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RESUMO 
 

O vinho Madeira é um produto de reputação bem estabelecida, cujo aroma e sabor 

característico resulta de combinações únicas. Particularmente, a sua maturação pode incluir 

estufagem, processo no qual o vinho é normalmente aquecido a 45 °C durante três meses. 

Durante este período, várias alterações químicas podem acontecer, por isso torna-se essencial 

avaliar o seu impacto sobre o vinho. Neste sentido, o principal objectivo da tese foi avaliar o 

efeito da estufagem sobre os principais constituintes químicos do vinho Madeira, 

especificamente sobre as moléculas potencialmente importantes no desenvolvimento das suas 

características típicas.  

Primeiramente, desenvolveram-se metodologias analíticas capazes de determinar os 

compostos-alvo, combinando precisão e reprodutibilidade à eficácia de execução. Depois, 

vários vinhos Madeira monovarietais foram analisados durante a estufagem em condições 

padrão e de sobreaquecimento de modo a avaliar o seu efeito. Os seguintes compostos foram 

avaliados: furanos, aminoácidos, aminas biogénicas, polifenóis, ácidos orgânicos e compostos 

voláteis. Além disso, também foi avaliada a composição polifenólica total e o potencial 

antioxidante destes vinhos, assim como a cor. 

Os resultados mostram que a maior parte dos constituintes sofrem alterações devido 

ao processo de aquecimento. Particularmente, o aquecimento promove o desenvolvimento de 

5-hidroximetilfurfural (HMF) em vinhos doces submetidos a temperaturas de estufagem mais 

elevadas. Por outro lado, a estufagem propicia o decréscimo da maior parte dos aminoácidos, 

sugerindo o seu envolvimento na formação do bouquet destes vinhos. No que diz respeito ao 

teor total de polifenóis e ao potencial antioxidante destes vinhos a estufagem não parece 

afectar grandemente, no entanto a maioria dos polifenóis monoméricos decrescem durante 

este processo. O processamento térmico dos vinhos proporciona o desenvolvimento da 

composição volátil, especialmente de voláteis considerados típicos do aroma do vinho 

Madeira. Finalmente, foi demonstrado que a degradação térmica dos açúcares, 

nomeadamente da fructose, promove o aparecimento de compostos voláteis previamente 

identificados em vinhos estufados. 

  

Palavras-chave: Vinho; Aquecimento; Aminoácidos; Ácidos orgânicos; Polifenóis; Voláteis. 
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SUMMARY 
 

Madeira wine is a product of well-established reputation, whose aroma and flavour is 

the result of unique combinations. Particularly, its maturation may include estufagem, wherein 

wine is usually heated at 45 °C for three months. During this period, several chemical changes 

may occur, so it is essential to assess its impact on the wine. In this sense, the main objective 

of the thesis was to evaluate the effect estufagem on the chemical constituents of Madeira 

wine, specifically on those molecules potentially important in the development of its typical 

features.  

Firstly, analytical methodologies capable of determining the target compounds, 

combining precision and reproducibility to execution effectiveness, were developed. Then 

various monovarietal Madeira wines were analysed during estufagem under standard and 

overheating conditions in order to assess its effect. The following compounds were evaluated: 

furans, amino acids, biogenic amines, polyphenols, organic acids and volatile compounds. In 

addition, the total polyphenolic composition, the antioxidant potential and the colour of these 

wines were also evaluated.  

The results show that most constituents change due to the heating process. 

Particularly, the heating promotes the development of 5-hydroxymethylfurfural (HMF) in 

sweet wines submitted to estufagem at higher temperatures. Moreover, estufagem provides 

the decrease of most amino acids, suggesting their involvement in the formation of the 

bouquet of these wines. Regarding the total polyphenol content and antioxidant potential of 

these wines they do not seem to be greatly affected by the heating step, however most 

monomeric polyphenols decrease during this process. The thermal processing of Madeira 

wines favours the development of the volatile composition, especially of volatiles usually 

reported as typical aromas of Madeira wines. Finally, it was demonstrated that the thermal 

degradation of sugars, especially of fructose, promotes the emergence of volatile compounds 

identified in baked wines. 

 

Keywords: Wine; Heating; Amino acids; Organic acids; Polyphenols; Volatiles. 
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CHAPTER 1A 

A brief introduction  

 

1A.1 Introduction 

For centuries, wine produced in Madeira Island (Portugal) has been internationally 

recognized. Certainly that the discovery of America by Christopher Columbus, at the end of the 

15th century, encouraged the Madeira wine exportation and consequently marked the History 

of these wines (Liddell, 1998a). Nowadays, is well-known, along with others, such as Porto in 

Portugal mainland, Sherry in Spain and Marsala in Sicily. The island is located in the Atlantic 

Ocean at about 970 km southwest of the Portuguese capital and at 600 km from the North 

African coast and is part, together with the islands of Porto Santo, Desertas and Selvagens, of 

the Madeira archipelago. The wine, considered one of the hallmark images of Madeira Island, 

is traditionally named as Madeira wine and classified as fortified. This classification is usually 

attributed to wines with high alcohol content, since at some production stage natural grape 

spirit is added.  In the case of Madeira wine, it holds an alcoholic content between 17 and 22% 

v/v (Decreto Regulamentar Regional n. º 20/85/M, de 30 de Agosto).  

The history of the island and its wine has been minutely studied by several authors, 

namely Vieira (Vieira, 1993, 2003b) and Liddell (Liddell, 1998b). Briefly, it seems that the 

fortification step was only introduced by the middle of the 18th century (Liddell, 1998a) to 

prevent the wine from spoiling, given that the earliest unfortified examples usually decayed at 

sea, when ships were heading to the New World or East Indies, during the Age of Exploration. 

Soon, the wine producers have discovered that the long sea expeditions improved the wine 

quality, due to its exposition to excessive heat, typical of the tropical climates, transforming 

their flavour. Currently, Madeira winemaking process can involve the wine baking up to 

temperatures of 50 °C for 3 months, the so-called estufagem procedure, which meant to 

reproduce the wine ageing during those long sea voyages. The first known estufa was 

introduced by Pantaleão Fernandes in 1794 (Vieira, 2003a).  

Madeira wine is characterized by marked and intense flavour, and therefore is rarely 

consumed with meals, but usually served as an aperitif or dessert wine. This wine is so robust 

that even after opening its quality is still maintained. Nevertheless, Madeira wine bottles need 

to be conveniently stored for being enjoyed at its best. Therefore, they are usually stored 

upright in temperatures between 18 to 20 °C (Elliott, 2010b). 

Nowadays, the Madeira wine commercialization is not the main source of receipt of 

this Autonomous Region, but it is still considerable. Sales have been significant over the last 

years, namely from 2005 to 2009, about 3.4 million litters/year were sold (Elliott, 2010a). The 

Madeira wine production verified in 2008 was of about 4.3 million litres, while, in 2009, the 

marketing of Madeira wine reached the 3.2 million litres (IVBAM, 2009). In 2009, the European 

Union represented the biggest market, with France (35.4%), Germany (9.5%) and United 
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Kingdom (9.3%) constituting the greatest consumers (Elliott, 2010a). The domestic market, 

representing 13.6%, is also an important consumer of Madeira wine, mainly the tourists 

visiting the island. Outside Europe, the main markets are the United States of America and 

Japan.  

 

1A.2 Wine-growing region 

Madeira wine distinctive features are influenced by the characteristics of the island as 

well, namely by the soil (mainly basalt because of its volcanic origin), the proximity to the sea 

and also by the moderated climatic conditions: hot humid summers and mild winters, with 

annual temperatures of about 17.5 °C along the coast (Elliott, 2010d). The rainfall is usually 

abundant in the autumn and winter, about 75%, while in spring are attained the 20%. The soils 

are in general clayey, acids and abundant in organic matter, magnesium and iron, poor in 

potassium and sufficient in phosphorous (Liddell, 1998d). 

In 2010, the wine-growing region of Madeira wine is about 5 km2 whilst the total area 

of the island is approximately 735 km2 (Elliott, 2010d). Despite of the vine cultivation being 

spread all over the archipelago, in south coast the viticulture is very common in Câmara de 

Lobos (about 188 ha), while on the north coast, São Vicente (about 142 ha) and Santana 

(around 70 ha) are the main producing areas (see Figure 1A.1). 

 

 

 

FIGURE 1A.1 – Main viticultural regions of Madeira Island (adapted from Elliott (2010d)). 

The agricultural land is characterized by sharply elevated terrains, usually made into 

terraces known as poios sustained by walls of basaltic stone (IVBAM, 2009). Here, the vines are 

cultivated in low trellises, where the vines are horizontally settled along wires and suspended 

between 1 to 2 m off the ground with stakes. This traditional system of conducting the vine is 

commonly known as latada (Figure 1A.2) and similar to that used in Minho for the vinho verde 
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cultivation. The densities of the plantations vary between 2500 and 4000 plants/ha and their 

irrigation is done through canals that bring water from the upper points of the island, the so-

called levadas. The explorations have in average 0.3 ha, divided 1into more than one plot 

where the production cannot exceed the 80 hL/ha (Elliott, 2010d; IVBAM, 2009). The 

mechanisation is almost impossible because the vines 

are planted in these small terraces, thus the whole 

cultivation cycle is usually made by man hand, 

increasing the costs of the entire process.  

Indeed, the island orography has imposed many 

difficulties in Madeira wine production, even nowadays 

the harvesting is still manually made, which 

constitutes an arduous assignment. Alternatively, 

in lands with milder slopes the vines cultivation 

through Espaldeira or espalier method (Figure 

1A.3) has been recurrent in the latest years. Here 

the vines grow vertically in rows on wires. 

 

1A.3 Grape varieties 

All varieties used in Madeira wine production are Vitis Vinifera L. species (IVBAM, 

2009). Actually, European Community imposed the use of V. Vinifera species rather than 

others, in defence of European varieties. Therefore, Vitis Labrusca species commonly produced 

in Madeira Island for internal consumption are also interdicted to the winemaking of these 

fortified wines. These species were introduced in Madeira Island in the second half of the 19th 

century due to the phylloxera vastatrix attack to the V. Vinifera roots (Liddell, 1998d). 

Moreover, V. Labrusca grapes are usually considered inappropriate to making quality wines 

due to the unpleasant aroma and low alcohol content achieved during fermentation. V. 

Vinifera mostly contains anthocyanin monoglucosides while others, particularly V. Labrusca, 

have mainly anthocyanin diglucosides, especially malvidin-3,5-diglucoside (Wang, Race, & 

Shrikhande, 2003), thus this anthocyanin has been used to discriminate the occurrence of this 

grape species in the production of European wines.  

There are recommended and authorized V. Vinifera varieties for the Madeira wine 

production (Table 1A.1), but the white varieties Sercial, Verdelho, Boal and Malvasia and the 

red Tinta Negra  Mole are the most common (also known as the traditional varieties), with the 

latest representing at least 80% of the production (IVBAM, 2009). Tinta Negra Mole can also 

be designated as Tinta Negra, namely to prevent confusion with the variant produced in 

Algarve. 

 

                                                           
1 Picture kindly supplied by Secretaria Regional do Ambiente e Recursos Naturais (SRARN). 

FIGURE  1A.2 – Latada system 
1
. 

FIGURE  1A.3 – Espaldeira system 
1
. 
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TABLE 1A.1 – Recommended and authorized grape varieties for production of Madeira wines (adapted from 

Decreto Regulamentar Regional n. º 20/85/M, de 30 de Agosto). 

 Recommended Authorized 

Red varieties Bastardo 
Tinta da Madeira 
Malvasia Cândida Roxa 
Verdelho Tinto 
Tinta Negra Mole 

Tinto Negro 
Complexa 
Deliciosa 
Triunfo 

White varieties Boal (Malvasia Fina) 
Malvasia Cândida 
Sercial 
Verdelho 
Terrantez 

Carão de Moça 
Moscatel de Málaga 
Malvasia Babosa 
Malvasia de S. Jorge 
Rio Grande 
Valveirinho 
Listrão 
Caracol 

 

Another important variety is Terrantez but its cultivation is extremely rare nowadays. 

The finest wines are produced almost exclusively from the previously described white grapes 

while the inexpensive ones are commonly prepared from Tinta Negra Mole, although recently 

it has been attained excellent wines from this variety.  

2Tinta Negra Mole (TNM) was firstly introduced in Madeira 

viticulture in the 18th century, and since then it has been essentially 

cultivated in Estreito de Câmara de Lobos, Câmara de Lobos and São 

Vicente (Elliott, 2010d; IVBAM, 2009). TNM variety corresponds to the 

Molar variety produced in Portugal mainland (Eiras-Dias, Paulos, 

Mestre, Martins, & Goulart, 2006) and is known to be more robust 

than white ones, whereat adapted easily to the specific conditions of 

the island. It is indeed quite resistant to some pests. Dry, medium-dry, 

medium-sweet and sweet wines can be produced from this variety. In 

addition to its versatility, grapes are elliptic-globose, black with light 

pulp, vary from small to medium-size and are characterized for having fine and soft skins 

(Figure 1A.4). Its musts can achieve an alcoholic potential of 9 – 12%. 

This variety accounts for 80 to 85% of the total production. 

 The most appreciated Madeira wines are from Malvasia 

Cândida grape variety. Indeed, some of them have reached 

astronomical prices (IVBAM, 2009). This grape variety traditionally 

produces sweet rich wines (residual sugars can range from 3.5 to 6.5° 

Baumé) and is considered the richest and smoothest variety of Madeira 

wines. Its wines usually detain high acidity well balanced with 

sweetness (Elliott, 2010c). Malvasia wines are also characterized by 

                                                           
2 Picture kindly supplied by Doctor Jorge Cunha (EVN). 

FIGURE 1A.4 – TNM grape 

variety 
2
. 

FIGURE 1A.5 – Malvasia   

grape variety 
2
. 
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their dark colour with caramel, honey and raisin aromas, and usually accompany desserts 

(Elliott, 2010b). Malvasia, also known as Malmsey or Malvazia, was the first to be planted in 

the island and is usually planted at 150 to 200 m height above sea level. It is a fastidious fruit 

requiring sheltered, sunny locations and perfect conditions for ripening (IVBAM, 2009). 

Therefore, grows well in Câmara de Lobos, Estreito de Câmara de Lobos, Campanário, São 

Jorge, Arco de São Jorge and Santana (Elliott, 2010d). Malvasia bunches are medium-large and 

conical (Figure 1A.5), while berries are big, elliptic or globe-elliptic and greenish-yellowish to 

golden in colour (IVBAM, 2009). Their musts commonly attained up to 13% of alcoholic 

potential (Elliott, 2010d). 

3 Boal (or Bual) is also known as Malvasia Fina (Lopes et al., 

1999). From this white variety are usually produced rich and bodied 

medium-sweet wines (2.5 to 3.5° Baumé), fruity with a splendid 

bouquet, in which acidity and sweetness are well balanced. These 

wines are also characterized by their dark colour and raisin aromas. It 

is said that this white variety came from Portugal mainland and its 

cultivation is frequently made at altitudes of 100 to 300 m, yielding 

medium-large and dense bunches with berries of resistant skin, 

usually elliptic, greenish-yellowish or golden when riped (Figure 1A.6) 

(IVBAM, 2009). It is frequently found in the south, namely in Estreito 

da Calheta, Calheta, Arco da Calheta, Campanário, Estreito de Câmara de Lobos and Câmara de 

Lobos (Elliott, 2010d). Their musts normally hold up a potential alcohol between 11 to 13%.  

From Verdelho grapes are prepared medium-dry wines with 

residual sugars between 1.5 to 2.5° Baumé. These aromatic wines are 

less acidic and more bodied than wines made from Sercial grapes and are 

frequently served as aperitif (Elliott, 2010b; IVBAM, 2009). Nutty and 

caramel nuances are evident. Even nowadays there are some doubts 

about its origin, but seems to be similar to the variety found in Azores 

(Lopes et al, 1999). This variety is usually cultivated at latitudes of about 

400 m and are characterised by small to medium-sized bunches and 

golden oblong grapes with resistant skin (Figure 1A.7). Furthermore, 

Verdelho is very difficult to reproduce. Verdelho produces musts with a 

potential alcohol of 10 – 12%. 

Finally, Sercial is known to produce excellent dry wines with very 

little residual sugar, varying from 0.5 to 1.5° Baumé. The resulting wines 

are characterized with golden to very pale colours, almond aromas as well 

as a notable astringency and acidity. Generally, require large periods of 

ageing to be conveniently appreciated. Sercial is the same variety 

encountered in the Portugal mainland, known as Esgana Cão (Lopes et al, 

1999). Sercial cultivation is often made on the north of the island at 

altitudes up to 200 m and in the south up to 600 m (IVBAM, 2009). 

                                                           
3 Picture kindly supplied by Doctor Jorge Cunha (EVN). 

FIGURE 1A.6 – Boal grape 

variety 
3
. 

FIGURE 1A.7 – Verdelho 

grape variety 
3
. 

FIGURE 1A.8 – Sercial 

grape variety 
3
. 
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Therefore, is abundantly found in Seixal, Porto Moniz, Ponta Delgada, São Vicente, Arco de São 

Jorge and Jardim da Serra (Elliott, 2010d). The vines are very resistant (namely to mildew and 

oidium) and produce medium-small, compact and pinecone shape bunches, with very acidic 

greenish-yellow grapes (Figure 1A.8) (IVBAM, 2009; Liddell, 1998d). Sercial is frequently the 

last variety to be harvested, producing musts with alcoholic potentials up to 11% (Elliott, 

2010d). 

 

Occasionally are produced wines from Terrantez and Bastardo varieties, although 

these are now increasingly rare especially due to phylloxera epidemic that hit the island in the 

past (Liddell, 1998d). 

 

1A.4 Winemaking 4 

Madeira wine is characterized by a unique winemaking process, mainly by using a 

baking step so-called estufagem. Briefly, the fermentation extension is defined according to 

the sugar content of the grape variety involved (dry, medium-dry, medium-sweet and sweet 

wines may be produced) and is blocked by the addition of natural grape spirit (containing 95% 

v/v of ethanol) when the desired sweetness is attained, typically from 0 to 130 g/L. Then, a 

baking step can be followed, where the fortified wine is usually heated at about 45 °C for 3 

months. After this, the wine is allowed to undergo a normal maturation process in oak casks 

(usually used casks) for a minimum period of 3 years. With the heating step introduction a 

premature ageing takes place, being originated the typical colour and bouquet of these wines, 

besides contributing to their exceptional longevity. This baking step also contributes for the 

distinction among others fortified wines. The main steps for the Madeira wine production are 

briefly discussed below. 

Harvesting – Usually begins in mid-August and ends in October and at this period, 

grapes are at their maturity peak, with the desirable sugar content and acidity. At this point, 

the grapes must have a minimum potential alcohol of 9%. Once grapes are picked, after the 

official order, they are taken in containers with capacity of about 25 kg to the wine cellars, to 

be processed as soon as possible. At wine cellars, grapes are triaged in order to assess their 

fitosanitary condition. Then, they are weighed and the probable degree of alcohol is verified 

using a refractometer. Finally, the grape selection is made in accordance with the type of wine 

to obtain. 

Subsequently, the stems are removed and the grapes are crushed to squeeze out the 

so-called free-run juice with the help of a mechanical crusher/de-stemmer. The resultant is 

guided to pressing/fermentation through a mass pump. At this stage, sulphite is usually added 

to inhibit the growth of the natural microbial flora (bacteria), through the addition of an 

aqueous solution with 5% of potassium metabisulphite (K2S2O5). Some wine producers also add 

                                                           
4 This caption is based on IVBAM web pages (IVBAM, 2009) and on Elliot’s book (Elliott, 2010e). 
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pectolytic enzymes for helping extract more aroma and colour to musts. This addition can also 

increase the rate of must clarification.     

Pressing – This step is the act of applying pressure to grapes in order to separate juice 

from the skins, seeds and pulp, usually named as the pomace, and in Madeira wine 

winemaking can be performed through two fermentative processes: bica aberta or curtimenta. 

In the first one pressing occur as soon as grapes are crushed and before fermentation, while in 

the second the must is only pressed after alcoholic fermentation being conducted with the 

grape solids.  

Fermentation – This process starts when yeasts begin to digest the sugars present in 

the grape juice, producing ethanol and carbon dioxide as by-products. The amount of sugar 

corresponding to each Baumé degree (about 17 g/L) is transformed into about 1% of alcohol. 

The volume of carbon dioxide gas released during fermentation is equivalent to the amount of 

ethanol produced.  

Despite of be common in wine industry the inoculation of a selected pure yeast culture 

for the fermentation process accomplishment, in Madeira winemaking, fermentation starts 

spontaneously, due to the naturally present yeasts derived from grapes surface or picked up 

from cellar equipment and tanks. Generally, as the fermentation progresses the activity of 

metabolizing yeasts increases the temperature through heat production. The raise of the 

fermentation temperature affects not only the speed of the fermentation but also the quality 

of the final wine. It is recognized that low temperatures and consequently slower 

fermentations avoid the loss of volatile aromas, thus these conditions are the required to 

improve the wine quality. The Madeira wine fermentation is industrially elaborated usually in 

stainless steel tanks of the local wine-producing cellars, with temperature normally controlled 

bellow 25 °C. The fermentation is carried out according to the sugar content of the grape 

variety involved and the type of wine being produced (extra-dry, dry, medium-dry, medium-

sweet and sweet). Sweet wines are submitted to a soft fermentation with the purpose of 

maintaining the high content of residual sugars. Usually this process takes no longer than 5 

days. In contrast, dry wines are thoroughly fermented obtaining low sugar levels. This can take 

up to eight days.  

Fortification - Once the required level of sweetness is attained, usually below 130 g/L, 

the fermentation is stopped by the addition of natural grape spirit (containing 95% (v/v) of 

ethanol) raising the alcohol content up to 17 to 22% (v/v). This ethanol concentration usually 

promote multiple effects on taste and mouth-feel: can enhance sweetness (through ethanol 

sweet taste) and influence the perception of acidity, making these wines (usually acidic) 

appear less sour and more balanced (Jackson, 2000). Besides halting the alcoholic 

fermentation, fortification can also prevent the metabolism of lactic acid bacteria, which could 

produce too much acetic acid.  

The fortification is regulated and should never be done before being attained 4% of 

alcohol exclusively derived from alcoholic fermentation, to guarantee sufficient quantities of 

fermentative aromas, ensuring the quality of wine.  
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Clarification and stabilization – After fortification, yeast cells (lees) and other 

materials gradually settle to the bottom of the storage vessel by the force of gravity and so, 

the wine can be decanted into a new tank (racking process). Eventually, racking can be 

repeated until most of the lees, bacteria, tartrates, proteins and other insoluble matters have 

been separated from the wine, but the use of fining agents can speed up the process at lower 

the cost. Therefore, clarification is generally achieved with bentonite clays and/or gelatines. 

These ingredients are added to wine to combine with the suspended particles, making them 

larger molecules that can gradually precipitate. Unlike filtration, fining not only removes dead 

yeast cells and grape fragments, but also removes soluble substances such as tannins, phenols 

and proteins (gelatines). Finally, the wines are racked/filtered into new tanks or casks, free of 

any sludge. At this stage some corrections can be done, especially the alcohol addition. 

Ageing – This step can be achieved following one of the two ageing processes: 

estufagem or canteiro. In canteiro system, wines are aged in casks for at least 2 years, in the 

lofts of the wine cellars where the temperature is higher. Indeed wines are warmed exclusively 

from the natural temperatures of Madeira sub-tropical climate. Generally, the casks are made 

of oak, but eventually, chestnut, satinwood and mahogany are also used. Moreover, wines are 

deliberately exposed to air with a certain amount at casks top. This oxidative ageing makes 

wine develop intense and complex aromas. This kind of maturation promotes wine losses, 

often 4 to 5% per year, due to wine evaporation. Passed few years, wines are usually placed in 

cooler lodges, on the ground floor, where they continue their slow maturation before being 

bottled. Usually, these wines are commercialised only after 3 years of ageing. 

Most wines are aged through the artificial heating, estufagem. Presently, the 

estufagem system consists in putting the wine in stainless steel vats usually fitted with 

stainless steel serpentines. These coils allow hot water circulate inside the container gradually 

releasing heat throughout the wine, up to 55 °C at least during 3 months. Estufas are sealed 

and never filled to full capacity, ensuring that there is room for wine expansion and promoting 

oxidation. This kind of ageing accelerates the wine maturation and tends to suppress the 

secondary fermentation given that, in fact, consists in a soft pasteurization. Once this process 

is completed, wine is cooled, frequently for 3 or 4 weeks, before being clarified again. Then, 

rests, usually in oak casks, for at least 90 days, as regulated by the Madeira wine, Embroidery 

and Handicraft Institute, locally designated by IVBAM. At this moment, the oenologist can 

evaluate the wine characteristics and decide if the wine is ready to be bottled or continues to 

age until the required features are achieved. This decision is also dependent on the market 

law. The resulting wines can only be sold later than October 31 of the 2nd year following the 

harvest date, to ensure the quality guarantee. 

Another accelerated ageing method exposes wine to heat, usually up to 55 °C for 6 

months, in large wooden casks stored in wharehouses outfitted with steam producing tanks 

that heat the room, resembling a sauna. This ageing process is named as Armazém de Calor 

(Warehouse of Heat) but currently is rarely used. 

Bottling – Before bottling, the wines blending is frequently performed and several 

procedures may be done. These procedures may include racking and/or cold stabilization, 
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which consists in submitting wine (especially 3 and 5 years old wines) at low temperatures, to 

remove some remaining materials, preventing wine to become cloudy and gassy; fining, to 

eliminate the remaining brown sediments produced during the baking process and/or wood-

ageing; decolourization, if necessary, using charcoal – the opposite is achieved by using 

concentrated must; and finally the addition of natural grape spirit up to 17-22%, frequently 

performed to compensate the alcohol lost during the ageing process. Additionally, small 

amounts of sulphite may be added. Young wines may also be filtered prior to bottling. Then, 

wines can be bottled, generally in 75, 50 or 37.5 cL dark green, brown or black bottles to 

decrease the detrimental effects on quality commonly triggered by light. At this time, wine 

must have the adequate qualities and fulfil the analytical characteristics applied to liqueur 

wines and the legally established for wines in general. These requirements are controlled by 

the IVBAM, issuing the wines certificates after performing the analytic and organoleptic tests. 

 

1A.5 Styles 

Madeira wine presentation can vary from extra-dry to sweet (or rich) wines according 

to their proportion of residual sugars (see Table 1A.2) and range between very pale (typical of 

extra-dry wines) to dark brown (sweet wines) colours, passing through golden tones (see 

Figure 1A.9). 

TABLE 1A.2 – Madeira wine designations in terms of richness degree (adapted from Portaria Regional n. º 40/82, de 

2 de Fevereiro). 

Wine type Baumé scale 

Extra-dry < 0.5° 
Dry < 1.5° 
Medium-dry 1.0° - 2.5° 
Medium-sweet 2.5°- 3.5° 
Sweet > 3.5° 

 

FIGURE 1A.9 – Colours of Madeira wines (Elliott, 2010c). 
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Moreover, the following designations can be used to describe Madeira wine structure:  

Light – Wine slightly full-bodied but with well balanced consistency. 

Full-bodied – Well balanced wine with complex flavours that fulfil the mouth. 

Fine – Elegant wine, having a perfect balance between the acid freshness, the body 

maturity and the set of aromas developed during its ageing in cask. 

Soft - Fine wine with an evolved bouquet. 

Velvety – Soft wine, usually viscous, resultant from the ageing in cask. 

Mellow – Soft wine with evident ageing characteristics, with a perfect balance in its 

organoleptic features. 

These traditional designations are regulated in Portaria n.º 40/82 de 2 de Fevereiro and 

Portaria n.º 125/98 de 24 de Julho. Consequently, Madeira wines can be commercialized 

according to the following styles: 

Styles regarding the age: 

Selected or Finest (Seleccionado) – Wine that fulfils the standard features and ages for 

at least 3 years. This is the youngest level of Madeira wine and is usually prepared from TNM 

wines blended with others or not. Generally, bottles do not mention the varieties that gave 

rise. 

Rainwater – This wine has a maximum age of 5 years and its organoleptic 

characteristics are in conformity with the typical quality standards of the corresponding age. 

Presents a golden colour, with residual sugars ranging from 1.0 to 2.5° Baumé and density 

equal or below 1.0150 g/cm3 (medium-dry wine). Usually this kind of wine has 18% of alcohol. 

Reserve or Old (Reserva) – Quality wines with an ageing period equivalent to 5 years. 

These wines contain at least 80 % of Sercial, Verdelho, Boal or Malvasia. Currently, these wines 

can also be produced from TNM grapes. Reserve wines are often aged naturally without any 

artificial heat source. The bottle label indicates the name of the major vine variety. 

Old Reserve or Very Old (Reserva Velha) – Wine complying characteristics and qualities 

of a 10-year-old style. 

Special Reserve (Reserva Especial) – With the same features of 10-year-old Madeiras 

but is of outstanding quality. 

Extra Reserve (Reserva Extra) - This style is rarely encountered, but is usually richer and 

more complex than 10-year-old Madeiras, since can aged at least 15 years. Moreover, other 

styles can also be produced such as 20, 30 and over 40-year-old Madeiras.  

