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ABSTRACT: The establishment of potential age markers of Madeira wine is of paramount significance as it may contribute to
detect frauds and to ensure the authenticity of wine. Considering the chemical groups of furans, lactones, volatile phenols, and
acetals, 103 volatile compounds were tentatively identified; among these, 71 have been reported for the first time in Madeira wines.
The chemical groups that could be used as potential age markers were predominantly acetals, namely, diethoxymethane, 1,1-
diethoxyethane, 1,1-diethoxy-2-methyl-propane, 1-(1-ethoxyethoxy)-pentane, trans-dioxane and 2-propyl-1,3-dioxolane, and from
the other chemical groups, S-methylfurfural and cis-oak-lactone, independently of the variety and the type of wine. GC x GC-
ToFMS system offers a more useful approach to identify these compounds compared to previous studies using GC—qMS, due to
the orthogonal systems, that reduce coelution, increase peak capacity and mass selectivity, contributing to the establishment of new
potential Madeira wine age markers. Remarkable results were also obtained in terms of compound identification based on the
organized structure of the peaks of structurally related compounds in the GC x GC peak apex plots. This information represents a
valuable approach for future studies, as the ordered-structure principle can considerably help the establishment of the composition
of samples. This new approach provides data that can be extended to determine age markers of other types of wines.
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B INTRODUCTION

Madeira wine is a fortified Portuguese wine produced in
Madeira Island over the last centuries and plays an important role
in the economy of the Island. The peculiar characteristics of

with its age. Some volatile compounds that belong to furans,

lactones, volatile phenols, and acetals have been reported as
. . . L 410-12

potential aging markers in Madeira wines. Compounds

such as, 2-furfural, 5-methylfurfural, S-hydroxymethylfurfural, cis-

Madeira wines arise from the specific and singular winemaking
process. The fermentation process is stopped by the addition of
natural grape spirit in order to obtain an ethanol content of 18—
22% (v/v). Some wines undergo aging in wood casks in cellars at
temperatures up to 30 °C, and humidity levels between 70 and
75%, while the majority of wines are submitted to a baking process,
i.e, the wine is placed in large coated vats, and the temperature is
slowly increased at about 5 °C per day and maintained at 45—
50 °C during at least 3 months. After this treatment, the wine is
allowed to undergo a maturation process in oak casks for a
minimum of 3 years. Finally, some Madeira wines were submitted
to an aging process, from a minimum of 3 to 20 years or even
longer."” The aging process in oak casks is fundamental for the
Madeira wine's unique sensorial properties. During this period,
several reactlons and migration of molecules from the oak to wine
can occur,” which depends on some parameters, such as grape
variety, wine making procedure, and oak characteristics
(geographical origin, species of oak, seasoning of the staves,
toasting, and age of cask) S0 among others.

The establishment of potential age markers is important to
detect frauds and to ensure the authenticity of the wine. Further-
more, the economic value of Madeira wine is highly associated
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oak-lactone, trans-oak-lactone, eugenol, guaiacol, m-cresol, o-
cresol, p-ethylphenol, maltol, vanillin, cis-dioxane, trans-dloxane,
cis-dioxolane, and trans-dioxolane were considered. >3~ 16 Furans
(e.g, 2-furfural, S-methylfurfural, and S-hydroxymethyl-2-furfural)
are formed by three pathways: pyrolysis of carbohydrates,
dehydration of Sugars through Maillard reaction, and
caramelization,'” ™ ? which occurs during winemaking and aging.
As the levels of 2-furfural and S-hydroxymethyl-2-furfural have a
tendency to increase linearly during aging, they were considered
as age markers.*”° The lactones are important flavor compounds
which are produced by cyclization of the corresponding hydro-
xycarboxylic acids.”*' Oak lactones, such as cis- and trans-oak-
lactone, are already present in natural oak, and their content
increased due to seasoning and toasting,'* and from an organo-
leptic point of view, they are the most important lactones
extractable from oak casks.?* Volatile phenols, like ethyl and
vinylphenols, were also extracted from oak; nevertheless, their
microbiological yeast transformation (e.g, Brettanomyces and
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Dekkara) from hydroxycinnamic acids of wine were reported as
the main origin.23 Acetals are formed during fermentation;
nevertheless, their content increases significantly during the
oxidative conditions of aging process. The high acetaldehyde
content in wine contributes to the acetalization reaction with
glycerol, which is favored at higher pH values, leading to four
heterocyclic acetal alcohol formation: cis- and trans-S-hydroxy-2-
methyl-1,3-dioxane (cis-dioxane and trans-dioxane), and cis- and
trans-4-hydroxymethyl-2-methyl-1,3-dioxalane  (cis-dioxolane
and trans-dioxolane). Heterocyclic acetal alcohols were identified
and reported as potential age markers of Madeira wine. """
Other acetals, such as 1,1-diethoxyethane and 2,4,5-trimethyl-
dioxolane, were also detected in table wines.”*

