procedures 

had analytical grade.  

3.2. Microorganisms and culture conditions 

 The Isochrysis sp., R. marina and N. gaditana were supplied by Mariculture 

Center of Calheta (Madeira, Portugal). The cultivation of each microalgae species was 

performed by inoculating 75 mL of starter cultures into 425 mL of enriched seawater 

with commercial culture medium Nutribloom plus (Necton, Portugal). The natural 

seawater used, for media preparation, was previously adjusted to a salinity of 25 g L
-1

 

and sterilized in an autoclave (Uniclav 88) at 121 ºC for 15 min. Five different volumes 

of nutrient solution, 250 (T1), 500 (T2), 1000 (T3), 2000 (T4) and 4000 (T5) L L
-1

, 

were used for the preparation of growth medium. The nutrient concentrations in the 

final growth medium are presented in Table 3. 
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Table 3. Components of the growth medium culture and respective concentrations in final growth medium (mg L
-

1
) for the experiment carried out. 

Component 
Concentration in final growth medium (mg L

-1
) 

T1 T2 T3 T4 T5 

NaNO3 43 85 170 340 680 

KH2PO4 3 7 14 27 54 

EDTA 2 4 8 15 31 

FeCl3.6H2O 1 3 5 11 22 

ZnCl2 0.03 0.07 0.14 0.27 0.54 

ZnSO4 0.07 0.14 0.29 0.57 1.15 

MnCl2.2H2O 0.04 0.08 0.16 0.32 0.65 

Na2MoO4.2H2O 0.01 0.01 0.02 0.05 0.10 

CoCl2.6H2O 0.01 0.01 0.02 0.05 0.10 

CuSO4.5H2O 0.01 0.01 0.03 0.05 0.10 

MgSO4.7H2O 0.12 0.25 0.49 0.98 1.97 

      
Vitamins 

     
Tiamine 0.01 0.02 0.04 0.07 0.14 

Biotin 0.001 0.003 0.005 0.010 0.020 

B12 0.001 0.002 0.003 0.006 0.012 

 

 Experiments were conducted at a temperature of 23 ± 2 ºC, with a photoperiod 

of 18:6 h light/dark cycles, pH ranging 7 – 9, at a light intensity of 3841 ± 560 lux and 

compressed air was used for aeration of cell cultures. The microalgae were harvested at  

stationary phase by centrifugation (centrifuge Labofuge 200 - Heraeus) for 5 min. at 

4500rpm and washed with distilled water. Duplicates were conducted for all the 

experiments. 

3.3. Cell concentration and specific growth rate determination 

 Microalgae growth was monitored daily by counting cells with a 0.1-mm-deep 

improved Neubauer haemocytometer (Marienfield–Superior) and a light microscope 

(Olympus BX41) using a 40x magnification; for cell counting, cells were fixed with 

lugol. A logistic model was used to describe algal growth, as previously presented by 

Xin (41),  Eq. (2):  

 

N =
𝐾

1+𝑒𝑎−𝑟𝑡                                                             Eq.(2) 

 

 Where K (cells mL
-1

) is the carrying capacity, N (cells mL
-1

) is the cell 

concentration in time t (days), a is a constant that refers to the position of the origin and 
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r (d
-1

) is the specific growth rate. The specific growth rate was calculated by the 

linearization of the logistic model. 

3.4. Analytical Procedures 

 For the determination of CHNS content in all experiments an elemental analyser 

Truspec 630-200-200 was used. Total protein was assessed by multiplying the nitrogen 

content for 6.25 as described by Kim (39).  

 Extraction of total lipids was performed according to modified Bligh & Dyer 

(45). Briefly, to dried algal biomass were added 3mL of a methanol: chloroform mixture 

(2:1 v/v) followed by 400μL of a saturated solution of KCl and 2mL of cloroform. After 

homogenization, 2 mL of distilled water were added and the mixture was left stirring for 

15 min. Then the sample was let to set and the organic phase was removed and dried in 

Na2SO4 filters. At the end, solvent was evaporated in a Büchi rotavapor R-200, in order 

to proceed to lipids quantification. Lipid content was quantified gravimetrically. Lipids 

and protein contents are presented relatively to dry biomass weight (DW) as average of 

at least two replicates. 

 For lipid class determination the total lipids were solubilized in dichloromethane 

and fractionated in activated silica (100 ºC) chromatography column. The separation of 

lipid classes was made according to Guckert (46) and Smith (47) procedures being the 

elution sequence as follows: 5 mL of dichloromethane, 5 mL of acetone and finally 10 

mL of methanol. These elution’s allows the separation of the different lipid fractions: 

neutral lipids, phospholipids and polar lipids (glycolipids). 

3.5. Statistical analysis  

 Values are represented as means ± standard deviations. In algal growth curves 

non-linear regression trend lines where fit to data with Solver.  Statistical analysis of the 

data was carried out using the software IBM SPSS Statistics 23. Differences between 

growth medium nutrient availability treatments were assessed by one-way analysis of 

variance (ANOVA) followed by a Bonferroni’s Post Hoc analysis; p–values < 0.05 

were considered to be statistically significant. 
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4. Results and discussion         

4.1. Algal Growth 

 Growth was monitored daily with the aim to evaluate the impact of the 

experiment conducted in microalgae growth dynamic. Thus, in Figure 8 the growth 

curves according to growth medium nutrient availabilities applied, for the microalgae 

studied, are displayed. Through this figure is possible to visualize that maximal cell 

densities were achieved in T4 growth media. The highest cell density reached by N. 

gaditana was approximately 62.9 × 10
6
 cells mL

-1
 [Fig. 8 (a)] which is closer to the 

values found by Rocha (48). In the treatments where nutrient availability was lower (T1 

– T3) maximum specific growth rates (0.90 – 0.81 d
-1

) were obtained for N. gaditana as 

well as for R. marina (1.22 – 1.56 d
-1

) (Table 3). R. marina maximum cell density was 

approximately 34.9 × 10
5
 cells mL

-1
 [Fig. 8b] which is two times higher than the value 

reported by Lafarga-De la Cruz (49) with modified f/2 medium.  Isochrysis sp. revealed 

a different behaviour regarding to the specific growth rate, where the maximum values 

achieved 1.16 and 1.05 d
-1

 appear to have no direct relation with nutrient availability. 

For this microalga, treatments that induced long term growth (T3 – T5) reached higher 

cell densities. The maximum cell density value attained was approximately 32.1 × 10
6
 

cells mL
-1

 (Fig. 8 c) which is closer to that previously obtained by Fidalgo (40). 
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Figure 8. Growth curves for N.  gaditana (a), R. marina (b) and Isochrysis sp. (c) upon different nutrient 
availabilities in growth media. 
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4.2. Biochemical Composition 

 Algal culture medium comprises inorganic salts, macro and micronutrients, 

which some are rate limiting for algal growth and others crucial for the enzymatic 

reactions that are responsible for the biosynthesis of many metabolites (18). Thus it is 

important to assess the impact of nutrient availability over the nutrient uptake and the 

enhancement of the nutritional quality of these primary producers. 

C/N ratios presented in Table 4 indicates that the biochemical profile was 

affected by the nutrient availability. In the three marine microalgae studied the C/N ratio 

was higher in treatments with the lower nutrient concentrations (T1 and T2). This 

behaviour was previously observed for many microalgae strains which in nutrient 

deficient conditions could transform, within the cell, nitrogenous compounds (proteins 

or peptides) into storage compounds (lipids or carbohydrates) (31, 40). On higher 

nutrient concentrations C/N ratio presented the lowest values indicating an increase in 

protein synthesis supported by total protein content presented in Table 4. In nutrient 

saturation conditions (T4 – T5), the C/N ratios obtained for R. marina and Isochrysis sp. 

were closer to those referred in Seixas (50) for another strain of Rhodomonas (4.4) and 

for Isochrysis galbana (8.8). Regarding to N. gaditana, the C/N ratios (6.68 and 6.85) 

achieved in nutrient  saturation conditions were closer to the Redfield ratio (6.6) (50).  

Table 4. Effect of nutrient availability in the biochemical composition of N. gaditana, R. marina and Isochrysis sp. 

Parameter Microalgae 
Volume of Nutrient Solution (mL) 

T1 T2 T3 T4 T5 

r (d
-1

) 

N. gaditana 0.90 0.81 0.81 0.52 0.47 

R. marina 1.22 1.56 1.41 1.01 0.93 

Isochrysis sp. 0.74 1.16 0.74 1.05 0.76 

Protein 

(%DW) 

N. gaditana 2.82 ± 0.35
a
 3.17 ± 0.18

a
 8.58 ± 0.10

b
 18.81 ± 0.05

c
 19.70 ± 0.03

d
 

R. marina 18.69 ± 0.27
a
 26.68 ± 0.72

b
 44.48 ± 0.31

c
 58.85 ± 0.78

d
 46.34 ± 0.38

c
 

Isochrysis sp. 12.12 ± 0.46
a
 13.85 ± 1.13

a
 25.09 ± 0.52

b
 36.89 ± 1.51

c
 36.35 ± 0.38

c
 

Lipid 

(%DW) 

N. gaditana 1.88 ± 0.01
a
 1.54 ± 0.02

a
 3.18 ± 0.16

b
 4.94 ± 0.22

c
 5.15 ± 0.04

c
 

R. marina 19.04 ± 0.33
a
 20.54 ± 0.26

a
 18.92 ± 0.10

a
 20.24 ± 0.56

a
 15.75 ± 1.48

b
 

Isochrysis sp. 16.80 ± 1.31
a
 14.72 ± 1.29

a
 23.01 ± 1.58

b
 24.83 ± 2.05

b
 25.52 ± 0.32

b
 

C/N 

(mol/mol) 

N. gaditana 13.65 ± 0.22
a
 10.85 ± 0.14

b
 8.60 ± 0.27

c
 6.68 ± 0.02

d
 6.85 ± 0.08

d
 

R. marina 11.70 ± 0.22
a
 9.73 ± 0.02

b
 5.69 ± 0.04

c
 5.34 ± 0.04

cd
 5.18 ± 0.01

d
 

Isochrysis sp. 14.63 ± 0.10
a
 12.15 ± 0.38

b
 10.68 ± 0.08

c
 8.78 ± 0.36

d
 8.79 ± 0.07

d
 

Values (means ± standard deviations) in the same row, not sharing a common superscript are significantly different (p < 0.05). r – 

specific growth rate (d-1); DW – Dry biomass weight. 
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Nitrogen is an essential component for microalgae growth and is associated with 

protein biosynthesis (31). In nutrient-rich conditions some organisms can assimilate the 

excess nitrogen in culture medium and store it into protein (1). In this regard, linear 

trends between the total protein content in dry biomass and the nutrient availability were 

follow for the first four concentrations assessed (T1 – T4), presenting determination 

coefficients (R
2
) between 0.95 – 0.99. To nourish bivalve larvae, the microalgae species 

must contain at least 12% of protein in their composition despite of the optimum range 

being 30 – 60 % of protein in dry biomass (51). Thus, for the three microalgae assessed, 

only Isochrysis sp. and R. marina were within the optimum range being the highest 

values obtained of 36.89 – 36.35 % and 44.48 – 58.85 % of dry weight, respectively 

(Table 4). However the maximum protein obtained for N. gaditana at T4 and T5, 

18.81–19.70 % of dry biomass, also makes it suitable for bivalve diet.  

 The main strategies often applied for channel metabolic fluxes towards lipid 

accumulation are mainly nitrogen and phosphorus starvation (52). The response of N. 

gaditana and Isochrysis sp. at low nutrient concentrations (T1 and T2) revealed that 

lipid content in terms of dry biomass was lower, rising 69 and 107 % and 37 and 56 %, 

respectively, with nutrient availability, values were stipulated in regard to T3. 

Furthermore lipid accumulation reached a saturation point at the highest concentration 

applied. In R. marina lipid content remained constant reaching a turning point at the 

maximum nutrient concentration applied (T5) where after that the lipid content 

decreased 16.75% of dry biomass when compared to T3. According to Courchesne (52), 

microalgae under nutrient limitation accumulate lipids when cellular mechanisms for 

photosynthesis are active  and the energy source along with carbon source are 

abundantly available. In this study, not only the concentration of nitrogen and 

phosphorus were changed in culture medium, but also the availability of other nutrients 

which have a key role in photosynthesis reactions, explaining the results observed for N. 

gaditana and Isochrysis sp.(18).  

4.3.  Lipid Class Content 

 Algal lipids can be divided into two major classes: neutral/nonpolar lipids – that 

are known as the metabolic energy reserves of cell, and polar lipids – that play a 

structural role as components of biomembranes (53, 54). In algae, environmental 

stresses can induce fluctuations in the fluidity of cell membranes (55). Although these 



Enrichment of Bioactive Compounds in Microalgae for Aquaculture 

  
26 

 
  

fluctuations are not fully understood, it is often admitted that they are needed to alter 

physiological properties of biomembranes in order to maintain normal cell processes 

such as ion permeability and photosynthesis (55). 