Styles regarding the year of harvest: 

Solera – These wines are aged trough a dynamic method of blending and ageing, in 

such a way that the bottled wine is a mixture of ages. This kind of ageing is known as solera 

system, which consists in a succession of casks, usually lined up in a cascade structure.  In this 
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system, a base wine fills all the containers and age through the canteiro procedure for at least 

5 years, from which, every year, a small portion (up to 10%) is removed from the bottom cask 

for bottling, being replaced by an equal amount of the wine from the casks above, while a new 

wine is introduced into the top cask, and so on up to a maximum of nine cycles. The resulting 

soleras indicate the harvest year of the base wine. 

Harvest (Colheita) – Quality wine obtained from a single harvest, with the indication of 

the harvest year. This style must be aged in casks at least 6 years. 

Vintage (Frasqueira/Garrafeira) – These wines are obtained from one of the traditional 

varieties of a particular fine year. This style must be aged in casks at least 20 years and 2 years 

in bottle prior to being sold. These wines are the best example of Madeira wine remarkable 

longevity. 

The wines produced by the Autonomous Region of Madeira have been categorized as 

VLQPRD (Vinho Licoroso de Qualidade Produzido em Região Determinada) and are authorized 

to bear the Protected Designation of Origin (PDO) locally designated as Denominação de 

Origem Protegida (DOP), the highest category obtained for wines. The DOP designation is 

given to wines traditionally produced in a defined geographic area, holding high quality 

patterns or characteristics inherent to the geographical location (natural and human factors). 

In addition, they are produced according to restricted rules, established by law, to make sure 

that all winemaking stages, from vineyard to final consumer, are strictly controlled. Therefore, 

several parameters are monitored by IVBAM, the regional wine committee, to ensure the 

genuineness and quality of the wines produced in the Madeira demarcated region. 

 

References 

Eiras-Dias, J. E., Paulos, V., Mestre, S., Martins, J. T., & Goulart, I. (2006). O encepamento do arquipélago 
dos Açores. Ciência e Técnica Vitivinícola, 21(2), 99-112. 

Elliott, T. (2010a). Commercialisation. In T. Elliott (Ed.), The Wines of Madeira: An indispensable guide to 
the wines, grapes and producers (pp. 122-132). Hampshire: Trevor Elliott Publishing. 

Elliott, T. (2010b). Storing and Serving. In T. Elliott (Ed.), The Wines of Madeira: An indispensable guide to 
the wines, grapes and producers (pp. 74-82). Hampshire: Trevor Elliott Publishing. 

Elliott, T. (2010c). Tasting. In T. Elliott (Ed.), The Wines of Madeira: An indispensable guide to the wines, 
grapes and producers (pp. 88-96). Hampshire: Trevor Elliott Publishing. 

Elliott, T. (2010d). Viticulture. In T. Elliott (Ed.), The Wines of Madeira: An indispensable guide to the 
wines, grapes and producers (pp. 22-24). Hampshire: Trevor Elliott Publishing. 

Elliott, T. (2010e). The Wines of Madeira: An indispensable guide to the wines, grapes and producers. 
Hampshire: Trevor Elliott Publishing. 

IVBAM. (2009). Madeira Wine.   Retrieved September 6, 2010, from http://www.vinhomadeira.pt 
Jackson, R. S. (2000). Chemical Constituents of Grapes and Wine. In R. S. Jackson (Ed.), Wine Science (2

nd
 

ed., pp. 232-280). San Diego: Academic Press. 
Liddell, A. (1998a). Early History. In A. Liddell (Ed.), Madeira (pp. 3-11). London: Faber and Faber Limited. 
Liddell, A. (1998b). The Eighteenth Century. In A. Liddell (Ed.), Madeira (pp. 24-36). London: Faber and 

Faber Limited. 
Liddell, A. (1998c). Madeira. London: Faber and Faber Limited. 
Liddell, A. (1998d). The Soil and the Grapes. In A. Liddell (Ed.), Madeira (pp. 81-93). London: Faber and 

Faber Limited. 



CHAPTER 1A 

 

 
16 

Lopes, M. S., Sefc, K. M., Eiras Dias, E., Steinkellner, H., Laimer Câmara Machado, M., & Câmara 
Machado, A. (1999). The use of microsatellites for germplasm management in a Portuguese 
grapevine collection. TAG Theoretical and Applied Genetics, 99(3), 733-739. 

Vieira, A. (1993). História do Vinho da Madeira Funchal: Centro de Estudos de História do Atlântico. 
Vieira, A. (2003a). Da Vinha ao Vinho. In A. Vieira (Ed.), A Vinha e o Vinho na História da Madeira. 

Séculos XV-XX (pp. 139-292). Funchal: Centro de Estudos de História do Atlântico. 
Vieira, A. (2003b). A Vinha e o Vinho na História da Madeira. Séculos XV-XX. Funchal: Centro de Estudos 

de História do Atlântico. 
Wang, H., Race, E. J., & Shrikhande, A. J. (2003). Characterization of Anthocyanins in Grape Juices by Ion 

Trap Liquid Chromatography−Mass Spectrometry. Journal of Agricultural and Food Chemistry, 
51(7), 1839-1844. 

 



 

 
17 

CHAPTER 1B 

Scientific overview 

 

1B.1 Introduction 

Madeira wine is one of the most important products of the Autonomous Region of 

Madeira economy, essentially due to its use as an aperitif or digestive, as well as to make 

sauces all over the world. Until nowadays, Madeira wine production and ageing process has 

been accomplished mainly according to the empirical understanding acquired over years. 

However, Madeira wine scientific knowledge may play an important role in its competitiveness 

in the current phase of the global economy. In fact, in the last decade, Madeira wine has been 

the target issue of some researchers. The scientific studies can actually extend the producers 

knowledge about important phenomena taking place during the winemaking process or even 

regarding wine quality evaluation. So far, at least 18 papers deal directly with Madeira wine 

scientific investigation, especially studying its volatile profile. Nogueira and Nascimento 

(Nogueira & Nascimento, 1999) performed one of the first studies, but was Câmara who 

developed the Madeira wine scientific research with its work for his doctoral thesis, regarding 

essentially the volatiles of these fortified wines (Câmara, 2004), from which resulted several 

scientific papers (Câmara, Alves, & Marques, 2006a, 2006b, 2006c, 2007; Câmara, Herbert, 

Marques, & Alves, 2004; Câmara, Marques, Alves, & Silva Ferreira, 2003; Câmara, Marques, 

Alves, & Silva Ferreira, 2004) . 

Nogueira and Nascimento (1999), firstly performed the analytical characterization of 

Madeira wines, analysing the physicochemical and sensorial parameters of 52 samples from 

different types and ages. They concluded that all parameters are generally below of national 

and/or international regulations. They also applied statistical concepts to data, namely 

principal component, discriminant and cluster analysis, achieving the wines differentiation 

regarding the type and age. After that, the following studies have placed great emphasis on 

the aromatic characterization of Madeira wine, from grape musts to aged wines. These studies 

not only characterize these wines in chemical terms but also by sensory analysis. Particularly, it 

was performed the first study on the process of estufagem. Later, some researchers sought to 

take advantage of the experimental data by applying advanced multivariate statistical 

techniques in order to obtain adequate tools to predict the age of Madeira wines. Finally, it 

was started the study of other compounds with interest on the safety of Madeira wines, for 

example ethyl carbamate and metallic ions. 

 

1B.2 Studies regarding Madeira wine volatile composition 

Firstly, Câmara et al. (2003) studied the evolution of heterocyclic acetals (1,3-dioxanes 

and 1,3-dioxolanes) as possible indicators of Madeira wines age. They found a linear 
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correlation between these acetals and wine ageing. They also suggested that oxidative 

conditions observed during maturation did not appear to cause any influence into acetalization 

reaction.  

In 2004, the same authors determined the sotolon levels, a very powerful odorant, and 

its association with sugar content. To accomplish this purpose, they analysed 86 Madeira 

wines produced from the most common white varieties, with different sugar concentrations 

and aged from 1 to 25 years (Câmara, Herbert, et al., 2004). This study revealed that the 

highest sotolon levels reached 2 mg/L, especially in the sweetest Madeira wines. They found 

that sotolon concentration linearly increased with age. They also suggested that sotolon 

formation may derive from sugars as well as observed for furanic derivatives.  

In the same year, Câmara and co-workers (2004) also characterized the varietal 

volatiles of four musts of Madeira wine grape varieties: Boal, Malvasia, Sercial and Verdelho. 

They validated a dynamic headspace solid-phase micro-extraction (HS-SPME) method, coupled 

with gas chromatography–mass spectrometry (GC-MS), to evaluate the free terpenoids profile 

of 39 musts (3 replicates of the same variety of the harvests: 1998, 1999 and 2000). The 

validation procedure was later published (Câmara, et al., 2006b). β-Damascenone and β-

ionone were the predominant terpenoids in these musts, both present at concentrations 

above their perception threshold (45 ng/L), hence responsible of musts fruity and exotic notes. 

They concluded that Malvasia presented the highest terpenoid levels while Verdelho showed 

the lowest ones. Moreover, the four musts were well distinguished regarding the varietal 

origin, when were applied common statistical approaches to data, especially when linear 

discriminant analysis (LDA) was used. 

Then, the volatile profile of 33 monovarietal Madeira wines of the 5 most used 

varieties, with different ages and degree of sweetness, was characterized by means of SPME 

and stir bar sorptive extraction (SBSE) followed GC–MS, by  Alves et al. (2005). These 

researchers highlight SBSE technique for its capability of being used for major and trace 

compounds, with potential impact on the aroma complexity of Madeira wines. They found 

esters (>80.7%), alcohols (<8.2%), C13-norisoprenoids (<6.5%), carboxylic acids (<4.2%), 

aldehydes (<3.7%), lactones (<3%), pyrans (< 1.7%) and terpenes (<1.4%) as constituents of the 

aroma profile of Madeira wine. Using the SBSE methodology, these researchers identified two 

important aroma compounds (woody, coconut, vanilla and chocolate notes) in Madeira wine 

reserves derived from oak wood, trans-oak lactone and cis-oak lactones, showing an increase 

with ageing. Moreover, the C13-norisoprenoids, β-damascenone, β-ionone and 

dihydroactinidiolideome were detected in these wines. Other compounds, usually associated 

with the thermal degradation of sugars and carotenoids, were also found, namely 5-

hydroxymethylfurfural (HMF), 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP), 

vitispirane (VTP), 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) and the TDN derivative 1,1,6-

trimethyl-1,2,5,6-tetrahydro-6-ethoxynaphthalene. Once again, authors applied multivariate 

techniques to evaluate the statistical analysis of data. According to them, the differentiation 

between the young wines dry/medium-dry and sweet/medium-sweet was remarkable, as well 

as for young and old wines (reserves). Diethyl succinate, cis-oak lactone and ethyl octanoate 

reveal to be the discriminating variables. 
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Câmara et al. (2006a) also evaluated the volatiles changes of the four most used white 

varieties during 1, 11 and 25 years of wood-ageing, by means of  dichloromethane liquid-liquid 

extracts. At least 120 volatile compounds were encountered in these wines, mainly isoamyl 

alcohols, 2-phenylethanol, hexanoic and octanoic acids and also 20 different furanic 

derivatives. Additionally, β-damascenone, TDN, the isomeric vitispiranes, the cis- and trans-

furan linalool oxide, the cis- and trans-whisky lactone, the dioxanes and dioxolanes isomers 

and many other constituents were also identified. Besides the furanic derivatives, other 

compounds usually associated with sugar thermal degradation were also found, such as 

cyclotene, maltol, DDMP and 3,5-dihydroxy-2-methyl-4H-pyran-4-one (DMP). Their results 

revealed a great increase with age of ethyl esters of diprotic acids and furanic derivatives 

whilst the concentrations of fatty acids ethyl esters, acetates and fatty acids declined. 

Methanol, acethaldehyde and ethyl acetate concentration enlarged with ageing as well. 

Indeed, they suggest that sotolon, 5-methylfurfural, furfural, HMF, 5-ethoxymethylfurfural 

(EMF), may be considered ageing markers of these wines. 

Similar to Alves et al. (2005), Câmara and co-workers (2006c) also applied HS-SPME 

followed by GC-MS to differentiate 36 young monovarietal Madeira wines (8 months in oak 

casks) according to the grape variety, using multivariate statistical analysis. In this study, the 

identified compounds (42) were grouped into four different sets (higher alcohols, fatty acids, 

ethyl esters and carbonyl compounds) to compute the principal component analysis (PCA) 

model. Actually, this procedure may seem contradictory with PCA goal. PCA is proposed to 

lead with a high number of collinear variables. Therefore, grouping variables in order to 

perform analysis based on a lower number of variables may, in some cases, limit the 

exploratory analysis that PCA seeks to carry out. LDA was applied to classification purposes, 

highlighting the variables with more contribute to the differentiation of these young Madeira 

wines (non-commercial wines), which were (E)-hex-3-en-1-ol, diethyl succinate, EMF, ethyl 

octanoate and hexanoic acid. Later, these authors applied the same analytical and statistical 

procedures to classify these wines in terms of terpenoid patterns, concluding that this class of 

compounds also allows the distinction of Madeira wines according to variety, especially 

vitispirane, α-terpineol, farnesol and linalool (discriminating variables) (Câmara, et al., 2007). 

They also verified that young Malvasia wines presented the highest levels of total free 

monoterpenols while Verdelho exhibits the lowest contents, like previously observed for 

monovarietal musts of the same varieties (Câmara, Herbert, et al., 2004). 

Different styles (dry, medium-dry, medium-sweet and sweet) of Tinta Negra Mole 

(TNM, red variety) young wines were also characterized regarding their volatile profile 

(Perestrelo, Fernandes, Albuquerque, Marques, & Câmara, 2006). Wine volatiles were 

extracted with dichloromethane through a validated liquid–liquid extraction, allowing their 

quantification. More than 90 compounds were found in the volatile fraction of these TNM red 

wines, mainly belonging to the following chemical families: higher alcohols, ethyl esters of 

medium-chain fatty acids, fatty acids, carbonyl compounds and higher alcohols acetates. 

Others were also detected but in minor quantities: furans, lactones, dioxanes, dioxolanes, 

volatile phenols and sulphur-containing compounds. The dry style presented the highest 

amount in volatiles (about 570 mg/L). Indeed, this result was expected since in a young wine 

the abundant volatiles are essentially derived from the fermentative step, which is more 
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extensive in dry wines. TNM sweet wines presented the highest concentration of carbonyl 

compounds, indicating that sugars can play an important role for the formation of these 

volatiles. They also tentatively established the most powerful odorants of TNM wines, 

concluding that ethyl octanoate, phenylacetaldehyde, ethyl hexanoate, isoamyl acetate, 

octanoic acid and 2-phenylethyl acetate were the most prominent.   

The aroma profile of Madeira wines was also studied through sensorial, GC-O (gas 

chromatography–olfactometry) and GC-MS analysis by Campo et al. (2006). They characterized 

4 emblematic 10-year-old monovarietal wines (Malvasia, Boal, Verdelho and Sercial) as candy, 

nutty, maderized, toasty, lacquer and dried fruit. The GC-O results let them conclude that 

Madeira wines aroma is particularly complex (41 odorants). This study also presented rankings 

of Madeira wine odorants, obtained by quantitative GC-O analysis and maximum odour 

activity values (OAVs are obtained through GC-MS quantitative analysis), among which, 

isoamyl alcohol (fusel), 2,3-butanedione (butter), 2-methoxy-4-vinylphenol (bitumen), 

phenylacetaldehyde (green, honey), sotolon (spicy), 2-methoxyphenol (smoky), (Z)-

whiskylactone (coconut) and some volatile phenols from wood, stand out. The powerful 

odorant 2-furfurylthiol (toasty) was only perceived in Sercial wine. Moreover, they also 

detected through the GC-O analysis several important unknown odorants specific from 

Madeira wines. They also highlighted the absence of varietal aromas such as terpenoids, 

leading to infer that these volatiles are not important odorants in aged Madeira wines. 

Oliveira e Silva and colleagues (2008) also performed sensorial and GC-O analysis but 

with the purpose of determining the optimal temperature and baking time to achieve Madeira 

wines with typical features. To accomplish this aim, young Malvasia and Sercial wines (two of 

each, produced under different fermentation periods) were submitted to baking at three 

temperatures: 30, 45, and 55 °C during 4 months. Firstly, an expert panel carried out sensorial 

analyses to find out the best descriptors of reference Madeira wines, which were: dried fruit, 

nutty, musty, baked, oak, mushroom, and brown sugar. The same panel gave the highest 

scores to both wines baked at 45 °C during 4 months, but considered the wines baked at 45 °C 

during 3 months more similar with the reference Madeira wine (selected wines). Indeed, 

Malvasia was considered (the sweetest) the wine which most closely matches with a typical 

Madeira wine, suggesting that sugar can play an important role in the aroma of Madeira wines. 

Then, the ranking of descriptors found in the selected wines was performed by GC-O analysis 

according to aroma extract dilution analysis (AEDA). Some odorants were common to both 

Malvasia and Sercial wines, with the following descriptors: toasty, dried fruits (nutty) and 

burnt sugar. Others were specific of Malvasia and Sercial wines, for example, an odorant 

described as baked vegetable was only found in Sercial wines and was identified as methional. 

Finally, these researchers realized that sotolon, identified as the odorant described as nutty 

(dried fruits), is responsible for a huge impact on the flavour of both Malvasia and Sercial 

wines, especially because this odorant presented the highest scores in GC-O/AEDA ranking. 
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1B.3 Chemometric studies 

There are other studies that deal with the development and application of advanced 

multivariate statistical methodologies, entitled chemometric analysis, aiming monitoring the 

quality of Madeira wines over ageing period, centring on their aromas (Pereira, Reis, Saraiva, & 

Marques, 2010) and on their polyphenolic and organic acid profile (Rudnitskaya, Rocha, Legin, 

Pereira, & Marques, 2010). Particularly, classification methodologies for evaluating ageing 

period have been developed using LDA and/or k-nearest neighbor (kNN) classifiers methods on 

features extracted from partial least squares discriminant analysis (PLS-DA) (Pereira, et al., 

2010). Moreover, these kind of studies are important tools to find out potential adulterations 

and falsifications.  

In a first approach, 8 Madeira wines, produced from the four most common white 

varieties and aged for 5 and 10 years, were studied by Pereira and co-workers (2010) in order 

to assess whether the information of the major volatile compounds, along with the proper 

techniques of advanced multivariate statistical, allowed proceed with the appropriate 

procedures to identify the different types of Madeira wines in terms of ageing time. The 

results reached in that paper give a solid base in this sense: the evolution trends were 

identified based on wines aroma profiles (GC-MS experimental data). PCA results showed that 

dry and medium-dry wines (Sercial and Verdelho) have similar behaviours with ageing, whilst 

the medium-sweet and sweet wines together follow the opposite direction. Based on the same 

results, they also verified that 5-year-old wines showed more similarity amongst themselves 

than 10-year-old ones. Furthermore, they also demonstrated that Malvasia wines showed 

faster maturation kinetics, perhaps by having higher sugar content. Moreover, a new approach 

based on the contribution plot concept was developed and tested to evaluate the importance 

of volatiles in the explanation of such trends. Hence, this study identified the volatiles which 

had contribution for the notorious evolution trends in Malvasia and Boal, which indeed were 

quite similar. Several carbonyl compounds seem to play an important role in the ageing trend 

of medium-sweet and sweet wines, such as vanillin, butyrolactone, furfural, furfuryl alcohol, 

diethyl malate, HMF and especially acetoin. In the case of medium-dry and dry wines the 

compounds with great contribution in their ageing trend were alcohols, quite abundant in 

these wines, and especially the esters diethyl succinate, ethyl citrate, diethyl malate and the 

corresponding malic acid as well.  

According to the previous results, the same authors decided to analyse the aroma 

composition and its evolution through ageing process for wines produced from a single grape 

variety, since different ageing trends for different Madeira wines were identified. In this 

regard, 26 aged Malvasia wines were characterized in terms of volatiles in order to assess the 

aroma composition and its evolution through an extended ageing period (20 years), and then 

use such information in order to develop a classification framework, to allow the proper 

estimation of the wine age (Pereira, et al., 2010). The proposed classification methodology, 

based on the kNN algorithm using eight latent variables extracted from the PLS-DA method, 

achieved a performance of 4%. This error rate could be improved to lower than 1% if the 

classification resolution was reduced (considering 9 classes instead of the original 10). 
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On the other hand,  Rudnitskaya et al. (2010) purposed a prediction methodology to 

estimate Madeira wine age based on electronic tongue (ET) response to organic acids, 

phenolics and furanic compounds (24 variables). Furthermore, they also evaluated the use of 

ET for quantifying organic acids and phenolic compounds. First of all, these researchers 

determined the amounts of these compounds in 14 Madeira wines (3, 6, 10 and 17 years old 

Boal, Malvasia, Verdelho and 3 and 6 years old TNM) by high performance liquid 

chromatography coupled with diode array detection (HLPC-DAD), for calibrating the ET 

multisensor system (26 potentiometric chemical sensors). Then, they built calibration models 

for age prediction and for the quantification of compounds using PLS1 regression, validating 

through cross-validation. According to these authors, the HPLC and ET classification models 

could predict the wine age with the accuracy of 2.6 and 1.8 years, respectively. Additionally, 

they found out that ET was capable of detecting 3 organic acids: tartaric, citric, formic and 5 

polyphenols: protocatehuic acid, vanillic acid, sinapic acid, catechin, vanillin and trans-

resveratrol, with less than 18% of error. 

 

1B.4 Other studies 

Further studies have been published about Madeira wines, but this time regarding 

other compounds besides wine volatiles. Perestrelo and colleagues (2010) proposed a 

methodology to determine ethyl carbamate, a potential carcinogenic, in fortified wines, based 

on HS-SPME combined with comprehensive two-dimensional gas chromatography with time-

of-flight mass spectrometry (GC × GC-ToFMS). The developed analytical methodology 

presented low detection limits (at least 2.75 µg/L) but accuracy levels of about 16%. These 

researchers applied this method to 20 monovarietal Madeira wines produced from TNM, 

Sercial, Verdelho, Malvasia and Boal varieties from different harvests. They concluded that the 

winemaking procedure plays an important role in the ethyl carbamate levels found, from 54.1 

(medium dry) to 162.5 μg/L (medium sweet), in which 50% of the analysed Madeira wines 

exceeded the limit imposed by Canada (100 μg/L), but unfortunately, they did not studied the 

origin of its formation in these wines.  

Finally, Pérez Trujillo et al. (2011) determined the contents of 11 metallic ions in wines 

from the archipelagos of Madeira and Azores. Among the 64 wines analysed, 36 were from 

Madeira Island, 15 of which were table wines and 21 were fortified wines. They found out that 

Madeira and Azores wines presented high contents of sodium than wines from continental 

regions. However, these contents were similar to those found in wines made of vines 

surrounded by the sea, such as those from Canary Islands. The levels found of iron were less 

than 5.7 mg/L, so they concluded there was no ferric cloudiness. Conversely, they observed 

that the copper levels of some Madeira wines exceeded the limit imposed by the International 

Office of Vine and Wine (OIV) of 1 mg/L, perhaps by the cellar’s winemaking technology or 

even by some excessive phytosanitary treatments against oidium. Additionally, they verified 

that these contents were in average higher in the wines produced in Madeira (0.63 mg/L) 

comparatively with those produced in Azores Islands (0.22 mg/L). Regarding zinc levels, they 

were always lower than 3 mg/L, well below the limit established by OIV, of 5 mg/L. Little 
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differences were observed in the levels of Na, Ca, Mg, Sr, Li and K between the wines of these 

two islands, but with respect to Fe, Cu, Zn and Mn their values were higher in the wines from 

Madeira than those from Azores, which presented the highest contents in Rb. These authors 

also observed that Madeira liquor wines have greater amounts of Fe, Cu and Mn and lower 

amounts of Ca, Mg and Rb than table wines, maybe due to the influence of the alcohol degree 

in the solubility of the metallic salts.  
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CHAPTER 2A 

Nitrogen-containing compounds 

 

2A.1 Introduction 

Grapes hold several forms of nitrogen-containing compounds, inorganic and organic 

sources (Hutkins, 2007), which all together contribute to the total nitrogen of grapes. The 

inorganic forms include ammonia (in the form of ammonia salts) and nitrates whereas the 

organic forms encompass several chemical substances. The main organic nitrogen-containing 

compounds are amino acids, proteins and peptides. Actually, the organic nitrogen at grape 

harvest is usually constituted by 70% of amino acids, while proteins and peptides do not 

represent more than 5% (Moreno-Arribas & Polo, 2009). 

Total nitrogen can be measured in wineries usually through the Kjeldahl method 

(Ribéreau-Gayon, Glories, Maujean, & Dubourdieu, 2006d). Generally, the total nitrogen of 

grape must is quite low (between 150 to 650 mg/L) but enough for the initial growth of yeasts 

and varies each year, certainly due to variations in grape ripeness (Jacobson, 2006; Ribéreau-

Gayon, et al., 2006d). Furthermore, nitrogen also varies greatly between varietals and 

vineyards. Generally, red table wines at their final stage keep higher total nitrogen contents 

(143 – 666 mg/L) than white wines (77 – 377 mg/L), since their vinification usually includes 

maceration at greater temperatures, which facilitates the dissolution of nitrogenated 

substances from grape seeds, skins and also from dead yeasts cells (Ribéreau-Gayon, et al., 

2006d). 

Undeniably, nitrogenous compounds are essential nutrients to yeast during the entire 

fermentative process. Yeasts nitrogen needs are influenced by temperature, sugar and oxygen 

concentration (Moreno-Arribas & Polo, 2009). Occasionally, the nitrogen content may become 

insufficient, sluggish or stuck fermentations can occur and hydrogen sulfide (off-odour 

compound) may be produced, compromising the wine quality (Hutkins, 2007 74). To prevent 

this problem, several winemakers usually add ammonium salts to the must, especially in the 

case of grapes deficient in nitrogenous compounds, however this practice can reduce the 

concentration of some higher alcohols, which contribute to the aromatic complexity of wines 

(Purificación Hernández-Orte, Cacho, & Ferreira, 2002). On the other hand, if this procedure is 

carefully handled can actually decrease the volatile acidity up to 70%, depending on the type 

of yeast involved (Hernandez-Orte, Bely, Cacho, & Ferreira, 2006). Indeed, the quantity and 

quality of available nitrogen affects the fermentation kinetics, the production of ethanol, 

glycerol, aromatic and spoilage compounds, and therefore the wine quality (P. Hernández-

Orte, Ibarz, Cacho, & Ferreira, 2005). Thus, it is important to study the nitrogenous 

components. 
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2A.2 Amino Acids  

Amino acids are organic compounds whose general structure usually encloses at least 

one amino group (-NH2) attached to a carbon containing a carboxyl group (-COOH) (Jackson, 

2000a): 

 

Actually, this structure corresponds to the α-amino acids. Amino acids have molecular 

weights below 200 Da (Ribéreau-Gayon, et al., 2006d). They play a central role as building 

blocks of peptides and proteins, namely as components of cell walls, promoting their growth, 

repair and maintenance (Eggeling & Sahm, 2009).  

Amino acids are already present in wine grapes, constituting up to 80% of berry 

nitrogen content essentially as non-soluble components of the fruit (Jackson, 2000b). Free 

amino acids are then transferred to wine musts through crushing and pressing practices. At 

this stage, they serve as nutrients for yeasts conducting the alcoholic fermentation, but can 

also be metabolized if malolactic fermentation (secondary fermentation) progresses (Moreno-

Arribas & Polo, 2009). Besides their importance during the fermentative process, amino acids 

concentration and composition can also indirectly contribute to the aromatic complexity of 

wines, since they are involved in the synthesis of flavour substances. Amino acid profile and 

concentration in wines are dependent from grape variety (including rootstock), climatic and 

growing conditions of grapes (mainly nitrogen fertilization), winemaking procedures and 

vintage (Ribéreau-Gayon, Glories, Maujean, & Dubourdieu, 2006a).  

In winemaking, amino acids are an important fraction (25–30%) of the nitrogenous 

source released in the crushing and pressing practices and constitute a relevant source (30–

40%) to yeast growing and vitality during the alcoholic fermentation, namely because their 

digestion produces energy in the ATP form (Jackson, 2000a; Ribéreau-Gayon, et al., 2006d; 

Zamora, 2009). Other nitrogen sources are also available in grape musts such as ammonia (3–

10% of total nitrogen), peptides (25–40%) and proteins (5–10%), but only some of them can be 

assimilated by the wine yeasts (Moreno-Arribas & Polo, 2009; Ribéreau-Gayon, Glories, 

Maujean, & Dubourdieu, 2006b). Yeast nitrogen needs can be firstly ensured by ammoniacal 

nitrogen. Indeed, some yeast can synthesize amino acids only from ammoniacal nitrogen 

assimilation, but amino acids earlier presence stimulates yeasts more than ammonium. During 

the fermentative process, yeasts also enzymatically degrade the proteins into peptides and 

peptides into amino acids, easily assimilated. These occurrences together with yeasts self-

digestion through the action of their own enzymes (also known as autolysis) usually increase 

the concentration of free amino acids at the end of fermentation. 

Among the 32 free amino acids found in musts and wines, proline, arginine and alanine 

are usually the most abundant (Ribéreau-Gayon, et al., 2006d). The most important amino 

acids are presented in Figure 2A.1 and all have L configurations. Some are acidic compounds 

(aspartic acid and glutamic acid), other are basic (lysine, histidine, ornithine, citrulline and 
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arginine) and others have no marked acidic or basic character (serine, threonine, tyrosine 

cysteine and methionine). Amino acids assimilation by yeasts is quite different, proline can 

only be assimilated under aerobic conditions while the others are readily assimilated after the 

disappearance of the ammonium cation from the medium (Boulton, Singleton, Bisson, & 

Kunkee, 1996; Ribéreau-Gayon, et al., 2006a). Arginine, alanine, glutamic acid (precursor of 

proline and arginine), glutamine, aspartic acid, asparagine, threonine and serine, are 

favourably assimilated (Moreno-Arribas & Polo, 2009).  