The Madeira wine volatile composition related to aging process
has been studied using a one-dimensional chromatographic ('D-
GC) process, which revealed the complexity of this matrix.”'*~'*
Although such a method often provides rewarding analytical
results, in-depth analysis of the chromatograms frequently indi-
cates that some peaks are the result of two or more coeluting
compounds. Comprehensive two-dimensional gas chromatogra-
phy (GC x GC) was developed as a powerful separation method
and emerged as an interesting alternative to analyze complex
samples or analyze trace target analytes within a single analysis and
overcoming the coelution problem.”® The method employs two
orthogonal mechanisms and is based on the application of two GC
columns coated with different stationary phases, a nonpolar and a
polar one (NP/P), sequentially linked through a modulator. Thus,
the separation is ruled by boiling point properties in the first
dimension ('D) and polarity in the second one (*D).2%*” There-
fore, two-dimensional gas chromatography (GC x GC) offers
faster running times, increased peak capacity, improved resolution
and enhanced mass selectivity, good calibration linearity, and
more sensitivity, and the limits of detection are improved due to
the focusing of the peak in the modulator when compared to that
in the one-dimensional GC.>*™*°

In order to obtain a deeper characterization of the chemical
groups potentially related with Madeira wine aging, namely,
furans, lactones, volatile phenols, and acetals, the comprehensive
two-dimensional gas chromatography with time-of-flight mass
spectrometry (GC X GC—ToFMS) combined with headspace
solid-phase microextraction (HS-SPME) was used in the present
research. This methodology was applied to Madeira wines from
different varieties (Malvasia, Bual, Sercial, Verdelho, and Tinta
Negra), types (sweet, medium sweet, dry, and medium dry), and
ages (Vintage and blended wines). Finally, principal component
analysis (PCA) was applied in order to establish potential age
markers, which allow one to distinguish the different types of
Madeira wines based on their age and even blends (average age).

B MATERIAL AND METHODS

Samples. Twenty-three monovarietal Madeira wines from five Vitis
vinifera L. grape varieties (one red, Tinta Negra, and four white, named as
noble varieties of Madeira wine, Malvasia, Bual, Sercial, and Verdelho),
aged from 3 to 20 years old (Y) and matured in oak casks, were used in
this study. Tinta Negra is the main grape variety harvested in Madeira
Island (Portugal) representing more than 80% of the vineyards. Accord-
ing to the age, the wines under study correspond to Vintage (a specific
year of aged in casks, 17, 18, 19, and 20 years) and blended (B, an average
aging period of 3, 5, 10, or 15 years) wines. Four types of wine were used:
sweet (Malvasia, Tinta Negra), medium sweet (Bual, Tinta Negra), dry
(Sercial, Tinta Negra), and medium dry (Verdelho, Tinta Negra), and

were aged in American oak casks (submitted to a lighter toasting). The
ethanol content of the Madeira wines under study ranged from 18 to 19%
(v/v). The samples were kindly provided by Madeira Wine Company,
Madeira Island.

Reagents and Standards. Sodium chloride (99.5%, foodstuff
grade) was purchased from Sigma Aldrich (Madrid, Spain), and ultra
pure water was obtained from a Milli-Q system from Millipore (Milford,
MA, USA). The retention index probes (n-alkanes series of Cg to C,
straight-chain alkanes, concentration 40 mg/L in n-hexane) were
supplied from Fluka (Buchs, Switzerland).

HS-SPME Methodology. The HS-SPME experimental parameters
were previously established.” The SPME holder for manual sampling and
fiber were purchased from Supelco (Aldrich, Bellefonte, PA, USA). The
SPME device included a fused silica fiber coating partially cross-linked
with 50/30 um divinylbenzene-carboxen-poly(dimethylsiloxane). Prior
to use, the SPME fiber was conditioned at 270 °C for 60 min in the GC
injector, according to the manufacturer’s recommendations. Then, the
fiber was daily conditioned for 10 min at 250 °C.