Through the experiment, a higher content of polar lipid (sum of glycolipids and 

phospholipids) was observed over the neutral/non polar lipids, being glycolipids the 

main fraction in all experiments performed for the three microalgae. Glycolipids 

percentages of total lipid were 49 – 57 % for Isochrysis sp., 62 – 73 % for R. marina 

and 56 – 61 % for N. gaditana . It should be noted that algae grown under normal 

conditions often possess large amounts of polar lipids and that glycolipids, 

predominantly located in photosynthetic membranes, maintain the stability of 

photosynthetic apparatus that is crucial for microalgae metabolic activities (55, 56). 

Like total lipid, lipid class content of dry biomass varied in function of nutrient 

availability [Fig. 9]. Changes in the lipid fractions proportions evidenced in N. gaditana 

[Fig. 9a] a mobilization of phospholipid to neutral lipids with the increase of nutrient 

concentrations. Moreover, the highest phospholipid content (29 and 36 % of total lipid) 

was obtained at the lowest growth medium nutrient availabilities (T1 and T2) by this 

microalga. Phospholipid content in R. marina [Fig. 9b] and Isochrysis sp. [Fig. 9c] were 

within the values previously reported by Kumari (55) as common for algae, 

approximately 10 – 20 % of total lipid. 

 

 

 

 



Enrichment of Bioactive Compounds in Microalgae for Aquaculture 

  
27 

 
  

 

 

 
Figure 9. Lipid class content of (a) N. gaditana, (b) R. marina and (c) Isochrysis sp. against growth medium. DW – 
Dry biomass weight. 
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5. Conclusion 

 Nutrient availability had an impact in algal growth dynamics for the three 

microalgae studied. Towards high nutrient concentrations, C/N ratios indicate that all 

microalgae channelled their metabolic fluxes to protein accumulation. In the overall, 

highest protein and lipid content were reached at bigger growth media nutrient 

availabilities, suggesting that the biochemistry of microalgae is suitable for aquaculture. 

Different patterns were observed for the three microalgae, namely, the lipid content 

evolution in regard to the nutrient concentrations applied in R. marina and the 

mobilization of lipid fractions in N. gaditana in regard to nutrient availability. These 

observations support the assumption that the response to environmental stresses is 

species – specific. Lipid class content was rich in glycolipids which is the main 

constituent of photosynthetic membranes. 

 



 

 

CHAPTER III. Effect of growth medium nutrient availability on the 

fatty acid profile of Nannochloropsis gaditana, Rhodomonas 

marina and Isochrysis sp. 
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1. Abstract 

 Several species of microalgae are used in aquaculture with the purpose of 

transfer bioactive compounds, such as eicosapentaenoic (EPA) and docosahexaenoic 

acids (DHA), up to the aquatic food chain. In order to maximize and enhance the 

nutritional value of N. gaditana, R. marina and Isochrysis sp. a range of nutrient 

concentrations were applied to the growth medium. In general microalgae protein, EPA 

and DHA contents had a similar pattern response to the nutrients input. A mobilization 

of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) towards 

polyunsaturated fatty acids (PUFA) synthesis, for N. gaditana and R. marina, was 

depicted by a decrease in their ratios with growth medium nutrient availabilities. 

Optimum EPA and DHA productivities were reached by R. marina (EPA: 15.11 mg g
-1

 

DW d
-1

; DHA: 11.55 mg g
-1

 DW d
-1

) and N. gaditana (EPA: 0.28 mg g
-1

 DW d
-1

) at 

growth medium with 1000 L L
-1

 of commercial nutrient solution (Nutribloom plus) 

whereas for Isochrysis sp. were attained at growth medium with 2000 L L
-1

 of 

Nutribloom plus (EPA: 0.52 mg g
-1

 DW d
-1

; DHA: 17.04 mg g
-1

 DW d
-1

). The 

observations made for N. gaditana indicate that the commercial medium used for the 

current experiment wasn’t suitable for this microalga. The results obtained pointed that 

the strategy here applied constitutes an advantage for modulating the biochemical 

composition of microalgae. 

 

 

Keywords: Nutrient availability, EPA, DHA, N. gaditana, R. marina, Isochrysis sp. 
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2. Introduction 

 Microalgae have the ability to grow very fast and produce a variety of 

compounds that can be used for several areas of application (30, 37). For instance, 

synthesis of bioactive compounds like polyunsaturated fatty acids (PUFAs), sterols, 

pigments and vitamins, makes them suitable to use in fish farming and human health 

(32). While saturated and monounsaturated fatty acids along with hydrocarbons are 

products synthetized by microalgae strains suitable for biodiesel production (30, 57).   

 Long chain PUFAs play a key role as membrane constituents of organisms and 

as precursors of a variety of signalling molecules (e.g. leukotrienes and eicosanoids), 

which comprises multiple physiological and pathological responses (33, 35). Hence, the 

intake of PUFAs by humans, namely omega3 (ω3), can prevent and improve 

cardiovascular disease, hypertension and arthritis (32). Fish and their oils are known as 

dietary sources of ω3 PUFAs, in particular eicosapentaenoic (EPA – 20:5ω3) and 

docosahexaenoic (DHA – 22:6ω3) acids (58-60). Nevertheless, as with humans, fish 

lack the ability of synthesize efficiently ω3 or ω6 (omega6) LC-PUFAs which are 

required for their normal growth and development, and therefore they acquire them 

through their diet (30, 35, 61). 

 Microalgae are the primary sources of PUFAs in the marine food chain being 

used for aquaculture with the purpose of supplementing them to zooplankton and other 

aquatic organisms (5, 30). Consequently, the fatty acid composition is an essential 

parameter in selecting microalgae strains for aquaculture (40). Some of the most 

commonly used strains are Nannochloropsis sp. (EPA – producer) and Isochrysis sp. 

[Isochyrsis aff. galbana: DHA – producer; Isochrysis galbana (Parke): rich in both EPA 

and DHA] (35, 40, 62). 

 Although these photosynthetic organisms naturally produce high amounts of 

PUFAs, their fatty acid content and composition can be enhanced by exposing them to 

changes in their growth conditions (35, 62). In this regard, the manipulation of 

environmental parameters such as composition of the growth medium or the presence of 

critical media components have influence on the nature, amount and the composition of 

the desired products (18). The aim of this study was to assess the effect of growth media 

on the qualitative and quantitative fatty acid content, as well as the enhancement of EPA 
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and DHA contents in three marine microalgae – N. gaditana, R. marina and Isochrysis 

sp. (used in aquaculture feeding) by applying a range of different nutrient 

concentrations. 

3. Materials and methods 

3.1. Chemicals 

 The chemicals used had analytical grade. Methanol and heptane were acquired 

from Sigma-Aldrich (St. Louis, MO, USA). Ethyl acetate was from Merck (Darmstadt, 

Germany). 

3.2. Algal growth and experiment design 

 The experimental design, cell densities and specific growth rate (r, days
-1

) 

determinations are described in sections 3.2. and 3.3. of chapter II. 

3.3. Determination of specific growth rate and fatty acid 

productivities 

 The fatty acid productivities were estimated, according to Hoffmann (57), after 

harvest, in stationary phase, by the following equation: 

 

Px = r × cx                                                Eq. (3) 

 

 Where Px represents the productivity (mg g
-1

 day
-1

) of  a specific fatty acid (x), r 

is the growth rate (days
-1

) and cx is the concentration of the fatty acid. 

3.4.  Determination of fatty acids 

The fatty acid composition of algal dried biomass was determined as fatty acid 

methyl esters (FAMEs) as previously described by Lepage & Roy (63), modified by 

Cohen (64). Briefly, fatty acids were converted to FAMEs by adding a mixture of ethyl 

acetate-methanol (1:19 v/v) to dry biomass that was then left at 80ºC for 1h and further 

extracted in the heptane fraction. FAMEs were analysed by gas chromatography 

(Agilent HP 6890) equipped with a mass selective detector (Agilent 5973) and a 



Enrichment of Bioactive Compounds in Microalgae for Aquaculture 

  
34 

 
  

capillary column DB-225 J&W (30 m  0.25 mm inner diameter, 0.15 µm film 

thickness) from Agilent. The chromatographic conditions were as follows: oven initial 

temperature was 35 ºC for 0.5 min; increasing  25 ºC min
-1

 to 195 ºC, 3 ºC min
-1

 to 205 

ºC and 8 ºC min
-1

 until reach the final temperature of 230 ºC for 3 min.; injector 

temperature 250 ºC; transfer line temperature 280 ºC; split ratio, 1:100. Helium was 

used as the carrier gas with a flow rate of 2.6 mL min
-1

. FAMEs identification was 

made by comparing the retention times and mass spectra fragmentation to those of 

known standards (bacterial acid methyl esters CP mix and supelco 37 component 

FAME mix from supelco). Four replicates were performed for each GC analysis being 

the results presented as the mean value ± standard deviation (SD) of FAME expressed 

in mg g
-1

 of dry biomass weight (DW). The internal standard used was the 

heneicosanoic acid (C21:0). 

3.5. Statistical Analysis 

 Statistical analysis of the data was carried out using the software IBM SPSS 

Statistics 23. Differences between growth medium nutrient availability treatments were 

assessed by one-way analysis of variance (ANOVA) followed by a Scheffe’s Post Hoc 

analysis; p–values < 0.05 were considered to be statistically significant. 

4. Results and Discussion 

4.1. Protein and highly unsaturated fatty acids synthesis (HUFAs) 
 

 Microalgae are natural food resources of protein and HUFAs, namely 

eicosapentaenoic (EPA, C20:5ω3) and docosahexaenoic acids (DHA, C22:6ω3), for 

higher levels of marine food web (65). EPA and DHA are crucial for maintaining the 

biomembranes and cellular functions (e.g. cell signalling) (66, 67). Proteins are 

involved in the metabolic mechanisms as biological catalysts of crucial reactions for cell 

growth (68). Since sets of proteins like desaturases and elongases, which rely on protein 

expression, are responsible for keep fatty acid unsaturation reactions, an examination of 

protein against EPA and DHA behaviour is important (35). Figure 10 shows the effect 

of the nutrient availability on protein and fatty acids contents. 
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Figure 10. Effect of growth media nutrient availability on protein, eicosapentaenoic acid (EPA) and 
docosahexaenoic acid (DHA) contents in dry biomass weight (DW) of (a) N. gaditana, (b) R. marina and (c) 
Isochrysis sp.  

 Fig. 10a shows that in N. gaditana EPA and protein contents progressed in the 

same way with regard to nutrient availability until T4. In T5 EPA content decreased (51 

% DW) in contrast to protein that remained constant in respect to T4. This might 

suggest that when the growth medium nutrients were too high N. gaditana responded by 
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accumulating nitrogen-related metabolites (proteins) and possibly reducing their 

membrane permeability associated with DHA and EPA contents (69, 70).    

 Fig. 10b shows that R. marina presented an enhancement of EPA, DHA and 

protein content with the increase of nutrient availability from T1 – T4, reaching a 

saturation point in the latter. Further nutrient input (T5) seemed to induce a toxic effect, 

as showed from a decrement in the maximum cell density achieved and biochemical 

parameters studied. In Isochrysis sp., these biomolecules presented the same trend in 

regard to nutrient concentrations as displayed in Fig. 10c. Several factors are known to 

influence the activities of fatty acid elongases and desaturases, namely the availability 

of vitamins and inorganic cofactors which can enhance or inhibit the activity of these 

enzymes (33). Thus, the previous observations suggest that higher growth medium 

nutrient availabilities comprising high levels of cofactors enhanced the activity of 

desaturases and elongases as well as their expression. 

 

4.2. Fatty acid profile 
 

According to Renaud (71) HUFAs are associated with high growth rates of 

aquaculture organisms. Knowing that the fatty acid composition of microalgae isn’t 

constant and varies with environmental factors, such as nutrient availability; we aimed 

to improve microalgae fatty acid content for aquaculture by inducing changes in their 

growth environment and by exploiting their physiological potential as high productivity 

strains (35, 65). 

 

 Through the analysis of Table 5 is possible to note that fatty acid (FA) 

composition of N. gaditana varied between growth medium nutrient availabilities. The 

four major fatty acids in N. gaditana were linoleic acid (LA, C18:2ω6), alpha linolenic 

acid (ALA, C18:3ω3), palmitic acid (C16:0) and monounsaturated stearic acid (C18:1), 

the latter substituted by hexadecatrienoic acid (C16:3ω3) in T3 and by monounsaturated 

palmitic acid (C16:1) in T4 and T5. In N. gaditana the major FA accounted for 75 – 89 

% of total FA. 
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Table 5. Fatty acid profile of N. gaditana grown under different growth medium nutrient availabilities. 