 

FIGURE 2A.1 – Main amino acids found in wines. 
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Amino acids have motivated researchers to study their profile and influence in wine 

production (Valero, Millán, Ortega, & Mauricio, 2003), not only for their importance in the 

fermentation step but essentially for their important effect on the wine flavour development 

(Garde-Cerdán & Ancín-Azpilicueta, 2008; Hernandez-Orte, et al., 2006; Purificación 

Hernández-Orte, et al., 2002; Hernández-Orte, et al., 2005; Pozo-Bayon et al., 2005). They are 

metabolic precursors of higher alcohols (also called as fusel alcohols), esters, aldehydes, and 

ketonic acids (Soufleros, Bouloumpasi, Tsarchopoulos, & Biliaderis, 2003). Amino acids are 

converted into keto-acids and therefore mostly into their corresponding alcohols through 

yeast’s Ehrlich pathway (Garde-Cerdán & Ancín-Azpilicueta, 2008). For example, valine, leucine 

and isoleucine catabolism yields 2-methylpropanol, 2-methylbutanol and 3-methylbutanol, 

respectively, whereas phenylalanine, tyrosine, tryptophan and methionine originate 2-

phenylethanol, tyrosol, tryptophol, methionol (Ugliano & Henschke, 2009). Subsequently, 

higher alcohols become precursors of esters, especially acetate esters (Sumby, Grbin, & 

Jiranek, 2010).  

Amino acids participate in several enzymatic and chemical reactions in wines. They can 

react with α-dicarbonyl compounds, during fermentative process or even during maturation 

(via Strecker degradation according to Maillard reaction), to form several compounds, namely 

volatiles with different aromas: sulphury, floral, toasted and roasted notes (Costantini, García-

Moruno, & Moreno-Arribas, 2009; Marchand, de Revel, & Bertrand, 2000; Pripis-Nicolau, de 

Revel, Bertrand, & Maujean, 2000). For example, cysteine can play an important role in wine 

aroma since it produces sulphur volatiles with low olfactory threshold. Their metabolism not 

only favours the wine aroma complexity but can also be responsible for the arising of 

undesirable compounds, namely off-odour compounds, biogenic amines and precursors of 

ethyl carbamate.  

In the case of off-odour formation, cysteine and methionine metabolism are the best 

example. They are metabolised by lactic acid bacteria (LAB) into several sulphur-containing 

compounds, namely into hydrogen sulphide and methanethiol (Costantini, et al., 2009). 

Moreover, the chemical metabolism of methionine during wine oxidative ageing yields 

methional, an unpleasant aroma compound (Escudero, Hernández-Orte, Cacho, & Ferreira, 

2000). 

On the other hand, amino acid enzymatic decarboxylation results in the formation of 

biogenic amines, undesirable compounds at high levels, due to the physiological effects in the 

human organism consequently of their toxicology (Santos, 1996). 

Arena and co-workers have studied the arginine metabolism by wine LAB on the 

formation of ethyl carbamate precursors (Arena & Manca de Nadra, 2005; Arena, Saguir, & 

Manca de Nadra, 1999). Arginine, usually abundant in grape juice, is mostly metabolized by 

yeasts during the alcoholic fermentation, namely into proline and urea (through the action of 

arginase-urease) but still remains present in wine after this fermentative step (Arena, et al., 

1999; Moreno-Arribas & Polo, 2009). Thus, arginine is usually accessible for the LAB 

metabolism during the malolactic fermentation (MLF), conducted after alcoholic fermentation 

depletion, especially in red wines. During MLF, arginine can be catabolised by LAB into 
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citrulline and ammonia (NH3) via arginine deiminase. In turn, citrulline is converted into ATP, 

CO2, NH3 and ornithine in two enzymatic reactions (Arena, et al., 1999). 

At last, the knowledge of this nitrogenous compounds in wines has been important 

since amino acid profile has been successfully used for authenticity studies and criteria for 

differentiation (Etiévant, Schlich, Bouvier, Symonds, & Bertrand, 1988; Heberger, Csomos, & 

Simon-Sarkadi, 2003; Kim, Kim, Cheong, & Jeong, 1996; Pet'ka, Mocák, Farkaš, Balla, & Kováč, 

2001; Soufleros, et al., 2003). 

 

2A.3 Biogenic amines 

Biogenic amines are low-molecular weight nitrogenous bases (containing an amino 

group), whose chemical structure may be aliphatic (putrescine and cadaverine), aromatic 

(tyramine) and heterocyclic (histamine) (Santos, 1996). They are naturally present in grapes 

but in wines derive mostly from the fermentative processes and can also be developed during 

ageing and storage (Moreno-Arribas & Polo, 2009). Biogenic amines can also be originated 

from microbial contaminations due to poor sanitary conditions of grapes and processing 

equipment. Certainly, contaminations during winery operations and raw material quality 

together with winemaking processes, ageing time and storage conditions can explain the 

variability of the amine contents in wines. 

Occurrence of amines in different types of foods is usually associated to proteins 

degradation through microbial activity which cannot be easily extended to wines, as the 

protein content is low. However, amines occurrence in wines may be related with: their 

naturally presence in grapes; amino acid decarboxylation through the substrate-specific 

enzymes of yeasts (during alcoholic fermentation) or spoilage bacteria (during malolactic 

fermentation); aldehydes and ketones amination and/or transamination (Anli, Vural, Yilmaz, & 

Vural, 2004; Santos, 1996). Nevertheless, biogenic amines are mainly produced by 

decarboxylation of amino acids by microorganisms and inadequate sanitary conditions, that at 

some stage of winemaking, can contribute for their increase in wines because of the presence 

of spoilage bacteria (Leitão, Marques, & San Romão, 2005). Most contaminations happen 

during the spontaneous (non-controlled) malolactic fermentation (Moreno-Arribas & Polo, 

2009). Moreover, the practice of amino acid addition can intensify their occurrence in wines 

(Soufleros, Bouloumpasi, Zotou, & Loukou, 2007). Histidine can be enzymatically 

decarboxylated into histamine, tyrosine into tyramine, tryptophan into tryptamine, lysine into 

cadaverine, ornithine into putrescine and arginine into spermine and spermidine (Santos, 

1996).  Figure 2A.2 presents the most common biogenic amines found in wines. 

It seems that cadaverine, spermine and spermidine are essentially formed by yeasts 

during alcoholic fermentation, while putrescine, already present in grapes, histamine and 

tyramine greatly enhanced during malolactic fermentation and ageing (Landete, Ferrer, & 

Pardo, 2007; Moreno-Arribas & Polo, 2009; Soufleros, et al., 2007).  
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FIGURE 2A.2 – Most common biogenic amines present in wines. 

Biogenic amines are usually found in wines at low concentrations when comparing 

with other fermented foods, such as beers and some sausages (Moreno-Arribas & Polo, 2009; 

Soufleros, et al., 2007). However, the ingestion of some biogenic amines, namely histamine, 

tyramine and phenylethylamine, especially at higher concentrations, can induce adverse 

effects, like headache, nausea, rushes,  hypo- and hypertension, digestive problems and 

allergic reactions (Jackson, 2000a; Santos, 1996). In general, these biogenic amines are 

considered toxic in alcoholic beverages if they are in the following ranges: 8 – 20 mg/L for 

histamine, 25 – 40 mg/L for tyramine (Moreno-Arribas & Polo, 2009). In the case of 

phenylethylamine little as 3 mg/L can cause negative physiological effects. Thus, and from a 

toxicological point of view, histamine content have been recommended to be regulated in 

wines by several countries:  Germany (2 mg/L), Belgium (5-6 mg/L), France (8 mg/L), Holland (3 

mg/L), Switzerland and Austria (10 mg/L) (Landete, Ferrer, Polo, & Pardo, 2005; Moreno-

Arribas & Polo, 2009). Putrescine and cadaverine are not themselves toxic but are usually 

associated with wine deficient sanitary conditions, improving negative flavours of putrefaction 

or rotting flesh, respectively. These amines can increase the toxicity of histamine, tyramine 

and phenylethylamine, since they obstruct the removal of these toxic substances from the 

body. However, putrescine can be dangerous if react with nitrites to form a carcinogenic 

nitrosamine (Costantini, et al., 2009). 

Frequently, the levels of biogenic amines are higher in red wines than in white wines 

given that they usually undergo maceration during the alcoholic fermentation (increasing the 

amino acid content) and suffer malolactic fermentation (Moreno-Arribas & Polo, 2009). 

Naturally, there are other wine types which are susceptible to the biogenic amines 

problematic, since they include peculiar practices which favour the occurrence of these 

compounds, among which are example the sparkling wines, biologically aged wines and wines 

made of botrytized grapes such as Tokaji Aszú wines (Kiss, Korbász, & Sass-Kiss, 2006; Moreno-

Arribas & Polo, 2009).  

 

2A.4 Amides 

Amides are substances which contain an amino group (-NH2) directly linked to a 

carbonyl function (-CO) (Jackson, 2000a):  
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The most common examples found in wines are urea and ethyl carbamate: 

 

Urea formation in wines is related to arginine metabolism carried out by yeasts during 

the alcoholic fermentation. Wines usually enclose less than 1 mg/L in urea (Ribéreau-Gayon, et 

al., 2006d). Urea importance in wine is related to the development of ethyl carbamate. 

Apprehensive with the ethyl carbamate genotoxic characteristics, Canada has 

introduced the following acceptable limits in alcoholic beverages: 30 µg/L in table wines, 100 

µg/L in fortified wines, 150 µg/L in distilled spirits, 200 µg/L in sake and 400 µg/L in fruit 

brandies and liqueurs (Hasnip et al., 2007). Nonetheless, at present time there are no 

maximum levels for ethyl carbamate established by any reference entity as the Codex 

Alimentarius, the European Union or others, and only few countries follow the example of 

Canada of drawing up their own recommendations. In fact, the biggest implication for the 

economy is the paralysation of wines exportation to these countries if these guidelines are not 

accomplished. 

Ethyl carbamate or urethane was recently re-classified as potentially carcinogenic 

(Group 2A) by the International Agency for Research on Cancer (IARC) (Lachenmeier, Kanteres, 

Kuballa, López, & Rehm, 2009). For this reason, great efforts have been done by several 

researchers to examine ethyl carbamate occurrence in several foods (Hasnip, et al., 2007; 

Nóbrega, Pereira, Paiva, & Lachenmeier, 2009; Park et al., 2007), namely in wines (Uthurry et 

al., 2004), as well as its origin and factors affecting its formation (Arena & Manca de Nadra, 

2005; Arena, et al., 1999; Bruno, Vaitsman, Kunigami, & Brasil, 2007; Mira de Orduña, Liu, 

Patchett, & Pilone, 2000; Uthurry, Lepe, Lombardero, & García Del Hierro, 2006). The low 

concentrations of ethyl carbamate and the occurrence of interferences demand precise and 

sensitive methods. Therefore, in recent years, great importance has been given to the 

development of new methodologies to determine this amide, especially in decreasing the 

time-consuming of the oldest ones (Herbert, Santos, Bastos, Barros, & Alves, 2002;  

Lachenmeier, Nerlich, & Kuballa, 2006; Park, et al., 2007; Perestrelo, Petronilho, Câmara, & 

Rocha, 2010; Zhang & Zhang, 2008).   

In wines, ethyl carbamate is mainly formed from the ethanolysis of precursors, mostly 

urea and citrulline, derived from the arginine metabolism during the fermentative processes 

(Weber & Sharypov, 2009). Additionally, it has also been reported that hydrogen cyanide 

derived from cyanogenic glycosides, present in raw materials, can also potentiate the ethyl 

carbamate development (Weber & Sharypov, 2009). Besides being developed during the 

fermentative steps, ethyl carbamate formation is also related with storage and ageing periods. 
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Indeed, its development is accelerated by high temperature at any winemaking stage or 

storage, combined with high concentrations of its precursors, ethanol, urea and citrulline. 

Actually, high concentrations of arginine can potentiate the formation of ethyl carbamate, 

given that urea and citrulline are formed by its metabolism through yeast and lactic acid 

bacteria during the alcoholic and malolactic fermentations, respectively (Ribéreau-Gayon, 

Glories, Maujean, & Dubourdieu, 2006c). Furthermore, grape variety and excessive nitrogen 

fertilization in the vineyards can also contribute to the ethyl carbamate content in wines 

(Ribéreau-Gayon, et al., 2006d). 
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CHAPTER 2B 

Polyphenols 

 

2B.1 Introduction 

The chemical family of polyphenols encompass numerous compounds that share a 

common structure, based on cyclic derivatives of benzene with one or more hydroxyl groups 

directly connected with the ring (Jackson, 2000a). Polyphenols are plant secondary 

metabolites widespread in nature, constituting one of the most abundant substances in plants, 

derived from the acetate and the shikimate pathways (Lattanzio, Kroon, Quideau, & Treutter, 

2009; Pandey & Rizvi, 2009). They are ubiquitous in fruits and vegetables but also in others 

foodstuffs, such as beverages, cocoa and wine (L. Bravo, 1998; Manach, Williamson, Morand, 

Scalbert, & Remesy, 2004). 

It is recognized that phenolics have several significant functions in wine: are 

responsible for the bitterness and astringency in wine taste; contribute for the wine colour, 

namely for the red wine colour; participate in the wine aroma, although to a lesser extend; and 

are the key compounds in wine preservation being considered one of the basis of long ageing 

(Monagas, Bartolomé, & Gómez-Cordovés, 2005). Because phenolics are readily oxidizable, 

due to their reactivity centred in the acidic character of the phenolic function and in the 

nucleophilic character of the benzene ring, they are usually associated to the browning 

phenomenon occurred in wines exposed to air, especially white wines. In addition to 

oenological properties, polyphenols are known to potentiate some health benefits effects 

often associated with the well-known “French paradox”. They prevent the oxidation of low-

density lipoprotein cholesterol, and promote the inhibition of platelet aggregation, in that way 

reducing heart disease risks (Woraratphoka, Intarapichet, & Indrapichate, 2007). These effects 

are related with their pharmacological activities, such as antioxidant (free radical scavenging 

and metal chelating activities), anti-inflammatory, anti-allergic, antiviral, anti-carcinogenic, 

anti-microbial and vasodilatory actions (Clifford et al., 1996; Frankel, German, Kinsella, Parks, 

& Kanner, 1993; Fremont, 2000; Teissedre, Frankel, Waterhouse, Peleg, & German, 1996; 

Vaquero, Alberto, & de Nadra, 2007). 

Others classifications can be made, but usually, grape and wine polyphenols are 

classified as flavonoids and non-flavonoids. Flavonoids comprise flavonols like quercetin, 

flavanonols as astilbin, flavones as apigenin, flavan-3-ols as catechins, and also anthocyanins 

like malvin (Monagas, et al., 2005). The non-flavonoid constituents are structurally simpler, 

from which are example the phenolic acids: hydroxybenzoic (e.g. gallic acid) and 

hydroxycinnamic (e.g. caffeic acid) acids. Others minor non-flavonoids are the volatile phenols 

(e.g. guaiacol) usually considered as off-flavours, the stilbenes, namely trans-resveratrol, and 

miscellaneous compounds like lignans and coumarins (Jackson, 2000a; Moreno-Arribas & Polo, 

2009; Rentzsch, Wilkens, & Winterhalter, 2009).  

In grapes, polyphenols arise conjugated with sugars (mono- or polysaccharides) 

through hydroxyl groups, or even through aromatic carbons (Pandey & Rizvi, 2009). 
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Frequently, polyphenols can also appear linked to organic acids, amines, lipids, or even 

associated with other phenols. Grape phenolics are usually found in juice (hydroxycinnamoyl 

tartaric acid esters), pulp (proanthocyanidins, hydroxybenzoic acids), seeds (flavan-3-ols, 

proanthocyanidins, gallic acid) and skins (anthocyanins, flavan-3-ols, proanthocyanidins, 

flavonols, dihydroflavonols, hydroxycinnamoyl tartaric acid esters, hydroxybenzoic acids, 

hydroxystilbenes) and accumulate when grapes are ripening (Lattanzio, et al., 2009). Most of 

wine phenolics are originated from grape berry, therefore, the amount and composition of 

wine’s polyphenols is strongly affected by the viticultural factors such as grape variety, growing 

region, environmental conditions (especially sun exposure), cultural techniques and grape 

ripening state. Moreover, the winemaking practices have additional effect, essentially 

maceration and fermentation in contact with the grape skins and seeds but also pressing, 

fining and ageing. 

 

2B.2 Non-flavonoid polyphenols 

Non-flavonoid polyphenols are non-coloured compounds, structurally simpler than 

flavonoids (Moreno-Arribas & Polo, 2009; Rentzsch, et al., 2009). Non-flavonoids have being 

essentially subdivided into phenolic acids and their derivatives, and stilbenes. In grapes, non-

flavonoids are essentially present in the pulp and are easily extracted on crushing, especially 

hydroxycinnamic acid derivatives since they are very abundant, namely those esterified with 

tartaric acid (hydroxycinnamoyl tartaric acid esters), caftaric, coutaric, and fertaric acids 

(Jackson, 2000a; Monagas, et al., 2005). In wines, the most common non-flavonoids are 

hydroxybenzoates and hydroxycinnamates.  

Non-flavonoids are known to increase the stabilization of red wines due to intra- and 

intermolecular reactions, and also for being associated to white wine browning (Moreno-

Arribas & Polo, 2009; Rentzsch, et al., 2009). Additionally, some of them exhibit strong 

antioxidant effects, especially resveratrol. 

2B.2.1 Phenolic acids and their derivatives 

Phenolic acids constitute a great fraction of wine phenolics. Actually, their levels in red 

wines range from 100 to 200 mg/L while in white wines usually does not exceed 20 mg/L 

(Ribéreau-Gayon, Glories, Maujean, & Dubourdieu, 2006). These compounds are colourless 

when present in hydroalcoholic solutions, however, they can be oxidised into yellow 

compounds. On the other hand, phenolic acids are not odorants but can be precursors of 

volatile phenolic acids, by the action of some yeasts and bacteria. Frequently, the volatile 

phenols are found in wines at low concentrations, namely vinyl and ethyl phenols, but due to 

their high odorant activity they can influence the sensory characteristics of wine and be 

responsible for unpleasant aromas (Moreno-Arribas & Polo, 2009; Rentzsch, et al., 2009). 

Indeed, the most common phenolic acids in wines are the derivatives of benzoic and cinnamic 

acids.  

Hydroxybenzoic acids are characterized for having a C6-C1 skeleton, indeed an aromatic 

six-carbon ring with one carbon attached to a carboxylic group (Figure 2B.1).  
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FIGURE 2B.1 – Basic structure of hydroxybenzoic acids and the most common examples in wines. 

In wines, hydroxybenzoic acids are predominantly found in their free form but in 

grapes, they are mainly present as hydrolysable glycosides and tannins (ellagitannins and 

gallotannins) (Moreno-Arribas & Polo, 2009; Rentzsch, et al., 2009; Ribéreau-Gayon, et al., 

2006). Several hydroxybenzoates can be found in wines with different substitutions at position 

R2, R3, R4 and R5 of the benzene ring. The most common are gallic, gentisic, p-hydroxybenzoic, 

protocatechuic, salicylic, syringic, and vanillic acids (Moreno-Arribas & Polo, 2009; Rentzsch, et 

al., 2009). Gallic acid is frequently the most abundant, while gentisic and salicylic acids are 

usually found in trace amounts (Moreno-Arribas & Polo, 2009; Rentzsch, et al., 2009; Ribéreau-

Gayon, et al., 2006). Furthermore is also frequent to found ellagic acid in wines, especially in 

oak-aged wines (Jackson, 2000a). This phenolic acid derives from the breakdown of 

ellagitannins, polymers of ellagic acid, or gallic and ellagic acids with glucose. By the way, 

ellagic acid is indeed formed by the interaction of two molecules of gallic acid. Moreover, it has 

been reported the occurrence of some derivatives of hydroxybenzoic acids in wines, namely 

the ethyl esters of vanillic, p-hydroxybenzoic, and protocatechuic acids and the methyl esters 

of vanillic and protocatechuic acids (Baderschneider & Winterhalter, 2001; Güntert, Rapp, 

Takeoka, & Jennings, 1986).  

Regarding to hydroxycinnamic acids, these phenolic acids encompass a C6-C3 skeleton 

as depicted in Figure 2B.2. In grapes and, thereby, in wines, they are usually found in the free 

form, but especially as esters of tartaric acid (Ribéreau-Gayon, et al., 2006).  

 

FIGURE 2B.2 – Chemical structures of hydroxycinnamic acids most common in wines. 

The most common esterified hydroxycinnamates (hydroxycinnamoyltartaric acids) are 

caffeoyltartaric acid (caftaric acid), p-coumaryltartaric acid (coutaric acid) and feruloyltartaric 

acid (fertaric acid). These compounds are highly oxidizable and the enzymically generated 

derivatives (o-quinones), especially those from caftaric and coutaric acids, developed much of 

the appreciated straw yellow–gold coloration of some white wines but may also contribute for 

the undesired browning of other white wines. Actually, o-quinones by themselves are slightly 
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coloured as well as their condensation products, but, for being powerful oxidants, oxidize 

other compounds, in particular flavan-3-ols, to form brown polymers (Cheynier, Fulcrand, 

Guyot, Oszmianski, & Moutounet, 1995; Li, Guo, & Wang, 2008). On the other hand, the 

hydrolysis of the above mentioned hydroxycinnamoyltartaric acids originates their 

correspondent free form, which is, respectively, caffeic acid, p-coumaric acid and ferulic acid 

(Jackson, 2000a). Another hydroxycinnamate regularly found in wines is sinapic acid, but often 

in small amounts as well as all hydroxycinnamates in the free form (Ribéreau-Gayon, et al., 

2006). Cinnamic acids derivatives can be found in the isomeric forms cis and trans, but as the 

trans form is more stable is also the most abundant (Moreno-Arribas & Polo, 2009; Rentzsch, 

et al., 2009). The most predominant hydroxycinnamate is trans-caftaric acid, representing up 

to 50% of the hydroxycinnamic acids. In comparison with hydroxybenzoic acids, concentration 

of hydroxycinnamic acids in wines is higher and values about 100 mg/L are frequently 

described. 

From the esterification of caffeic acid and p-coumaric acid with the glucose of 

anthocyanin monoglucosides are formed acylated anthocyanins (flavonoids). Furthermore, the 

breakdown of p-coumaric and ferulic acids generates the formation of volatile phenols, 

essentially ethyl and vinyl phenols (Moreno-Arribas & Polo, 2009; Rentzsch, et al., 2009). 

Particularly, the enzymatic decarboxylation of p-coumaric acid and ferulic acid, through the 

action of some yeast during alcoholic fermentation, originates vinyl phenols and vinyl 

guaiacols, respectively, with odours resembling gouache paint (Clarke & Bakker, 2007; 

Ribéreau-Gayon, et al., 2006). 

 

 

 

FIGURE 2B.3 – Most common volatile phenols in wines. 

Volatile phenols are indeed a small fraction of the polyphenols present in wines but 

due to their high odour activity they play an important role in wine’s aroma, being responsible 

for off-flavours (Moreno-Arribas & Polo, 2009; Rentzsch, et al., 2009). Besides being formed 

from precursors present in wines through enzymatic route, they can also migrate from wood 

during maturation, due to the lignin breakdown promoted by the toasting of the casks 

(Moreno-Arribas & Polo, 2009; Rentzsch, et al., 2009; Ribéreau-Gayon, et al., 2006). Figure 

2B.3 depicts some examples. In this case, these phenols are characterized by smoky, toasty 

and burnt smells. 

Besides volatile phenols, yeast metabolism may also provide other non-flavonoid 

compounds as tyrosol (Jackson, 2000a). Tyrosol, frequently found in wines between 20 to 30 

mg/L, is formed during alcoholic fermentation from tyrosine (Ribéreau-Gayon, et al., 2006).  
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Coumarins can be considered as cinnamic acid derivatives (Moreno-Arribas & Polo, 

2009; Rentzsch, et al., 2009; Ribéreau-Gayon, et al., 2006). Coumarins encompass in their 

structure fused benzenes and α-pyrone rings (Figure 2B.4) (Hoult & Payá, 1996).  

 

 

FIGURE 2B.4 – Structure of coumarins in wines. 

The occurrence of these non-flavonoids in wines usually appears in small quantities 

and is frequently associated with oak-wood ageing (Goode, 2005; Ribéreau-Gayon, et al., 

2006). The most common examples are the aglycones (free forms) esculetin and scopoletin, 

and the glycosides (glycosylated forms) esculin and scopoline (Ribéreau-Gayon, et al., 2006). 

Even at low concentrations, they influence the sensory attributes of wines: the glycosides, 

present in green wood, are bitter while the aglycones, present in naturally seasoned wood, are 

acidic (Goode, 2005; Ribéreau-Gayon, et al., 2006).  

2B.2.2 Stilbenes 

Stilbenes are an important class of polyphenols in wines since they exhibit potent 

antioxidant, anticarcinogenic and antimutagenic properties (Moreno-Arribas & Polo, 2009; 

Rentzsch, et al., 2009). Indeed, grapes and wines are pointed out as the most significant 

dietary sources of stilbenes. Their occurrence in grapes is associated to the response of 

grapevines against fungal infection, particularly Botrytis cinerea, or to UV irradiation. Stilbenes 

are essentially located in grape skins, mainly in the glycosylated form, and are transferred to 

wine musts during the initial winemaking steps, especially when fermentation is conducted in 

the presence of grape solid parts (skins, seed and stem) (Sun, Ribes, Leandro, Belchior, & 

Spranger, 2006). Therefore, red wines generally have higher stilbene contents than rosé or 

white wines (Rentzsch, et al., 2009). Additionally, red grapes frequently present greater 

amounts of stilbenes. The stilbene structures contain two benzene rings bonded by a carbon 

chain, normally ethane or ethylene (Ribéreau-Gayon, et al., 2006). The most relevant example 

is resveratrol (3,5,4′-trihydroxystilbene) not only for being the most abundant stilbene in wines 

but also for being extensively studied (M. N. Bravo et al., 2008; Moreno-Arribas & Polo, 2009; 

Rentzsch, et al., 2009). The two isomeric free forms, cis- and trans-, can be found in wines as 

well as their β-glucoconjugated forms, the cis- and trans-piceid. Nevertheless, the most 

abundant is trans-resveratrol (Sun, et al., 2006). The levels of trans-resveratrol in wines varies 

greatly, even between the red and white grape varieties, ranging from 0.2 to 14 mg/L in red 

wines and from 0.1 to 0.8 mg/L in white wines (Rentzsch, et al., 2009; Stervbo, Vang, & 

Bonnesen, 2007). It is said that cis-resveratrol, absent in grapes, appears in wines from the 

photochemical isomerization of trans-resveratrol or by the breakdown of resveratrol polymers, 

the so-called viniferins, during skin fermentation (Sun, et al., 2006). Figure 2B.5 presents the 

several forms of resveratrol and its glycosides. 
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FIGURE 2B.5 – Chemical structures of resveratrol and its glycosides present in wines. 

 

2B.3 Flavonoid polyphenols 

Flavonoids are large-polymer molecules characterized by having two phenolic 

structures connected by an oxygen-containing carbon-ring structure (a pyran), sharing the 

common skeleton C6-C3-C6 (Jackson, 2000a; Terrier, Poncet-Legrand, & Cheynier, 2009). Figure 

2B.6 shows their general structure.  

Flavonoids are the main source of phenolic compounds in grapes, especially in skins 

and seeds, but rarely are completely extracted for most wines (Jackson, 2000b). Their 

occurrence in wines is clearly influenced by the applied vinification techniques.  Flavonoids 

usually are the major polyphenols in red wine, constituting more than 85% of the phenolic 

content and are usually found in concentrations ranging from 1000 to 1800 mg/L (Jackson, 

2000a; López-Vélez, Martínez-Martínez, & Valle-Ribes, 2003). White wines flavonoids normally 

account less than 20%, namely fewer than 50 mg/L (Jackson, 2000a). In wines, flavonoids can 

occur in the free form or polymerized with sugars (the glycoside form), non-flavonoids (acyl 

derivatives)  and other flavonoids (proanthocyanidins) (Jackson, 2000a). Actually, flavonoids 

are found in grapes mainly in the glycoside form which are hydrolysed during wine 

fermentation (Ribéreau-Gayon, et al., 2006). The most common wine flavonoids are flavonols, 

flavan-3-ols and anthocyanins in red wines. Flavanonols and flavones usually appear in smaller 

amounts (Monagas, et al., 2005). Flavonols are relatively intense yellow pigments while 

anthocyanins are red pigments responsible for the colour of red wines (Ribéreau-Gayon, et al., 

2006).  
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FIGURE 2B.6 – Chemical structures of flavonoids in wines. 

2B.3.1 Anthocyanins 

As mentioned above, anthocyanins are water-soluble coloured pigments. Depending 

on the pH, they may present the following colours: red (low pH), purple and blue (high pH). 