For the HS-SPME assay, aliquots of 1 mL of the sample were placed
into a 5 mL glass vial. After the addition of 0.5 g of NaCl and stirring
(0.5 x 0.1 mm bar) at 400 rpm, the vial was capped with a PTFE septum
and an aluminum cap (Chromacol, Hertfordshire, UK). The vial was
placed in a thermostatted bath adjusted to 60.0 & 0.1 °C for S min, and
then the SPME fiber was inserted in the headspace for 20 min. Each
sample was analyzed in triplicate. Blanks, corresponding to the analysis of
the coating fiber not submitted to any extraction procedure, were run
between sets of three analyses.

GC x GC—ToFMS Analysis. The GC x GC—ToFMS methodol-
ogy was based on a previous study.” After the extraction/concentration
step, the SPME coating fiber was manually introduced into the GC X
GC—ToFMS injection port at 250 °C and kept for 3 min for desorption.
The injection port was lined with a 0.75 mm LD. splitless glass linear.
Splitless injections were used (30 s). LECO Pegasus 4D (LECO, St.
Joseph, MI, USA) GC x GC—ToFMS system consisted of an Agilent
GC 7890A gas chromatograph, with a dual stage jet cryogenic modulator
(licensed from Zoex) and a secondary oven. The detector was a high-
speed ToF mass spectrometer. An HP-5 column (30 m X 0.32 mm LD.,
0.25 pum film thickness, J&W Scientific Inc., Folsom, CA, USA) was used
as first-dimension column, and a DB-FFAP (0.79 m X 0.25 mm LD,
0.2 um film thickness, J&W Scientific Inc., Folsom, CA, USA) was used
as a second-dimension column. The carrier gas was helium at a constant
flow rate of 2.50 mL/min. The primary oven temperature was pro-
grammed from 40 (1 min) to 230 °C (2 min) at 10 °C/min. The
secondary oven temperature was programmed from 70 (1 min) to
250 °C (3 min) at 10 °C/min. The MS transfer line temperature was
250 °C, and the MS source temperature was 250 °C. The modulation
time was 6 s; the modulator temperature was kept at 20 °C offset (above
primary oven). A 6 s modulation time with a 30 °C secondary oven
temperature offset was chosen to be a suitable compromise as it
maintained the 1D separation, maximized the 2D resolution, and
avoided the wrap-around effect (the elution time of a pulsed solute
exceeds the modulation period) for compounds that were late to elute
from the 2D. Ideally, all peaks must be detected before the subsequent
reinjection, and hence, 2tz must be equal or less than the modulation
period.>"*? The ToFMS was operated at a spectrum storage rate of 125
spectra/s. The mass spectrometer was operated in the El mode at 70 eV
using a range of m/z 33—350, and the voltage was —1695 V. Total ion
chromatograms (TIC) were processed using the automated data
processing software ChromaTOF (LECO) at a signal-to-noise threshold
of 10. Contour plots were used to evaluate the separation general quality
and for manual peak identification; a signal-to-noise threshold of 50 was
used. Two commercial databases (Wiley 275 and US National Institute
of Science and Technology (NIST) V. 2.0, Mainlib and Replib) were
used. A mass spectral match factor, the majority (86%) of the tentatively
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Figure 1. GC x GC total ion current chromatogram contour plot obtained from a sweet Madeira wine (Tinta Negra, S years); the chromatographic
spaces corresponding to furans, lactones, volatile phenols, and acetals were highlighted. The n-alkanes series (Cs—C,o) was superimposed on the

contour plot.

identified compounds showed similarity matches >850, was set to decide
whether a peak was correctly identified or not. Furthermore, a manual
inspection of the mass spectra was done, combined with the use of
additional data, such as the retention index (RI) value, which was
determined according to the Van den Dool and Kratz RI equation.> For
the determination of the RI, a Cg— C, n-alkanes series was used, and as
some volatile compounds were eluted before Cg, the solvent n-hexane
was used as the C4 standard. The RI values experimentally calculated
were compared, when available, with values reported in the literature for
similar chromatographic columns that employ as the first dimension the
column of this study.** ' The GC x GC area data were used as an
approach to estimate the relative content of each volatile component.