Fatty Acids  

(mg g-1 DW) 

Treatment 

T1 T2 T3 T4 T5 

C14:0 0.07 ± 0.00ab 0.06 ± 0.00a 0.11 ± 0.02b 0.19 ± 0.02c 0.22 ± 0.02c 

C16:0 1.84 ± 0.02a 1.25 ± 0.03b 1.81 ± 0.02a 2.79 ± 0.11c 3.20 ± 0.11d 

C18:0 0.05 ± 0.01a 0.03 ± 0.00a 0.02 ± 0.00a 0.03 ± 0.00a 0.31 ± 0.04b 

Total – SFA2 1.98 ± 0.03a 1.36 ± 0.04b 2.00 ± 0.02a 3.12 ± 0.13c 3.84 ± 0.19d 

                
C16:11 0.18 ± 0.01a 0.20 ± 0.03a 0.76 ± 0.04b 2.10 ± 0.12c 1.94 ± 0.27c 

C18:11 2.73 ± 0.04a 1.01 ± 0.02b 0.42 ± 0.03c 0.50 ± 0.05c 0.73 ± 0.12d 

Total – MUFA2 2.91 ± 0.04a 1.21 ± 0.06b 1.17 ± 0.05b 2.60 ± 0.17a 2.67 ± 0.39a 

                
C16:3ω3 0.26 ± 0.01a 0.35 ± 0.01a 1.11 ± 0.08b 0.97 ± 0.18bc 0.80 ± 0.02c 

C18:2ω6 0.66 ± 0.03a 0.58 ± 0.03a 1.63 ± 0.04b 2.27 ± 0.18c 2.66 ± 0.01d 

C18:3ω3 0.70 ± 0.02a 0.89 ± 0.02a 2.82 ± 0.17b 3.00 ± 0.54b 2.45 ± 0.18b 

C18:4ω3 n.d. n.d. 0.04 ± 0.00a 0.01 ± 0.00b 0.01 ± 0.00b 

C20:5ω3 - EPA 0.04 ± 0.00a 0.05 ± 0.00a 0.34 ± 0.04b 0.53 ± 0.00c 0.26 ± 0.02d 

Total – PUFA2 1.74 ± 0.06a 1.98 ± 0.07a 6.46 ± 0.34b 7.54 ± 1.17b 7.19 ± 0.14b 

                
ω3 1.00 ± 0.03a 1.29 ± 0.03a 4.31 ± 0.30b 4.39 ± 0.93b 3.52 ± 0.22b 

ω6 0.66 ± 0.03a 0.58 ± 0.03a 1.63 ± 0.04b 2.27 ± 0.18c 2.66 ± 0.01d 

ω3/ω6 1.51 ± 0.04a 2.22 ± 0.09b 2.64 ± 0.12c 1.92 ± 0.27b 1.33 ± 0.08a 

ω3 HUFA 0.04 ± 0.00a 0.05 ± 0.00a 0.34 ± 0.04b 0.53 ± 0.00c 0.26 ± 0.02d 

(SFA+MUFA)/ 

PUFA 
2.81 ± 0.09a 1.30 ± 0.02b 0.49 ± 0.03c 0.77 ± 0.15d 0.91 ± 0.10d 

Total2 6.62 ± 0.08a 4.54 ± 0.15b 9.63 ± 0.32c 13.26 ± 1.13d 13.70 ± 0.44d 

Values (means ± SD of four replications) in the same row, not sharing a common superscript are significantly different (p < 0.05). 
1Contains ω9 and ω7 isomers; 2Contains some minor components not shown; n.d. – non detected; SFA – Saturated fatty acid; 

MUFA – Monounsaturated fatty acid; PUFA – Polyunsaturated fatty acid; HUFA – Highly unsaturated fatty acid. 

 

 Table 6 shows the fatty acid composition of R. marina. In R. marina the nutrient 

availability in the growth medium induced a shift on the major fatty acids detected. 

Therefore in T1 and T2, R. marina major fatty acids were C16:0, LA, ALA and 

stearidonic acid (SDA, C18:4ω3) representing 61 – 64 % of total fatty acids. While in 

T3 – T5 the C16:0 and LA fatty acids were replaced by DHA and EPA as predominant 

fatty acids, that together with ALA and SDA accounted for 73 – 79 % of total FA. 
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Table 6. Fatty acid composition of R. marina according to growth medium nutrient availabilities. 

Fatty Acids  

(mg g-1 DW) 

Treatment 

     T1      T2 T3     T4 T5 

C14:0 9.43 ± 0.73a 7.36 ± 1.08b 5.32 ± 0.42c 4.13 ± 0.45cd 3.02 ± 0.27d 

C16:0 22.00 ± 1.26a 13.00 ± 1.45b 3.70 ± 0.21c 3.15 ± 0.28c 2.45 ± 0.16c 

C18:0 4.04 ± 0.26a 1.86 ± 0.14b 0.32 ± 0.02c 0.34 ± 0.03c 0.25 ± 0.06c 

Total – SFA2 42.40 ± 2.72a 30.62 ± 4.01b 15.44 ± 0.99c 8.65 ± 0.79d 6.26 ± 0.36d 

                
C16:11 2.28 ± 0.20a 1.52 ± 0.13bc 1.28 ± 0.09b 2.22 ± 0.26a 1.87 ± 0.11ac 

C18:11 17.66 ± 1.24a 11.87 ± 1.05b 5.66 ± 0.17c 5.57 ± 0.25c 4.48 ± 0.16c 

Total – MUFA2 19.98 ± 1.40a 13.41 ± 1.17b 6.94 ± 0.19c 7.79 ± 0.51c 6.36 ± 0.27c 

                
C18:2ω6 19.30 ± 1.33a 12.21 ± 0.86b 4.02 ± 0.09c 4.83 ± 0.20c 1.98 ± 0.22d 

C18:3ω3 32.75 ± 1.98a 28.44 ± 1.98b 26.88 ± 0.39bc 23.82 ± 1.12c 16.52 ± 0.15d 

C18:4ω3 22.08 ± 1.54a 18.70 ± 1.12b 26.86 ± 0.72c 32.53 ± 0.66d 23.50 ± 0.98a 

C20:4ω6 - AA 0.07 ± 0.02ab 0.09 ± 0.02a 0.01 ± 0.00c 0.05 ± 0.02bc n.d. 

C20:5ω3 - EPA 7.31 ± 0.62a 8.52 ± 0.54ab 10.99 ± 1.09c 14.92 ± 0.90d 10.41 ± 1.31bc 

C22:6ω3 - DHA 5.27 ± 0.47a 6.18 ± 0.64a 8.17 ± 0.88b 9.59 ± 0.95b 6.03 ± 0.65a 

Total – PUFA2 87.63 ± 5.69a 74.61 ± 4.01b 77.03 ± 2.55bc 85.98 ± 1.82ac 58.46 ± 3.28d 

                
ω3 67.41 ± 4.52ab 61.84 ± 3.23ac 72.89 ± 2.54bd 80.87 ± 1.70d 56.46 ± 3.06c 

ω6 20.22 ± 1.40a 12.77 ± 0.87b 4.13 ± 0.09c 5.12 ± 0.17c 2.00 ± 0.22d 

ω3/ω6 3.34 ± 0.15a 4.85 ± 0.17a 17.63 ± 0.69b 15.81 ± 0.40b 28.31 ± 1.54c 

ω3 HUFA 12.58 ± 1.07a 14.71 ± 1.18a 19.16 ± 1.97b 24.52 ± 1.82c 16.44 ± 1.96ab 

DHA/EPA 0.72 ± 0.02a 0.72 ± 0.03a 0.74 ± 0.01a 0.64 ± 0.03b 0.58 ± 0.01c 

(SFA+MUFA)/ 

PUFA 
0.71 ± 0.03a 0.59 ± 0.05b 0.29 ± 0.02c 0.19 ± 0.01d 0.22 ± 0.01d 

Total2 150.01 ± 9.24a 118.64 ± 8.72b 99.40 ± 2.04c 102.43 ± 2.34c 71.08 ± 3.19d 

Values (means ± SD of four replications) in the same row, not sharing a common superscript are significantly different (p < 0.05). 
1Contains ω9 and ω7 isomers; 2Contains some minor components not shown; n.d. – non detected; SFA – Saturated fatty acid; 

MUFA – Monounsaturated fatty acid; PUFA – Polyunsaturated fatty acid; HUFA – Highly unsaturated fatty acid. 

 

 Table 7 shows that the fatty acid profile of Isochrysis sp. varied across 

treatments applied. Isochrysis sp. major fatty acids, were the myristic acid (C14:0), 

monounsaturated stearic acid (C18:1), SDA and DHA, which together accounted over 

70 % of the total fatty acids in all treatments. It should be noted that the microalgae 

Isochrysis sp. and R. marina, presenting the highest contents of HUFAs, have SDA as 

major FA. Between species, is possible to note qualitative and quantitative differences 

in their FA profiles. 



Enrichment of Bioactive Compounds in Microalgae for Aquaculture 

  
39 

 
  

Table 7.  Fatty acid profile of Isochrysis sp. grown under different growth medium nutrient availabilities. 

Fatty Acids  

(mg g-1 DW) 

Treatment 

T1 T2 T3    T4     T5 

C14:0 5.97 ± 0.18a 4.64 ± 0.09b 9.48 ± 0.69c 13.97 ± 0.51d 14.48 ± 0.43d 

C16:0 3.91 ± 0.12a 2.98 ± 0.10b 5.34 ± 0.40c 6.77 ± 0.21d 6.78 ± 0.16d 

C18:0 0.01 ± 0.00a n.d. n.d. 0.03 ± 0.00b 0.02 ± 0.01b 

Total – SFA2 10.14 ± 0.29a 7.71 ± 0.14b 15.06 ± 1.10c 21.26 ± 0.65d 21.89 ± 0.61d 

                
C16:11 3.44 ± 0.16a 2.36 ± 0.20b 4.63 ± 0.51c 6.49 ± 0.16d 7.27 ± 0.43d 

C18:11 7.42 ± 0.27a 4.64 ± 0.32b 8.02 ± 0.84a 9.30 ± 0.32c 10.10 ± 0.23c 

Total – MUFA2 10.89 ± 0.43a 7.03 ± 0.51b 12.68 ± 1.34a 16.12 ± 0.50c 17.72 ± 0.62c 

                
C16:3ω3 0.07 ± 0.02ab 0.08 ± 0.02ab 0.01 ± 0.00a 0.15 ± 0.04bc 0.17 ± 0.05c 

C18:2ω6 2.24 ± 0.15ab 1.81 ± 0.20a 2.91 ± 0.52b 6.30 ± 0.22c 7.33 ± 0.23d 

C18:3ω3 3.10 ± 0.10a 2.88 ± 0.23a 5.47 ± 0.47b 7.64 ± 0.15c 8.49 ± 0.25d 

C18:4ω3 14.11 ± 0.41a 14.27 ± 0.62a 25.24 ± 1.33b 35.43 ± 0.62c 38.90 ± 0.73d 

C20:5ω3 - EPA 0.13 ± 0.03a 0.08 ± 0.02a 0.10 ± 0.01a 0.50 ± 0.01b 0.61 ± 0.03c 

C22:6ω3 - DHA 10.20 ± 0.27ab 9.59 ± 0.49a 11.44 ± 1.26b 16.25 ± 0.39c 18.54 ± 0.51d 

Total – PUFA2 30.10 ± 0.99a 28.86 ± 1.59a 45.44 ± 3.28b 67.80 ± 1.44c 76.09 ± 1.92d 

                
ω3 27.61 ± 0.78a 26.90 ± 1.34a 42.25 ± 2.69b 59.91 ± 1.08c 66.66 ± 1.42d 

ω6 2.31 ± 0.17ab 1.87 ± 0.23a 2.92 ± 0.52b 7.20 ± 0.30c 8.57 ± 0.38d 

ω3/ω6 11.99 ± 0.56a 14.52 ± 1.10b 14.68 ± 1.91b 8.33 ± 0.21c 7.79 ± 0.19c 

ω3 HUFA 10.33 ± 0.30ab 9.67 ± 0.50a 11.53 ± 1.28b 16.69 ± 0.50c 19.10 ± 0.60d 

DHA/EPA 83.85 ± 16.71a 119.35 ± 19.11ab 134.44 ± 30.34b 33.14 ± 0.59c 30.66 ± 1.32c 

(SFA+MUFA)/ 

PUFA 
0.70 ± 0.01a 0.51 ± 0.01b 0.61 ± 0.02c 0.55 ± 0.01d 0.52 ± 0.01bd 

Total (mg/g)2 51.13 ± 1.49a 43.60 ± 2.14b 73.18 ± 5.14c 105.18 ± 1.81d 115.70 ± 2.98e 

Values (means ± SD of four replications) in the same row, not sharing a common superscript are significantly different (p < 0.05).  
1Contains ω9 and ω7 isomers; 2Contains some minor components not shown; n.d. – non detected; SFA – Saturated fatty acid; 

MUFA – Monounsaturated fatty acid; PUFA – Polyunsaturated fatty acid; HUFA – Highly unsaturated fatty acid. 

 In microalgae two pathways can lead to HUFA formation being LA the common 

precursor which is posteriorly converted to ALA or to gamma linolenic acid (GLA, 

C18:3ω6) (35). In Isochrysis sp. both LA and ALA are presented in concentrations 

below 10 mg g
-1

, of dry biomass in contrast with the final highly unsaturated product 

DHA. These results are within those previously obtained by Huerlimann (35) for 

Isochrysis aff. Galbana (T. ISO). Moreover, the highest content of LA observed in T1 

and T2 for R. marina can be explained by the downregulation of the desaturases and 

elongases, induced by the low nutrient availability. This is confirmed by a reduction in 

ω3 HUFA content and the increase of intermediate FA concentration. The experiment 

results suggest that N. gaditana media wasn’t the most appropriate for HUFA 

accumulation since the highest ω3 and ω6 FA obtained were LA and ALA previously 
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referred as substrates for desaturation and elongation pathway that lead to HUFA 

synthesis (35). 