They are abundantly located in the grape skins of the red varieties, but in teinturier varieties 

they also occur in the pulp (Monagas & Bartolomé, 2009; Ribéreau-Gayon, et al., 2006). Grape 
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anthocyanins are accumulated during ripening and are extracted to musts during 

fermentation, especially when maceration is privileged. Indeed, anthocyanins are largely 

responsible for the colour of red wines. Anthocyanins are glycoside derivatives of 

anthocyanidins (flavonoid component). Actually, the sugar component enhances the 

anthocyanidins (anthocyanin’s aglycone) chemical stability and therefore their water solubility 

(Jackson, 2000a). The most common glycosyl moiety in wines is ᴅ-glucose and is frequently 

positioned at carbons 3, 5, and 7 (da Costa, Horton, & Margolis, 2000). The aglycones can be 

distinguished by the number of the hydroxyl groups and by the degree of methylation of these 

groups (Kosir et al., 2004). The most common anthocyanins in grapes and wines are the 3-O-

monoglucosides and the 3-O-acylated monoglucosides of delphinidin, cyanidin, petunidin, 

peonidin and malvidin (Figure 2B.7) (Monagas & Bartolomé, 2009). The acylated anthocyanins 

include the esterification of the glucose molecule with acetic, lactic, p-coumaric and caffeic 

acids. The anthocyanins are quite unstable, except the acylated anthocyanins which are 

relatively more stable (da Costa, et al., 2000). 3,5-Diglucoside anthocyanins can also occur in 

grapes, mainly in non V. vinifera species. Nevertheless, some V. Vinifera grapes have presented 

trace amounts. In fact, the different proportion of diglucoside anthocyanins between Vitis 

species has been used to ensure that V. Vinifera is being used in the preparation of European 

wines. 

The wine anthocyanin composition depends on several factors, but primarily on the 

grape profile. In this sense, becomes essentially affected by the grape variety, grape maturity 

and climatic conditions (Monagas & Bartolomé, 2009). In general, it has been found that the 

most abundant anthocyanin in red grape varieties is malvidin-3-glucoside (oenin or malvin). Its 

proportion varies according to the variety: represents up to 90% in Grenache and less than 

50% in Sangiovese (Ribéreau-Gayon, et al., 2006). Furthermore, the amount of acylated 

anthocyanins present in grapes also depends on the grape variety. Actually, some varieties 

may not have this kind of anthocyanins, such as Pinot noir (Monagas & Bartolomé, 2009).  

Once extracted and dissolved in wine, anthocyanins can be in equilibrium between 

several forms: flavylium cation (red), quinoidal base (blue violet), chalcone (pale yellow), 

carbinol pseudo-base (colourless) and flavene (colourless) (Jackson, 2000a). However, in 

wines, they essentially occur in the colourless carbinol pseudo-base form (Monagas & 

Bartolomé, 2009). If a small proportion of anthocyanins (20 to 25%) occur in the flavylium 

state wines exhibit red colours (Jackson, 2000a). In fact, the proportion of anthocyanins in this 

state is favoured by low pH, usually from 3.4 to 3.6. The pH increase as well as great sulphur 

dioxide concentrations causes the decrease of the colour density and the diminishment of the 

anthocyanins proportion in the flavylium state. Actually, the colours of anthocyanins are 

sensitive to pH, temperature, light and the presence of metals (da Costa, et al., 2000).  

Anthocyanins are quite unstable, therefore their concentration in wine severely 

decreases during ageing. This decrease is, in part, associated with their breakdown into 

benzoic and cinnamic acids, and other simpler phenolic compounds (Ribéreau-Gayon, et al., 

2006). Thermal processing and oxidative conditions promote this effect. Moreover, wine 

anthocyanins also polymerize, by reaction with other wine constituents, during winemaking, 

especially during ageing, generally forming more stable pigments (Monagas & Bartolomé, 

2009). Anthocyanins reactions can include: the reaction with enzymatically generated o-
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quinones of caftaric and coutaric acids; the reaction with small compounds (pyruvic and 

phenolic acids, acetaldehyde, p-vinylphenol) giving rise to pyranoanthocyanin pigments, such 

as vitisins and portisins; and the direct and acetaldehyde-mediated anthocyanin-flavanol and 

anthocyanin-anthocyanin condensation reactions (de Freitas & Mateus, 2006; Monagas & 

Bartolomé, 2009). These reactions are dependent from the reactants concentration, pH, 

temperature, metal ions and oxygen (Monagas & Bartolomé, 2009). Additionally, wine 

anthocyanins can develop copigmentation, increasing their stability as well as colour. 

2B.3.2 Flavan-3-ols 

Flavan-3-ols are found in grape seeds, skins and stems in monomeric, oligomeric, or 

polymeric forms (Monagas, et al., 2005). Generally, the grape seeds enclose higher amounts of 

flavan-3-ols than skins. The most relevant flavan-3-ol monomeric units present in grapes, and 

therefore in wines, are (+)-catechin and (-)-epicatechin. (+)-gallocatechin and (-)-

epigallocatechin can also be found. 

The oligomeric and polymeric flavan-3-ols are also known as proanthocyanidins. They 

are called proanthocyanidins because their heating under acidic conditions liberates 

anthocyanidins (cyanidin or delphinidin) (Terrier, et al., 2009). If proanthocyanidins are 

composed by (+)-catechin and (-)-epicatechin monomers they are classified as procyanidins. 

On the other hand, prodelphinidins are composed of (+)-gallocatechin and (-)-epigallocatechin 

monomers. The proanthocyanidins are also denoted as condensed tannins, since, like all the 

tannins, they interact or react with proteins promoting their precipitation.  

As mentioned above, flavan-3-ols react with anthocyanins through an ethyl bridge by 

acetaldehyde mediation, especially during wine ageing, to form higher molecular compounds. 

Acetaldehyde can also mediate the polymerization between flavan-3-ols (Es-Safi, Fulcrand, 

Cheynier, & Moutounet, 1999; Fulcrand, Doco, Es-Safi, Cheynier, & Moutounet, 1996). Besides 

acetaldehyde, flavanols are also known to react with other aldehydes, such as glyoxylic acid 

(Es-Safi et al., 1999; Saucier, Guerra, Pianet, Laguerre, & Glories, 1997). Additionally, flavan-3-

ols can react with ellagic acid derived from wood-lignin hydrolyses.  

Flavanols are the main polyphenolic compounds associated with white wine oxidative 

browning. In wines exposed to oxidative conditions, molecular oxygen is reduced to hydrogen 

peroxide, which in the presence of trace metal ions (iron(II) or copper(II)), can originate the 

powerful oxidants hydroxyl radicals (Clark, 2008). Ascorbic acid is known to potentiate the 

hydrogen peroxide production (Barril, Clark, & Scollary, 2008). In turn, hydroxyl radicals oxidise 

tartaric acid to form an aldehyde, the glyoxylic acid (Clark, 2008). This aldehyde is known to 

react with flavanols, especially with (+)-catechin, and can initiate a sequence of reactions 

leading to the formation of coloured compounds known as xanthylium cations (absorbance 

maximum at 440 nm, which corresponds to a yellow colour) (Es-Safi, Guernevé, et al., 1999). 

These reactions are accelerated by high temperatures or pH values (Clark, 2008). Ascorbic acid, 

furfural and 5-hydroxymethylfurfural are also known to react with (+)-catechin to develop the 

same products (Barril, et al., 2008; Es-Safi, Cheynier, & Moutounet, 2000).   
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2B.3.3 Flavonols 

Flavonols are yellow pigments mainly located in the grape skins of both red and white 

grapes (Ribéreau-Gayon, et al., 2006). In grapes, they are present in the glycoside form, 3-O-

glycosides, of the main aglycones: myricetin, quercetin, kaempherol and isorhamnetin 

(Monagas, et al., 2005). Actually, the most common are the quercetin glycosides (Terrier, et 

al., 2009). Grape flavonols prevent some damaging effects of ultraviolet (UV) exposure since 

they absorb this kind of radiation (Jackson, 2000a). Indeed, flavonols synthesis mainly occurs 

during ripening and is stimulated by direct exposure to UV and blue radiation (Jackson, 2000a; 

Terrier, et al., 2009). In this sense, grapes highly exposed to daylight are capable of increase 

the flavonol biosynthesis and thereby produce wines with high flavonol levels. Generally, white 

grapes do not contain derivatives of myricetin and usually present lower levels of flavonols 

than red grapes (Terrier, et al., 2009). Wines, not only have glycoside flavonols but also 

aglycones, derived from the hydrolysis of the glycoside forms during vinification, maturation, 

and/or ageing of wine (Monagas, et al., 2005). Once more, red wines present higher levels of 

both flavonol glycosides and aglycones relative to white wines, not only by differences in 

composition between red and white grapes, but also by the implementation of different 

vinification technologies (Makris, Kallithraka, & Kefalas, 2006). Traditionally, the vinification of 

white wines usually does not include contact of must with grape skins. Consequently, the 

extraction of flavonol glycosides, which are essentially located in skins, is very limited.  

Wine flavonols usually decrease during winemaking (Makris, et al., 2006). Firstly, 

several post-fermentative treatments such as fining usually cause significant reduction of 

flavonols in wines. Additionally, flavonols during wine ageing and storage are also able to react 

with anthocyanins to form copigments. Finally, oxidative conditions and temperature also 

seem to play a central role in flavonols decrease during wine storage and ageing. 
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CHAPTER 2C 

Organic acids 

 

2C.1 Introduction 

Organic acids are compounds with acidic properties. Generally, organic acids acidity 

comes from their ionization capacity, releasing hydrogen ions (H+) into aqueous systems. 

Indeed, these substances are responsible for wine acidity, representing one of the major 

contributors for wines composition. Besides organic acids, wines also contain inorganic acids, 

particularly carbonic acid and sulphurous acids, which do not have great influence on wine pH 

and are barely perceptible in terms of acidity (Jackson, 2000a; Ribéreau-Gayon, Glories, 

Maujean, & Dubourdieu, 2006b). The most abundant organic acids in wines are the carboxylic 

acids whose acidity is associated with the functional carboxyl group, -COOH (Jackson, 2000a). 

Already present in grapes, organic acids are essential during winemaking because they 

first induce the growth and vitality of yeasts during fermentation and hence increase the 

sensory complexity of wine. In fact, they participate in the sensory qualities of wines with 

fresh, tart and sour attributes. Besides directly affect the fermentation, organic acids also 

influence the colour extraction, maturation, and therefore, have direct influence on flavour 

balance and colour of the final product. Moreover, they enhance the effectiveness of sulphur 

dioxide and ethanol in the microbial stability of wines, suppressing the growth and metabolism 

of most potential wine-spoilage organisms, and support the stability of tartrates in wine 

(Jackson, 2000a; Jacobson, 2006). Recently, Batista et al. (2010) show that some organic acids 

in wines exhibit a stabilising effect upon the haze potential of the wine proteins. 

 

2C.2 Wine acidity 

Apart of other effects, wine is greatly affected by acidity: wine with too low acidity is 

flat or insipid while the opposite promote a sour rather than pleasantly tart taste. Wines from 

grapes grown in warm climates are generally somewhat bland, soft, high in alcohol and low in 

acidity. Wines from cooler climates usually do not reach proper maturity before being 

harvested. Their sugar content may be too low and/or acidity may be too high to produced 

well balanced wines (Beelman & Gallander, 1979).  

There are several kinds of acidity: total acidity, pH and volatile acidity, and together 

with the alcohol and residual sugar contents, contribute significantly to flavour balance 

(Ribéreau-Gayon, Glories, et al., 2006b). In wineries, the total acidity of musts and wines is 

often controlled by the classical measurement of the titratable acidity while the strength of 

acidity is measured according to pH. Indeed, the total acidity contemplates the fixed and the 

volatile acidity, taking into account all acid forms present in musts and wines, namely inorganic 

and organic acids and perhaps amino acids (Ribéreau-Gayon, Glories, et al., 2006b). However, 
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for practical reasons, titratable acidity, which only considerates the proton concentration of 

the total acidity, is often referred as the total acidity because it encompasses the majority of 

the total acidity (Jacobson, 2006). Titratable acidity is often determined by neutralization. 

Fixed acidity represents the non-volatile acids and is frequently expressed in terms of tartaric 

acid, whereas volatile acidity is often expressed in terms of acetic acid and refers to free and 

combined acids that can be readily removed by steam distillation (Jackson, 2000a; Jacobson, 

2006), especially acetic, carbonic and sulphurous acids (Grainger, 2009). Wine pH reflects the 

content in hydrogen ion and is measured using a pH meter conveniently calibrated, checking 

temperature (Jacobson, 2006; Ribéreau-Gayon, Glories, et al., 2006b). 

Regarding total acidity, a range between 5.5 to 8.5 mg/L is commonly desired for 

wines; however for white wines is preferred higher levels than for red wines (Jackson, 2000a). 

In terms of volatile acidity, wines should not exceed 1.1 g/L of acetic acid to ensure their 

quality (Ribéreau-Gayon, Glories, et al., 2006b). Generally, wines present pH values ranging 

between 2.8 and 4.0, but a pH range between 3.1 to 3.4 is usually desired for white wines and 

from 3.3 to 3.6 for most red wines (Jackson, 2000a; Ribéreau-Gayon, Glories, et al., 2006b). It 

is reasonable to think that wines with lower pH have higher acidity but, there is no direct 

connection between total acidity and pH, because the strength of acidity is related to the type 

of acids involved. For example, it is frequent wines with a high pH and high acidity (Beelman & 

Gallander, 1979).  

Wine acidity can be dependent from several cultural practices as vine variety and 

corresponded rootstock, pruning, soil fertility, irrigation and also virus infection (Beelman & 

Gallander, 1979). In fact, vigorous vines on fertile soils generate grapes, and consequently 

musts, with elevated acidity. The degree of maturation of grapes can also be a crucial aspect. 

As can be seen, grape is indeed the main contributor to wine acidity. Tartaric and malic acids 

the most abundant acids in grapes are also abundant in wines, although there is a decrease in 

their concentration. Most of the wine acidity is due to these acids. 

 

2C.3 Wine primary acids 

The most common organic acids found in wines are tartaric, malic, lactic, acetic, citric 

and succinic acids. Figure 2C.1 depicts their chemical structure. Some are already present in 

grapes, namely tartaric, citric and malic acids and others appear during winemaking especially 

after fermentation, such as acetic, lactic and succinic acids, and in minor quantities formic acid 

and others (Beelman & Gallander, 1979; Ribéreau-Gayon, Glories, et al., 2006b). Eventually, 

other acids can occur in small amounts which may be derived from ethanol oxidation (Belitz, 

Grosch, & Schieberle, 2009). Nevertheless, other acids that do not occur naturally can be 

added to wines, especially to prevent or correct some wine defects, in particular ascorbic and 

sorbic acids.  
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FIGURE 2C.1 – Chemical structure of the main wine organic acids. 

 

2C.3.1 Tartaric acid 

From a chemical point of view, this fixed acid is considered as the strongest wine acid 

with a pKa of 3.01, therefore can greatly influence the wine pH. In fact, tartaric acid lowers the 

pH of musts to a level where many detrimental bacteria cannot live, and after fermentation 

acts as a preservative. 

Together with malic acid, tartaric acid is the major grape acid. It occurs naturally in 

many plants, but is produced in appreciable quantities in Vitaceae genera, for this reason this 

acid is considered characteristic of grapes, being called as the “wine acid” (Jackson, 2000a; 

Ribéreau-Gayon, Glories, et al., 2006b).  

Tartaric acid in unripe grapes can be present at very high levels, especially in the skin 

grapes and in the outer part of pulp, occurring in the natural form L(+)-tartaric acid or 

dextrotartaric acid. As the vine ripens, tartaric is not metabolized like malic acid, therefore the 

tartaric levels remain quite constant throughout the grape ripening. Consequently, the tartaric 

acid concentration in wines is deeply dependent from grape variety and vineyard soil.  

Tartaric acid is one of the main acids found in wines, occurring as free acid and 

tartrates salts, mainly monopotassium salts. These dissolved salts tend to precipitate, forming 

potassium bitartrate crystals (cream of tartar) as the alcohol rises during fermentation and as 

wine age. Therefore, is common proceed with the cold stabilization of wines before wine 

bottling, usually at temperatures below -7.2 °C, so that the precipitation process accelerates 

and, thereby, is avoided the crystal deposition in bottle. Regrettably, this process can continue 

even after this procedure being applied, particularly due to the conversion of the L forms into 

the less soluble D isomers. Additionally, other salts relatively insoluble can contribute for this 

phenomenon, namely the calcium salts, when used in wine deacidification. The instability 

induced by calcium tartrate is less frequent but more difficult to control since its precipitation 

is not activated by refrigeration. The precipitation of potassium and calcium salts of tartaric 

acid is usually accompanied by the loss of titratable acidity and hence pH increases. 
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From an organoleptic perspective, tartaric acid along with citric and malic acids influences the 

taste of the finished wine providing tartness attributes to wines.  

2C.3.2 Malic acid 

Malic acid is one of the most prevalent acids among wines. L(-)-Malic acid is the 

naturally occurring form. Structurally, malic acid is similar to tartaric acid and is an abundant 

by-product of grape metabolism. Its accumulation is rarely observed in skins berries before the 

maturation period, but when grapes are ripe the malic acid concentration is well distributed 

throughout skins and berry pulp (Jackson, 2000c).   

In the grape vine, malic acid is implicated in some important processes for the vine 

vitality. Malic acid content in grapes changes more quickly and noticeably than that of tartaric 

acid. This fixed acid usually increase up to véraison (as tartaric acid) but afterwards declines up 

to 1 to 9 g/L, since malic acid act as a respiratory substitute for glucose during the later stages 

of ripening. Notwithstanding, in ripe grapes both acids represent about 70 to 90% of the berry 

acid content (Jackson, 2000c). The remainder can be composed by other kind of acids, namely 

citric acid, phenolic acids, amino acids and fatty acids. It is known that grapes grown in hot 

climates often metabolize most malic before grapes harvest, decreasing its concentration as 

grapes mature, especially during hot periods at the end of the season. Therefore, at ripening 

stage these grapes contain small amounts of this acid, implicating musts with low acidity. In 

contrast, the grapes grown in cold climates may keep great malic acid levels at grape maturity, 

because at this time they do not synthesized most of their malic acid neither was consumed. 

Consequently, musts from grapes growth in cold climates may require deacidification to 

reduce the sour taste in wines, while musts produced from grapes cultivated in warm climates 

are usually compensated by the manual addition of acid in a process known as acidification. 

Thus, malic acid content is frequently used as a primary reference to determine harvest dates.  

Winemakers usually perform acidification before fermentation by the typical addition 

of tartaric acid to prevent wines becoming flat and susceptible to microbial spoilage (Jackson, 

2000b), up to a maximum of 1.5 g/l in must and 2.5 g/l in wine (European Community (EC) 

legislation) (Ribéreau-Gayon, Glories, et al., 2006b). Moreover, this acid allows lowering the pH 

due to the noticeable effect of its dissociation constant (Ka) (Jackson, 2000d). Eventually, citric 

acid can also be used because improves the iron stabilization but lose efficient with microbial 

activity than tartaric acid. Alternatively, acidification may also be conducted to wines before 

bottling, and besides the treatments mentioned above ion exchange can also be used. This 

procedure involves a column packed with a cation-exchange resin to replace H+ for the Ca2+ or 

K+ of tartrate and malate salts (Jackson, 2000d). Relatively to deacidification, musts with high 

acidity and low pH may be blended with musts with softer acidity and higher pH or be added 

potassium bicarbonate (KHCO3) or calcium carbonate (CaCO3) (Jackson, 2000b; Ribéreau-

Gayon, Glories, et al., 2006b). Once more, winemakers may also choose the use of ion 

exchangers, but this time anion-exchange resins, to exchange tartrate ions for hydroxyl ions, 

especially at the final treatments of wines (Jackson, 2000d).  Other kind of wine deacidification 

is malolactic fermentation (MLF). Moreover, malic acid importance in wines is also associated 

with this secondary fermentation. When wine undergone MLF, the harsher-tasting of malic 

acid (strong acid with pKa = 3.46) is decarboxylated enzymatically into a smoother-tasting of 
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lactic acid, through the metabolic activity of lactic acid bacteria (known as LAB), usually 

Oenococcus oeni specie, via malic acid. Malic acid metabolization actually decreases the wine 

acidity since it is observed the transformation of a dicarboxylic acid (malic acid) into a 

monocarboxylic acid (lactic acid). This transformation is usually accompanied by pH increase. 

This kind of fermentation is very frequent in red wines than in whites, especially those with 

excessive levels of malic acid. However, some styles of white wines may include MLF in its 

winemaking. Besides its beneficial effects to wines, MLF can generate turbidity and unpleasant 

compounds such as off-flavours. 

2C.3.3 Lactic acid 

Lactic acid is produced during the fermentation process, essentially from malolactic 

fermentation but also from alcoholic fermentation via pyruvic acid. Pyruvic acid is also 

produced during alcoholic fermentation through the metabolism of carbohydrates, but quickly 

is transformed into the two isomers of lactic acid, L(+) mainly from bacteria activity and D(-) 

mainly originated through yeast (Ribéreau-Gayon, Glories, et al., 2006b). Thus, the 

predominance of L(+)-lactic acid usually indicates that malolactic fermentation was 

accomplished (Jackson, 2000a). As well as the acids aforementioned, lactic acid also 

contributes to the overall acidity of wine although more softer (pKa = 3.81). 

L(-)-Lactic acid can be used for wine acidification avoiding some limitations imposed by 

tartaric acid, namely the metallic mouth-feel encountered in some “hard” wines. The use of 

this acid for acidification can also prevent the precipitation of its potassium and calcium salts 

(soluble salts in wine media) and therefore enhances the wine acidification minimizing the pH 

decrease. Moreover, lactic acid is microbiologically stable, unlike tartaric, malic, and citric 

acids. However, industrial lactic acid nauseating odour has prevented its use in wineries 

(Ribéreau-Gayon, Glories, et al., 2006b). 

Most of wine acids, including lactic acid can be esterified by ethanol, forming ethyl 

esters. In the case of lactic acid it is formed ethyl lactate while from others can be formed ethyl 

acetate, diethyl succinate, monoethyl succinate and others. Ethyl lactate and diethyl succinate 

have little impact on wine aroma when present in moderate concentrations (Zamora, 2009). 

2C.3.4 Acetic acid 

Acetic acid is known to be very abundant in vinegars. Unlike most acids in wine, acetic 

acid is volatile, usually pointed out as the main acid responsible for wine volatile acidity.  

Small amounts of this acid are formed during the beginning of alcoholic fermentation 

through the metabolism of yeasts. High levels are usually associated with acetic bacteria or 

lactic acid bacteria contaminations, especially when fermentation stuck or slows down 

(Ribéreau-Gayon, Glories, et al., 2006b; Zamora, 2009). Actually, acetic acid bacteria may grow 

in oxygenated wines, and therefore, produce acetic acid from ethanol. These bacteria, namely 

the genus Acetobacter, greatly develops in wineries with reduced hygiene conditions, at any 

winemaking stage, especially in old wooden barrels (Grainger, 2009). In fact, acetic acid can 

also be formed by means of chemical hydrolysis of hemicelluloses during oak- ageing (Jackson, 

2000a). In fortified wines, the Acetobacter is inhibited by the elevated ethanol concentration 
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(Steinkraus, 2009). As a result, such wines are quite stable at room temperature for a long 

time. 

Acetic acid can be either beneficial or detrimental based on its concentration. Ideally, 

the acetic acid concentration in wines should be around 0.3 g/L. At this concentration acetic 

acid can contribute to wine aroma and taste, adding complexity by itself and through acetic 

acid reaction to produce acetate esters, which gives to wines a fruity character. However, this 

compound must be well controlled to avoid that high concentrations compromise wines 

quality, since this acid gives off a vinegar-like odour to wine and a disagreeable sensation in 

the mouth if it is much greater than 0.3 g/L. However, some authors support the idea that 

acetic acid’s odour perception depends on wine type and style (Ugliano & Henschke, 2009). In 

the case of Madeira wines the odour threshold of acetic acid should be higher than previously 

mentioned, once the sugar levels, higher than in table wines, balance its perception. 

Frequently, during wine ageing and even during fermentation, acetic acid can combine 

with ethanol to form ethyl acetate. This compound may be convenient for wine aroma if 

present at low concentrations, usually bellow 50 mg/L, but above 150 mg/L may be undesired 

by producing a sour-vinegar off-odour. 

2C.3.5 Succinic acid 

Succinic acid can appear in Vitis Vinifera L. unripen grapes in insignificant amounts 

(Jackson, 2000c). However, succinic acid is a major component in muscadine young grape 

berries (V. Rotundifolia), but is readily consumed as the vine maturates. The succinic acid in 

conjunction with fumaric acid is consumed for being involved in the lipid metabolism and the 

Krebs cycle during grape maturation (Ribéreau-Gayon, Glories, et al., 2006b). 

In wines, succinic acid is a common by-product of yeast metabolism during the 

alcoholic fermentation and is usually found at concentrations close to 1 g/L (Ribéreau-Gayon, 

Glories, et al., 2006b). This fixed acid is resistant to wine bacteria and originates bitter-salty 

tastes, causing salivation. Moreover, accentuates the wine’s flavour and vinous character. 

2C.3.6 Citric acid 

Citric acid is abundantly found in citrus fruits but it is scarce in ripe grapes. Therefore, 

usually appears in minor quantities in wines, between 0.5 to 1 g/L (Ribéreau-Gayon, Glories, et 

al., 2006b). In grapes development plays a crucial role in Krebs cycle, while in musts 

fermentation slows yeast growing but does not block it. During musts fermentation yeasts 

have the tendency to convert citric into acetic acid. 

As mentioned above, this acid might be used as supplement in wine acidification to 

increase the wine total acidity, however with less frequency than the tartaric acid since it can 

add aggressive citric flavours to wine. Indeed, European Union prohibits its use in wine 

acidification. Furthermore, this acid often forms soluble complexes with ferric iron (Fe3+) 

(Ribéreau-Gayon, Glories, et al., 2006b). For this reason, citric acid is an authorized additive, 

even in Europe up to 0.5 g/L, to prevent ferric casse, frequent in white wines when ferric ions 
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interact with phosphoric acid to form colloidal ferric phosphate, which then interacts with 

proteins and precipitates (Jackson, 2000d; Ribéreau-Gayon, Glories, et al., 2006b).  

2C.3.7 Other acids 

Ascorbic acid, also known as vitamin C, it is naturally present in grapes but in wines it is 

rarely present without being added. It has been used as an adjuvant of sulphur dioxide, 

regularly at a maximum concentration of 150 mg/L, added especially to white wine as an 

antioxidant agent, capable of preventing wine oxidative browning, promoted by the iron 

oxidation in aeration processes (Ribéreau-Gayon, Glories, Maujean, & Dubourdieu, 2006a). 

Nowadays, this practice is falling into disuse since only prevents early oxidative browning of 

the must, regrettably accelerating the wine colouration due to its pro-oxidant activity, initiated 

by hydrogen peroxide degradation product. Actually, Barril and co-workers (2008) 

demonstrated that ascorbic acid contributes to the pigment development, by promoting the 

formation of the coloured xanthylium cations. 

Finally, in some countries sorbic acid can be added up to 200 mg/L to wine as an 

antiseptic agent to enhance the antimicrobial properties of sulphur dioxide (Ribéreau-Gayon, 

Dubourdieu, Donèche, & Lonvaud, 2006). 
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CHAPTER 2D 

Carbohydrates 

 

2D.1 Introduction 

Carbohydrates, precisely sugars, are fundamental constituents on winemaking, given 

that they are the base substances of the fermentative process which leads to the ethanol 

formation and various by-products, and therefore the beverage that we call wine. Indeed, 

yeasts use them as their nutrients. Furthermore they also participate in the wine taste, namely 

the simpler sugars, contributing to the sweetness, being frequently unnoticed in dry wines and 

quite evident in sweet wines. On the other hand, sugars also generate derived-products, such 

as glycerol, flavour volatile compounds, and others, very important for the wine structure and 

aroma.  

 

2D.2 Chemical structure and properties 

Carbohydrates general formula is Cn(H2O)n. and are classified according to their 

polymerization degree as monosaccharides or polysaccharides (Sanz & Martínez-Castro, 2009). 

The smaller carbohydrates, namely monosaccharides, are commonly referred as sugars. This 

kind of carbohydrates is indeed the most important in wines. Monosaccharides structure with 

3 to 8 carbon atoms encompasses several hydroxyl groups and a carbonyl group, a ketone or 

an aldehyde (Jackson, 2000; Sanz & Martínez-Castro, 2009). If the carbonyl group is a ketone, 

the monosaccharide is a ketose, but if it is an aldehyde the monosaccharide is an aldose. 

Monosaccharides can also be grouped in terms of carbon atoms: with 3 carbons are called 

trioses, with 4 are tetroses, with 5 are pentoses, 6 are hexoses, and so on. The most common 

in wines are hexoses.  

Sugars are very soluble in water (Ribéreau-Gayon, Glories, Maujean, & Dudourdieu, 

2006) and once in solution, the carbonyl group (aldehyde or ketone) of the straight-chain 

monosaccharide reacts reversibly with an intramolecular hydroxyl group to form a hemiacetal 

or a hemiketal, originating heterocyclic rings with an oxygen bridge between two carbons, until 

is reached an equilibrium between the two forms (see Figure 2D.1) (Sanz & Martínez-Castro, 

2009). During this equilibrium, rings of 5 (furanoses) and 5 (pyranoses) members can be 

present.  