Data Processing. In an initial approach, a linear regression was
performed between total GC peak area of the chemical groups (furans,
lactones, volatile phenols, and acetals) under study and wine age in order
to establish potential age markers for Malvasia and Bual wines, and the
results were expressed as r* ( coefficient of determination). In a second
step, PCA (principal component analysis) was applied to the autoscaled
areas of the 103 volatile compounds tentatively identified by HS-SPME/
GC X GC—ToFMS present in 23 monovarietal Madeira wines (from
different varieties, types, and age) each with three replicates, using the R
statistical software package.”* Autoscaling is a data pretreatment process
that makes variables of different scales comparable. Each variable is
autoscaled separately by subtracting its mean value and dividing by its
standard deviation. The goal was to extract the main sources of variability
and hence to help with the characterization of the data set.>

B RESULTS AND DISCUSSION

Contour and Peak Apex Plot Analysis. Automated processing
of HS-SPME/GC x GC—ToFMS data was used to tentatively
identify all peaks in the GC X GC chromatogram contour plots
with a signal-to-noise threshold >50. The contour plot of the total
ion chromatogram (Figure 1) exhibited several hundreds of peaks;
however, this study was only focused on furans, lactones, volatile
phenols, and acetals. The peak finding routine based on the
deconvolution method allowed us to detect 103 compounds
from these four chemical groups, which were tentatively
identified on the basis of the comparison of their mass spectra
to a reference database (MS) and by comparison of the Rls
calculated (RI ) with the values reported in the literature (Rly;)

for the 5% phenylpolysilphenylene-siloxane (or equivalent) col-
umn (Tables 1 and 2). A range between 1 and 30 (|RIyc—Rl|)
was obtained for Rl compared to the Ry reported in the
literature for one-dimensional GC with the 5%-phenyl-methylpo-
lysiloxane GC column or equivalent. This difference in RI is
considered reasonable (<5%) if one takes into account that (i) the
literature data is obtained from a large range of GC stationary
phases (several commercial GC columns are composed of 5%
phenylpolysilphenylene-siloxane or equivalent stationary phases)
and that (ii) the literature values were determined in a one-
dimensional chromatographic separation system, and the mod-
ulation causes some inaccuracy in the first dimension retention
time.>* In the case of the volatile compounds with |RIcotc—Rle| )
values higher than 30, the information related to the mass spectra
(m/z) was included in Tables 1 and 2.

Figure 1 shows the GC x GC total ion current chromatogram
contour plot obtained from a sweet Madeira wine (Tinta Negra,
SY); the chromatographic spaces corresponding to furans,
lactones, volatile phenols, and acetals were highlighted. The n-
alkanes series (C4—Cy) used for the calculation of experimental
RlIs are also superimposed on the contour plot. The components
of each chemical group were dislpersed through the contour plot
according to their volatility (‘D) and polarity (*D), and it
becomes difficult to establish the two-dimension chromato-
graphic space (GC x GC) specific for each chemical group. As
the principle of the structured chromatogram is very important in
the identification, especially for the compounds that are not
commercially available, a strategy was implemented to find this
principle. Thus, peak apex plots were constructed, in order to
find the possible structured 2D chromatographic profile, com-
bining !tz and 2ty values, for each chemical group under study, as
shown for furans (Figure 2), lactones (Figure 3), volatile phenols
(Figure 4), and acetals (Figure S). Peak apex plots indicate the
position of the maximum modulated peak of GC x GC analysis,
in the 2D chromatographic space.” For all chemical groups, as
expected, it was observed that the decrease in volatility (high 'tz)
is mainly related to the increase in the number of carbons.

The furans include several types of chemical structures; thus,
they were organized in furan/alkyl furan, furanic aldehyde,