 The three marine microalgae presented ω3/ω6 ratios greater than 1 

independently of growth medium nutrient availability treatments applied. This suggests 

that ω3 pathway is more active than the ω6. For T5 R. marina achieved the highest ratio 

comprising 28 times more ω3 FA than ω6 FA. According to Huerlimann (35) this can 

be explained by the substrate specificity of the enzymes set (namely desaturases) that 

link ω3 and ω6 pathways which can be more active and preferentially diverted towards 

ω3 FA synthesis. Furthermore, R. marina fatty acid profile exhibited an increase of 

ω3/ω6 ratio along with the nutrient input whereas Isochrysis sp. revealed an opposite 

trend. The previous observation support the assumption that the responses of species to 

equal inputs are species-specific and suggest that the nutrient availability affected the 

biosynthesis of polyunsaturated fatty acids possibly by turning the enzymes specificity 

towards ω6 FA synthesis, in Isochrysis sp., or ω3 FA synthesis, in R. marina.  

 Saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) are 

produced by de novo FA synthesis in chloroplast which posteriorly provides the 

substrates needed for PUFA biosynthesis in the endoplasmic reticulum, Figure 11 (35, 

69). Through the experiment conducted with N. gaditana and R. marina the 

(SFA+MUFA)/PUFA ratio showed a mobilization of SFA and MUFA production 

towards PUFA synthesis with the increase of nutrient availability. In, overall the values 

observed for (SFA+MUFA)/PUFA ratio in the marine microalgae studied were below 1 

with the exception of N. gaditana in T1 and T2 with 2.81 and 1.30, respectively.  
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Figure 11. Schematic representation of fatty acids biosynthesis in chloroplast (SFA and MUFA) and endoplasmic 
reticulum (PUFA), based on Muhlroth (62). 

 Algae diets with low (SFA+MUFA)/PUFA ratio and ω3/ω6 ratio higher than 2 

(ω3/ω6 > 2) are optimal for feeding larvae and juvenile oysters (72). In this order, 

the FA profile presented in Tables 5 – 7, shows that both R. marina and Isochrysis sp., 

in all treatments, exceeded the earlier recommended minimal along with 

(SFA+MUFA)/PUFA ratios inferior to 1. In opposition, ω3/ω6 ratio in N. gaditana 

were lower than 2 with the exception of those subjected to treatments T2 and T3, 

making these treatments suitable for the production of this microalga for aquaculture.  

4.3. EPA and DHA productivities 
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 The implementation of strategies that induce the accumulation of specific 

compounds with high value may differentially influence microalgae growth (68). In 

order to improve microalgae production for commercial applications the productivity of 

the cultivation systems must be taken into account (65). 

 According to the productivities presented in Table 6 the growth mediums with 

the highest EPA and DHA contents along with the highest specific growth rates are T3 

for R. marina and N. gaditana, and T4 for Isochrysis sp. Since N. gaditana 

demonstrated similar productivities in T3 and T4 the selection of the best productivity 

has to be made having in account the costs, essential in terms of commercial 

applications. DHA productivity isn’t applied to N. gaditana microalgae once they don’t 

present this specific fatty acid in their fatty acid profile. 

Table 8. EPA and DHA productivities for N. gaditana, R. marina and Isochrysis sp. according to growth medium 
nutrient availability. 

Experiment Microalgae 
Productivities (mg g

-1
 DW d

-1
) 

PEPA PDHA 

T1 N. gaditana 0.04 ± 0.00 - 

 
R. marina 9.65 ± 0.75 6.43 ± 0.57 

 
Isochrysis sp. 0.09 ± 0.02 7.52 ± 0.20 

        
T2 N. gaditana 0.04 ± 0.00 - 

 
R. marina 13.27 ± 0.84 9.63 ± 1.00 

 
Isochrysis sp. 0.09 ± 0.02 11.10 ± 0.56 

        
T3 N. gaditana 0.28 ± 0.03 - 

 
R. marina 15.54 ± 1.54 11.55 ± 1.25 

 
Isochrysis sp. 0.08 ± 0.01 8.46 ± 0.93 

        
T4 N. gaditana 0.28 ± 0.00 - 

 
R. marina 15.11 ± 0.92 9.71 ± 0.96 

 
Isochrysis sp. 0.52 ± 0.01 17.04 ± 0.41 

        
T5 N. gaditana 0.12 ± 0.01 - 

 
R. marina 9.65 ± 1.21 5.58 ± 0.60 

  Isochrysis sp. 0.47 ± 0.02 14.16 ± 0.39 

PEPA – eicosapentaenoic acid productivity; PDHA – docosahexaenoic acid productivity; DW – Dry biomass 

weight. 

 The productivities of N. gaditana were low compared to that obtained for the 

other microalgae mainly due to their low fatty acid content observed in all the 

experiments conducted. 
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5. Conclusion 
 

 The manipulation of growth medium influenced fatty acid pattern and protein 

enabling the improvement of biochemical composition of the three microalgae species 

for aquaculture purposes. The displayed mobilization of fatty acid groups with nutrients 

input constitutes an advantage for modelling the biochemical composition of microalgae 

focusing on the area of application. Lowest nutrient concentrations (T1 and T2) induced 

the interruption of synthetic pathways (elongation and desaturation) resulting in the 

decrease of nutritional quality of microalgae as food resource for aquaculture. In the 

current experiment the best growth mediums for the accumulation of the desired 

products were T3 for both R. marina and N. gaditana and T4 for Isochrysis sp. 

Concluding, Isochrysis sp. is the microalgae species with the highest requirement of 

nutrient concentration to promote FA accumulation and finally, the commercial medium 

used in this experiment wasn’t suitable for the accumulation of EPA in N. gaditana.  



 

 



 

 

CHAPTER IV. Assessment of growth medium nutrient availability 

impact on marine microalgae carbohydrate 
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1. Abstract 

 The metabolic flexibility of microalgae allow the enhancement of their 

composition to suit their use or application. Therefore, it’s essential to understand the 

downstream cellular processes which are activated under stressful conditions and lead to 

the desired carbon allocation. Since organizational differences within microalgae 

influence the carbon allocation, this study aimed to evaluate the impact of nutrient 

availability on the carbohydrate profile of three marine microalgae (N. gaditana, R. 

marina and Isochrysis sp.) and link the monosaccharides composition with the 

carbohydrate of origin based on phylogenetic data. The microalgae species were grown 

in a batch culture system upon different growth medium nutrient availabilities. 

Monosaccharides were analysed as alditol acetates. In N. gaditana glucose was the 

major monosaccharide (63 – 75 % of total monosaccharides) for all the study growth 

media. For both R. marina and Isochrysis sp. glucose was the principal sugar only in 

cultures with lowest growth medium nutrient availabilities (76 – 98 % and 61 – 79 %, 

respectively). The highest contents of glucans in N. gaditana and Isochrysis sp. 

indicated the presence of β-D-glucans (Chrysolaminarin) and cellulose whereas in R. 

marina might be explained by starch production. N. gaditana presented the highest 

diversity of monosaccharides detected. The decrease of glucans with nutrient 

availability observed for R. marina and Isochrysis sp. indicates the occurrence of a 

possible degradation of carbohydrates towards lipids and proteins biosynthesis. This 

study demonstrated an effective strategy to enhance biochemical composition for the 

marine microalgae studied. Isochrysis sp. and R. marina were the microalgae with the 

highest potential in regard to carbohydrates applications. 

 

 

Keywords: Microalgae, Monosaccharide composition, Nutrient availability, N. gaditana, R. marina, 

Isochrysis sp.  
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2. Introduction 

 Microalgae are photosynthetic organisms known for being potential sources of 

natural compounds which can be applied in therapeutics and biotechnological 

applications (73).  The ability of these microorganisms to readily adapt to growth 

fluctuating conditions, attributed to their metabolic flexibility, constitutes an advantage 

in modulating their biomass composition for commercial purposes (11, 30). In this 

regard, strategies such as the manipulation of parameters like media nutrient 

concentrations can be taken in order to modify the nature, amount and composition of 

the products synthesized (18). 

 Carbohydrates are the main products of photosynthetically-fixed carbon which 

can be stored intracellularly in multiple forms, such as starch, or deposited into 

structural polysaccharides (31, 74, 75). Monosaccharides are the building-blocks of the 

latest molecules and their composition can give an insight of polysaccharide 

predominance in microalgae (76-78). This is a crucial factor when selecting species for 

aquaculture feeding and for biotechnological applications, since polysaccharides 

composition determines the microalgae digestibility and their breakage, thus 

conditioning the extraction of cell wall coated valued products (77, 79).  

 The polysaccharides synthesized by microalgae species can be applied in several 

areas (30). For instance, starch and cellulose can be anaerobically converted to 

bioethanol, being the former more easily hydrolysable, whereas β-D-glucans (e.g. 

laminarans) have been attracting increasing attention due to their potential therapeutic 

applications (30, 31). Therefore β-D-glucans are known for enhancing the host immune 

system by binding to β-glucan receptors of cells involved in immune responses, such as 

macrophages and neutrophils, being their biological activity dependent on the ratio of 

1→3 and 1→6 linkages and chain length (73, 80). Furthermore, sulphated 

polysaccharides have multiple biological activities, namely antiviral, antioxidant and 

anti-inflammatory (81). In addition to these applications polysaccharides can be used in 

food technology as emulsifiers and also as stabilizers in various food products (30).  

 To enhance microalgae compounds productivity it’s essential to understand the 

downstream cellular processes that leads to the partitioning of carbon precursors into 

the multiple forms of carbon storage (14, 31, 82). Nevertheless, organizational 
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differences within microalgae species might affect processes such as photosynthesis and 

carbon flux through metabolic networks (14). Therefore, the present study aimed to 

evaluate the impact of nutrient availability on the carbohydrate profile of 

Nannochloropsis gaditana, Rhodomonas marina and Isochrysis sp. microalgae and link 

the monosaccharides composition with the carbohydrate of origin based on 

phylogenetic data. 

3. Materials and Methods 

3.1. Chemicals 

 Ammoniac, sodium borohydride and 1-methylimidazole were acquired from 

Merck (Darmstadt, Germany). Glacial acetic acid and acetic anhydride were purchased 

at Riedel-de Haën (St. Louis, MO, USA). Sulfuric acid was acquired from sigma-

Aldrich (St. Louis, MO, USA) and dichloromethane from VWR (Carnaxide, Portugal). 

All the reagents used had analytical grade. 

3.2. Algal Growth 

 The experimental design, cell densities and specific growth rate determinations 

are described in sections 3.2. and 3.3. of chapter II.  

3.3. Neutral Carbohydrate Composition 

3.3.1. Acid hydrolysis and alditol acetate derivatization 

 Monosaccharides were analysed as alditol acetate according to modified 

Blakeney (83). Briefly, 10 mg of dried algal biomass were exposed to a two stage 

sulphuric acid hydrolysis (3 h at 20°C in 72% sulfuric acid, followed by 2.5 h at 100°C, 

after water addition, in an oil bath). After cooling to room temperature, 200 L of 

internal standard (2–deoxyglucose – 20 mg/mL) was added to the hydrolysate. To 1 mL 

aliquot of hydrolysate mixture, 200 L of 25% ammoniac were added and the reduction 

of monosaccharides to alditol was performed. The reduction procedure involved the 

addition of 100 L of 3M ammoniac solution containing 150 mg/mL of sodium 

borohydride and the incubation at 30°C for 1 h in a water bath. Then two additions of 50 

L of glacial acetic acid, followed by homogenization, were carried out. Alditol 
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acetylation was performed by the addition of 0.45 mL of 1-methylimidazole and 3 mL 

of acetic anhydride to 0.3 mL of the previous mixture. Next, the solution was incubated 

at 30ºC for 30 min in a water bath. The derivatized monosaccharides (alditol acetate) 

were extracted with dichloromethane being posteriorly washed several times with water. 

The solvent was evaporated under a nitrogen atmosphere. The standard solutions were 

also derivatized prior to GC–MS analysis. At least two replicates were made. 

 

3.3.2. GC–MS Analysis 

 Alditol acetates were analysed by gas chromatography (Agilent HP 6890) 

equipped with a mass selective detector (Agilent 5973) and a capillary column DB-225 

J&W (30 m x 0.25 mm inner diameter, 0.15 m film thickness) from Agilent. The inlet 

temperature was 220°C and the column temperature was held at 220°C for 5min, 

ramped at 10°/min. to 230°C and kept in this temperature for 6min. The transfer line 

temperature was 280°C, the split ratio was 1:30 and Helium was used as the carrier gas 

with a flow rate of 1.2 mL/min. The derivatized monosaccharides were identified by 

comparing the retention times and mass spectra fragmentation with that obtained 

through injection of the standards. The quantification of neutral monosaccharides was 

made through the calculated response factor of each standard towards the internal 

standard. The standards used were 2–deoxyglucose, L(+)arabinose, D(+)xylose, 

D(+)galactose, D(+)glucose, D(+)mannose, D(+)rhamnose, D(+)fucose purchased at 

Sigma-Aldrich (St. Louis, MO, USA). Four replicates were performed for each GC–MS 

analysis being the results presented as the mean value ± standard deviation (SD) of 

alditol acetate expressed in mg g
-1

 of dry biomass weight (DW). 