 

2D.3 Glucose and fructose 

Glucose and fructose, in the D-form (Figure 2D.1), are the most abundant hexoses in 

grapes (Ribéreau-Gayon, et al., 2006). Other sugars can also occur but frequently at minor 

concentrations (Jackson, 2000). The aldose D-glucose is often referred as dextrose and the 

ketose D-fructose is also known as levulose (Ribéreau-Gayon, et al., 2006). At full ripening 
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stage glucose and fructose often occur in almost equal proportions. However, in extremely 

ripe grapes is common to find higher proportion of fructose. 

 

FIGURE 2D.1 – D-glucose and D-fructose in equilibrium between the open-chain and close-ring forms. 

Of course that grape sugar content varies depending on variety, maturity, and 

fitosanitary conditions, but is frequently encountered juices of ripe grapes containing between 

150 to 250 mg/L of sugars, mainly glucose and fructose (Jackson, 2000; Ribéreau-Gayon, et al., 

2006). V. Vinifera species usually attained a higher percentage of sugars than V. labrusca and 

V. rotundifolia (Jackson, 2000). 

Glucose and fructose are fermentable sugars, readily consumed by yeast as nutrients 

during the alcoholic fermentation to produce ethanol and others by-products, such as higher 

alcohols, fatty acid esters, and aldehydes (Jackson, 2000). Indeed, glucose is preferentially 

fermented by the great majority of yeasts than fructose (Ribéreau-Gayon, et al., 2006). 

Therefore, sweet wines contain 2-4 times more fructose than glucose and dry wines, usually 

completely fermented, still contain small amounts of fructose and others residual sugars such 

as pentoses (like arabinose, rhamnose, and xylose), which are not fermentable. 

From another perspective, fructose and glucose have different effects on wine taste: 

fructose sweetness is more intense than glucose, with a rating of 1.73 on a scale of sweetness 

while glucose only rates 0.74 (Ribéreau-Gayon, et al., 2006). Pentoses contribute less to the 

wine sweetness (rating of 0.4). Moreover these two sugars play different roles on wine flavour, 

since fructose is more reactive than glucose, thus is more available for the formation of volatile 

aromas and other derived-products. 
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2D.4 Chemical reactivity 

Sugars are polyfunctional molecules, capable of participating in several reactions with 

acids, bases and proteins, especially when they appear in aqueous matrices such as wine. 

Indeed, some of these reactions are quite relevant in wine, especially the sugar degradation in 

acidic medium and the Maillard reaction.  

In acid medium wine sugars, namely glucose and fructose, dehydrate and degrade, 

being formed furans, pyrans, cyclopentenes, carbonyl compounds and other low-molecular 

weight compounds (Belitz, Grosch, & Schieberle, 2009; Mottram, 2007; Sanz & Martínez-

Castro, 2009). Additionally, brown-coloured compounds are also by-products of the sugar 

degradation (Sanz & Martínez-Castro, 2009). This reaction can occur with wine ageing, 

especially in sweet wines and is accelerated by temperature increase, leading to similar 

products of those of Maillard reaction (van Boekel, 2006). At very high temperatures can take 

place caramelization.  

2D.4.1 The Maillard reaction 

The Maillard reaction is a type of non-enzymatic browning of extreme importance to 

food industry, as it affects the quality of food products, particularly the sensory attributes such 

as colour, aroma and taste, the nutritive value (proteins and amino acids become unavailable 

for human metabolism) and safety (formation of mutagenic compounds or even potentially 

carcinogenic as the recently found acrylamide) (Fay & Brevard, 2005; Nunes & Baptista, 2001). 

Additionally, some Maillard reaction products are also recognize to have antioxidant 

properties (Kim & Lee, 2009; Morales & Jiménez-Pérez, 2001; Osada & Shibamoto, 2006; 

Yilmaz & Toledo, 2005). Besides affecting the quality of foods, Maillard reaction can also have 

effect in biological systems, namely in the in vivo protein chemistry (Nunes & Baptista, 2001).  

In foods, this complex reaction starts with the condensation of a carbonyl compound, 

usually a reducing sugar, with an amino compound, usually an amino acid, a peptide, or a 

protein (Nursten, 2005a). Then, it follows a set of consecutive and parallel reactions being 

formed a variety of products, from aroma compounds of low-molecular weight to melanoidins 

with low to high-molecular weight, brown nitrogenous compounds (Martins & Van Boekel, 

2005). In this reaction the amino compound firstly acts as a catalyst inducing the dehydration 

of reducing sugars and in a more advanced stage reacts with other carbonyl compounds 

producing Strecker’s aldehydes (Fay & Brevard, 2005; Jackson, 2000). 

This reaction between sugars and amines was named as Maillard reaction in honour of 

Louis-Camille Maillard that first described it in 1912 (Nursten, 2005a). This discovery prompted 

the study of this reaction, verifying that develops in heated, dried or stored foods and in vivo in 

mammals, at their pH and physiological temperature (Fay & Brevard, 2005). In vivo results 

from the interaction of glucose with proteins intervening in the ageing of the collagen fiber as 

well as in the pathological changes of the cornea observed in diabetes mellitus (Fay & Brevard, 

2005; Nunes & Baptista, 2001).  

This chapter does not have intention to review the entire state of knowledge of the 

Maillard reaction, it just briefly pass through the principal ideas. Figure 2D.2 presents its 
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general scheme. There are several literatures that discuss in greater detail the chemistry of this 

reaction and its effects (Ellis, 1959; Jaeger, Janositz, & Knorr, 2010; Mottram, 2007; Namiki, 

1988; Nursten, 2005b; Silván, van de Lagemaat, Olano, & del Castillo, 2006; van Boekel, 2001, 

2006).  

 

FIGURE 2D.2 - General scheme of Maillard reaction in foods (adapted from (Fay & Brevard, 2005) and (van Boekel, 

2006)). 
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It is very difficult to understand the Maillard reaction, so several attempts have been 

made to subdivide this reaction into three stages: the initial, the intermediate and the final 

(Nursten, 2005a). The initial stage involves, in the following order, the sugar-amine 

condensation, the formation of N-glycosylamines (aldose) or N-fructosylamines (ketose) and 

the Amadori/Heyns rearrangement which consequently forms deoxyosones (van Boekel, 

2006). At this stage, the reaction steps are well defined and there is no browning, the products 

are colourless (Nursten, 2005a). At the intermediate stage colourless products or yellow 

products with strong absorption in the ultraviolet are formed, namely at 280 nm. The most 

common example is the formation of furfural if the sugar is a pentose or 5-

hydroxymethylfurfural (HMF) if sugar is a hexose, through dehydration of 3-deoxyosones, 

originated via 1,2-enolisation  (Mottram, 2007; van Boekel, 2006). Through 2,3-enolisation can 

be formed 1-deoxyosones, which are transformed  into others low molecular weight species 

such as furanones, pyranones (by reaction with ammonia and hydrogen sulphide) and also 

dicarbonyl compounds (Fay & Brevard, 2005; Mottram, 2007; van Boekel, 2006). Indeed, 

deoxyosones suffer fragmentation being formed reductones (carbonyl compounds) and others 

fragments like acids (formic, acetic, etc.) (van Boekel, 2006). This sugar fragments can 

undergone several reactions, namely retro-aldolization, leading low-molecular weight 

compounds such as cyclotene, glyoxal, hydroxyacetone and others. Furthermore, dicarbonyls 

can degrade amino acids, through oxidative decarboxylation and deamination to lead 

aldehydes, important to flavour formation and co-operators in the formation of melanoidins 

(Fay & Brevard, 2005). The dicarbonyl is converted into an α-aminoketone or aminoalcohol. 

This mechanism pathway is so-called the Strecker degradation. In the final stage of the 

Maillard reaction takes place the condensation of cyclic subunits, like pyrroles or pyrrole 

derivatives being developed brown insoluble polymers, designated as melanoidins (Fay & 

Brevard, 2005). 

The formation of brown pigments at the final stage of this reaction is desired in a 

certain type of food, such as bread, cocoa, roasted coffee, cooked meat, and even some 

fortified wines, like Madeira wine. However, it is undesirable in others like milk powder, 

pasteurized milk, in processed products of fruits and tomatoes, etc.. On the other hand, the 

Maillard reaction results in the development of many odour-active molecules, such as 

thiazoles, furans, pyrazines, pyrroles, oxazoles, and other heterocyclic compounds, with 

influence in the aroma of processed food products (Fay & Brevard, 2005). Some of these 

compounds are off-flavour compounds. Moreover, it should be stated that some heterocyclic 

compounds, namely those containing amines manifest mutagenic properties.  

The Maillard reaction is influenced by several factors such as temperature, heating 

time, pH, water content and the type and the amount of reagents involved (van Boekel, 2006). 

Indeed, the sugar type plays an essential role in the development of the Maillard reaction. As 

already mentioned the sugar in aqueous solution is in equilibrium between the open-chain 

form and the ring form. The straight-chain form is more reactive, however at room 

temperature, the amount of sugar in the open-chain form is only 0.5%, thus increasing the pH 

and/or temperature this percentage can rise, sometimes more than 10%, since the balance 

shifts in the direction of the more reactive specie (van Boekel, 2001). Pentoses are in general 

more reactive than hexoses because in solution present higher percentages of acyclic forms. In 
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the case of glucose and fructose, both are hexoses, but due to the fact that fructose exists in 

solution in a greater extent in the open-chain form the Maillard reaction happens at faster rate 

than with glucose (Dills, 1993). On the other hand, is also subjacent the amino acid 

equilibrium:  

R-NH2 + H+ ↔ R-NH3
+ 

Deprotonated amino groups are more reactive than protonated species. At low pH (pH 

< 7), the presence of deprotonated amino groups is low (less than 1%), hence the reactivity is 

lower. In this sense it is generally accepted that the initial rate and the browning rate increase 

with pH (van Boekel, 2001). At low pH is favoured the enolization 1,2, whereas at high pH is 

more likely to be favoured the pathway 2,3 (Nursten, 2005c).  

Several authors have related the appearance of some aromas and browning to the 

development of Maillard reaction in wines (Cutzach, Chatonnet, & Dubourdieu, 1999; 

Escudero, Hernandez-Orte, Cacho, & Ferreira, 2000; López de Lerma, Peinado, Moreno, & 

Peinado, 2010; Pripis-Nicolau, de Revel, Bertrand, & Maujean, 2000). Actually, wine’s 

fermentative processes originate several dicarbonyl compounds susceptible of participating in 

Maillard reaction, especially in the formation of flavour components, in spite of wine’s low pH, 

low temperature (except some fortified wines), and presence of water (Pripis-Nicolau, et al., 

2000; Sanz & Martínez-Castro, 2009). López de Lerma and co-workers (2010) also hypothesize 

that this reaction may be associated with the antioxidant capacity increase of Pedro Ximénez 

sweet wines under accelerated oxidative ageing. They also found that volatile Maillard 

compounds increased throughout the thermal treatment of these wines. 
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CHAPTER 2E 

Volatile compounds 

 

2E.1 Introduction 

Volatile compounds play an important role in the aroma (odour) of wines, determining 

their character and quality. To date, more than 800 volatile compounds have been found in 

wines at concentrations ranging from several mg/L to a few ng/L, but only a few can be impact 

odorants (Aznar, López, Cacho, & Ferreira, 2001; Ferreira, López, Escudero, & Cacho, 1998; 

Ribéreau-Gayon, Glories, Maujean, & Dubourdieu, 2006b). This reflects the complexity of wine 

aroma. Some compounds are present in trace amounts, still that does not mean they are 

insignificant to the wine aroma, indeed some may be crucial in characterizing the aroma of 

certain wines because of their very low sensory thresholds (ng/L), whereas others, much more 

abundant, may only generate a slight contribution (Ribéreau-Gayon, Glories, et al., 2006b). 

Other than alcohol, wines generally contain about 0.8 to 1.2 g/L aroma compounds, usually 

accounting 1% of the ethanol concentration (Rapp & Mandery, 1986). The profile and 

concentration of volatiles in wines can be influenced by several factors: environment (climate, 

soil), ripeness and grape variety, fermentative step (pH, temperature, juice nutrients, type of 

yeast and bacteria), post-fermentation treatments (such as clarification), and at last ageing 

conditions.  

Wine volatile components can be categorized in several ways, but the most common 

has to do with the time they are formed. In this sense, they can be essentially divided into: 

primary aromas, compounds already present in grapes and persisting through vinification; 

secondary aromas, which are those arising from the vinification process, principally those 

generated during fermentation; and tertiary aromas, derived from wine storage and/or ageing, 

either in casks, vats, tanks or in bottle (Clarke & Bakker, 2007).  

 

2E.2 Primary aromas 

The primary aromas, also known as varietal aromas, are secondary products of plant 

metabolism and are distributed between the skins and the berry pulp, although most 

abundant in the skins. The varietal aromas are mainly dependent on climatic factors and 

cultivation practices, increasing during ripeness parallel to sugar content.  

Varietal aromas encompass four distinct classes of chemical families: monoterpenes, 

C13-norisoprenoids, methoxypyrazines and sulphur compounds with thiol functions 

(mercaptans). The majority of the varietal aromas occurring in grape juice are present in a 

bound form, mainly glycosylated, making them non-volatile and hence odourless (Fischer, 

2007). Consequently, grape juice generally has very little flavour. Grapes, and therefore their 

juice, can also present aromas in the free form, especially methoxypyrazines.  

Most monoterpenes initially occur as non-volatile glycosides, but can be hydrolysed 

(enzymatically or chemically) to the free form during fermentation and ageing, being released 
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floral notes (Ebeler, 2001). Indeed, they are largely responsible for wine’s primary aroma. 

Figure 2E.1 depicts the most relevant monoterpenes: linalool, geraniol, nerol, citronellol and α-

terpineol (Pisarnitskii, 2001). Actually, these monoterpenes and their oxide, furan and pyran 

derivatives play an important role in the aroma of Muscat wines.  

 

FIGURE 2E.1 – Most common monoterpenes found in wines. 

Other wines can also be characterized by primary aromas: Gewürztraminer and Riesling wines 

by the floral monoterpenic aromas; Cabernet Sauvignon wines by the herbaceous/vegetative 

aromas of methoxypyrazines; several red and white non-floral V. Vinifera varieties such as 

Chardonnay, and Syrah by the strongly odoriferous pleasant notes of C13-norisoprenoids; and 

Sauvignon Blanc by thiols (Ebeler, 2001; Ribéreau-Gayon, Glories, et al., 2006b).  

The most common methoxypyrazine encountered in wines is the 2-methoxy-3-isobutyl 

pyrazine (MIBP, Figure 2E.2), which gives an odour of green bell peppers and is frequently 

present at concentrations below 40 ng/L, but usually above the 2 ng/L (in water) of olfactory 

perception threshold (Ebeler, 2001).  

 

FIGURE 2E.2 – Most relevant methoxipyrazine found in wines. 

Regarding to C13-norisoprenoids, the most important are β-damascenone, vitispirane 

and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) (Figure 2E.3). C13-norisoprenoids result 

from the oxidation of carotenoids (structurally related to terpenes).  

 

FIGURE 2E.3 – Important C13-norisoprenoids in wines. 

β-Damascenone (exotic fruits aroma) is a powerful odorant compound with threshold 

concentration of 9 ng/L (in water). Vitispirane (eucalyptus/camphor aroma) and TDN (petrol 

kerosene-like aroma), generally absent in grapes and young wines, can have an important 
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sensorial impact on the aroma of aged wines as they have very low olfactory perception 

thresholds, 800 and 20 µg/L, respectively.  

4-Mercapto-4-methyl-pentan-2-one (4-MMP, Figure 2E.4) is the most known example 

of wine thiols and is characteristic of Sauvignon Blanc wines (Fischer, 2007). Presents odours 

resembling black currant, boxwood and broom and has very low odour threshold of 0.8 ng/L in 

a wine model solution.  

 

FIGURE 2E.4 – Most relevant example of wine thiols. 

 

2E.3 Secondary aromas 

Secondary aromas are the result of the chemical and biochemical reactions developed 

during the alcoholic and malolactic (if succeeding) fermentations. Among the three main types 

of volatile compounds found in wines, the fermentative aromas (secondary aromas) are, 

qualitatively and quantitatively, the largest amount of volatile compounds present in wines 

(Clarke & Bakker, 2007). The total concentration of secondary aromas can vary between 0.3 to 

1.5 g/L (Pisarnitskii, 2001). However, in many cases, the individual concentrations of these 

volatile compounds are well below the sensory thresholds and often not have great impact on 

the wine aroma (Ebeler, 2001). Besides ethanol (obviously the most abundant volatile 

constituent of wine), glycerol and diols, many other volatile compounds are formed by yeast 

metabolism, essentially higher alcohols and esters, but also acids, aldehydes, ketones, lactones 

and S-compounds (Rapp, 1998).   

Higher alcohols, the so-called fusel alcohols, which contain more than two carbon 

atoms, are abundant volatile flavour compounds produced either from sugar catabolism or 

from amino acids decarboxylation and deamination (Ehrlich mechanism, see Figure 2E.5) 

(Ebeler, 2001; Jackson, 2000).  

 

FIGURE 2E.5 – Higher alcohols formation through amino acids via Ehrlich mechanism (adapted from (Ribéreau-

Gayon, Dubourdieu, Donèche, & Lonvaud, 2006)). 

Actually, the total fusel alcohol concentrations range from 140 to 420 mg/L, representing 

approximately half of the total content of wine volatiles accumulated during fermentation 

(Ebeler, 2001; Pisarnitskii, 2001). If they arise at concentrations higher than 300 mg/L they can 

contribute negatively to wine aroma with a strong pungent and fusel-like odour, while 

optimum levels add desirable complexity to wine, providing a fruity character (Christoph & 
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Bauer-Christoph, 2007; Ebeler, 2001; Ugliano & Henschke, 2009). The most predominant are 1-

propanol, 2-methyl-1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol 

(Figure 2E.6). Usually, these fusel alcohols occur at concentrations below their sensory 

thresholds, with the exception of 2-methylbutanol (30 mg/L in ethanolic solution, malty 

aroma) and 2-phenylethanol (10 mg/L in ethanolic solution, rose-like aroma) (Christoph & 

Bauer-Christoph, 2007; Ebeler, 2001). 2-methyl-1-butanol is also named as active amyl alcohol 

and 3-methyl-1-butanol as isoamyl alcohol. The formation of higher alcohols is affected by 

several factors: grape variety, composition of grape juice including the initial sugar level, 

assimilable nitrogen, pH, yeast strains, fermentation temperature, aeration, level of solids, and 

also skin contact time (Ugliano & Henschke, 2009). Indeed, when fermentation is conducted at 

high temperatures and in the presence of oxygen and solids, favourable conditions are fulfilled 

for the formation of higher alcohols (Jackson, 2000). 

 

FIGURE 2E.6 – Predominant higher alcohols in wines. 

Apart from higher alcohols, various esters are formed during fermentation when 

alcohols react with acids through enzymatic esterification governed by yeast, with water being 

released (Ribéreau-Gayon, Glories, Maujean, & Dubourdieu, 2006a; Zamora, 2009). 

Additionally, esters can also be formed through chemical esterification during long-term 

ageing. Nevertheless, they can also appear already in grapes but at very low quantities which 

hardly have any impact on wine aroma (Jackson, 2000). In general, they are ubiquitous in 

wines (over 160 esters have been found in wines) and can have an important impact in the 

sensory properties of wines, especially in the case of young white wines. Wine esters are 

essentially ethyl esters of organic acids (e.g. ethyl acetate, ethyl lactate and diethyl succinate), 

ethyl esters of aliphatic fatty acids (e.g. ethyl butyrate, caproate, caprylate, caprate and 

laurate) and acetates of higher alcohols (e.g. isoamyl, benzyl and phenylethyl acetates) 

(Jackson, 2000; Rapp & Mandery, 1986; Zamora, 2009). Figure 2E.7 shows some examples. The 

most prevalent ester in wine is ethyl acetate since wines contain much more ethanol than any 

other alcohol, and since the most common volatile organic acid is acetic acid. When present 

above 150 mg/L, ethyl acetate can generate an undesirable sour-vinegar fragrance in wine 

(Jackson, 2000). At very low doses (< 50 mg/L) it may contribute to the olfactory complexity of 

wines and thus have a favourable impact on their quality. Other ethyl esters such as ethyl 

lactate and diethyl succinate normally they do not appear to be of aromatic significance at 

normal concentrations, because of their weak odours (Zamora, 2009). Conversely, most wine 

esters usually contribute positively to wine aroma, essentially with fruity notes, like isoamyl 

acetate which has a banana-like scent (Ebeler, 2001; Jackson, 2000). The nature and amount of 

esters formed during fermentation is essentially influenced by the fermentation temperature 

and by the yeast strain. Low fermentation temperatures (≈ 10 °C) stimulate the synthesis of 

the fruity acetate esters, such as isoamyl, isobutyl and hexyl acetates, whereas higher 

temperatures (15 – 20 °C) favour the formation of higher esters, such as the ethyl caprylate, 

ethyl caprate and phenylethyl acetate (Jackson, 2000). Temperatures higher than 20 °C favour 

mainly the hydrolysis of ethyl acetates of fatty acids into the corresponding alcohols and acetic 
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acid. Indeed, the levels of these esters decline during ageing due to their hydrolysis, contrary 

to most esters. 

 

FIGURE 2E.7 – Predominant esters in wines. 

Apart from acetic and succinic acids yeasts also synthesize short-chain fatty acids such 

as propionic, butyric, caproic, caprylic and capric acids as well as long-chain fatty acids, as for 

instance oleic and linoleic acids, during the alcoholic fermentation (Ribéreau-Gayon, Glories, et 

al., 2006a). Figure 2E.8 depicts some examples.  

 

FIGURE 2E.8 – Chemical structures of some acids commonly found in wines. 
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As already mentioned, the most significant is acetic acid since is the primary 

responsible for the volatile acidity. Acids are also known to inhibit the fermentation, even 

when present in traces. 

Aldehydes derived from grapes are largely oxidized into the corresponding alcohols 

during the fermentative stage and usually appear in wines in traces or in very small amounts 

(Clarke & Bakker, 2007). Acetaldehyde (ethanal), the most important aldehyde found in wines, 

is obtained by the decarboxylation of pyruvate but is mostly reduced to ethanol than released 

into the wine during fermentation (Zamora, 2009). Acetaldehyde can also be formed through 

ethanol by its chemical or biological oxidation, especially during wine ageing. This aldehyde has 

a nut-like odour, characteristic of oxidized wines. If it is present in wines at high concentrations 

triggers an unpleasant aroma (butter), which can occur with ageing and under conditions of 

strong oxidation. This compound is very reactive and has the ability to combine with sulphur 

dioxide (SO2) (Ribéreau-Gayon, Glories, et al., 2006a). On the other hand, acetaldehyde also 

facilitates the copolymerization of phenols (anthocyanins and catechins) forming stable 

polymeric pigments resistant to SO2 blocking. Furthermore, acetaldehyde can also react with 

alcohols to form acetals (herbaceous-like character), namely with ethanol to form 1,1-

diethoxyethane (the so-called acetal) (Clarke & Bakker, 2007). Other minor aldehydes derived 

from fermentation can also be found in wines namely the C3 to C7 straight-chain aldehydes 

(Figure 2E.9). Others can appear or be developed during the long-term ageing such as vanillin 

(vanilla), cinnamaldehyde (cinnamon) and benzaldehyde (bitter almond) associated with barrel 

ageing, but also furfural (caramel) and 5-hydroxymethylfurfural (caramel) both arising from 

carbohydrate degradation (Clarke & Bakker, 2007; Rapp & Mandery, 1986). 

 

FIGURE 2E.9 – Aldehydes frequently identified in wines. 

Ketones also participate in wine aroma, particularly those formed during fermentation 

such as diacetyl (2,3-butanedione) and acetoin (3-hydroxybutan-2-one) (see Figure 2E.10). 

Dyacetyl is formed through oxidative decarboxylation of acetolactate, the by-product of the 

condensation of pyruvate with acetaldehyde, whereas acetoin is produce if the 

decarboxylation is not oxidative (Zamora, 2009). Additionally, the direct reduction of diacetyl 

can also originate acetoin. In turn, acetoin can be reduced to form 2,3-butanediol, the most 

prominent diol in wine however has little influence on wine aroma. Diacetyl has pleasant 

buttery, hazelnut-like scent which can be perceptible at low concentrations (2 mg/L) 
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(Ribéreau-Gayon, Glories, et al., 2006a). Nevertheless, when its sensory threshold is exceeded 

diacetyl generates a buttery, lactic off-odour (Jackson, 2000). Acetoin also gives off a sugary, 

butter-like smell that may be noticeable when present in wines.  

 

FIGURE 2E.10 – Ketones frequently found in wines. 

Lactones are a special subclass of esters, essentially formed by yeast during alcoholic 

fermentation (Jackson, 2000). They are formed by internal esterification between carboxyl and 

hydroxyl functions in the same molecule (Ribéreau-Gayon, Glories, et al., 2006a). Lactones 

with 5-membered rings are known as γ-lactones (or furanones), whereas 6-membered rings 

are known as δ-lactones (or pyranones) (Clarke & Bakker, 2007). Lactones can also occur 

already in grapes but the majority have little impact on the aroma. Additionally, lactones can 

also be synthetized during ageing or even be extracted from oak cooperage. The fermentative 

lactones do not have a great role in the organoleptic characteristics of wines, namely the most 

abundant, γ-butyrolactone (Figure 2E.11), usually present at about 1 mg/L (Ribéreau-Gayon, 

Glories, et al., 2006a). However, there are some lactones that have great impact on wine 

aroma, especially those accumulated during ageing. The most common example is sotolon (3-

hydroxy-4,5-dimethyl-2(5H)-furanone) which has an extremely powerful nutty, sweet, burnt, 

curry aroma with a very low perception threshold (5 µg/L) (Vicente Ferreira, Jarauta, López, & 

Cacho, 2003). This compound has been considered a great contributor to the typical aged 

aroma of oxidative fortified wines, such as Sherry, Port and Madeira (Câmara, Marques, Alves, 

& Silva Ferreira, 2004; Moreno, Zea, Moyano, & Medina, 2005; Silva Ferreira, Barbe, & 

Bertrand, 2003). Moreover, sotolon has also been found in wines produced from grapes 

infected by Botrytis cinerea and in Vin Jaune from Jura (Ribéreau-Gayon, Glories, et al., 2006a; 

Sarrazin, Dubourdieu, & Darriet, 2007). The sotolon formation pathway has been studied by 

several authors (Cutzach, Chatonnet, & Dubourdieu, 1999; Pisarnitsky, Bezzubov, & Egorov, 

1987; Pons, Lavigne, Landais, Darriet, & Dubourdieu, 2010; Thuy, Elisabeth, Pascal, & Claudine, 

1995). Some authors proposed that sotolon appears via enzymatic/chemical deamination of 

threonine followed by an aldol condensation with acetaldehyde. Others suggested that it can 

be produced by an aldol condensation between glutamic and pyruvic acids. Others considered 

its formation based on the peroxidation of acetaldehyde.  

 

FIGURE 2E.11 – Relevant lactones in wines. 

Excepting acetovanillone (already present in grapes) volatile phenols are formed 

during the fermentation, essentially the vinylphenols (Clarke & Bakker, 2007). The ethyl 
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phenols are much more likely to develop during barrel ageing. Volatile phenols derive either 

from yeast or bacterial metabolism or from hydrolysis of higher phenols (Rapp & Mandery, 

1986). As already mentioned in Chapter 2B, the most common volatile phenols found in wines 

are vinyl guaiacol and vinyl phenol derived from the enzymic or thermal decarboxylation of p-

coumaric and ferulic acids, respectively (Figure 2E.12). Unfortunately, volatile phenols can 

negatively influence wine aroma usually with phenolic medicinal scents (Clarke & Bakker, 

2007).  

 

FIGURE 2.12 – Most common volatile phenols found in wines. 

At last, sulphur derivatives (S-containing compounds) also encompass the secondary 

aromas. Almost sulphur-containing compounds are deleterious to wine quality because they 

are responsible for alliaceous and rubbery aromas (Ebeler & Thorngate, 2009). Although 

present in trace amounts they can have significant impact in wines since these compounds 

possess low perception thresholds (usually parts per trillion) (Jackson, 2000). During 

fermentation, appreciable amounts of the hydrogen sulphide (H2S) are produced by yeasts. 

Cystine metabolism can also increase its synthesis. This inorganic compound is characterized 

for having an unpleasant rotten egg odour and is often associated with the yeasty odour of 

newly fermented wines. Fortunately, usually appears in trace amounts in finished wines. The 

metabolism of S-containing amino acids can produce several organosulphur compounds, such 

as thiols (or mercaptans, e.g. methanethiol, ethanethiol and 2-mercaptoethanol), thioethers 

(e.g. dimethyl sulphide and diethyl sulphide), thiolanes (e.g. 2-methylthiolane-3-one and 2-

methylthiolane-3-ols), thioesters (e.g. ethyl 3-mercaptopropionate) and thiazoles (e.g. 5-(2-

hydroxyethyl)-4-methylthiazole)). Figure 2E.13 depicts some examples. Additionally, the so-

called sun-struck phenomenon can also produce organosulphur off-odours as well as the yeast 

cells autolysis. 

 

FIGURE 2E.13 – Some examples of sulphur-containing compounds encountered in wines. 
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2E.4 Tertiary aromas 

Tertiary aromas are those developed during post-fermentation treatments, i.e. 

through wine ageing either in wood barrel or in bottle. During this process the wine volatile 

composition changes due to several slow chemical reactions, transforming the aroma into the 

bouquet. The bouquet of oxidation is generally formed during ageing in wooden casks while 

the bouquet of reduction is developed along bottle-ageing (Rapp & Mandery, 1986). 