furanic alcohol, benzofuran, furanic ester, and furanic acetal
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L 5o
= T o §E 2 (Figure 2). According to *D (polarity), it was observed that furan,
g < = TR S8 tetrahydrofuran, alkyl furans (2-ethoxytetrahydrofuran and
2 7 3 T58 85 & 2-pentylfuran), and furanic acetal (2-diethoxymethylfuran) ex-
=
2 2 T 52 8w § hibited similar polarity. The polarity of these furans increase by
e = R - %‘E\ the presence of an aromatic ring (—CgHs) (e.g., benzofuran) ora
& 3 =5 g2 Fe formyl (—CHO) (e.g., furanic aldehydes) group. Concerning
= 2T o £5 = furanic aldehydes, the presence of a second —CHO group in the
= — U7 £ E o-position related to the heteroatom of the heterocyclic ring, e
) 5 . o op 3 ‘ég:} g, S-formylfurfural ('tx = 432 s, *tg =3.94 s) results in a
¢ - s = =9 N considerable increase in polarity compared to the remaining
12 —_ O O ~
. o I ==z g 8 § furanic aldehydes, which were located in the chromatographic
= =
- = s I -] space of 'ty = 198—564 s and “ty = 1.10—1.90 s (Figure 2).
= - % 5 & _E o & However, furanic alcohols showed a high polarity compared to
—~ —~ O —~
ERNS ) tZeg ?) b furanic aldehydes; consequently, an increase was observed in’D
% c cea sl (Pt = 2.64—3.75). Although, Furaneol ('t = 444 s, 2tz = 1.335)
Iy + a3 g E) % is an exception, resultant from the presence of two methyl
= ) z2 % g (—CH;) groups in 0 and o'-positions related to the hetero—
g - = a @ ; So g ‘é atom, a decreasing in polarity was observed. According to *D, the
s s AN % ot S elution order of furans under study based on their functional
= 23 &) SICEC) E5T groups was alkyl ~ acetal < aromatic ring (benzofuran) <
5 = 2 EeS Idehyde < alcohol
n 2 © o w2 EZ aldehyde < alcohol.
E E = ,:’i 2 —,: ZEe The lactones were organized in lactone/alkyl lactone, anhy-
- - Z T2 588 dride, enolic lactone, and aromatic lactone (Figure 3). The
B 5 g - - § ”§ B Iactone/alkyl lactones are the less polar type; thus, lower D
“ ¥ 3 W 2% ELHA values (g = 087 3.30 s) were observed. - Crotonolactone
q a ~ 2~ g AT
E | m zcztsg g (Mt = 282 s, *tg =4.15 s) is an exception; the high tp was
& v o 3 *go 58 explained due to the presence of 7t-bound in the structure and the
. 23S 8 &5 absence of the —CHj; group.” ® The anhydride showed higher
. < EEORO) E 53 polarity (*t = 4.38—4.90 s) when compared to lactone/alkyl
N - 2 o ﬁ g T s lactones due to the presence of RC=OR’ group in the o'-
= =28 £ g s position instead of H. Nevertheless, two exceptions were ob-
3 ) S ORI £ § served, namely, 3-methylenedihydro-2,5-furandione (*tr = 306’5,
g g 2 5= ’tr = 2.99 s) and 3,4-dimethyl-2,5-furandione ('tg = 396 s, *tg =
3 LN ] g = 'y
S R e =5 g 2.02 s), which demonstrated lower polarity compared to others,
% | = = EORG %“ 28 due to the a weak 77-bound in the -position, and the two —
2|5 g 87 £ CH in - and f'-positions of heterocyclic rin
s |2 o o v 4 Bl 5 3 groups In a p Y &
;\ ;E ; 3 ‘.“.:’E_; 3 respectively. Pantolactone (Mtr = 396 s, ’tx = 5.90 s), the
= = S Z2% E é & unique enolic lactone detected, showed the highest polarity of
g . Y- & lactones, which may be explained by the presence of the —OH
i
E 4 E 8 28w group 1n the 3-position of the heterocyclic ring. Thus, accord-
mm 2 3= g S ing to D, the elution order of lactones under study based on
= + . o § 4 g § their functional groups was alkyl < aromatic ring < ketone
=z 52 2R3 % (anhydride) < alcohol.
&5 2 'j\u/ S = The volatile phenols were organized in phenolic ether, alky-
i 2 3 g % i loxy phenol, phenol/alkyl phenol, phenolic aldehyde, phenolic
0 - - 0
= 2 2 g 87, ester, and phenoxy alcohol (Figure 4). Accordrng to °D, the
=52 2% wed phenolic ether exhibited the lowest polarity (*tg = 0.92—1.21 s)
g %% go compared to alkyloxy phenol, phenol/alkyl phenol, phenolic
2 . & T ae aldehyde, phenolic ester, and phenoxy alcohol. The presence of
E B 2 o 2 % the —OH group in these former compounds increases their
1:) :E} = £g§g <T& g polarity; consequently, higher *t; values were observed. Inter-
B §\ % f\ = mediate polarity was observed for alkyloxy phenol (*tz = 1. 64—
3 ER ) £ %3 \Eé‘é 2.50 s), followed by phenolic ester (e.g., ethyl vanlllate, 2y =
91 f; N a a ,‘é 3 § '% 2.74 s), phenoxy alcohol (e.g., -phenoxyethanol *tr = 3.18 s),
2 =~ -7 S« = and phenolic aldehyde (e.g, vanillin, *z = 4.71 s). The alkyl
E = s 28 ¢ E = phenols, namely, o-cresol, p-cresol, and p-ethylphenol showed
'.E. 2 4 « 2 e o the highest polarity (*tg = 4.62—5.78 s), which may be explained
N — 0 O el
S e R S ?) by the absence of an —OCHS; group in the 0O posmon compared
] _ié g2 hE- to all other phenols studied. Thus, according to 2D, the elution
) 228 9
A E EZ2% % order of volatile phenols rmder study based on their functional
= g 3 - I é’ g g groups was ether (phenohc ether < alkyloxy) < ester < aldehyde
>3 [N 7 5 & =
I < 888 < alcohol (alkyl phenol).
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Figure 2. Peak apex plots of furans identified in Madeira wine (attribution of the peak number is shown in Tables 1 and 2).
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Figure 3. Peak apex plots of lactones identified in Madeira wine (attribution of the peak number is shown in Tables 1 and 2).