3.4. Statistical Analysis 

 Statistical analysis of the data was carried out using the software IBM SPSS 

Statistics 23. Differences between growth medium nutrient availability treatments were 

assessed by one-way analysis of variance (ANOVA) followed by a Tukey’s Post Hoc 

analysis; p–values < 0.05 were considered to be statistically significant. 
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4. Results and Discussion 
 

 Carbohydrates are the major products of photosynthesis and play a structural 

role as main components of cell walls and organelles membranes (e.g. glycolipids), and 

as storage materials providing the energy necessary for the metabolic processes in 

organisms (31, 79, 84). In photosynthetic systems, nutrient availability is crucial for the 

viability, physiology and metabolic processes of organisms (18). In this regard, the 

assessment of the nutrient availability effect on microalgae is essential to give an insight 

of the structural and functional adaptations that lead to a successful adaptation.    

 Monosaccharide compositional analysis can give an overview about the original 

polysaccharide structure, cell wall composition and storage products based on 

phylogeny information from the literature (31, 85). The data in Table 9 show some 

variation in the neutral monosaccharides detected among the three marine microalgae  

studied. Results show significant differences (p < 0.05) in the amount and composition 

of monosaccharides in the three microalgae grown under different growth medium 

nutrient availabilities. The predominant sugar in N. gaditana was glucose accounting 63 

– 75 % of total monosaccharides (TM), regardless the treatments applied. This 

observation is according the previous results obtained by Brown (77) for another strain 

of Nannochloropsis (N. oculata) cultured in f/2 medium, where glucose accounted for 

68% of total monosaccharides. The large amount of this monosaccharide is likely to be 

derived from chrysolaminarin ((1→3)-β-glucan) or cellulose ((1→4)-β-glucan) which 

encompasses the major glucans in microalgae belonging to Heterokontophyta division 

(86). 
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Table 9. Monosaccharide profile of N. gaditana, R. marina and Isochrysis sp. according to growth medium 
nutrient availability.  

 Monosaccharide 

(mg g
-1

 DW)           

Treatment 

 
T1 T2 T3 T4 T5 

N
. 

g
a

d
it

a
n

a
 

Fucose 0.58 ± 0.05
a
 0.23 ± 0.03

b
 0.61 ± 0.04

a
 0.71 ± 0.06

a
 1.31 ± 0.15

c
 

Xylose 1.20 ± 0.09
a
 0.76 ± 0.02

a
 2.37 ± 0.34

b
 5.43 ± 0.25

c
 6.05 ± 0.31

d
 

Rhamnose 0.55 ± 0.06
a
 0.46 ± 0.03

a
 3.42 ± 0.30

b
 7.77 ± 0.40

c
 8.62 ± 0.36

d
 

Mannose 0.26 ± 0.03
a
 0.55 ± 0.04

b
 0.30 ± 0.01

a
 1.76 ± 0.16

c
 2.64 ± 0.09

d
 

Galactose 2.25 ± 0.07
a
 2.09 ± 0.12

a
 4.33 ± 0.39

b
 10.15 ± 0.50

c
 11.02 ± 0.62

c
 

Glucose 13.52 ± 0.43
a
 12.37 ± 1.04

a
 24.01 ± 0.66

b
 46.81 ± 0.67

c
 50.15 ± 1.18

d
 

 
Total  18.57 ± 0.63

a
 16.46 ± 1.18

a
 35.04 ± 1.36

b
 72.64 ± 1.41

c
 79.79 ± 1.61

d
 

                 

R
. 

m
a

ri
n

a
 

Fucose n.d. n.d. n.d. 0.06 ± 0.00 n.d. 

Rhamnose 0.64 ± 0.05
a
 n.d. n.d. n.d. 2.20 ± 0.09

b
 

Mannose n.d. n.d. n.d. n.d. 0.91 ± 0.05 

Galactose 2.23 ± 0.28
a
 12.21 ± 0.99

b
 8.93 ± 1.17

c
 1.74 ± 0.10

a
 n.d. 

Glucose 142.66 ± 2.04
a
 195.29 ± 3.61

b
 27.78 ± 1.08

c
 0.25 ± 0.02

d
 n.d. 

 
Total  145.53 ± 2.33

a
 207.50 ± 4.59

b
 36.71 ± 2.11

c
 2.06 ± 0.10

d
 3.11 ± 0.12

d
 

                 

Is
o

ch
ry

si
s 

sp
. Arabinose 3.62 ± 0.17

a
 3.80 ± 0.60

a
 4.59 ± 0.28

b
 4.31 ± 0.15

ab
 4.59 ± 0.15

b
 

Xylose 0.29 ± 0.03
a
 0.25 ± 0.02

a
 0.57 ± 0.06

b
 0.51 ± 0.04

bc
 0.44 ± 0.06

c
 

Mannose 8.97 ± 0.91
a
 8.99 ± 0.95

a
 11.96 ± 0.92

b
 17.32 ± 0.87

c
 17.94 ± 1.03

c
 

Galactose 23.48 ± 0.96
a
 23.79 ± 1.97

a
 31.44 ± 1.10

b
 30.74 ± 1.12

b
 33.46 ± 2.49

b
 

Glucose 136.77 ± 2.80
a
 107.78 ± 3.54

b
 76.91 ± 1.87

c
 35.37 ± 1.78

d
 35.41 ± 1.43

d
 

  Total  173.13 ± 3.81
a
 144.61 ± 5.64

b
 125.48 ± 4.03

c
 88.24 ± 1.54

d
 91.84 ± 4.82

d
 

Values (means ± standard deviations of four replications) in the same row, not sharing a common superscript are significantly 

different (p < 0.05). n.d. – non detected 

 In R. marina a variation in the neutral monosaccharides composition was 

observed with the nutrient availability, comprising an alteration of the predominant 

sugars. For T1 – T3 the predominant sugar was glucose (76 – 98 % of TM) changing for 

galactose at T4 (85 % of TM) and Rhamnose at T5 (71 % of TM). The predominance of 

glucose in T1 – T3 suggests that these treatments induced an increase in the storage of 

polysaccharides namely starch ((1→4)-α-glucan) (86). Although changes in the 

monosaccharide pattern indicates that the increase of dissolved minerals in growth 

medium probably induced an osmotic stress. Once, some microalgae respond to salt 

stresses by breaking down carbohydrates and accumulating molecules deriving from 

these, such as glycerol (84). 

 For Isochrysis sp. both galactose and glucose were the predominant sugars 

representing 75 – 93 % of TM. However their proportions changed with nutrient 

availability. This might be due to the polysaccharide scales constituted of cellulose-like 

polymers coating cells and chrysolaminarin storage explaining the predominance of 

glucans, whereas galactose predominance can be derived from the glycolipid content, 
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presented previously in section 4.3. of chapter II (86-88). In Brown (77) glucose was the 

main monosaccharide for two strains of Isochrysis genus in f/2 medium accounting 70 

and 77% of TM. 

 Results from Table 9 show that N. gaditana total monosaccharides content 

increased in response to nutrient input. Having in account that the increase in 

monosaccharide content wasn’t made at the expense of lipids and proteins (Table 4 

chapter II), the pattern observed might be explained by the accumulation of low 

molecular weight carbohydrates which may act as osmoregulators or as energy reserves 

(84). 

 The matrix and fibrillar fractions of cell wall possess other polysaccharides than 

glucans, which interconnect cellulose micro fibrils (89). Figure 12 displays the variation 

of monosaccharide proportions in N. gaditana. Here the decrease of glucose proportion 

in contrast to rhamnose was observed. This might suggest that N. gaditana under high 

growth medium nutrient availabilities displace preference towards rhamnans production 

for structural purposes and/or for suppress the effects of salt stress. Hereof, the presence 

of fucose indicates a possible occurrence of sulphated fucans which were evidenced in 

Heterokonts cell wall (90). 

 
Figure 12. N. gaditana monosaccharide proportions regarding growth medium nutrient availability. 

 

 For R. marina the lowest growth medium nutrient availabilities presented 

highest contents of monosaccharides 21 – 15 % of dry biomass. According to Silva (91) 
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a low rate of photosynthetic activity induced an increase in the carbohydrate content for 

Rhodomonas sp. Base on that, the previous observation support the assumption that 

under stressful conditions affecting microalgae photosynthesis efficiency, the metabolic 

processes are channelled up towards carbohydrate accumulation in order to fulfil cells 

requirements. Since treatments with low nutrient concentrations, encompass low 

concentration of cofactors needed for the maintenance of photosynthetic reactions (18).  

On the other hand, the highest nutrient availability (T5) seemed to act as a toxic input 

for R. marina, once glucose was absent in monosaccharide composition and a decrease 

in other parameters such as lipids, proteins and cells concentration were observed in 

section 4.2. of chapter II. 

 Isochrysis sp. total monosaccharides composition at low nutrient availabilities 

displayed an analogous trend to R. marina presenting the highest contents (17 – 14 % of 

DW) at low  growth medium nutrient availabilities. However, this microalga appears to 

be more resistant to the stress input, used in this experiment, because a decrease in the 

other biochemical parameters wasn’t observed (Table 4 chapter II). Furthermore, the 

decrease of total monosaccharides content with the increase of nutrient availability can 

be attributed to the use of carbohydrates as substrates for lipid and/or protein synthesis. 

Once nitrogen assimilation might trigger the addition of nitrogen to carbon skeletons 

provided by carbohydrates, which are the carbon sink of organisms (31, 91).  

 Figure 13 exhibits the variation of the monosaccharide composition pattern of I. 

galbana along with nutrient availability in the growth medium. Attending to 

monosaccharides, glucose was inversely related with the nutrient input (R
2
 = 0.94) 

whereas galactose presented a positive linear relationship with this parameter (R
2
 = 

0.95). The highest contents of glucose at low growth medium nutrient availabilities 

might be explained by the accumulation of soluble linked ((1→3)-β-glucan 

(chrysolaminarin) as storage compounds in cells (86). 
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Figure 13. Isochrysis sp. monosaccharide proportions regarding  growth medium nutrient availabilities. 

 

 Moreover the increase of mannose and galactose proportions with growth 

medium nutrient availability, Fig. 13, can be explained by the analogous behaviour of 

these monosaccharides and glycolipid content in regard to nutrient availability which 

suggest that glycolipids comprise large concentrations of galactolipids (e.g. 

monogalactosyl-diacylglycerol, digalactosyl-diacylglycerol) and mannose 

glycoconjugates (85).  Likewise, the presence of arabinose could be derived from 

arabinogalactans proteins which make up the cell wall (85). 

 In general, Isochrysis sp. and R. marina cultured at the lowest growth medium 

nutrient availabilities (T1 and T2) contained more glucose-based carbohydrates making 

these cultures the most suitable for bioethanol production (31). Furthermore, in a 

previous study, a highly branched (1→3, 1→6)-β-D-glucan extracted from Isochrysis 

galbana was demonstrated to inhibit the proliferation of tumor cells (73). Thus the 

highest content of glucans previously mentioned for Isochrysis sp. might comprise 

highest content of this bioactive compound. Nevertheless, according to phylogenetic 

information N. gaditana also store carbon in polysaccharides of this class of compounds 

(β-D-glucan). 
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5. Conclusion 

 

 Nutrient availability influenced neutral monosaccharide pattern and highlighted 

the taxonomic differences between species. Under low growth medium nutrient 

availabilities carbon was stored mainly as carbohydrates for both R. marina and 

Isochrysis sp., in contrast to N. gaditana. Regarding to carbon partitioning, changes in 

the nutrient concentrations of growth medium influenced on the 

lipids/carbohydrates/proteins accumulation. This study demonstrated an effective 

strategy to enhance biochemical composition for the three marine microalgae. The 

monosaccharides behaviour with regard to nutrients input constitutes an advantage in 

modelling the monosaccharide content of microalgae concerning the biotechnological 

application. In this context Isochrysis sp. and R. marina were the microalgae with 

highest potential in regard to carbohydrates applications. 