Depending on storage conditions, there are many factors that influence the composition of 

volatile constituents of wine, mostly temperature and duration. Generally speaking, under 

wine acidic medium several changes take place, namely the decrease of monoterpenes 

(linalool, geraniol and citronellol decrease) and subsequent transformation (linalool and nerol 

oxides increase), the production of new by-products of carotenoids (e.g. vitispiranes) and 

carbohydrates (e.g. furfural, HMF, 2-acetylfuran, furfuryl alcohol and others), the decline of 

the levels of acetic esters of aliphatic alcohols, the increase of ethyl esters of carboxylic acids 

and aliphatic aldehydes (Pisarnitskii, 2001). 

As previously denoted, acetates (e.g. isoamyl acetate, isobutyl acetate, hexyl acetate) 

enzymatically produced in excess during fermentation gradually hydrolyse until they approach 

to the equilibrium with the corresponding acids and alcohols, a decrease that may be 

responsible for the loss of freshness and fruity notes characteristic of the young wines. On the 

other hand, the increase of the concentration of ethyl esters of diprotic acids (e.g. diethyl and 

monoethyl succinate and diethyl malate) arises from chemical esterification during ageing. 

Oak barrel ageing firstly promotes the oxidation of the primary and secondary aromas, 

since wine oxygenation occur due to the entry of oxygen across the pores of the wood (Clarke 

& Bakker, 2007). Thus, this process promotes the arising of the oxidative bouquet. Secondly, 

the release of oak wood aromas also takes place producing the so-called oak aroma. This 

process promotes the occurrence of several important aromas and the increase of aldehydes 

such as acetaldehyde due to ethanol oxidation and vanillin produced from the degradation of 

lignin extracted from wood is often observed. As already mentioned acetaldehyde contributes 

to the typical nutty flavour of many aged wines. Other essential compounds are the isomers cis 

and trans of β-methyl-γ-octalactone (Figure 2E.14), commonly known as oak or whiskey 

lactone (Ebeler, 2001). These two isomers have low sensory threshold, specially the cis isomer 

(92 µg/L), contributing with woody, oaky, coconut-like aromas to wine. During maturation is 

also observed the increase of acetals, resulting from the reaction between aldehydes and 

alcohols.  In opposition, there is no rise in acetal concentration during bottle ageing.  

 

FIGURE 2E.14 – The two isomers of oak-lactone. 
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Madeira. Indeed, it is during the oxidative ageing that sotolon is formed, one of the most 
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undesired to their organoleptic characteristics, as in the case of white table wines. For 

example, the excess of aliphatic aldehydes (mainly acetaldehyde), originated from the 

excessive ageing of white wines, associated with the auto-oxidation of phenolic compounds 

causes browning, undesirable in this type of wine (Pisarnitskii, 2001). 
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Abstract 

This chapter presents a RP-HPLC method for the simultaneous quantification of free 

amino acids and biogenic amines in wines obtained from different production processes and 

geographic origins. The methodology was also applied to honey samples. The developed 

methodology is based on a pre-column derivatization with o-phthaldialdehyde carried out in 

the sample injection loop. The compounds were separated in a Nova-Pack RP-C18 column (150 

× 3.9 mm, 4 µm) at 35 °C. The mobile phase used was a mixture of phase A: 10mM sodium 

phosphate buffer (pH 7.3), methanol and tetrahydrofuran (91:8:1); and phase B: methanol and 

phosphate buffer (80:20), with a flow rate of 1.0 mL/min. Fluorescence detection was used at 

an excitation wavelength of 335 nm and an emission wavelength of 440 nm. The separation 

and quantification of 19 amino acids and 6 amines was carried out in a single run as their 

OPA/MCE derivatives elute within 80 min, ensuring a reproducible quantification. The method 

showed to be adequate for the purpose, with an average RSD of 2% for the different amino 

acids; detection limits varying between 0.71 mg/L (Asn) and 8.26 mg/L and recovery rates 

between 63.0% (Cad) and 98.0% (Asp). The amino acid present at the highest concentration in 

wine samples was arginine. Only residual levels of biogenic amines were detected in the 

analysed samples. 

 

3.1 Introduction 

Amino acids microbial catabolism produces key flavour compounds in foods such as 

cheese, wine, honey and other fermented foodstuff (Özcan & Senyuva, 2006). As already 

mentioned, from their enzymatic decarboxylation results the formation of biogenic amines, 

undesirable compounds when in higher levels, due to the physiological effects in the human 

organism, consequence of their toxicology. Indeed, amino acids and biogenic amines co-exist 

in several biological and food matrices and participating in numerous transformation processes 

(Kutlán & Molnár-Perl, 2003).  

The determination of the amino acids and biogenic amines is of great importance in 

food industry due to nutritional labelling requirements, control of process operating conditions 

and, eventually, in the determination of origin (Iglesias, de Lorenzo, Polo, Martín-Álvarez, & 

Pueyo, 2003). Additionally, the amino acids profile can be advantageously used for the 

characterization of wines, indeed, according to several authors (Nouadje et al., 1997; 

Soufleros, Barrios, & Bertrand, 1998; Soufleros, Bouloumpasi, Tsarchopoulos, & Biliaderis, 

2003; Vasconcelos & Chaves das Neves, 1989), their composition may be a suitable method for 

the classification of wines according to variety, geographical origin, wine-making technologies 

and vintage. In recent years, new trends in food safety, together with the consumer’s demand 

for quality and healthier products, have encouraged several authors to study these compounds 

in several wines (Gloria, Watson, Simon-Sarkadi, & Daeschel, 1998; Herbert, Santos, & Alves, 

2001; Mafra, Herbert, Santos, Barros, & Alves, 1999; Vazquez-Lasa, Iniguez-Crespo, Gonzalez-

Larraina, & Gonzalez-Guerrero, 1998). They have study of biogenic amines as food quality 
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indicators since their occurrence is normally associated with inadequate sanitary conditions 

during the production procedures. 

Diverse analytical methods have been proposed for the analysis of amino acids and 

biogenic amines, including gas chromatography (GC) (Kim, Kim, Cheong, & Jeong, 1996; Nozal, 

Bernal, Toribio, Diego, & Ruiz, 2004; Pätzold, Nieto-Rodriguez, & Brückner, 2003; Yamamoto, 

Itano, Kataoka, & Makita, 1982), high-performance liquid chromatography (HPLC) (López-

Cervantes, Sánchez-Machado, & Rosas-Rodríguez, 2006; mo Dugo, Vilasi, La Torre, & Pellicanò, 

2006; Pripis-Nicolau, de Revel, Marchand, Beloqui, & Bertrand, 2001) and capillary 

electrophoresis (EC) (Bjergegaard, Pilegaard Hansen, Møller, Sørensen, & Sørensen, 1999; 

Kovács, Simon-Sarkadi, & Ganzler, 1999). More recently, liquid chromatography coupled with 

tandem mass spectrometry (LC–MS/MS) has been shown to be a very specific and sensitive 

technique for the determination of underivatized amino acids and biogenic amines (de Person, 

Chaimbault, & Elfakir, 2008; Millán, Sampedro, Unceta, Goicolea, & Barrio, 2007; Özcan & 

Senyuva, 2006; Petritis, Elfakir, & Dreux, 2002). Besides involving shorter analysis times the 

LC–MS/MS technique is expensive and is not available in many research laboratories. There 

are some methods used for the simultaneous determination of amino acids and biogenic 

amines by HPLC (Alberto, Arena, & Manca de Nadra, 2002; Bauza, Blaise, Daumas, & Cabanis, 

1995; Krause, Bockhardt, Neckermann, Henle, & Klostermeyer, 1995; Lozanov, Petrov, & 

Mitev, 2004), micellar electrokinetic capillary chromatography (MECC) (Wang et al., 2003) and 

micellar liquid chromatography (MLC) (Gil-Agustí, Carda-Broch, Monferrer-Pons, & Esteve-

Romero, 2007). Traditionally, the determination of amino acids has been conducted by ion-

exchange chromatography, followed by post-column derivatization with ninhydrin. So far, the 

analysis of amino acids and biogenic amines using pre-column derivatization and reversed-

phase HPLC separation of the derivatives has become widely accepted and usually shows great 

sensitivity. Typical derivatization reagents include 9-fluorenylmethyl chloroformate (FMOC-Cl) 

(Bauza, et al., 1995; Einarsson, 1985), N-(9-fluorenylmethoxycarbonyloxy)succinimide (FMOC-

OSu) (Lozanov, et al., 2004), carbazole-9-yl-acetyl chloride (CRA-Cl) (You, Sun, Lao, & Ou, 

1999), ortho-phthaldialdeyde (OPA) (Klein & Dudenhausen, 1995; Kutlán & Molnár-Perl, 2003; 

Mafra, et al., 1999; Sanders & Ough, 1985), phenyl isothiocyanate (PITC) (Fierabracci, Masiello, 

Novelli, & Bergamini, 1991; Irvine, 1996), 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide 

(Kochhar & Christen, 1989; Scaloni, Simmaco, & Bossa, 1995) and dansylchloride (mo Dugo, et 

al., 2006; Simmaco, De Biase, Barra, & Bossa, 1990). 

This study indented to develop a simple RP-HPLC methodology for the simultaneous 

identification and quantification of amino acids and biogenic amines in liquid food matrices, 

based on a pre-column OPA derivatization carried out in the chromatograph injection loop. 

The OPA/MCE reagent was selected due to its high sensitivity, responding to minor amino, 

acids, good selectivity and simplicity. OPA in the presence of 2-mercaptoethanol (MCE) reacts 

with amino acids and biogenic amines and proceeds to isoindolic derivatives, at room 

temperature, in a quick and simple reaction, in spite of OPA/MCE derivatives being considered 

quite instable (Hanczkó & Molnár-Perl, 2003; Simons & Johnson, 1976). The secondary amino 

acids, such as proline and hydroxyproline, cannot be determined because they do not react. 

Some derivatives are unstable making crucial an appropriate control of the reaction and 

injection time (Hanczkó & Molnár-Perl, 2003). Furthermore, this derivatization reagent allows 
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the simultaneous analysis of these compounds without extraction and purification processes 

preceding the derivatization with fluorescent functional group detection (Bjergegaard, et al., 

1999; Kutlán & Molnár-Perl, 2003). 

 

FIGURE  3.1 – Primary amino compounds derivatization with OPA/MCE reagent (Simons & Johnson, 1976). 

In order to simplify the derivatization procedure and maintaining the reproducibility of 

the results, this work was focused in the derivatization operating conditions to be 

accomplished in the sample injection loop. This methodology was applied to wine samples 

obtained from different production processes and geographic origins. The application method 

was extended to other liquid food matrices as honey. 

 

3.2 Experimental  

 3.2.1 Standards and reagents 

Ultra-pure water was obtained from a Milli Q-System (Millipore, Milford, MA, USA) while 

HPLC-grade methanol was obtained from Sigma–Aldrich (St. Louis, MO, USA). Tetrahydrofuran 

(99.5%), ethanol (99.9%), sodium hydroxide (98%), sodium phosphate monobasic 

monohydrate (98%) were from Panreac Quimica SA (Barcelona, Spain). o-Phthaldialdehyde 

(p.a.), 2-mercaptoethanol (99%) were supplied by Acros Organics (Geel, Belgium), hydrochloric 

acid (p.a.) by Riedel-de Häen (Seelze, Germany) and boric acid (99.5%) by Merck Co. 

(Darmstadt, Germany).  

A kit of high purity L-amino acids (>98%) was supplied by Sigma–Aldrich (St. Louis, MO, 

USA) and consisted of 1 g of each of the following standards: aspartic acid (Asp), glutamic acid 

(Glu), asparagine (Asn), serine (Ser), glutamine (Gln), histidine (His), glycine (Gly), threonine 

(Thr), arginine (Arg), alanine (Ala), tyrosine (Tyr), methionine (Met), tryptophan (Trp), valine 

(Val), phenylalanine (Phe), isoleucine (Ile), leucine (Leu) and lysine (Lys). 

The following standards were supplied by Fluka BioChemika AG (Buchs, Switzerland): 

γ-aminobutyric acid (GABA) and the biogenic amines: histamine (Him), tyramine (Tym), 

phenylethylamine (Phm) isopenthylamine (Ism), and cadaverine (Cad). Tryptamine (Trm) was 

purchased from Acros Organics (Geel, Belgium). 

A concentrated 10 g/L stock solution of each amino acid and biogenic amine was 

prepared in 0.1M HCl. Calibration standards (ranging from 0.5 to 60.0 mg/L) were prepared in 
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H
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2
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0.1M HCl from the concentrated standard solution. Finally, they were filtered through a 0.45 

µm filter (Acrodisc® CR-PTFE, Ann Arbor, SOM, USA), stored in a refrigerator and protected 

from light. 

 3.2.2 Equipment 

Amino acids and biogenic amines were simultaneously separated in a HPLC system 

using a Waters (Milford, MA, USA) liquid chromatograph controlled by the Empower Pro 

software and equipped with an auto-injector (Waters 2695, separations module) and a Multi λ 

Fluorescence detector (Waters 2475). Chromatographic analysis were performed using an 

analytical scale (3.9mm × 150 mm) Nova-Pack RP-C18 column, with a particle size of 4 µm, 

purchased from Waters (Milford, MA, USA). 

 3.2.3 Chromatographic conditions 

HPLC conditions were as follow: mobile phase A: 1% of tetrahydrofuran, 8% methanol 

and 91% phosphate buffer (10 mM, pH 7.3). Mobile phase B: 80% methanol and 20% 

phosphate buffer (10 mM, pH 7.3). The flow rate was set at 1.00 mL/min and the column 

maintained at 35 °C.  

TABLE 3.1 – Gradient program employed for the separation of amino acids and biogenic amines. 

 

The eluted OPA derivatives were detected by monitoring their fluorescence at 335 and 

440 nm as excitation and emission wavelengths, respectively. The injections were performed 

in less than 80 min, including column regeneration and stabilization during the last 13 min. The 

gradient program used is shown in Table 3.1. 

 3.2.4 Samples 

A total of 21 samples were analysed with the developed method (12 honeys and 9 

wines – see Table 3.2). The honey samples include nine multifloral and three monofloral, from 

different origins namely Madeira Islands (H1–H5), Portugal mainland (H6–H8) and Canary 

Islands (H9–H12), purchased in local stores. The wine samples include four Madeira fortified 

Time Flow

(min) (ml/min)

0 1.00 100 6

6 1.00 100 6

17 1.00 85 6

25 1.00 80 6

33 1.00 70 6

45 1.00 60 6

61 1.00 20 6

67 1.00 0 6

70 1.00 0 6

71 1.00 100 1

80 1.00 100 6

CurveEluent A (%)
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wines (W1–W4), three Madeira table wines (W5–W7) and two Canarian table wines (W8 and 

W9) from the following grape varieties: Malvasia, Tinta Negra Mole and Sercial.  

Before the derivatization procedure, 200 µL of the sample were added to 1.5 mL of a 

0.4 M borate buffer solution (pH 10.5), homogenized in a vortex agitator and then filtered 

through 0.45 µm PTFE filter. In case of honey samples, 5 g were diluted with ultra-pure water 

into a 10 mL volumetric flask and filtered. 

TABLE 3.2 – Samples analysed by the developed HPLC method. 

Samples   Characteristics Origin 

Honey 

 

 H1 

H2 

H3 

H4 

H5 

Multifloral  

Multifloral  

Multifloral  

Multifloral  

Multifloral  

Madeira 

Island 

  H6 

H7 

H8 

Monofloral 

Multifloral 

Monofloral 

Portugal  

Mainland 

  H9 

H10 

H11 

H12 

Multifloral  

Monofloral  

Multifloral  

Multifloral  

Canary 

Island 

Wine 

 
Fortified 

W1 

W2 

W3 

W4 

Malvasia - Sweet 

Sercial - Dry 

Tinta Negra Mole - Sweet 

Tinta Negra Mole - Dry 

Madeira 

Island 

 

Table 

W5 

W6 

W7 

Malvasia 

Tinta Negra Mole - Rosé 

Tinta Negra Mole - Red 

Madeira 

Island 

 
Table 

W8 

W9 

Malvasia  

Malvasia  

Canary 

Island 

 3.2.5 Derivatization 

OPA derivatization solution was prepared in a 10 mL volume flask by dissolving 50 mg 

of reagent in 1.5 mL of ethanol and making up the volume with 0.4 M borate buffer (pH 10.5). 

Finally 200 µL of 2-mercaptoethanol was added. 

At last, the reagent solution was left to settle for 90 min, stored in dark glass vials at 4 

°C and freshly prepared every 9 days. The derivatization procedure was performed in the 

sample injection loop according to the following sequence: 10 µL of buffered sample mixture 

were aspired to the injection loop followed by 10 µL of OPA solution and maintained for 3 min 

to promote the derivatization reaction. During this period, the flow was maintained at 0 

mL/min to keep the reagent into the loop. Then, the loop content (20 µL) was forced to enter 

into the column by changing the mobile phase flow to 1 mL/min. 
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3.2.6 Calculations 

The concentration of each analyte was obtained by direct interpolation of the peak 

area in the correspondent linear calibration curve (peak area vs. concentration, ranging from 

0.5 to 60.0 mg/L). Samples were diluted when needed to comply with the working range. 

 

3.3 Results and discussion 

 3.3.1 Derivatization procedure 

Derivatization of the standard amino acid and biogenic amines mixture was performed 

by OPA/MCE in boric buffer (0.4M sodium borate, pH 10.5). The first experiments were carried 

out using an injection volume of 50 µL (25 µL of buffered sample mixture and 25 µL of 

OPA/MCE reagent) but the volume was reduced in order to extend column life without 

compromising the good response. 

Much of the published methods require sample pre-treatment before derivatization 

(Busto, Guasch, & Borrull, 1995; Iglesias, et al., 2003; Paramás, Bárez, Marcos, García-

Villanova, & Sánchez, 2006). Paramás et al. (2006) developed an OPA/MCE derivatization 

method for the determination of amino acids in honey which includes a clean-up step and an 

extraction procedure before derivatization. The current developed method has the advantage 

of being a simpler methodology, not requiring any complex pre-treatment for liquid food 

matrices and only a dilution is carried out, if necessary. OPA-derivatization times were short (3 

min) when compared with other derivatization reagents used for the simultaneous 

determination of these compounds (Bauza, et al., 1995; Krause, et al., 1995; Lozanov, et al., 

2004). The proposed method by Bauza et al. (1995) using FMOC as derivatization reagent 

needed 6 min for reaction development, while Krause et al. (1995) used a dansyl method and 

the derivatization time was 20 min. Lately, Lozanov et al. (2004) proposed the use of FMOC-

OSu reacting during 20 min. OPA derivatization did not show the presence of excess reagent, 

interfering with the analytes resolution, as detected when using FMOC derivatization methods 

(Lozanov, et al., 2004). Furthermore, the derivatization reaction was automatic, occured in the 

injection loop and showed sensitive and consistent results. 

 3.3.2 Method validation 

The sample analytes were identified by comparison with the retention times of amino 

acid standard solutions. For the determination of retention times, the reference standards 

were injected both individually and as a mixture. Quantification was performed by the external 

standard method based on peak areas of the eluted amino acid and biogenic amines 

derivatives. The linearity was evaluated by the construction of calibration curves, using the 

chromatographic peaks areas of the fluorescence response, from triplicate injections of 

standards, at six increasing concentrations in the 0.5–60.0 mg/L range for all amino acids and 

biogenic amines. The linear relationship between concentrations and peak area is given by a, b 
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and r2—see Table 3.3, where a and b are the coefficients of the regression equation y = ax + b, 

x being the concentration of the analyte, y the peak area and r2 the coefficient of 

determination. For this calculation, all obtained values were used instead the average of the 

three injections. In all cases, the relationship between concentrations and peak areas were 

linear over the tested range, with coefficients of determination greater than 0.990. 

TABLE 3.3 – Retention times, calibration curves (y = ax + b), correlation coefficient (r
2
), limits of detection (LOD) in 

mg/L, repeatability (RSD %) and recovery (Rec %) of amino acids and biogenic amines. 

 

The repeatability of the method was evaluated by nine consecutive injections of the 

same sample during a working day. Detection limits (defined as three times the signal-to-noise 

ratio) ranged from 0.71 mg/L (Asp) to 8.26 mg/L (Lys)—Table 3.3. 

To determine intra-sample and inter-day precisions, three identical samples were run 

on three separate days. Intra-samples precisions for individual measurements of amino acids 

range from 1.9 to 4.8% and the inter-day precisions range from 4.2 to 9.4% (RSD). Biogenic 

amines were not considered as only vestigial quantities were found. The calculated 

concentrations of individual amino acids showed residual standard deviations (RSD) of about 

2% in the analyses of wine and honey samples. 

The accuracy was estimated by means of the recovery tests. For the evaluation of the 

recovery rate, H3 honey and W7 wine (n = 5) were spiked with 10 mg/L standard solution, 

Aspartic acid 1.33 ± 0.28 23.30 27.40 0.998 14.68 0.71 0.60 98

Glutamic acid 2.52 ± 0.30 21.20 13.40 0.999 14.45 1.41 1.65 91

Asparagine 8.60 ± 0.52 19.10 6.94 0.999 11.89 1.50 1.49 90

Serine 11.10 ± 0.35 32.00 12.30 0.998 28.69 2.30 0.14 85

Glutamine 13.74 ± 0.25 2.29 0.58 0.994 4.07 5.08 4.14 90

Histidine 14.25 ± 0.45 9.54 -3.67 0.998 8.57 2.73 1.92 90

Glycine 17.25 ± 0.38 45.50 -11.70 0.997 52.92 3.75 1.09 87

Threonine 19.15 ± 0.30 24.10 8.92 0.999 18.73 1.96 2.55 88

Arginine 21.89 ± 0.65 17.40 1.72 0.998 15.79 2.62 0.58 85

Alanine 26.15 ± 0.25 36.20 -0.14 0.998 36.15 3.00 0.72 85

GABA 28.50 ± 0.25 30.50 -22.40 0.996 42.26 4.89 0.89 83

Tyrosine 32.50 ± 0.40 17.60 4.87 0.999 12.14 1.79 0.51 91

Methionine 45.20 ± 0.25 21.40 -0.89 0.991 45.14 6.37 7.92 98

Tryptophan 46.25 ± 0.35 31.20 16.70 0.999 16.98 1.10 0.39 91

Valine 47.50 ± 0.20 13.60 -1.56 0.998 12.49 2.87 0.56 82

Phenylalanine 50.20 ± 0.30 19.10 2.21 0.999 15.97 2.39 0.63 83

Isoleucine 52.50 ± 0.45 29.90 10.30 0.999 19.27 1.59 0.88 91

Leucine 53.90 ± 0.25 27.30 3.42 0.999 21.30 2.21 0.67 88

Lysine 59.50 ± 0.40 6.78 -8.75 0.990 15.74 8.26 5.41 82

Biogenic amines

Histamine 49.10 ± 0.45 29.50 -25.30 0.996 4209260 5.14 0.40 87

Tyramine 58.90 ± 0.25 28.90 -24.30 0.994 4972310 6.00 6.04 82

Tryptamine 63.50 ± 0.30 21.90 -25.10 0.994 3815051 6.37 0.66 81

Phenylethylamine 64.75 ± 35 24.20 -18.10 0.995 3963053 5.66 0.24 78

Isopenthylamine 65.80 ± 0.20 35.00 1.75 0.994 4184279 3.54 5.14 91

Cadaverine 67.00 ± 0.20 20.50 -19.80 0.992 4182516 7.09 1.09 63

Amino acids
Retention  times 

(min.)

Rep 

(RSD%)
Rec (%) a  (x10

5
) b  (x10

5
) r

2
sd (x10

5
) LOD
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derivatizated and quantified. The recovery rate averages obtained were acceptable, with 

values ranging from 82% (Lys) to 98% (Asp) for amino acids, and 63% (Cad) to 91% (Ism) for 

biogenic amines—Table 3.3. 

 3.3.3 Chromatographic analysis 

The proposed HPLC method allowed the simultaneous determination of 19 amino 

acids and 6 biogenic amines in 83 min, including the column regeneration (9 min) and 

derivatization time (3 min), slightly higher than the methodology suggested by Alberto et al. 

(Alberto, et al., 2002), 63 min, but ensuring better separation. The applied methodology 

allowed the total separation of all amino acids and biogenic amines in the standards solutions 

and analysed matrices, overcoming some peak overlay obtained by several authors (Cometto, 

Faye, Di Paola Naranjo, Rubio, & Aldao, 2003; Conte, Miorini, Giomo, Bertacco, & Zironi, 1998; 

Davies & Harris, 1982; Hermosín, Chicón, & Dolores Cabezudo, 2003) namely Asn + Ser (Davies 

& Harris, 1982; Hermosín, et al., 2003), Gln + Thr (Davies & Harris, 1982), Asp + Asn (Conte, et 

al., 1998), Glu + Gln (Conte, et al., 1998) and Thr + Ala (Cometto, et al., 2003). Figure 3.2 shows 

the separation obtained for the amino acids and biogenic amines present in a 20 mg/L 

standard solution, together with typical chromatograms obtained for honey (H5) and wine 

(W4).  

 

FIGURE 3.2 – Typical chromatogram profile of amino acids and biogenic amines in: a) 20 mg/L standard mixture, b) 

H5 honey and c) W4 wine. Peak identification: (1) aspartic acid, (2) glutamic acid, (3) asparagine, (4) serine, (5) 

glutamine, (6) histidine, (7) glycine, (8) threonine, (9) arginine, (10) alanine, (11) gaba, (12) tyrosine, (13) 

methionine, (14) tryptophan, (15) valine, (16) histamine, (17) phenylalanine, (18) isoleucine, (19) leucine, (20) 

tyramine, (21) lysine, (22) tryptamine, (23) phenylethylamine, (24) isopenthylamine and (25) cadaverine. 
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Besides determining the amino acid composition, this methodology is a useful tool for 

the control of biogenic amines with known toxic activity, like histamine (maximum 

recommended levels of 5–6 mg/L in Belgium and 10 mg/L in Switzerland (Lehtonen, Saarinen, 

Vesanto, & Riekkola, 1992)) and tyramine, considered toxic to human health (25–40 mg/L) 

(Moreno-Arribas & Polo, 2009). 

The results obtained for the honey and wine samples are summarized in Table 3.4, 

where only amino acid concentrations are shown as biogenic amines were found only in 

vestigial quantities, usually below the LOD. The main amino acids found in honey samples were 

phenylalanine, glutamine and lysine and in wines were arginine, alanine and GABA. 

Methionine showed very low level in wines and was not detected in honeys. 

The total amount of the primary amino acids found is described in Figure 3.3. The 

values range from 76.89 mg/L (W7) to 802.40 mg/L (W8). From the analysed honeys, Madeira 

multifloral honey (H2) presents the highest amount of amino acid found, 286.00 mg/L. 

Analysing Madeira wines from similar grape varieties, it was observed that the fermented ones 

showed lower values (about 172.94 mg/L) than the wines submitted to partial fermentation, 

like sweet wines (684.73 mg/l in average for W1 and W3). This was expected since amino acids 

are catabolized in several reactions during fermentation. 

 

FIGURE 3.3 – Amount of amino acid in the liquid food matrices studied. 

Comparing the results obtained for the same variety submitted to a different 

fermentation process (W3 and W4), the content of the following acids decreased at least 50% 

during fermentation: arginine, alanine, γ-aminobutyric acid and threonine, showing the 

importance of these amino acids in the formation of typical aromas present in Madeira wines 

(together with cysteine, not determined with this method, due to low sensitivity). The total 

amino acid content in Madeira fortified dry wines is similar to Madeira table wines, since the 

fermentation is almost complete. Canarian table wines presented higher levels of these 

compounds (741.64 mg/L in average), close to Madeira submitted to partial fermentation, 

explained by the fact that those wines were produced from over-maturated Malvasia grapes.  
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TABLE 3.5 – Relative abundance (%) of each amino acid in honeys and wines under study. 

 

The percentage of the amino acid relative to abundance is exposed in Table 3.5. The 

samples with the highest relative abundance of amino acids were H8 (honey) due to serine, 

glutamine, threonine, arginine, GABA and tryptophan and W8 (wine) due to histidine, glycine, 

GABA, tyrosine, tryptophan, phenylalanine, isoleucine and leucine. Wines besides having 

higher amounts of amino acids also possess the richest amino acid profile. 

The applicability of the reported procedure for simultaneously analysis of amino acids 

and biogenic amines has been demonstrated for the analysis of wine and honey samples. 