Concerning the acetals, three types of structures were ob-
served: alkyl/heterocyclic acetal, alkyl/heterocyclic acetal alco-
hol, and aromatic acetal. Previous studies only allowed the
detection of heterocyclic acetal alcohols.*'*'"*® The alkyl/
heterocyclic acetals are the less polar compounds; afterward,

they are the first compounds eluted according D. For these
compounds, the maximum tR achieved was 0.82 s. 2-Diethox-
yethanol (alkyl acetal alcohol, 't = 294 s, *tp = 1.26 s) and 4,5-
dimethyl-2-phenyl-1,3-dioxolane (aromatic acetal, 'tr = 618 s,
*tp = 1.07 s) showed an intermediate polarity due to the presence
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Figure 4. Peak apex plots of volatile phenols identified in Madeira wine (attribution of the peak number is shown in Tables 1 and 2).
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Figure 5. Peak apex plots of acetals identified in Madeira wine (attribution of the peak number shown is in Tables 1 and 2).

of the —OH and —C¢Hjs groups. Otherwise, the four hetero-
cyclic acetal alcohols located in the chromatographic space of
tr = 252—330 s and *tg = 1.77—4.09 s showed the highest
polarity compared to heterocyclic acetals due to the —OH group
in their structure. Thus, according to ’D, the elution order of
acetals under study was alkyl < aromatic ring < alcohol. Regard-
ing the peak apex of the acetals displayed in Figure S, it is possible

to observe the advantage of the second dimension for the analysis
of different acetals.

The structured 2D chromatographic profile arising from 'D
volatility and *D polarity was observed within each chemical
group based on the properties and positions of their functional
groups, which allow more reliable identifications. Globally, based
on the functional group of the chemical families under study, the
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*tg values increase in this way: alkyl < ether < ester < aromatic
ring < ketones ~ aldehydes < alcohol. This information is
especially useful for classifying unidentified compounds.

Establishment of Potential Age Markers. The GC peak area
and RSD (relative standard deviation) values of furans, lactones,
volatile phenols, and acetals obtained using HS-SPME/GC X
GC—ToFMS methodology are listed in Table 1 for dry and medium
dry, and in Table 2 for sweet and medium sweet Madeira wines.

Furans. The furanic aldehydes, such as 2-furfural and $-
methyl-2-furfural, were the predominant furans tentatively iden-
tified in the Madeira wines under study. Other furans were
also tentatively identified, namely, 2-ethoxytetrahydrofuran,
2-acetylfuran, ethyl 2-furoate, S-formylfurfural, 5-ethoxymethyl-
2-furfural, 5-hydroxymethylfurfural, and S-hydroxymethyldihy-
drofuran-2-one. Some of these furans have been reported as age
markers of Madeira wine, namely, ethyl 2-furoate, S-ethoxy-
methyl-2-furfural, and S—hydroxymethzylﬁlrﬁlral, and a similar
trend during aging was observed.”'* From the total of 26
furans tentatively identified, only 8 compounds were pre-
viously identified in Madeira wines (see Table 1), and as far
we know, the 18 furans listed in Tables 1 and 2 are detected for
the first time in Madeira wine. In order to evaluate the trend of
furans, lactones, volatile phenols, and acetals with the aging
process, correlations between GC peak area and age were
computed. This approach was only applied to Malvasia and
Bual Madeira wines, as they are the unique varieties under
study that presented samples with S different ages. The other
varieties under study only have wines with 2 different ages. A
correlation (r = 0.87) between total GC peak area of furans and
age was found for Bual, while a lower correlation (r = 0.56) was
achieved for Malvasia, which means that, for Bual, the total GC peak
area of furans was 76% related with age (expressed as 7 (coefficient
of determination)), whereas for Malvasia, it was only 31%. Further-
more, from 26 furans tentatively identified, only 2 are the highest
and positively correlated with wine age, namely, 3-furfural (r = 0.88
and 0.78, respectively for Malvasia and Bual), and ethyl 2-furoate (r =
096 and 0.99). Thus, these compounds may be suggested as
potential age markers for Malvasia and Bual varieties.