 

 

CHAPTER V. The influence of nitrogen and sulfur availabilities on 

the growth, biochemical and fatty acid composition of 

Nannochloropsis gaditana, Rhodomonas marina and Isochrysis sp. 

microalgae



 

 



Enrichment of Bioactive Compounds in Microalgae for Aquaculture 

  
59 

 
  

1. Abstract 

 Fluctuations of nutrient supply is a stress-inducement strategy often applied for 

optimising microalgae composition for industrial purposes. However, few information 

is found about nitrogen and sulfur acquisition and metabolisms interactions in 

microalgae. The aims of the present study were to investigate the effect of nitrogen and 

sulfur growth medium availabilities on biochemical composition, growth and elemental 

stoichiometry of N. gaditana, R. marina and Isochrysis sp. The optimal growth 

condition that lead to the maximum eicosapentaenoic acid (EPA) and docosahexaenoic 

acid (DHA) productivities in these three microalgae was determined. Experiments were 

conducted in a batch cultivation system and a range of nitrogen and sulfur availabilities 

were applied to the growth medium. N. gaditana exhibited the highest variation in their 

biochemical composition. At the highest growth medium nitrogen availabilities, 

maximum productivities were achieved for overall biochemical parameters (Protein: 

10.33 mg g
-1 

DW d
-1

; Lipids: 4.71 mg g
-1 

DW d
-1

; EPA: 1.05 mg g
-1 

DW d
-1

). Slowest 

growth was observed at highest growth medium sulfur availabilities despite of highest 

protein and lipid levels were attained in these treatments. In both Isochrysis sp. and R. 

marina, maximum EPA and DHA productivities were reached in control (2000 L L
-1

 

of commercial nutrient solution) and threshold sulfur concentrations were achieved in 

the treatment with the highest sulfur input. The variations observed for microalgae 

biochemical composition were reflected in their elemental stoichiometry. These results 

suggest that R. marina responded to changes in growth media nutrient supply by 

homeostatic control of its elemental and biochemical composition and that the stress-

inducement strategy applied for rising EPA productivities was effective for N. gaditana. 

 

 

Keywords: Microalgae, EPA, DHA, elemental stoichiometry, nitrogen; sulfur 
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2. Introduction 

 Microalgae are known for being primary sources of essential nutrients that 

display important functions in human metabolism (30). In this regard, polyunsaturated 

fatty acids (PUFAs) are acknowledged by their structural and physiological roles (e.g. 

biosynthesis of eicosanoids) (30). Moreover, the fact of being involved on the 

mitigation of inflammatory processes, cardiovascular health and cancer prevention 

makes these components suitable for therapeutic and pharmaceutical applications (30).  

In aquaculture field, microalgae are used by their high amounts of PUFAs in order to 

incorporate them into fish lipids (30). Therefore their enhancement in polyunsaturated 

fatty acids (PUFAs), namely eicosapentaenoic acid (EPA) and docosahexaenoic acid 

(DHA), is crucial for the use of microalgae for aquaculture purposes (30, 40).  

 The statement that microalgae nutritional value can be manipulated through 

changes in their growth conditions has been the focus of industrial and scientific 

developments (40). Changes in growth media, namely in nutrient supply comprise a 

stress-inducement strategy often applied with the aim of optimising microalgae 

composition for commercial and aquaculture purposes (29, 92, 93). Nitrogen and sulfur 

are both macronutrients crucial for protein and vitamin biosynthesis and chlorophyll 

production (N), which are essential to meet growing cells requirements (22, 68, 94). 

Moreover, their availabilities in growth medium may affect the amount and activity of 

coenzymes (e.g. biocytin, coenzyme A and thiamine pyrophosphate) since they are 

essential components of these macromolecules (95). Coenzymes affect the exit point of 

Calvin cycle which stimulates the synthesis of carbohydrates as the metabolic pathways 

that are closely linked to these (31, 95). Thus the presence and concentration of these 

nutrients can influence the growth, biochemical composition and product yield of 

microalgae (18).  

 Although, nitrogen and sulfur had been reported has the most abundant 

elementary components in microalgae little information is taken about the interaction of 

nitrogen with sulfur metabolisms (22, 96). Nitrogen and sulfur can be obtained as nitrate 

and sulphate by photosynthetic cells (+VI) being their assimilation tightly regulated and 

dependent on their own availabilities alongside with their ratios relatively to the other 

medium components (22, 94, 97). For instance, sulphate assimilation is reported to be 

induced by its deficiency in the growth medium in contrast to nitrate (22). 
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 When microalgae are exposed to changes in their growth conditions they may 

respond in two ways: maintain the cell composition and functional activities at the 

expense of growth (homeostasis) or modulate their metabolic strategies and cell 

composition (acclimation) (98). For instance, nutrients fluctuations may comprise 

alterations in their acquisition and metabolism leading to changes in microalgae 

elemental composition (98). The way, in which microalgae, respond is linked with their 

phylogeny, gene expression and metabolic regulation (22). Thus, the aims of the present 

study were to investigate the effect of nitrogen and sulfur growth medium availabilities 

on biochemical composition, growth and elemental stoichiometry of Rhodomonas 

marina, Nannochloropsis gaditana and Isochrysis sp. and to determine the optimal 

growth conditions that lead to maximum EPA and DHA productivities. 
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3. Materials and Methods 

3.1. Chemicals 

 Methanol, heptane, sodium nitrate and sodium sulfate were acquired from 

Sigma-Aldrich (St. Louis, MO, USA). Chloroform and potassium chloride were 

acquired from VWR (Carnaxide, Portugal). Ethyl acetate was from Merck (Darmstadt, 

Germany). Lugols solution from bioMérieux (Linda-a-Velha, Portugal). All the 

chemicals used had analytical grade. Lugols solution was aquired from bioMérieux 

(Linda-a-Velha, Portugal). All the chemicals used for analytical purposes had analytical 

grade. 

3.2. Growth conditions and experimental design 

 The Isochrysis sp., R. marina and N. gaditana were supplied by the Mariculture 

Center of Calheta (Madeira, Portugal). The cultivation of each microalga was performed 

by inoculating starter cultures into 500 mL of enriched seawater. The inoculation cell 

number was maintained at 2.5 × 10
6
 cells mL

-1
 and 1.4 × 10

5
 cells mL

-1
 for R. marina. 

The natural seawater used, for media preparation, was previously adjusted to a salinity 

of 25 g L
-1

 and sterilized in an autoclave (Uniclav 88) at 121 ºC for 15 min. 

 Data of chapter II showed that N. gaditana and R. marina growth was reduced in 

treatments with growth medium nutrient availabilities higher than 2 mL L
-1

 of seawater 

enriched with commercial Nutribloom puls (Necton, Portugal). This suggesting that  

was the critical concentration where a significant increase in nutrient might lead to 

reduced growth and overall low productivity. For assess the effect of nitrogen 

concentration additions of 4.48 and 6.72 mg of NaNO3 L
-1

, were made to the seawater 

previously enriched with 2 mL L
-1

 of Nutribloom plus medium. These additions 

corresponded to N/S molar ratios of 654:1 (N1) and 658:1 (N2). 

 To study the effect of sulfur concentration on the growth and biochemical 

composition of microalgae, different cultures were performed at three N/S molar ratios: 

645:1 (NS, control), 190:1 (S1), 111:1 (S2), which corresponded to initial sulfur 

concentrations of 0.40, 1.34, 2.3 mg L
-1

. In both experiments, the concentrations of the 

other nutrients were those found in the Nutribloom plus medium; established has the 

control (NS).  
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 All the experiments were conducted at a temperature of 23 ± 1 ºC, with a 

photoperiod of 18:6 h light/dark cycles, pH ranging 7 – 9, a light intensity of 3841 ± 

560 lux and compressed air was used for aeration of cell cultures. The microalgae were 

harvested at stationary phase, centrifugated (centrifuge Labofuge 200 – Heraeus) for 5 

min. at 4500 rpm and washed with distilled water. Duplicates were conducted for all the 

experiments. 

 Microalgae growth was monitored daily with a Neubauer–improved counting 

chamber (Marienfield–Superior) and a light microscope (Olympus BX41) with a 40x 

magnification. The specific growth rate was estimated as the slope of the regression line 

of the logistic model described by Xin (41) and productivity was calculated based on 

Hoffmann (57). These procedures are briefly described in section 3.2. of chapter II and 

section 3.3. of chapter III. 

3.3. Analytical procedures 

 Determination of CHNS content was made by an elemental analyser Truspec 

630-200-200. Total protein was assessed by multiplying the nitrogen content for 6.25 as 

described by Kim (39). Extraction of total lipids was performed according to modified 

Bligh & Dyer (45) (section 3.4. of chapter II). 

3.4. Fatty acid determination 

The fatty acid composition of algal dried biomass was determined as fatty acid 

methyl esters (FAMEs) as previously described by Lepage & Roy (63), modified by 

Cohen (64). FAMEs were analysed by gas chromatography (Agilent HP 6890) equipped 

with a mass selective detector (Agilent 5973) and a fused silica capillary column DB-

5MS (30 m x 0.25 mm inner diameter, 0.25 m film thickness) from J&W scientific. 

The chromatographic conditions were as follows: oven initial temperature was 150 ºC 

for 2 min; increasing 3 ºC min
-1

 to 205 ºC and kept for 2 min., 3 ºC min
-1

 to 230 ºC and 

30 ºC min
-1

 until reach the final temperature of 300 ºC for 5 min; transfer line 

temperature 260 ºC; detector temperature, 270 ºC; split ratio, 40:1. Helium was used as 

the carrier gas with a flow rate of 1mL min
-1

. The fatty acid methyl esters identification 

was accomplished by comparing the retention times and mass spectra fragmentation to 

those of known standards (bacterial acid methyl esters CP mix and supelco 37 

component FAME mix from supelco). Four replicates were performed for each GC 
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analysis being the results presented as the mean value ± standard deviation (SD) of 

FAME expressed in mg g
-1

 of dry biomass weight (DW). The internal standard used 

was the heneicosanoic acid (C21:0).  

3.5.  Statistical analysis 

 Statistical analysis of the data was carried out using the software IBM SPSS 

Statistics 23. Differences between growth media nutrient availability treatments were 

assessed by one-way analysis of variance (ANOVA) followed by a Tukey’s Post Hoc 

analysis; p–values < 0.05 were considered to be statistically significant. 
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4. Results and Discussion 

4.1. Microalgae growth and productivities 

 Algae culture media comprises macronutrients that influence growth and 

biochemical composition of microalgae (99). Since nitrogen and sulfur are involved as 

catalysts components in the downstream cellular processes that lead to fatty acid 

synthesis, the manipulation of their availabilities on growth medium can induce changes 

on growth rate, protein and lipid levels (62, 99). Thus, it is important to evaluate the 

impact of N/S ratios over the maximization of EPA and DHA production alongside with 

the sensitivity of microalgae towards variations in nitrogen content. 

 The productivity of microalgae valued compounds is dependent on factors, such 

as: cellular concentrations, carbon fixation efficiency and conversion of photosynthate 

into the desired products (14, 57). Table 10 displays the microalgae growth rate, total 

lipids, total proteins, EPA and DHA productivities according to the different growth 

medium nitrogen and sulfur availabilities.  

Table 10. Specific growth rates (r), biochemical composition (TL – total lipids; TP – total proteins), EPA and DHA 
productivities for cultures of N. gaditana, R. marina and Isochrysis sp. 

  Treatment r (d-1) TL (% DW) TP (% DW) PEPA (mg g-1 DW d-1) PDHA (mg g-1 DW d-1) 

N
. 

g
a
d

it
a

n
a
 

S2 0.49 6.79 ± 0.11 14.86 ± 0.35 0.54 ± 0.01 - 

S1 0.53 7.11 ± 0.12 15.56 ± 0.36 0.71 ± 0.01 - 

NS 0.75 4.27 ± 0.38 11.23 ± 0.26 0.82 ± 0.01 - 

N1 0.67 6.33 ± 0.50 12.16 ± 0.28 0.88 ± 0.00 - 

N2 0.78 6.04 ± 0.46 13.24 ± 0.31 1.05 ± 0.04 - 

               

R
. 

m
a

ri
n
a
 

S2 0.96 11.79 ± 0.44 28.98 ± 0.68 7.06 ± 0.09 4.96 ± 0.14 

S1 1.01 15.02 ± 0.41 36.61 ± 0.86 10.25 ± 0.05 7.99 ± 0.24 

NS 1.12 12.09 ± 0.31 34.66 ± 0.81 13.57 ± 0.59 9.36 ± 0.61 

N1 1.04 13.14 ± 0.14 36.86 ± 0.86 12.36 ± 0.18 8.87 ± 0.17 

N2 1.06 15.01 ± 0.34 39.16 ± 0.91 11.68 ± 0.87 9.22 ± 0.42 

               

Is
o

ch
ry

si
s 

sp
. 

S2 0.76 10.44 ± 0.37 11.73 ± 0.27 0.18 ± 0.01 3.98 ± 0.13 

S1 0.54 15.52 ± 0.42 18.06 ± 0.42 0.23 ± 0.01 5.19 ± 0.18 

NS 0.81 13.48 ± 0.02 17.04 ± 0.40 0.35 ± 0.01 8.20 ± 0.19 

N1 0.44 20.34 ± 0.13 22.99 ± 0.54 0.25 ± 0.01 5.21 ± 0.11 

N2 0.66 15.28 ± 0.39 21.97 ± 0.51 0.31 ± 0.01 6.87 ± 0.16 

 

 Through data analysis, the growth of N. gaditana seems to be affected by the 

different growth media. Microalgae grown in S1 growth media presented the highest 

maximum cell densities (36.54  10
6
 cells mL

-1
) whereas microalgae grown in N1 and 



Enrichment of Bioactive Compounds in Microalgae for Aquaculture 

  
66 

 
  

N2 growth media presented a decrease of 20 % in respect to the cell densities achieved 

in NS treatment, depicted in [Annex 1a]. Total lipid (TL) content ranged between 4 – 7 

% of DW while total protein (TP) accounted 11 – 16 % of DW. These values aren’t in 

accordance with those previously reported by the literature (100) which were three and 

two times higher regarding maximum TL and TP, respectively, obtained for 

Nannochloropsis sp. grown in f/2 medium. Moreover in the present study, treatments 

with highest sulfur concentrations presented highest lipid and protein contents in DW 

along with lower growth rates (0.53 and 0.49 d
-1

) which in turn lead to lower overall 

productivity.  