 

3.4 Conclusions 

A simple RP-HPLC analytical method for the simultaneous analysis of amino acids and 

biogenic amines in liquid food matrices is proposed based on a pre-column derivatization with 

OPA, performed in the sample injection loop, and fluorescence detection. The separation and 

quantification of 19 amino acids and nine amines was carried out in a single run as their 

OPA/MCE derivatives elute within 80 min, ensuring a reproducible quantification. The practical 

utility of the proposed chromatographic procedure was shown by the analysis of the amino 

Amino Acids (%) H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

Asp 9 9 8 14 8 9 13 54 22 39 100 16

Glu 10 12 11 26 14 6 14 86 10 20 100 16

Asn 16 16 17 18 31 28 21 85 15 100 25 43

Ser --- 34 44 61 35 46 43 100 41 50 95 49

Gln 26 36 21 22 21 13 17 100 20 37 59 40

His 33 49 28 70 53 49 51 42 64 60 32 100

Gly --- --- --- --- --- --- --- 49 --- --- 100 ---

Thr --- --- --- 98 --- --- --- 100 --- --- --- 80

Arg 34 30 36 --- 37 43 40 100 34 46 --- ---

Ala 18 39 62 32 22 19 40 57 18 26 100 26

GABA --- --- --- --- --- --- --- 100 --- --- --- ---

Tyr 12 21 13 51 16 83 22 22 100 15 6 48

Met --- --- --- --- --- --- --- --- --- --- --- ---

Trp 49 82 30 50 36 24 35 100 30 51 77 53

Val --- --- --- 100 --- --- --- --- --- --- --- ---

Phe 48 92 13 61 13 69 30 91 100 7 10 47

Ile 55 100 --- 58 --- 40 --- 91 --- 45 --- 51

Leu 47 100 14 8 --- 48 10 13 17 --- 17 ---

Lys 60 59 46 45 60 41 45 40 74 42 --- 100

Total compounds 13 14 13 16 12 14 13 17 13 13 12 13

Madeira island wines Canary island wines

 Fortified Table Table

W1 W2 W3 W4 W5 W6 W7 W8 W9
Asp 39 56 81 79 28 28 4 80 100

Glu 23 12 21 16 49 55 18 86 100

Asn 21 27 44 35 100 49 13 29 42

Ser 100 33 79 57 23 20 17 57 60

Glu 2 4 8 1 7 100 75 5 20

His 5 4 6 4 6 8 2 100 85

Gly 56 42 47 75 22 33 22 100 97

Thr 88 31 100 41 16 11 4 53 45

Arg 68 3 100 10 4 5 1 61 39

Ala 98 19 100 33 20 17 10 76 54

GABA 94 9 33 14 5 31 6 100 96

Tyr 19 21 61 39 16 29 7 100 88

Met 9 20 --- 22 29 22 2 93 100

Trp 45 28 49 45 18 16 6 100 58

Val --- --- --- --- --- --- --- --- 100

Phe 48 55 63 86 37 40 11 100 96

Ile 44 61 85 85 40 30 8 100 81

Leu 38 61 54 93 50 41 9 100 97

Lys 10 42 40 90 54 54 7 93 100

Total compounds  18 18 17 18 18 18 18 18 19

Canary island honeysMadeira island honeys Portugal mainland honeys
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acid and biogenic amine contents in honey and wine samples without any preliminary 

separation or clean-up steps. The method showed high sensitivity and response to minor 

compounds with the exception to proline, cysteine and hydroxyproline. Future trends pass 

through the use of shorter columns to reduce the analysis and the application of this 

procedure to other food matrices. 

Relatively to the analysed samples, the amino acid present at the highest 

concentration in honeys was phenylalanine and in wines was arginine. The biogenic amines 

suspected to cause toxicological effects (histamine, tyramine and phenylethylamine) were no 

cause for concern in the analysed honey and wine samples since they are present in vestigial 

quantities. 
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Abstract 

This chapter presents a simple and sensitive HPLC method with photo-diode array 

detection for the analysis of organic acids, monomeric polyphenols and furanic compounds in 

wine samples by direct injection. The chromatographic separation of 8 organic acids, 2 furans 

and 22 phenolic compounds was carried out with a buffered solution (pH 2.70) and acetonitrile 

as mobile phases and a difunctionally bonded C18 stationary phase, Atlantis dC18 (250 x 4.6 

mm, 5 µm) column. The elution was performed in 12 min for the organic acids and in 60 min 

for the phenolic compounds, including phenolic acids, stilbenes and flavonoids. Target 

compounds were detected at 210 nm (organic acids, flavan-3-ols and benzoic acids), 254 nm 

(ellagic acid), 280 nm (furans and cinnamic acid), 315 nm (hydroxycinnamic acids and trans-

resveratrol) and 360 nm (flavonoids). The RSDs for the repeatability test (n = 5) of peak area 

and retention times were below 3.1 and 0.3%, respectively, for phenolics and below 1.0 and 

0.2% for organic acids. The RSDs expressing the reproducibility of the method were higher 

than for the repeatability results but all below 9.0%. Method accuracy was evaluated by the 

recovery results, with average values between 80 and 104% for polyphenols and 97–105% for 

organic acids. The calibration curves, obtained by triplicate injection of standard solutions, 

showed good linearity with regression coefficients higher than 0.9982 for polyphenols and 

0.9997 for organic acids. The LOD was in the range of 0.07–0.49 mg/L for polyphenols 

(cinnamic and gallic acids, respectively) and 0.001–0.046 g/L for organic acids (oxalic and lactic 

acids, respectively). The method was successfully used to measure and assess the polyphenolic 

fingerprint and organic acid profile of red, white, rosé and fortified wines. 

 

4.1 Introduction 

The analytical characterization of wines is usually a time-consuming process, but it 

yields the necessary information for the elaboration and control of a quality product and 

definition of suitable conditions for adequate preservation. The profile and evaluation of the 

organic acid and polyphenol contents are important parameters in wineries, and hence it is 

essential to have a rapid and precise methodology for quantification. The determination of 

organic acids, mainly tartaric, malic and lactic acids, is important for the fermentation process 

monitoring, as they contribute to flavour balance, chemical stability and microbiologic control 

and frequently subject to control in food to accomplish law and regulations. In addition, 

polyphenols also have effects on the organoleptic characteristics (colour, flavour and taste), 

thus their profile and content are also significant (Ibern-Gomez, Andres-Lacueva, Lamuela-

Raventos, & Waterhouse, 2002; Romero & Munoz, 1993). These two types of chemical species 

are very common in wines and both are affected by several factors such as ripening, variety, 

growing region, atmospheric conditions as well as production techniques (Goldberg et al., 

1995; Lamikanra, Inyang, & Leong, 1995; McDonald et al., 1998). 

One of the most used technologies to detect and quantify organic acids is HPLC 

method with photo-diode array detection (HPLC-DAD) and there is a number of published 

methods (Cabrita et al., 2008; Cunha, Fernandes, Faria, Ferreira, & Ferreira, 2002; Kerem, 

Bravdo, Shoseyov, & Tugendhaft, 2004; Mato, Suárez-Luque, & Huidobro, 2005; Soyer, Koca, & 
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Karadeniz, 2003; Valentão et al., 2007). Indeed, Mato and co-workers (Mato, et al., 2005) 

reviewed the analytical methods to determine organic acids in grape juices and wines.  

TABLE 4.1 – HPLC-DAD methods reported in the literature for the analysis of polyphenols and organic acids in wines 

and/or similar matrices. 

 

Some methods are based on ion-exclusion separations (López-Tamames, Puig-Deu, 

Teixeira, & Buxaderas, 1996; Valentão, et al., 2007), which normally require the removal of 

Samples Analytes Stationary  phase Eluents Detection 

wavelenght (nm)

LOD    

(mg/L)

Ref.

Red wines 

LLE 15 polyphenols ODS-Hypersil  ( 2.1 i.d. × 100 mm, 5 µm), 

T = 40ºC

Gradient: A: acidified water (0.6% 

perchloric acid); B: methanol; Flow: 0.3 

mL/min

280 nm 

Red wines 

DI 20 polyphenols 

including anthocyanins

LiChrospher RP-18 (4.0 i.d. × 250 mm, 5 

µm), T = 40ºC

Gradient: A: 9 mM aqueous 

orthophosphoric acid, pH 2.5; B: solvent 

A/acetonitrile, 75:25 v/v; Flow: 1.0 mL/min

280, 320, 360, 

and 520 nm

Red wines 

SPE 12 polyphenols Hypersil ODS  (4.6 i.d. × 200 mm, 5 μm) Gradient: A: acetic acid in water, 2% v/v; B: 

water/acetonitrile/acetic acid, 78:20:2 v/v/v; 

Flow: 1.0 mL/min                                

254, 280 and 340 

nm

0.05 - 1.95

Red wines 

LLE 16 polyphenols ODS-Hypersil  ( 2.1 i.d. × 200 mm, 5 µm) Gradient: A: water/formic acid, 99:1 v/v; B: 

methanol; Flow: 0.3 mL/min

280, 320 and 350 

nmRed wines 

DI 35 polyphenols 

including anthocyanins

Spherisorb C18 (4.6 i.d. × 250 mm, 5 

μm), T = 40°C

Gradient: A: 50 mM aqueous ammonium 

hydrogenphosphate, pH 2.6; B: solvent 

280, 320, 360, 

and 520 nm

Red wines 

LLE 47 polyphenols Nova-Pak C18 (3.9 i.d. × 300 mm, 4 µm) Gradient: A: acetic acid in water, 2% v/v; B: 

water/acetonitrile/acetic acid, 78:20:2 v/v/v; 

280, 340, and 

310 nm

Red wines 

DI 30 polyphenols 

including anthocyanins

Atlantis dC18 (2.1 i.d. × 250 mm,

5 µm), T = 30ºC

Gradient: A: formic acid in water, 5% v/v; 

B: acetonitrile/water/formic acid, 80:15:5 

v/v/v; Flow: 0.25 mL/min

280, 320, 360 

and 520 nm

Red wines 

SPE 6 organic acids Nucleogel  Ion 300 OA (7.7 × 300 mm), 

T = 30ºC

Isocratic: 0.01 N sulfuric acid; Flow: 0.2 

mL/min

214 nm 0.01 - 1.67

Red wines

DI for hydroxycinnamic 

acids

Waters symmetry C18 (4.6 i.d. × 150 

mm, 5 µm), T = 35ºC

Gradient:  A: formic acid in water, 5% v/v; 

B: methanol; Flow: 1.0 mL/min

LLE followed by SPE for 

hydroxybenzoic acids, 

catechins and flavonols

ODS Hypersyl (4.6 i.d. × 250 mm, 5 µm), 

T = 35ºC

Gradient: A: formic acid in water, 2.5% v/v; 

B: methanol; Flow: 1.0 mL/min

Red wines 

DI 48 polyphenols 

including anthocyanins

Ace® 5 C18 (4.6 i.d. × 250 mm), T = 

20°C

Gradient: A: 50 mM aqueous ammonium 

hydrogenphosphate, pH 2.6; B: solvent 

A/acetonitrile, 20:80 v/v; C: 200 mM 

280, 320, 360, 

and 520 nm

0.088 - 0.711

Red wines 

DI 6 polyphenols LC18 reversed phase packing (Supelco)      

( 2.1 i.d. × 150 mm, 5 µm)

Gradient: A: 5% formic acid in water; B: 

acetonitrile; Flow: 0.3 mL/min  to 0.8 

mL/min in 7 min    

285, 306 and 270 

nm

0.16 - 1.50

Red wines

SPE for organic acids LichroCART® 250-4 Superspher® RP 

18 (4.6 i.d. × 250 mm, 5µm )

Isocratic: 5 mM fosforic acid; Flow: 0.7 

mL/min 

210 nm

LLE for polyphenols Superpher® 100, C18 (4.6 i.d. × 250 mm, 

5µm )

Gradient: A: water/acetic acid, 98:2 v/v; B: 

water/methanol/acetic acid, 68:30:2 v/v/v; 

Flow: 1.0 mL/min

254, 280 and 320 

nm

Musts and wines  from red grapes 

DI 7 organic acids  6 

polyphenols

Synergi™ Polar-RP™ (4.6 i.d. × 250 mm 

), T = 30°C

Gradient: A: trifluoroacetic acid in water, 

0.2% v/v, pH 1.9; B: acetonitrile; Flow: 1.5 

mL/min

210 and 280 nm

White wines

DI 17 polyphenols Nova-Pak C18 (3.9 i.d. × 300 mm, 4 µm), 

T = 20ºC

Gradient: A: acetic acid in water, 2% v/v; B: 

water/acetonitrile/acetic acid, 58:40:2 v/v/v; 

Flow: 1.0 mL/min

280 and 320 nm

White grapes and their juices

DI 3 organic acids Bio Rad Aminex HPX-87(300 × 7.8 mm
2
) Isocratic: 0.01 N sulfuric acid; Flow: 0.6 

mL/min

214 nm 15.0 - 30.0

Red and white wines

DI 17 polyphenols Chromolith Performance RP-18e (4.6 i.d. 

× 100 mm), T = 30°C

Gradient: A: methanol/double-distilled 

water, 2.5:97.5 v/v, at pH 3 with H3PO4; B: 

methanol/double-distilled water, 50:50 v/v, 

at pH 3 with H3PO4; Flow: 1.0 mL/min

256, 280, 308, 

324 and 365 nm

0.010 - 0.160

Red and white wines

SS-LLE 13 polyphenols Agilent Zorbax Eclipse XDB-C18 (4.6 

i.d. × 250 mm, 5 μm)

Gradient: A: water/methanol/formic acid, 

97:2.5:0.5 v/v/v; B: methanol; Flow: 1.0 

mL/min  

280, 305 and 

370 nm

0.073 - 0.164

Red, white and rosé wines

LLE 17 polyphenols Nova-Pak C18 (3.9 i.d. × 150 mm, 4 µm) Gradient: A: water/acetic acid/methanol, 

88:2:10 v/v/v; B:  water/acetic 

acid/methanol, 8:2:90 v/v/v; Flow: 0.7 

270, 307 and 360 

nm

0.03 - 11.5

Musts and fortified wines

SPE followed by NBDI 

derivatization

6 organic acids Spherisorb C18 (4.6 i.d. × 150 mm, 3 μm) Gradient: A: water; B: acetonitrile; Flow: 1.5 

mL/min

265 nm 5.0 - 98.0

Wines 

LLE 16 polyphenols Phenomenex Luna C18 (4.6 i.d. × 150 

mm, 5 µm)

Gradient: A: formic acid in water, 0.1 % v/v; 

B: methanol; Flow: 0.7 mL/min                                

λ with lowest 

energy (λmax)

0.01 - 0.03 

Brandies

DI  13 polyphenols Lichrospher RP18 (4.0 i.d. × 250 mm, 5 

µm), T = 40ºC

Gradient: A: formic acid in water, 2% v/v; 

B: methanol/water/formic acid, 70:28:2 

v/v/v; Flow: 1.0 mL/min

280 and 320 nm 0.01 - 1.15

280, 320,360 and 

520 nm
[38]

11 polyphenols and 2 

organic acids

38 polyphenols 

including anthocyanins

[13]

[54]

LLE - Liquid - liquid extraction; SPE - Solid phase extraction; DI - Direct injection; SS-LLE - Solid-supported liquid - liquid extraction

[44]

[45]

[49]

[40]

[50]

[51]

[56]

[12]

[53]

[9]

[48]

[47]

[11]

[52]

[10]

[46]

[41]

[55]
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polyphenols before sample analysis, others involve ion-exchange (Falqué-López & Fernández-

Gómez, 1996) and reversed-phase (RP) separations (Llorente, Villarroya, & Gómez-Cordovés, 

1991; Pazo, Traveso, Cisneros, & Montero, 1999; Samanidou, Antoniou, & Papadoyannis, 

2001). Most methods are not applicable to wine due to the alcohol content or low resolution 

(Dong, 1998). Frequently, isocratic elutions are described using an acidified aqueous solvent 

and separation time is no longer than 20 min (Walker, Morris, Threlfall, & Main, 2003). It is 

also common to find in the literature that organic acid analysis includes a sample pre-

treatment which increases analysis time and affects the reliability of the results. 

A variety of techniques have been used for the determination of phenolic compounds 

in wines based on GC (Goldberg et al., 1994; Luan, Li, & Zhang, 2000; Minuti, Pellegrino, & 

Tesei, 2006; Soleas, Dam, Carey, & Goldberg, 1997) and CE (Capote, Rodríguez, & Castro, 2007; 

Gu, Chu, O’Dwyer, & Zeece, 2000; Pazourek et al., 2005), but RP-HPLC has been elected and 

considered the most appropriate technique to analyse wine polyphenols, often used to give 

product composition and differentiation (García-Falcóna, Pérez-Lamela, Martínez-Carballo, & 

Simal-Gándara, 2007; Makris, Kallithraka, & Mamalos, 2006; Silva et al., 2005). Generally, 

studies make use of RP C18 columns (Abad-García et al., 2007; Nave, Cabrita, & Costa, 2007) 

and binary solvent systems consisting of a solvent A, usually acidified water, and a polar 

organic solvent B, such as acetonitrile or methanol (Vitrac, Monti, Vercauteren, Deffieux, & 

Mérillon, 2002). DAD methods are the most common (Arnous, Makris, & Kefalas, 2001; 

Cabrita, et al., 2008; Canas, Belchior, Spranger, & Bruno-de-Sousa, 2003; Castellari, Sartini, 

Fabiani, Arfelli, & Amati, 2002; García-Falcóna, et al., 2007; Garcia-Viguera & Bridle, 1995; 

Gomez-Alonso, Garcia-Romero, & Hermosin-Gutierrez, 2007; Gutiérrez, Lorenzo, & Espinosa, 

2005; Kerem, et al., 2004; Monagas, Suárez, Gómez-Cordovés, & Bartolomé, 2005; Nave, et al., 

2007; Paixão, Pereira, Marques, & Câmara, 2008; Preys et al., 2006; Recamales, Sayago, 

González-Miret, & Hernanz, 2006; Robbins & Bean, 2004; Sanza, Domínguez, Cárcel Cárcel, & 

Gracia, 2004; Silva, et al., 2005; Tarola & Giannetti, 2007; Valentão, et al., 2007), but other 

detection methods as electrochemical (Bravo et al., 2008; Kaoutit et al., 2008) and MS (Bilbao, 

Andrés-Lacueva, Jáuregui, & Lamuela-Raventós, 2007; Borbalán, Zorro, Guillén, & Barroso, 

2003; Pérez-Magariño, Revilla, González-SanJosé, & Beltrán, 1999) have also been used. The 

use of LC-MS and LC-MS/MS has become the best option for the analysis of these compounds 

in several matrices as well as their derived products (Griffith & Collison, 2001; Kao, Huang, 

Inbaraj, & Chen, 2008; Seeram, Lee, Scheuller, & Heber, 2006), but the opportunity of access 

to these advanced technologies is still restricted for most laboratories. In Table 4.1, several 

published methods are summarized for the determination of these compounds in wine and 

similar matrices. 

Therefore, the aim of this study was to develop a simple and sensitive methodology 

using RP-HPLC-DAD chromatographic separation, allowing a single run determination of 

organic acids and monomeric polyphenols in the same wine sample, with no sample pre-

treatment, covering the compounds normally found in wines. RP separation mechanism was 

chosen since it is frequent in polyphenol analysis and performs organic acids faster analysis 

(Ding, Koizumi, & Suzuki, 1995). Other HPLC procedures have also been developed for the 

simultaneous analysis of organic acids and polyphenols in wines and grapes (Dopico-García, 

Valentão, Guerra, Andrade, & Seabra, 2007; Kerem, et al., 2004), but these studies were 
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developed for a restricted number of polyphenolic compounds. For the purpose of the study, 

the method was extended to two furanic compounds, 5-hydroxymethylfurfural (HMF) and 

furfural, as they are usually detected in fortified wines. Considering the elution conditions, 

both furans are presented in tables associated with polyphenols. The current project intends 

to apply the developed methodology for the assessment of these compounds in several wine 

types: fortified, red, white and rosé wines. 

 

4.2 Experimental 

 4.2.1 Standards and reagents 

Polyphenol standards: gallic acid, gentisic acid, vanillic acid, caffeic acid, p-coumaric 

acid, ferulic acid, sinapic acid, ellagic acid, cinnamic acid, p-hydroxybenzoic acid, (+)- catechin, 

(-)-epicatechin, (-)-epigallocatechin, myricetin, sinapic acid, rutin and kaempferol were 

supplied by Fluka Biochemika AG (Buchs, Switzerland), protocatechuic acid, vanillin, syringic 

acid and trans-resveratrol by Sigma-Aldrich (St. Louis, MO, USA), whereas syringaldehyde, HMF 

and furfural were acquired from Acros Organics (Geel, Belgium) and quercetin from Riedel-de-

Haën (Seelze, Germany). The purity of all polyphenolic standards was greater than 95%. 

Polyphenol stock solutions of 1 g/L were prepared by dissolving the appropriate amount of 

each compound in ethanol. These solutions were stored at 4 °C and diluted before use with 

Milli-Q water to prepare the working standard solutions. 

Acids standards were obtained from different suppliers: L-tartaric (99.5%), L-malic 

(99.5%) and succinic (99.5%) from Merck (Darmstadt, Germany); lactic (85%) and acetic 

(99.7%) from Panreac Química S.A. (Barcelona, Spain); citric (99.5%) from Fluka BioChemika 

AG; formic (99.7%) and oxalic (99%) were obtained from Fisher Scientific (Loughborough, UK) 

and Acros Organics, respectively. Stock standard solutions of 10 g/L were prepared by 

dissolving each acid in Milli-Q water and stored at 4 °C for 1 month. Working standard 

solutions were prepared by dilution with Milli-Q water. 

HPLC-grade acetonitrile was obtained from Sigma-Aldrich and ultra-pure water was 

obtained from a Milli-Q system (Millipore, Milford, MA, USA). Disodium hydrogen phosphate 

dihydrate (99%) was supplied by Panreac Química S.A., sulphuric acid (95–97%) was supplied 

by Riedel-de-Haën. The eluents were previously filtered with membrane filters obtained from 

Pall (0.20 µm, Ann Arbor, MI, USA). 

 4.2.2 Apparatus and operating conditions 

Chromatographic analyses were carried out using a Waters Alliance liquid 

chromatograph (Milford, MA, USA) equipped with an auto-injector (Waters 2695, separations 

module) and a photodiode array detector (Waters 2996). To separate organic acids and 

polyphenols, an Atlantis dC18 column (250 x 4.6 mm id; 5 µm; Milford, MA, USA) was selected 

as the analytical column, using the following mobile phases: A: 10mM of phosphate solution 

buffered at pH 2.70 with concentrated sulphuric acid; B: 100% acetonitrile. 



 

Analysis of organic acids, furans and polyphenols 

 
101 

As polyphenols are present in wine in minor quantities (about mg/L) when compared 

with organic acids content (up to g/L), the separation method was divided into two steps, 

maintaining the general operation conditions but allowing the correct evaluation of the 

different concentration ranges. Organic acids chromatographic separation was carried out 

using an isocratic elution, 100% A during 8 min followed by 12 min of washing and re-

equilibration period, while polyphenols and the two furans require a gradient elution applied 

as follows: 0–30 min, 0–20% B, linear; 30–50 min, 20–50% B, linear; 50–60 min, washing and 

re-equilibration of the column. The mobile phase was set to a flow rate of 1.0 mL/min and the 

column thermostated at 30 °C. Injection volume was set to 10 mL and all standards and wine 

samples were injected in triplicate, after being filtered through membrane filters Acrodisc® CR 

PTFE from Waters (0.45 µm). Target compounds were detected at 210 nm (organic acids, 

flavan-3-ols and benzoic acids), 254 nm (ellagic acid), 280 nm (furans and cinnamic acid), 315 

nm (hydroxycinnamic acids and trans-resveratrol) and 360 nm (flavonoids). The detector 

signals were recorded on a chromatography data system controlled by the Empower Pro 

software. Chromatographic peaks were identified by comparison of elution order, retention 

times, the spectral UV–Vis with those of standards and spiking samples with pure compounds. 

The quantification of the studied compounds was carried out using the external standard 

method. 

 4.2.3 Samples 

This methodology was applied to different types of wines: four fortified wines (F 

wines), four red table wines (R wines), four white table wines (W wines) and one rosé wine (Rs 

wine). All wines were produced from Vitis vinifera L. grape varieties. Red and white wines were 

bought in local stores and fortified wines were supplied by a local producer. Samples were 

filtered (0.45 µm) and diluted with mobile phase A when needed to comply with the working 

range. 

 4.2.4 Method validation 

Retention times were previously determined using individual standards dissolved in 

mobile phase A. The working range for each compound was estimated from the expected 

results for this type of samples and the higher concentration working standard solution was 

accordingly prepared from the stock solution of each compound (10 g/L for organic acids and 1 

g/L for polyphenolic and furanic compounds) and diluted with Milli-Q water. Five other 

working solutions were prepared by successive dilutions and injected for the linearity range 

test. 

Wide concentration ranges were used as the amount of the studied compounds 

depends on the wine variety. Quantification was carried out by the external standard method 

based on peak areas of the eluted compounds. 

Method sensitivity was assessed by the determination of LOD and LOQ of each 

compound. These parameters were calculated on the basis of linear regression, LOD = 3.3σ/b 
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and LOQ = 10σ/b, σ is the y-intercept standard deviation and b is the slope of the linear 

regression. 

The precision was evaluated by inter- and intra-day repetition method. Intra-day 

repeatability was assessed by five successive replicate determinations of three standards. 

Inter-day reproducibility was assessed by analysing, on three distinct occurrences, five 

replicates of three standards. 

Recovery was determined by the addition of known amounts of organic acids, furans 

and polyphenols to the wine samples, tested for two concentration levels and replicated three 

times. Average recovery was calculated by comparing mean values of replicates with 

theoretical concentrations of each replicate. 

 

4.3 Results and discussion 

 4.3.1 Method development 

Usually, the chromatographic analysis of organic acids is carried out using ion-

exchange columns, requiring phenolic compounds to be previously removed from the sample, 

whereas the polyphenol separation is frequently performed by reversed-phase. The present 

method was developed to allow the sequential analysis of 8 organic acids, 22 monomeric 

phenolic and 2 furanic compounds commonly found in wines (Table 4.2), using the same RP 

column, a difunctional-bonded C18 stationary phase, Atlantis dC18 column. 

Initial HPLC working conditions were selected based on the organic acids method 

published in Waters application notebook for Atlantis columns (Waters, 2004). Then, the 

method was optimized in order to achieve good resolution for the maximum number of peaks 

in the shortest analysis time, considering the following parameters: injection volume, 

wavelength detection, the solvents used and the elution program. As summarized in Table 4.1, 

the separation of polyphenols usually involves the use of acid additives, aiming to suppress 

ionization, namely acetic and formic acids. Besides being target compounds, these additives 

absorb at 210 nm, affecting the use of this wavelength in the measurement of polyphenols, 

namely flavan-3-ols, which have higher absorptivity at 210 nm than at 280 nm. Avoiding the 

use of these acid additives, the alternative was the use of buffered mobile phase for acid pH 

adjustment. The initial concentration of the buffered mobile phase (20 mM) was decreased to 

10 mM to avoid problems with precipitation and the abrasive effect of phosphate buffers on 

pump seals, but ensuring pH control. As phosphate buffers higher then pH 7 are known to 

accelerate the dissolution of silica and shorten severely the lifetime of silica-based HPLC 

columns, the resolution degradation was monitored and the column seemed to be unaffected 

at the low pH used in this method (2.70). The method was developed with the intention of 

simultaneous analysis of organic acids and polyphenols, in a single run, but for calibration 

purposes and considering their disproportionate concentration ranges in wines, it was 

preferred to perform their analysis separately. However, as organic acids elute at low 
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retention times (up to 9 min) and furans and polyphenols elute at higher retention times, a 

single run analysis can be carried out without losing separation. 

TABLE 4.2 – Retention times, peak identification, spectral bands (λmax, in bold), detection wavelength (λdetection) and 

linearity parameters of organic acids, furans and polyphenols obtained using the proposed methodology. 