Lactones. y-Butyrolactone and cis-oak-lactone were the main
lactones detected. Regarding the two isomers of whisky lactones
(cis- and trans-oak-lactones), the cis isomer showed the highest
GC peak area than trans-isomer. As previously reported, in the
wine acidic medium, an easier extraction of cis-oak-lactones
occurs. ' y-Lactones are among the most important compounds
from a sensory point of view, and their content tends to increase
during the aging process in oak casks (Tables 1 and 2). Similar
trends of y-lactones during aging were achieved for Madeira and
red wines by Camara et al.” and Cérdan et al.,® respectively. From
the total of 30 lactones tentatively identified, only 9 compounds
were previously identified in Madeira wines (see Table 1), and as
far we know, the 21 lactones listed in Tables 1 and 2 are detected
for the first time in Madeira wine. The total GC peak area of
lactones showed a high correlation (r = 0.93) with age in
Malvasia, whereas for Bual, a slightly lower correlation (r =
0.71) was observed. Thus, for Malvasia the total GC peak area of
lactones was 87% related with age, whereas for Bual, it was
only 50%. Moreover, from the 30 lactones tentatively identified,
only 5 are the highest and positively correlated with age for
Malvasia and Bual varieties, namely, pantolactone (r = 0.78 and
0.77, respectively, for Malvasia and Bual), y-ethoxybutyrolactone
(r=0.76 and 0.92), y-heptalactone (r = 0.87 and 0.72), trans-oak-
lactone (r = 0.83 and 0.77), and cis-oak-lactone (= 0.93 and 0.82).

Volatile Phenols. The predominant volatile phenols detected
were o-guaiacol, p-ethylphenol, and p-ethylguaiacol. During
aging, for wines obtained from the Sercial grape variety
(alcoholic degree of 16.8%") these compounds increase more
remarkably, whereas for Bual wines (17.8%"), a considerable
decrease was observed. According to Dias et al,,”” the content of
p-ethylphenol and p-ethylguaiacol is more accentuated in wines
with lower alcoholic degree because the high content reduces the
microbial activity of yeast, making the synthesis of ethylphenols
difficult. From the total of 17 volatile phenols tentatively
identified, 11 compounds were previously identified in Madeira
wines (see Table 1), and as far we know, the 6 volatile phenols
listed in Tables 1 and 2 are detected for the first time in Madeira
wine. Conversely, volatile phenols did not show a linear trend
with age for Malvasia (r = 0.05) and Bual (r = 0.0S) varieties. In
addition, the individual analysis of all volatile phenols revealed
that the GC peak area of these components were not correlated
with wine age, with the exception of p-cresol (r = 0.79 and 0.75,
respectively for Malvasia and Bual). This behavior may be
explained as the volatile phenols present several origins, i.e.,
oak, microbiological activity (e.g., Brettanomyces and Dekkara),
and hydroxycinnamic acids of wine,”> among others.

Acetals. The major acetals detected were diethoxymethane, 1,1-
diethoxyethane, 1,1-diethoxy-2-methyl-propane, 1,1-diethoxy-3-
methylbutane, and 1-(1-ethoxyethoxy)-pentane. From the total
of 30 acetals tentatively identified, only 4 compounds were
previously identified in Madeira wines (see Table 1), and as far
we know, the 26 acetals listed in Tables 1 and 2 are detected for the
first time in Madeira wine. The white varieties (Malvasia, Bual,
Sercial, and Verdelho) presented high total GC peak area of acetals
than the red one (Tinta Negra). Similar results were achieved by
Cutzach et al,>® as the high content of polyphenols in red varieties
slowed the oxidation reaction and combined easily with acetalde-
hyde. For acetals, high correlation with age was observed for
Malvasia (r = 0.95), and Bual (r = 0.95). Similar correlation was
observed by Camara et al**° for heterocyclic acetals alcohols
previously identified in Madeira wines. Additionally, other acetals
such as 1,1-diethoxy-2-methyl-propane (r = 0.81 and 0.86, respec-
tively, for Malvasia and Bual), 2,2-diethoxyethanol (r = 0.96 and
0.84), 1-(1-ethoxyethoxy)-pentane (r = 0.96 and 0.81), 1,1-
diethoxypentane (r = 0.81 and 0.94), 2-propyl-1,3-dioxolane
(r = 0.86 and 0.87), and 1,1-diethoxyhexane (r = 0.95 and 0.83)
showed high correlation with age for Malvasia and Bual varieties.