 In N. gaditana, maximum EPA productivity was reached in growth medium that 

comprised the highest nitrogen input (N2), which means that under nitrogen–replete 

conditions an increased cell growth was coupled with a higher EPA content. This 

observation might be due to EPA structural role as a key component of organelles and 

cell membranes in Nannochloropsis (69). 

 Although Isochrysis sp. grown in N1 growth media presented higher lipid and 

protein contents, maximum EPA and DHA productivities were reached in the NS 

treatment (control). This is due to the reduced cell growth rate in N1 which 

consequently lead to overall low productivities. Furthermore, high lipid content is often 

offset by lower growth rates in microalgae (72). 

 In R. marina both growth and biochemical parameters didn’t vary greatly in 

contrast with Isochrysis sp. and N. gaditana. However, an accentuated decrease in EPA 

and DHA productivities as well as a reduction of 21 % in maximum cell density [Annex 

1b] and 16 % in protein levels regarding to NS, were observed in cultures with the 

lowest N/S ratio (S2). This observations can be explained by the highest sulfur input at 

S2 since as with nutrient limitation, nutrient oversupply can also constitute a stress and 

sometimes a toxic input in which an increase in nutrient concentrations leads to reduced 

growth rates and overall lowest productivities (19). Likewise Isochrysis sp., maximum 

EPA and DHA productivities were achieved in control. 
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4.2.  Fatty acid composition 

4.2.1. N. gaditana 

 Table 11 displays the fatty acid profile pattern upon a range of nitrogen and 

sulfur growth medium availabilities for N. gaditana. It’s possible to note that the 

amount of individual fatty acids presented significant differences (p < 0.05) regarding to 

the treatments applied. The majoritarian fatty acids observed for this microalga were 

palmitic acid (C16:0) and alpha linolenic acid (ALA, C18:3ω3), which together 

accounted over 40 % of total fatty acids detected. 

Table 11. N. gaditana fatty acid profile under several nitrogen and sulfur availabilities in growth media. 

Fatty Acids  

(mg g-1 DW) 

Treatment 

S2 S1 NS N1 N2 

C14:0 0.28 ± 0.04a 0.41 ± 0.01b 0.29 ± 0.02a 0.38 ± 0.02b 0.40 ± 0.02b 

C16:0 5.07 ± 0.27a 6.36 ± 0.13b 4.54 ± 0.21c 6.02 ± 0.07b 6.18 ± 0.26b 

C18:0 0.16 ± 0.01a 0.22 ± 0.00b 0.16 ± 0.00a 0.27 ± 0.00c 0.26 ± 0.01c 

Total – SFA2 6.07 ± 0.31a 7.74 ± 0.15b 5.45 ± 0.24c 7.36 ± 0.10b 7.58 ± 0.31b 

                
C16:11 1.43 ± 0.19ab 1.52 ± 0.05a 1.08 ± 0.04c 1.24 ± 0.04cb 1.23 ± 0.04c 

C18:11 1.58 ± 0.15a 2.24 ± 0.14b 1.62 ± 0.09a 2.70 ± 0.13c 2.80 ± 0.08c 

Total – MUFA2 3.15 ± 0.14a 3.95 ± 0.16b 2.84 ± 0.12c 4.15 ± 0.15b 4.25 ± 0.10b 

                
C16:3ω3 1.40 ± 0.17a 1.48 ± 0.03ab 1.58 ± 0.07ab 1.60 ± 0.01ab 1.65 ± 0.08c 

C18:2ω6 3.22 ± 0.25e 4.27 ± 0.07b 2.76 ± 0.11a 3.80 ± 0.03c 3.86 ± 0.19c 

C18:3ω3 4.15 ± 0.35a 4.85 ± 0.21ab 4.66 ± 0.23ab 4.88 ± 0.26ab 5.43 ± 0.65b 

C18:4ω3 0.31 ± 0.00a 0.25 ± 0.01b 0.28 ± 0.01c 0.23 ± 0.00b 0.24 ± 0.01b 

C20:3ω6 0.12 ± 0.02a 0.16 ± 0.00b 0.08 ± 0.00c 0.12 ± 0.00a 0.13 ± 0.01a 

C20:4ω6 - AA 0.11 ± 0.02a 0.15 ± 0.00b 0.07 ± 0.00c 0.11 ± 0.00a 0.10 ± 0.00a 

C20:5ω3 - EPA 1.11 ± 0.03a 1.35 ± 0.02b 1.09 ± 0.02a 1.31 ± 0.01b 1.35 ± 0.06b 

Total – PUFA2 11.88 ± 0.37a 14.29 ± 0.26b 11.71 ± 0.41a 13.56 ± 0.30b 14.27 ± 1.00b 

                
ω3 7.18 ± 0.58a 8.28 ± 0.21b 7.90 ± 0.28ac 8.37 ± 0.27bc 9.02 ± 0.77bc 

ω6 3.51 ± 0.29e 4.70 ± 0.07b 2.97 ± 0.12a 4.11 ± 0.03c 4.18 ± 0.20c 

ω3/ω6 2.06 ± 0.34ab 1.76 ± 0.04a 2.66 ± 0.07c 2.04 ± 0.06ab 2.16 ± 0.10b 

ω3 HUFA 1.32 ± 0.07a 1.69 ± 0.02b 1.38 ± 0.02a 1.66 ± 0.01b 1.72 ± 0.06b 

EPA/AA 10.45 ± 2.96ab 8.80 ± 0.09b 15.59 ± 0.79c 12.52 ± 0.17a 12.99 ± 0.29ac 

Total2 21.10 ± 0.72a 25.98 ± 0.47b 20.00 ± 0.74a 25.07 ± 0.42b 26.11 ± 1.30b 

Values (means ± SD of four replications) in the same row, not sharing a common superscript are significantly different (p < 0.05).  
1Contains ω9 and ω7 isomers; 2Contains some minor components not shown. SFA – Saturated fatty acid; MUFA – 

Monounsaturated fatty acid; PUFA – Polyunsaturated fatty acid; HUFA – Highly unsaturated fatty acid. 

 In order to counterbalance the nitrogen input in treatments N1 and N2, a raise in 

EPA content (20 % and 24 % DW) was observed.  The same pattern was observed in 

treatment S1 where sulfur was added to growth media instead of nitrogen, having EPA 
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content increased 24% in DW. Furthermore, growth medium nutrient availability 

treatments presenting highest EPA contents shared highest C16:0, monounsaturated 

stearic acid (C18:1) and linoleic acid (LA, C18:2ω6) contents (Table 1). C16:0 and 

C18:1 are both products of plastidial de novo FA synthesis in chloroplast and can be 

further synthesized into polyunsaturated fatty acids (PUFAs) in the endoplasmic 

reticulum (35, 69). Thus, their enhancement along with polyunsaturated fatty acids 

(PUFAs) can be explained by increased plastidial production possibly induced by 

nitrogen inputs and sulfur growth medium availabilities in treatments (35). In this sense, 

the increase of EPA contents with chloroplast activity might be due to the physiological 

role of this PUFA as major component of organelles (e.g. thylakoid) and cell 

membranes (69).  

 Nitrogen and sulfur availabilities are known to influence photosynthesis 

efficiency and hence carbon assimilation and allocation (101).  According to Mizuno 

(102) sulfur decrease leads to an increase in starch and lipid contents along with 

changes in the fatty acid composition of Chlorella lobophora and Parachlorella 

kessleri. However, these changes involve the increase in palmitic and stearic acids 

coupled with a decrease in PUFAs (102).  In contrast to sulfur depletion conditions, 

which induce a rapid decrease in photosynthesis efficiency, chloroplast transcriptional 

activity proceeds normally in sulfur repleted media (94). Regarding the nitrogen input, 

previous studies corroborate the enhancement of EPA production by Nannochloropsis 

sp. under nitrogen–replete environments at saturating levels (68, 103). 

4.2.2. R. marina 

 The fatty acid profile of R. marina was similar across treatments presenting 

some small quantitative differences (p<0.05) between media (Table 12). ALA, 

stearidonic acid (SDA, C18:4ω3), EPA and DHA were the main fatty acids accounting 

together over 65% of total fatty acids detected. This observation might suggest that the 

nitrogen and sulfur concentrations present in NS media are within the optimal 

concentration zone where growth as well as biochemical composition, namely, fatty 

acid composition, is little affected by the addition of more nutrients (19). The total fatty 

acids decrease in treatment S2 might indicate that the sulfur concentration applied in 

growth media exceeded the threshold concentration. 
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Table 12. R. marina fatty acid composition according to growth medium nutrient availability. 

Fatty Acids  

(mg g-1 DW) 

Treatment 

S2 S1 NS N1 N2 

C14:0 1.87 ± 0.06a 3.15 ± 0.13b 2.97 ± 0.19b 2.92 ± 0.08b 2.96 ± 0.13b 

C16:0 2.49 ± 0.05a 4.22 ± 0.16b 4.03 ± 0.27b 4.07 ± 0.08b 3.88 ± 0.24b 

C18:0 0.27 ± 0.02a 0.59 ± 0.01b 0.48 ± 0.04c 0.54 ± 0.01cb 0.53 ± 0.07cb 

Total – SFA2 4.66 ± 0.11a 8.05 ± 0.30b 7.54 ± 0.49b 7.60 ± 0.16b 7.47 ± 0.44b 

                
C16:11 0.77 ± 0.05a 0.67 ± 0.02a 0.97 ± 0.15b 0.67 ± 0.03a 0.83 ± 0.09ab 

C18:11 2.11 ± 0.07a 4.38 ± 0.11b 4.12 ± 0.27b 4.99 ± 0.13c 4.29 ± 0.40b 

Total – MUFA2 2.87 ± 0.10a 5.05 ± 0.12b 5.09 ± 0.42b 5.66 ± 0.10b 5.12 ± 0.43b 

                
C18:2ω6 3.79 ± 0.05a 9.34 ± 0.22b 7.10 ± 0.46c 8.20 ± 0.23d 8.23 ± 0.55d 

C18:3ω3 14.10 ± 0.25a 19.32 ± 0.41b 20.41 ± 1.13b 19.18 ± 0.35b 18.84 ± 1.18b 

C18:4ω3 15.49 ± 0.22a 17.12 ± 0.30b 18.46 ± 1.03b 17.66 ± 0.28b 17.71 ± 1.17b 

C20:4ω6 - AA 0.03 ± 0.00a 0.25 ± 0.03bc 0.19 ± 0.02c 0.28 ± 0.01b 0.31 ± 0.09b 

C20:5ω3 - EPA 7.33 ± 0.09a 10.12 ± 0.05b 12.10 ± 0.53c 11.88 ± 0.17cd 10.98 ± 0.82bd 

C22:6ω3 - DHA 5.15 ± 0.15a 7.89 ± 0.24b 8.34 ± 0.54bc 8.53 ± 0.16c 8.67 ± 0.39c 

Total – PUFA2 46.06 ± 0.51a 64.51 ± 0.73b 66.89 ± 3.62b 66.12 ± 1.14b 65.20 ± 4.22b 

                
ω3 42.07 ± 0.47a 54.45 ± 0.58b 59.31 ± 3.13c 57.24 ± 0.91bc 56.22 ± 3.53bc 

ω6 3.99 ± 0.06a 10.07 ± 0.20b 7.57 ± 0.49c 8.88 ± 0.23d 8.98 ± 0.69d 

ω3/ω6 10.55 ± 0.09a 5.41 ± 0.08b 7.84 ± 0.09c 6.45 ± 0.07d 6.27 ± 0.10d 

ω3 HUFA 12.48 ± 0.24a 18.01 ± 0.26b 20.44 ± 1.07c 20.41 ± 0.32c 19.67 ± 1.22c 

DHA/EPA 0.70 ± 0.01a 0.78 ± 0.02b 0.69 ± 0.02a 0.72 ± 0.01a 0.79 ± 0.02b 

EPA/AA 229.31 ± 30.09a 40.14 ± 4.13b 64.42 ± 6.26b 41.99 ± 2.26b 37.87 ± 9.11b 

Total2 53.59 ± 0.70a 77.61 ± 1.10b 79.52 ± 4.50b 79.38 ± 1.38b 77.78 ± 5.07b 

Values (means ± SD of four replications) in the same row, not sharing a common superscript are significantly different (p < 0.05).  
1Contains ω9 and ω7 isomers; 2Contains some minor components not shown. SFA – Saturated fatty acid; MUFA – Monounsaturated 

fatty acid; PUFA – Polyunsaturated fatty acid; HUFA – Highly unsaturated fatty acid. 