In sum, total GC peak area of acetals showed the highest and
positive relationship (r = 0.95) with age, whereas the volatile
phenols showed the lowest one (r < 0.05). Furthermore, from
the 103 volatiles tentatively identified to which belong furans,
lactones, volatile phenols and acetals, 3-furfural, ethyl 2-furoate,
pantolactone, y-ethoxybutyrolactone, y-heptalactone, trans-oak-
lactone, and cis-oak-lactone, p-cresol, trans-dioxane, trans-dioxo-
lane, 1,1-diethoxy-2-methyl-propane, 2,2-diethoxyethanol,
1-(1-ethoxyethoxy)-pentane, 1,1-diethoxypentane, 2-propyl-
1,3-dioxolane, and 1,1-diethoxyhexane exhibited the highest and
positive correlations (0.71< r < 0.99) with wine age. Thus, these
compounds may be suggested as potential age markers of
Malvasia and Bual wines. In a second step, PCA was applied to
autoscaled GC peak areas of furans, lactones, volatile phenols,
and acetals, in order to extend the study of potential age markers
to all noble varieties (Malvasia, Bual, Sercial, and Verdelho) and
to the major variety (Tinta Negra) used to produce Madeira
wine, which includes different types of wines and ages as
described below.
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Principal Component Analysis. GC peak area of 103 analy-
tical variables (volatile compounds) of the 23 Madeira wines
were submitted to a PCA procedure, in order to search for the
main sources of variability, to characterize the samples as a
function of the detected compounds, and to establish a possible
relationship among furans, lactones, volatile phenols and acetals,
and wine age. Figure 6A shows the score scatter plot of the two
first principal components (which explains 46% of the total
variability of the data set), allowing us to organize the Madeira
wines by age (as a function of PC1 axis). Figure 6B represents the
corresponding loadings plot profile which establishes the relative
importance of each volatile for the observed sample distribution
of Figure 6A. PC1, which explains 32% of the total variability,
allow one to distinguish Madeira wines as a function of their age.
PC2, explaining 14% of the total variability, shows the organiza-
tion of the Madeira wines according to their type. With the
exception of Tinta Negra, which may be used to produce all
types of wines, all other varieties were used to produce a
specific type of wine. Sweet (Malvasia) and medium sweet
(Bual) Madeira wines (PC2 positive) are characterized by
S-methyl-2-furfural and diethoxymethane, whereas dry
(Sercial) and medium dry (Verdelho) were placed in PC2
negative and are described by 1,1-diethoxyethane and 2,4,5-
trimethyl-1,3-dioxolane. As can be observed in Figure 6A, the
Madeira wines could be organized by their type, as well as grape
variety according to PC2. According to PC1, the Madeira wines
with 3 and SY are projected in PC1 negative, whereas 10Y is
near the origin, except for two Madeira wines, which were
located near of 5Y, as these wines correspond to the averaged
aging period (blended wines). The Madeira wines with 15, 17,
18, 19, and 20Y are placed in PC1 positive. Moreover, the
Madeira wines could be organized by their style (vintage or
blends) according to PC1. The blend Madeira wine is pro-
jected in PC1 negative and is near the origin, whereas the
vintage is placed in PC1 positive. Taking into account the
loadings plot (Figure 6B), the chemical compounds used as
potential age markers were predominantly acetals, namely,
diethoxymethane, 1,1-diethoxyethane, 1,1-diethoxy-2-methyl-
propane, 1-(1-ethoxyethoxy)-pentane, trans-dioxane, and
2-propyl-1,3-dioxolane, and from the other chemical groups
studied, S-methylfurfural (furan) and cis-oak-lactone showed
similar contribution to acetals. Finally, it is important to point
out that, from these 8 compounds, cis-oak-lactone, trans-
dioxane, 1,1-diethoxy-2-methyl-propane, 1-(1-ethoxyethoxy)-
pentane, and 2-propyl-1,3-dioxolane were previously (in Es-
tablishment of Potential Age Markers) proposed as potential
age markers for the Malvasia and Bual varieties. These results
suggest that among the chemical groups under study, the
acetals are the most important group that could be used as
potential age markers of Madeira wines, independently of the
variety and the type of wine. Despite the fact that acetals are
formed during the fermentation step, its content increases
remarkably during the aging process, which may be explained
by the oxidative condition that occurred during this step.
These oxidative conditions contribute to the increase of
aldehyde content, mainly acetaldehyde, and acetals.'® More-
over, GC X GC-ToFMS offered a very useful approach to
identify these chemical groups due to the orthogonal systems
that reduce coelution and improve the quality of the selection
of volatile compounds under study, contributing to the estab-
lishment of new potential Madeira wine age markers.
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