4.2.3. Isochrysis sp. 

 The fatty acid profile of Isochrysis sp. showed significant differences in the 

relative amounts of fatty acid detected (Table 13). The major fatty acids were myristic 

acid (C14:0), SDA and DHA which together accounted over 50% of total fatty acid 

content. Through Table 13 is possible to observe that N1 growth media had lead to an 

overall fatty acid content increase, 29% in DW. The fatty acid pattern of this microalga 

was similar when grown in NS and S1 culture medium. Moreover, at S2 Isochrysis sp. 

fatty acid pattern presented an analogous behavior to R. marina. 
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Table 13. Isochrysis sp. fatty acid composition according to growth medium nutrient availability. 

Fatty Acids 

(mg g-1 DW) 

Treatment 

S2 S1 NS N1 N2 

C14:0 5.29 ± 0.28a 7.56 ± 0.16b 8.31 ± 0.36c 9.68 ± 0.23d 9.11 ± 0.09e 

C16:0 2.64 ± 0.13a 4.11 ± 0.09b 4.57 ± 0.15c 5.69 ± 0.11d 4.73 ± 0.05c 

C18:0 0.03 ± 0.00a 0.05 ± 0.00a 0.20 ± 0.01b 0.08 ± 0.00c 0.10 ± 0.03c 

Total – SFA2 8.34 ± 0.43a 12.51 ± 0.27b 13.70 ± 0.51c 16.73 ± 0.36d 14.78 ± 0.14e 

                
C16:11 2.21 ± 0.13a 3.62 ± 0.11b 3.53 ± 0.12b 4.70 ± 0.09c 4.06 ± 0.04d 

C18:11 2.68 ± 0.12a 4.33 ± 0.11b 4.74 ± 0.20c 6.41 ± 0.19d 5.00 ± 0.03c 

Total – MUFA2 5.16 ± 0.26a 8.37 ± 0.24b 8.71 ± 0.33b 11.81 ± 0.27c 9.55 ± 0.06d 

                
C18:2ω6 1.50 ± 0.06a 2.27 ± 0.06b 2.31 ± 0.09bc 3.01 ± 0.05d 2.41 ± 0.04c 

C18:3ω3 2.41 ± 0.22a 5.38 ± 0.36b 4.28 ± 0.26c 6.83 ± 0.41d 5.55 ± 0.40b 

C18:4ω3 8.23 ± 0.31a 14.52 ± 0.39b 14.23 ± 0.57b 19.20 ± 0.44c 15.86 ± 0.25d 

C20:4ω6 - AA 0.05 ± 0.01a 0.08 ± 0.01b 0.08 ± 0.00b 0.11 ± 0.01c 0.08 ± 0.01b 

C20:5ω3 - EPA 0.23 ± 0.02a 0.42 ± 0.02b 0.43 ± 0.01ab 0.56 ± 0.02c 0.46 ± 0.02a 

C22:5ω6 0.67 ± 0.06a 1.05 ± 0.04b 1.03 ± 0.08b 1.21 ± 0.05c 1.15 ± 0.08bc 

C22:6ω3 - DHA 5.24 ± 0.17a 9.58 ± 0.32b 10.07 ± 0.23bc 11.97 ± 0.26d 10.35 ± 0.24c 

Total – PUFA2 19.49 ± 0.71a 35.03 ± 1.05b 34.63 ± 0.93b 44.99 ± 1.11c 38.01 ± 0.94d 

                
ω3 16.11 ± 0.63a 29.90 ± 0.90b 29.01 ± 0.67b 38.57 ± 1.01c 32.22 ± 0.78d 

ω6 3.27 ± 0.08a 5.00 ± 0.15b 5.45 ± 0.27c 6.24 ± 0.12d 5.61 ± 0.19c 

ω3/ω6 4.93 ± 0.103a 5.99 ± 0.07ab 5.33 ± 0.14c 6.19 ± 0.11a 5.74 ± 0.11b 

ω3 HUFA 5.47 ± 0.18a 10.00 ± 0.35b 10.50 ± 0.24cb 12.54 ± 0.28d 10.81 ± 0.25c 

DHA/EPA 22.53 ± 1.35ac 22.74 ± 0.47ac 23.18 ± 0.62a 21.24 ± 0.33c 22.26 ± 0.37ac 

EPA/AA 5.12 ± 0.25a 5.66 ± 0.35a 5.42 ± 0.18a 5.35 ± 0.21a 5.91 ± 0.28a 

Total2 32.99 ± 1.29a 55.91 ± 1.48b 57.03 ± 1.71b 73.53 ± 1.69c 62.35 ± 1.10d 

Values (means ± SD of four replications) in the same row, not sharing a common superscript are significantly different (p < 0.05). 
1Contains ω9 and ω7 isomers; 2Contains some minor components not shown. SFA – Saturated fatty acid; MUFA – Monounsaturated 

fatty acid; PUFA – Polyunsaturated fatty acid; HUFA – Highly unsaturated fatty acid. 

 The results obtained in N1 cultures might suggest that the nitrogen addition in 

this treatment  promoted the synthesis of chlorophylls which lead to an increase in 

photosynthetic activity (92). In Isochrysis zhangjiangensis cultures exposed to high 

nitrate concentrations channeled their metabolic fluxes into lipid accumulation at the 

expense of carbohydrates (92). Moreover, even though N1 had lead to an increase in 

total fatty acid content, changes in their relative proportions weren’t observed. This 

indicates that growth medium nutrient availabilities applied didn’t cause an effect in the 

fatty acid desaturases regulation, in contrast to that observed to an Isochrysis strain by 

Huerliman (35) in which fatty acid desaturases were all upregulated when nitrogen was 

abundant. 

 Environmental conditions may affect differently cellular growth and 

biochemical composition (68). Thus, the conditions needed to maximize EPA content 
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can be different from those required for EPA productivity maximization (68). In 

Isochrysis sp., growth medium nutrient availability treatments that lead to higher EPA 

and DHA productivities weren’t the same that presented highest EPA contents. On the 

other hand, N. gaditana maximum EPA content and productivity were achieved in 

microalgae cultured in N2 growth media. 

 The presence of EPA, DHA and AA is essential in selecting microalgae for 

aquaculture purposes (40, 104). However, due to the competitive interactions between 

them the optimal requirements for each individual fatty acid must be taken into account 

when feeding live-prey in aquaculture (66). In this regard, all microalgae cultures, with 

the exception of N. gaditana in S1, exceeded the recommended minimal ratios of 

EPA/AA > 5, for flatfish larvae nutrition, and ω3/ω6 > 2, for larval and juvenile 

oysters nutrition (72, 104). Regarding to DHA/EPA ratio only Isochrysis sp. was above 

the recommended value (DHA/EPA > 2) for flatfish larvae nutrition (104). 

 Figure 15 shows the behavior of major fatty acids sets in regard to control. In 

this figure is possible to note that N. gaditana [Fig. 15a] and Isochrysis sp. [Fig. 15b] 

presented distinct responses towards nitrogen inputs and sulfur growth medium 

availabilities. In N. gaditana, cultures N1 and N2, exposed to highest nitrogen inputs, 

increased their content in all fatty acid groups being the highest increase achieved by 

monounsaturated fatty acids (MUFAs) (N1 – 46 %; N2 – 50 %). Even though N. 

gaditana had presented a similar behavior in the prior treatments, Isochrysis sp. only 

presented considerable rises (over 10 %) in treatment N2. 

 Regarding sulfur growth medium availabilities, cultures with highest sulfur 

availability (S2) lead to a decrease (39 – 44 %) in all fatty acids sets for Isochrysis sp. In 

N. gaditana S1 growth media lead to an increase in all fatty acid sets namely saturated 

fatty acids (SFAs) and MUFAs, with 39 and 42 % respectively.  
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Figure 14. Fatty acid nature variation upon the different growth medium nutrient availability treatments a) N. 

gaditana and b) Isochrysis sp. 

4.3. Microalgae elemental composition 

 Microalgae can counteract environment imbalances with acclimation and 

homeostatic responses (26, 98). The former comprises the modification of the expressed 

proteome whereas the later maintains a balanced cell composition upon changes in 

external conditions (26, 98). Moreover, nutrient uptake is mainly influenced by the 

nutrient amount in its bioavailable form along with other major and trace elements 

concentrations in growth medium (17). 

 Figure 16 displays the molar stoichiometry variation of the three microalgae 

studied within the different growth medium nutrient availabilities applied. Although 
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only the highest sulfur availability (S2) had induced changes in R. marina elemental 

ratios, in N. gaditana and Isochrysis sp. changes in both nitrogen and sulfur growth 

medium availabilities affected stoichiometric relationships [Fig. 16 a–b]. Furthermore, 

N. gaditana in treatments with higher nitrogen availabilities (NS – N2) presented an 

highest sulfur content, depicted by lower N/S and C/S ratios, in their elementary 

composition. These observations are in accordance with acclimation responses were 

cells change or modulate their metabolic strategies and cellular composition with 

environmental conditions (98). 
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Figure 15. Microalgae molar stoichiometry a) N/S; b) C/S; and C) C/N variation according to growth medium 
nutrient availabilities applied. 
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 Microalgae elementary composition can vary with changes in growth media 

composition (105). Nevertheless, in R. marina stoichiometric homeostasis was 

controlled at different nitrogen inputs despite of at highest sulfur growth medium 

availabilities R. marina, like Isochrysis sp., had increased their cellular content in sulfur 

(lowest N/S and C/S ratios). This last observation can be explained by the luxury 

consumption of the nutrient which may happen when an element is provided in excess 

by the growth medium (105). 

 In regard to C/N ratios Fig. 16 c shows that this molar ratio presented an uniform 

distribution upon the several growth medium nutrient availabilities applied. This 

indicates that the ratio (carbohydrate and lipid)/protein didn’t change regardless the 

treatment applied. 
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5. Conclusion 
 

 The slight nitrogen inputs in microalgae growth medium significantly influenced 

the fatty acid composition of N. gaditana and Isochrysis sp, suggesting that these 

microalgae, in particular N. gaditana, are very sensitive to nitrogen changes. This might 

constitute an inexpensive stress-inducement strategy that comprises small additions of 

nitrogen in order to induce the production of a desired output by microalgae. In N. 

gaditana, higher EPA productivities were reached at the highest nitrogen input.  

 The effect of sulfur on microalgae growth medium significantly influenced the 

fatty acid composition of microalgae. Threshold sulfur concentrations were achieved at 

the highest sulfur concentration applied. The nitrogen and sulfur fluctuations didn’t 

influence the elemental stoichiometries of carbon (carbohydrates and lipids) and 

nitrogen (protein), in contrast, to C/S and N/S molar stoichiometries. In R. marina and 

Isochrysis sp. the treatment that comprised higher sulfur acquisitions by microalgae lead 

to an overall decrease of the biochemical parameters studied. The results show that the 

R. marina responded to changes in growth media nutrient supply by homeostatic control 

of its elemental and biochemical composition. 
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Final Conclusions 
 

 With the aim to enhance the biochemical composition of Nannochloropsis 

gaditana, Rhodomonas marina and Isochrysis sp. for aquaculture purposes, the analysis 

of microalgae biochemical composition along with their growth dynamic was 

performed. An overview of the conclusions drawn along the experiment sets are 

highlighted in the following paragraphs.  

 In Chapter II, it was seen that high nutrient concentrations lead to low C/N ratios 

showing higher protein accumulation, making the biochemistry of microalgae suitable 

for aquaculture. For all microalgae studied glycolipids where the main lipid class. 

 In Chapter III, it was determined the optimum growth mediums for the 

accumulation of the desired products were those comprising 1000 L L
-1

 of nutrient 

solution for both R. marina and N. gaditana and 2000 L L
-1

 of nutrient solution  for 

Isochrysis sp. Globally it was possible to note that Isochrysis sp. had the highest 

nutrient demand and that the commercial medium used in this experiment wasn’t 

suitable for the accumulation of FA, namely EPA in N. gaditana. 

 In chapter IV, it is demonstrated that neutral monosaccharide pattern highlight 

microalgae taxonomic differences. Changes in the nutrient concentrations of the growth 

medium influenced the lipids/carbohydrates/proteins accumulation, demonstrating that 

the strategy applied was an effective strategy to enhance biochemical composition for 

the marine microalgae here studied, with both Isochrysis sp. and R. marina the 

microalgae with highest potential regarding carbohydrates application. 

 In chapter V, N. gaditana exhibited the highest variation in their biochemical 

composition reaching higher EPA productivities at the highest nitrogen input. In overall 

treatments that led to higher sulfur acquisitions by microalgae led to an overall decrease 

of the biochemical parameters studied. Threshold sulfur concentrations for all 

microalgae were achieved at the highest sulfur concentration applied. R. marina 

responded to changes in growth media nutrient supply by homeostatic control of its 

elemental and biochemical composition. Moreover, the stress-inducement strategy here 

applied for raising EPA productivities was effective for N. gaditana. 
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 In summary, microalgae are an excellent chemical platform for several areas of 

application. Their composition and growth can be modulated in order to achieve the 

maximum biochemical productivities. The results of the present work show two stress-

inducement strategies (alteration of overall nutrient availabilities in growth medium and 

changes in both nitrogen and sulfur concentrations) that may constitute a base for 

further investigations. 
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