 

 

FIGURE 4.1 – Representative chromatograms obtained with the proposed method for the determination of organic 

acids at 210 nm, when applied to the standard solution and a wine sample. See Table 4.2 for peak identification. 

g/L

1 3.06 Oxalic acid Organic acid 199 210 0.012 - 0.307 -25918 7060916 0.9999 0.001 0.003 105

2 3.48 Tartaric acid Organic acid 198 210 0.060 - 1.512 -7230 954374 0.9997 0.010 0.031 97

3 3.71 Formic acid Organic acid 200 210 0.120 - 3.001 -11242 562545 0.9997 0.021 0.064 104

4 4.33 Malic acid Organic acid 198 210 0.122 - 3.045 -7765 489490 0.9998 0.017 0.052 100

5 5.08 Lactic acid Organic acid 198 210 0.239 - 5.976 -3134 133420 0.9997 0.046 0.138 103

6 5.37 Acetic acid Organic acid 200 210 0.239 - 5.985 -4889 151930 0.9998 0.042 0.127 102

7 7.03 Citric acid Organic acid 197 210 0.090 - 2.252 -9930 644315 0.9998 0.012 0.037 105

8 8.61 Succinic acid Organic acid 208 210 0.062 - 1.542 -14435 1262365 0.9998 0.008 0.024 100

mg/L

9 12.40 Gallic acid Hydroxybenzoic acid 216, 271 210 2.70 - 54.00 -51608 77647 0.9995 0.49 1.48 95

10 13.48 HMF Furan 226, 284 280 1.50 - 30.00 -31960 92726 0.9995 0.27 0.82 93

11 15.01 Furfural Furan 228, 277 280 0.75 - 15.00 -20602 82660 0.9986 0.23 0.69 82

12 17.33 Protocatechuic acid Hydroxybenzoic acid 205, 219, 

259, 293

210 0.80 - 15.90 -17951 66943 0.9993 0.18 0.53 80

13 21.35 Gentisic acid Hydroxybenzoic acid 210, 324 210 0.80 - 16.05 -26461 86293 0.9992 0.19 0.59 81

14 22.46 p- Hydroxybenzoic acid Hydroxybenzoic acid 196, 254 210 0.75 - 15.00 -17117 61694 0.9996 0.13 0.39 83

15 23.15 (-) -Epigallocatechin Flavan-3-ol 206, 271 210 0.75 - 15.00 -26412 107423 0.9983 0.26 0.78 89

16 24.51 (+) -Catechin Flavan-3-ol 203, 279 210 0.75 - 15.00 -22836 95136 0.9993 0.17 0.50 101

17 25.60 Vanillic acid Hydroxybenzoic acid 208, 218, 

260, 292

210 0.79 - 15.75 -16325 56327 0.9996 0.13 0.40 104

18 26.99 Caffeic acid Hydroxycinnamic acid 218, 238, 

324

315 0.84 - 16.80 -11537 52286 0.9996 0.14 0.43 90

19 27.49 Syringic acid Hydroxybenzoic acid 217, 274 210 0.75 - 15.00 -17089 71916 0.9995 0.15 0.45 91

20 28.46 (-) -Epicatechin Flavan-3-ol 203, 279 210 0.80 - 16.05 -21504 94208 0.9994 0.17 0.51 96

21 29.77 Vanillin Hydroxybenzaldehyde 204, 230, 

279, 307

210 0.75 - 15.00 -16877 48269 0.9996 0.12 0.37 98

22 32.22 Syringaldehyde Hydroxybenzaldehyde 216, 307 210 0.78 - 15.60 -24925 56216 0.9982 0.27 0.82 102

23 32.86 p- Coumaric acid Hydroxycinnamic acid 212, 226, 

310

315 0.79 - 15.75 -14506 73759 0.9994 0.16 0.47 88

24 35.29 Ferulic acid Hydroxycinnamic acid 217, 234, 

323

315 0.79 - 15.75 -10514 51221 0.9996 0.14 0.43 92

25 35.91 Sinapic acid Hydroxycinnamic acid 200, 237, 

323

315 0.77 - 15.30 -10273 48126 0.9990 0.20 0.61 102

26 36.31 Rutin Flavonol 204, 255, 

354

360 0.83 - 16.50 -3310 12905 0.9990 0.23 0.69 99

27 37.22 Ellagic acid Hydroxybenzoic acid 254 254 0.86 - 17.10 -41982 75271 0.9988 0.28 0.84 86

28 40.81 Myricetin Flavonol 207, 253, 

370

360 0.77 - 15.30 -10951 23849 0.9983 0.27 0.82 87

29 42.47 trans -Resveratrol Stilbene 216, 305 315 0.77 - 15.45 -17009 69118 0.9994 0.15 0.46 97

30 44.18 Cinnamic acid Cinnamic acid 204, 216, 

277

280 0.80 - 16.05 -8569 79329 0.9999 0.07 0.22 98

31 44.77 Quercetin Flavonol 203, 254, 

370

360 0.75 - 15.00 -16388 43127 0.9996 0.12 0.37 96

32 48.44 Kaempferol Flavonol 200, 265, 

364

360 0.85 - 16.95 -21875 47608 0.9998 0.11 0.34 96

a  -  y -axis intercept

b  - slope of the regression line

Compound tR      

(min)

UV bands 

(nm)

Chemical family Recovery 

(% )

Linear       

range 

a b R
2 LOD LOQλdetection 

(nm)

#
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Therefore, an isocratic elution was carried out for organic acids with the buffered 

mobile phase at pH 2.70 (Figure 4.1) and a gradient elution was used for monomeric 

polyphenols and furans (Figure 4.2). The gradient elution, described in Section 4.2.2, was 

performed during 60 min, including washing and re-equilibration stage, starting with 100% of 

aqueous mobile phase and requiring a maximum of 50% of organic solvent to elute the 

analytes under study, avoiding high consumption of the organic phase, which frequently 

represents a significant cost in laboratories. Figure 4.2 shows typical chromatograms obtained 

applying this gradient to a polyphenols and furans standard solution and a wine sample. 

 

FIGURE 4.2 – Representative chromatograms obtained with the proposed method for the determination of 

polyphenols and furans at the selected detection wavelengths: 210, 254, 280, 315 and 360 nm, when applied to a 

standard solution and a wine sample. See Table 4.2 for peak identification. 

Phenolic acids are currently detected at 280 nm, even if most of them have higher 

absorption at wavelengths close to 210 nm, as flavan-3-ols. The spectral bands of the studied 

compounds were obtained by their spectral array between 190 and 600 nm and are 

summarized in Table 4.2. The detection wavelength was chosen near to the absorption 

maximum, except for the compounds which elute at the final stage of the analysis, as the 

influence of the acetonitrile absorption increases at lower wavelengths. The use of different 

detection wavelengths ensured the compromise between selectivity and sensitivity. As 

published analytical methods usually require sample pre-treatment and long-time analysis, this 

study intended to overcome this, in order to obtain an easier methodology. 

Wine phenolic composition was then determined by direct injection of wine samples, 

after being filtered through 0.45 µm membrane filters. The direct injection of the samples was 

selected after testing other pre-sample treatments, including SPE, without losing selectivity 

and resolution of the compounds of interest due to wine matrix (including the high alcohol 

content). Thus using the optimized conditions, well-resolved chromatograms of wine samples 
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were obtained as shown in Figure 4.2. This method also upgrades other previously proposed 

methods for the simultaneous analysis of organic acids and polyphenols (Kerem, et al., 2004), 

maintaining the basic principles but improving sensitivity and chromatographic resolution as 

well as the number of target compounds (up to 32). 

 4.3.1 Validation procedure 

In order to validate the developed methodology, several parameters such as linearity, 

analytical determination limits, recovery, precision and accuracy were considered. 

The linearity was evaluated by the analysis in triplicate of six standards solutions. The 

obtained validation parameters are listed in Table 4.2. Good correlation coefficients (R2) were 

observed, higher than 0.9982 for polyphenols and furans and 0.9997 for organic acids, 

confirming the linearity of the method. 

TABLE 4.3 – Repeatability (intra-day) and reproducibility (inter-day) of the developed method, expressed in terms of 

the variation (RSD%) of retention times (tR) and areas. 

 

Method sensitivity was evaluated by LOD and LOQ determinations, calculated on the 

basis of the linear regression curves. The LODs were in the range of 0.07–0.49 mg/L for 

polyphenols (cinnamic and gallic acids) and furans and 0.001–0.046 g/L for the organic acids 

(oxalic and lactic acids). Given that the LODs and LOQs are considerably low (Table 4.2), it is 

reasonable to conclude that this method can be used for quantitative analysis in wines. The 

tR Area tR Area tR Area tR Area tR Area tR Area

RSD % RSD % RSD % RSD % RSD % RSD % RSD % RSD % RSD % RSD % RSD % RSD %

g/L g/L g/L

Oxalic acid 0.077 0.2 0.1 0.2 1.9 0.154 0.1 0.1 0.2 4.0 0.230 0.1 0.1 0.2 0.8

Tartaric acid 0.378 0.2 0.5 0.2 1.5 0.756 0.1 0.4 0.2 3.6 1.134 0.2 0.3 0.3 0.6

Formic acid 0.750 0.1 0.3 0.1 2.2 1.501 0.1 0.3 0.2 3.9 2.251 0.1 0.3 0.2 1.3

Malic acid 0.761 0.1 0.3 0.2 1.5 1.523 0.1 0.1 0.2 3.4 2.284 0.2 0.1 0.4 0.3

Lactic acid 1.494 0.1 0.5 0.2 5.7 2.988 0.1 0.7 0.1 9.0 4.482 0.1 1.0 0.3 5.9

Acetic acid 1.496 0.1 0.5 1.7 0.3 2.993 0.1 0.6 1.4 2.8 4.489 0.2 1.0 1.6 0.7

Citric acid 0.563 0.1 0.1 1.1 1.8 1.126 0.1 0.1 1.1 3.5 1.689 0.1 0.1 1.4 0.5

Succinic acid 0.386 0.0 0.1 0.4 1.6 0.771 0.1 0.1 0.5 3.5 1.157 0.2 0.1 0.8 0.6

mg/L mg/L mg/L

Gallic acid 5.40 0.0 0.3 0.1 0.1 18.90 0.3 0.3 1.2 0.4 40.50 0.0 0.2 1.2 0.1

HMF 3.00 0.0 0.2 0.1 0.1 10.50 0.2 0.2 0.8 0.2 22.50 0.1 0.1 0.8 0.3

Furfural 1.50 0.0 0.6 0.1 1.1 5.25 0.1 0.4 0.7 2.2 11.25 0.1 0.1 0.7 1.1

Protocatechuic acid 1.59 0.0 0.2 0.1 0.5 5.57 0.3 0.5 1.1 1.3 11.93 0.1 0.3 1.3 0.2

Gentisic acid 1.61 0.1 0.5 0.1 4.6 5.62 0.3 0.3 1.0 2.9 12.04 0.1 0.2 1.3 3.4

p- Hydroxybenzoic acid 1.50 0.0 1.2 0.1 4.0 5.25 0.2 0.8 0.9 3.7 11.25 0.1 0.2 1.1 3.4

(-) -Epigallocatechin 1.50 0.0 0.2 0.1 1.3 5.25 0.2 0.4 0.6 0.8 11.25 0.1 0.4 0.9 1.4

(+) -Catechin 1.50 0.0 0.4 0.2 2.3 5.25 0.2 0.3 0.7 0.3 11.25 0.1 0.1 1.0 0.1

Vanillic acid 1.58 0.0 0.6 0.0 1.4 5.51 0.2 0.4 0.6 0.4 11.81 0.1 0.2 0.8 0.5

Caffeic acid 1.68 0.0 0.5 0.2 1.3 5.88 0.2 0.3 0.7 0.3 12.60 0.1 0.2 0.9 0.5

Syringic acid 1.50 0.0 0.8 0.0 0.7 5.25 0.2 0.3 0.5 0.6 11.25 0.1 0.2 0.7 0.2

(-) -Epicatechin 1.61 0.0 0.2 0.1 0.9 5.62 0.2 0.3 0.6 1.1 12.04 0.1 0.2 0.8 0.5

Vanillin 1.50 0.0 1.2 0.0 1.2 5.25 0.2 0.3 0.6 1.6 11.25 0.1 0.1 0.8 1.0

Syringaldehyde 1.56 0.0 0.9 0.0 2.7 5.46 0.1 0.6 0.4 1.2 11.70 0.0 0.3 0.6 0.2

p- Coumaric acid 1.58 0.0 0.4 0.1 2.6 5.51 0.2 0.5 0.6 0.5 11.81 0.1 0.1 0.9 0.4

Ferulic acid 1.58 0.0 0.9 0.2 1.2 5.51 0.1 0.5 0.4 0.6 11.81 0.0 0.3 0.6 0.6

Sinapic acid 1.53 0.0 0.5 0.3 0.5 5.36 0.1 0.6 0.3 0.5 11.48 0.0 0.3 0.5 1.5

Rutin 1.65 0.0 2.9 0.4 7.4 5.78 0.1 0.5 0.2 1.3 12.38 0.0 0.9 0.3 1.4

Ellagic acid 1.71 0.0 1.1 0.2 7.2 5.99 0.1 0.8 0.2 4.5 12.83 0.0 1.0 0.4 2.0

Myricetin 1.53 0.0 3.1 0.3 6.0 5.36 0.1 1.3 0.3 3.1 11.48 0.0 0.6 0.3 1.8

trans -Resveratrol 1.55 0.0 0.7 0.1 2.3 5.41 0.1 0.4 0.3 0.8 11.59 0.0 0.1 0.4 0.1

Cinnamic acid 1.61 0.0 0.4 0.0 0.3 5.62 0.1 0.2 0.3 0.5 12.04 0.0 0.1 0.3 0.1

Quercetin 1.50 0.0 1.4 0.0 1.1 5.25 0.1 0.9 0.3 1.9 11.25 0.0 0.4 0.3 1.5

Kaempferol 1.70 0.0 1.4 0.3 4.8 5.93 0.1 0.9 0.3 1.4 12.71 0.0 0.4 0.3 1.2

a - n = 5; b - 3 different days n = 15

S1, S2 and S3 are standards at different concentrations; t R - retention time

Compounds S1 S2 S3 Intra-day
a

Intra-day
a

Inter-day
b

Inter-day
b

Intra-day
a

Inter-day
b
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LODs results are comparable or lower than those found in the literature (Gomez-Alonso, et al., 

2007; Paixão, et al., 2008; Sanza, et al., 2004; Tarola & Giannetti, 2007). 

Recovery studies were carried out to determine the accuracy of the method. A wine 

sample was analysed before and after the addition of different known amounts of organic 

acids, furans and polyphenols, and recoveries ranged between 80 and 104% for furans and 

polyphenols and 97–105% for organic acids were found. These results reveal that the matrix 

composition complexity does not compromise selectivity and sensitivity of the method, 

allowing the direct analysis of wines.  

The method precision (repeatability and reproducibility) was evaluated by the 

assessment of five successive analyses of standard working solutions, at three different 

concentrations, by intra- and inter-day (three different days) repetition method. The precision 

is expressed in terms of the variation (RSD%) of retention times (tR) and areas obtained for the 

repeatability and reproducibility tests (Table 4.3). The small variation of tR (with a maximum of 

1.7%) is very important in order to avoid misidentification of peaks in wine samples (Figure 

4.2). The area variation is, in general, small but higher for the reproducibility tests, with 

maxima at 7.4% for phenolics and 9.0% for organic acids as summarized in Table 4.3. 

 4.3.2 Wine sample analysis 

In order to test the developed methodology in red, white, rosé and fortified wines, the 

samples were simply filtered (0.45 µm) and diluted, when necessary, to apply to the 

constructed calibration curves. For the purpose of this study, quantified results slightly below 

the previous validated working range were confirmed by increasing the injection volume. The 

obtained results are summarized in Table 4.4. 

Regarding the organic acid analysis, the attained results vary from 0.055 to 6.273 g/L in 

fortified wines for oxalic and lactic acids, 0.063 to 9.839 g/L in red wines for succinic and lactic 

acids, 0.043 to 3.118 g/L in white wines and 0.031 to 3.642 g/L in rosé wine, for oxalic and 

malic acids, respectively. As can be shown, the concentration of organic acids found in wines 

varies significantly between wine type and also from one sample to another, suggesting that it 

is strongly dependent on wine nature and therefore on the vinification process applied. Cunha 

et al. (2002) and Esteves et al. (2004) also report variable concentrations when they analysed 

tartaric, malic, lactic, succinic and acetic acids in fortified wines, with values between 0.219 

and 1.442 g/L and between 0.041 and 2.752 g/L, respectively. The same result was obtained by 

Villiers et al. (2003) when determining the same compounds in red and white wines. 

Polyphenols in fortified wines ranged between 0.53 and 6.13 mg/L, between 0.46 and 

37.26 mg/L in red wines, between 0.43 and 16.12 mg/L in white wines and between 0.38 and 

11.64 mg/L in the rosé wine. These values are in the range of the amounts found in other red 

(Castellari, et al., 2002; Monagas, et al., 2005; Silva, et al., 2005; Tarola & Giannetti, 2007), 

white (Castellari, et al., 2002; Darias-Martín, Andrés-Lacueva, Díaz-Romero, & Lamuela-

Raventós, 2008) and fortified (Ho, Hogg, & Silva, 1999) wine varieties, showing that the results 

obtained in this study are acceptable and coherent. 
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In addition, furans were also determined as they are present mainly in fortified wines, 

showing maximum results of 338.76 and 10.40 mg/L for HMF and furfural, respectively. As 

similar results were obtained by Ho et al. (1999), the above application demonstrates the 

effectiveness of the developed method for the determination of these compounds in fortified 

wines. 

 

4.4 Conclusions 

A simple and rapid method was developed for the sequential determination of organic 

acids, furans and phenolic compounds in different wine matrices by HPLC technology. This 

method combines sensitivity with time-effectiveness and was successfully used to measure 

and assess the polyphenolic fingerprint and organic acids profile of red, white, rosé and 

fortified wines. The determination of two furanic compounds, HMF and furfural, frequently 

detected in fortified wines, was also performed by the present method. Furthermore, the 

methodology provides the potential to analyse wine samples in a single chromatographic 

column and avoiding tedious and time consuming sample preparation procedures. Therefore, 

22 of the most common phenolic compounds and furans in wines were separated in 60 min 

and eight organic acids in 12 min, allowing simultaneous quality control analysis. The 

methodology can be extended to the determination of other wine polyphenols if additional 

calibrating standards are used. 
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Abstract 

As furfural (F) and 5-hydroxymethylfurfural (HMF) are essentially formed from sugars 

dehydration, especially in food submitted to heat, they can be found in beverages, as well as in 

fortified sweet wines. In order to assess the impact of temperature on Madeira winemaking, 

three traditional varieties of Madeira wines (Malvasia, Sercial and Tinta Negra Mole) were 

studied to evaluate the F and HMF content. The wines were produced by two vinification 

processes, following traditional and modern methodologies, heated at standard conditions (30 

°C and 45 °C, for 4 months) and compared with the same wines submitted to overheating 

conditions (55 °C, for 4 months). The RP-HPLC-DAD methodology used for the control of F and 

HMF during the process showed no significant changes in the wines maintained at 30 °C 

(canteiro) and a noticeable but controlled increase in the wines heated at 45 °C (estufagem) 

where values up to about 150 mg/L of HMF can be found in sweet wines. The strong relation 

of this compound with the sugar content and baking temperature standed out in the wines 

submitted to overheating conditions, where values higher that 1 g/L could be found for 

sweeter wines, with HMF level being in general higher than F. 

The results clearly suggest that the amount of HMF in these fortified wines can be 

easily controlled when submitted to adequate conditions of heating during estufagem and 

storage.  Furthermore, different temperatures for the baking of sweet and dry wines may be 

considered. 

 

5.1 Introduction 

As already mentioned, Madeira fortified wines hold alcoholic strengths between 17 

and 22% (v/v) and sweetness levels ranging from 0 (dry) up to about 130 g/L (sweet). Malvasia 

and Sercial grapes are two of the traditional white varieties used for the preparation of high 

quality sweet and dry wines, respectively and Tinta Negra Mole is a red grape versatile variety, 

used for the production of different types of Madeira. Sweet wines, traditionally not 

fermented, are currently obtained by a partial fermentation, in order to ensure 4% of alcohol 

exclusively derived from alcoholic fermentation, maintaining the high content of residual 

sugars. In contrast, Madeira dry wines can be completely fermented to sugar levels close to 0 

g/L (traditional method) or be fermented to low sugar levels (less than 1.5 °Be). Modern 

vinification techniques, following recent studies carried out to improve the typicity 

characteristics (Oliveira e Silva et al., 2008), have been introduced with the purpose of 

stabilizing the total sugar content in sweet wines to about 80 g/L and maintaining some 

residual sugars in dry wines. When the required sweetness level is attained the fermentation is 

stopped by the addition of a natural grape spirit (containing 95% (v/v) of ethanol). Then, two 

ageing processes can be followed: the canteiro, usually applied to the finest wines, namely 

those produced from Malvasia and Sercial grapes, where the wines are maintained under mild 

heating storage conditions (heating rooms not exceeding 30 °C); and the estufagem, where the 

wines are heated to about 45 °C for 3 months. The Tinta Negra Mole red variety, the most 

prolific variety in Madeira, used for the production of wines with different sweetness, is 

usually submitted to the practice of estufagem before undergoing a normal maturation 
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process in oak casks, for a minimum period of 3 years. During the heating stage, a premature 

ageing process occurs, originating the typical colour and bouquet of these wines and 

contributing to their exceptional longevity. 

The current concern with the alimentary quality increases the necessity of using 

chemical markers, which evaluate possible damages in the foodstuffs submitted to 

overheating and drawn out storage. The heating process can be used advantageously to 

preserve foods, destroying the spoilage organisms, but holding back the nutritional and 

organoleptic properties. In the case of Madeira wines, the heating process, used in the 

preparation of these wines since the 18th century, is generally associated with the toasted 

aroma and typical brownish colour. Among the aromas formed during this period (Oliveira e 

Silva, et al., 2008), the current study has focused its attention on the formation of two furanic 

compounds, furfural (F) and 5-hydroxymethylfurfural (HMF). These are the main degradation 

products of carbohydrates and their occurrence in foods is generally related to non-enzymatic 

browning reactions, namely Maillard type reactions (MR), sugar degradation in acid medium 

and caramelization (Antonelli, Chinnici, & Masino, 2004; Granados, Mir, Serrana, & Martinez, 

1996). Indeed, they are currently used as heat-treatment markers of foods.  

In acidic medium, the heating of pentoses and hexoses originates F and HMF, 

respectively, after a slow enolization and a fast β-elimination of three water molecules (Belitz, 

Grosch, & Schieberle, 2009). Indeed, the acid-catalysed degradation mechanism of fructose 

and glucose produces in a first step 1,2- or/and 2,3-enediolic intermediates, which rapidly 

eliminates water molecules before producing HMF (see Figure 5.1).  

 

FIGURE 5.1 – HMF formation pathway by sugar acid-catalysed dehydration (adapted from Antonelli et al. (2004)). 
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At wine pH (about 3.5) the formation route for F and HMF in Madeira wines can be 

explained almost entirely by acid-catalyzed sugar degradation, since Maillard chemistry is not 

favoured in the acidic media. The analytical control of F and HMF has received some 

importance and its occurrence has been reported in several food products, including fruit 

juices (Gökmen & Acar, 1999), beers (Lo Coco, Valentini, Novelli, & Ceccon, 1995), brandies 

(Granados, et al., 1996) and fortified wines (Cutzach, Chatonnet, & Dubourdieu, 1999; Ho, 

Hogg, & Silva, 1999).  From a safety perspective and for food quality assurance, HMF legal 

limits were already issued for some foodstuffs, namely for concentrated rectified grape must: 

EC Regulation No. 1493/99 sets up a limit of 25 ppm (Falcone, Tagliazucchi, Verzelloni, & 

Giudici, 2010). The F content is also useful as an off-flavour indicator and HMF is frequently 

correlated with browning reactions (Lo Coco, et al., 1995).  

Being essentially considered as indicators of overheated foodstuff, the presence of 

HMF and F in foods has raised some toxicological concerns in recent years. Some authors 

considered that they are natural components of traditional foods, posing no risk to human 

health (Adams et al., 1997; Janzowski, Glaab, Samimi, Schlatter, & Eisenbrand, 2000), while 

others say that HMF can be poisonous to the nervous system due to accumulation in the body 

when combined with proteins, eventually causing damages in the muscles and viscera (Li & Lu, 

2005). HMF derivatives, such as 5-chloromethyl- and 5-sulfoxymethylfurfural (SMF) have been 

associated with cytotoxic, genotoxic, and tumoral effects (Nassberger, 1990; Surh, Liem, Miller, 

& Tannenbaum, 1994; Zhang et al., 1993). In recent studies, especial attention has been given 

to HMF-related carcinogenicity (Durling, Busk, & Hellman, 2009; Monien, Frank, Seidel, & 

Glatt, 2009).  

The growing attention of the scientific community towards the potentially toxic effects 

of HMF and F has triggered the current interest on the formation of these compounds in 

Madeira wines, especially because sweet wines have a rather high content of carbohydrates 

and are submitted to a quite long heating process (at least 3 months).  

The study was focused on their determination in wines with different sweetness levels, 

produced under diverse fermentation and heating conditions, in order to simulate different 

ageing processes. To do so, three traditional varieties of Madeira wines, Malvasia, Sercial and 

Tinta Negra Mole, were produced by two different vinification processes and heated under 

overheating conditions (at 55 °C for 4 months), and compared with wines submitted to 

standard heating conditions (30 and 45 °C). F e HMF levels were determined by direct RP-

HPLC-DAD analysis of the wines under study. 

 

5.2 Experimental 

 5.2.1 Standards and reagents 

HMF and F analytical standard-grade (both with assay > 98%) were obtained from 

Acros Organics (Geel, Belgium). D-fructose and D-(+)-glucose were supplied by Himedia 

(Mumbai, India) with assays higher than 99%. The hydroalcoholic solutions were prepared with 
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ethanol (96%) from Sigma–Aldrich (St. Louis, MO, USA) and ultra-pure water (Milli-Q System, 

Millipore, Bedford, MA, USA). The chromatographic mobile phases were prepared with ultra-

pure water, methanol HPLC grade (Sigma–Aldrich, St. Louis, MO, USA) and acetic acid (JMGS, 

Portugal, > 99%). All solvents used were previously filtered through 0.45 µm membranes from 

Pall Corporation (Ann Arbor, MI, USA) to remove any impurities. 

 5.2.2 Wines 

Traditionally, the vinification process of sweet Madeira wines is often characterized by 

short fermentative steps or even by its absence, originating wines with high sugar levels, 

whereas dry Madeira wines are often completely fermented (traditional methods). Nowadays, 

there is a tendency to extend the fermentation of sweet wines (lowering the amount of 

residual sugars) and shorten the fermentation of dry wines (modern methods).  

For the purpose of the present study, about 600 L of must were obtained from 

Malvasia grapes (2003 harvest) and equal amounts were fermented according to different 

methods: traditional and modern. One was almost not fermented, the Malvasia traditional 

wine (Mt), containing 125 g/L of residual sugars. The other one was slightly fermented (4 days 

at 21 °C), getting a sugar level of about 78 g/L, denominated as Malvasia modern wine (Mm). 

The same procedure was applied to produce sweet wines from Tinta Negra Mole grapes: Tinta 

Negra Mole modern sweet (TmS) and Tinta Negra Mole traditional sweet (TtS). Two Sercial 

wines (equal amounts) were produced from 600 L of must. One was fermented until complete 

transformation of sugars (Sercial traditional, St). The other was fermented maintaining a low 

level of residual sugars (Sercial modern, Sm). Similarly, Tinta Negra Mole was used for the 

production of two dry wines: Tinta Negra Mole modern dry (TmD) and Tinta Negra Mole 

traditional dry (TtD). All wines were industrially elaborated in stainless steel tanks of local 

Madeira wine-producing cellars and the alcoholic fermentation was carried out by indigenous 

yeast under controlled temperature, while malolactic fermentation was not encouraged. 

Sulphite was added to musts up to 150 mg/L. After vinification, all wines were placed in 

stainless steel vats and heated at three different temperatures, 30, 45 and 55 °C, for 4 months. 

For the purposes of the study, Sercial and Malvasia musts were also processed by the modern 

methods to obtain a sweet (Sercial modern sweet, SmS) and a dry wine (Malvasia modern dry, 

MmD), respectively, being heated at 45 °C during the same period. As Malvasia is almost 

exclusively used for sweet wines and Sercial for dry wines, this experiment was carried out in 

order to allow a comparison between both varieties when submitted to the same 

fermentation and heating processes.  

Considering that the optimum temperature during estufagem is 45 °C (Oliveira e Silva, 

et al., 2008), the wines under study were also submitted to 55 °C (overheating temperature). 

This temperature was considered high enough to produce significant differences relative to 45 

°C, but not so high to promote the appearance of organoleptic defects. Table 5.1 briefly 

displays data on the experiment. 

The baking step was carried out in a special pilot scale system equipped with 200 L 

stainless steel vats (Figure 5.2), designed for careful and independent control of temperature 



 

Evolution of 5-hydroxymethylfurfural and furfural in Madeira wines submitted to estufagem 

 
121 

by the circulation of hot raw water. The temperature in each vat was continuously monitored 

and electronically adjusted with deviations less than 2 °C during the entire experimental 

period. The system included 10 vats with a similar design to the industrial large vats and was 

controlled by a PlantWatch software system supplied by CAREL (Padova, Italy).  

 

FIGURE 5.2 – Laboratory Estufas used for heating the current Madeira wines. 

TABLE 5.1 – Characteristics of the studied wines submitted to the baking step at 30, 45 and 55 °C. 

 

The wine samples were collected (about 75 cL) every 30 days and stored at -20 °C 

before analysis. The determination of the basic chemical parameters including the alcoholic 

strength, pH and reducing sugars content of the wines in study were determined. The alcoholic 

strength by volume was carried out according to the usual method of the OIV procedures (OIV, 

2000). The pH was also determined according to OIV standard procedure (OIV, 2000) while 

reducing sugars were determined according to the titration method of Lane-Eynon, as 

described in the Portuguese Official Standards (NP) for Spirits and Alcoholic Beverages 

(NP2223). 

Grape variety Method Abbreviation Conditions of fermentation Sugar 

content (g/L) 

Malvasia  Modern Sweet Mm Alcohol is added when density 

reaches 1050 g/cm3 

78 

 
Traditional Sweet Mt Alcohol is added after the 

beginning of the fermentation 

125 

 
Modern Dry* MmD Alcohol is added when the 

density reaches 1000  g/cm3 

--- 

Sercial Modern Dry Sm Alcohol is added when the 

density reaches 1000  g/cm3 

16 

 
Traditional Dry St Alcohol addition after complete 

fermentation 

0 

 
Modern Sweet* SmS Alcohol is added when the 

density reaches 1050  g/cm3 

--- 

Tinta Negra Mole Modern Sweet TmS Alcohol is added when the 

density reaches 1050  g/cm3) 

92 

 Traditional Sweet TtS Alcohol is added after the 

beginning of the fermentation 

110 

 Modern Dry TmD Alcohol is added when the 

density reaches 1000  g/cm3 

3 

 Traditional Dry TtD Alcohol addition after complete 

fermentation 

6 

*only heated at 45ºC 
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 5.2.3 Chromatographic analysis 

All samples were analysed by direct injection on a Waters HPLC system equipped with 

a Waters 1525 Binary HPLC Pump, a Waters 996 DAD and a Waters 717 Plus Autosampler. A 

Millenium chromatography manager software, version 3.2, was used for data acquisition. 

Furanic compounds were separated on a Waters 150 mm × 3.9 mm i.d., 4 μm Nova-Pak C18 

column. The analysis was carried out using an eluent A composed by water-acetic acid-

methanol (80:2:18) and an eluent B prepared with the same solvents though comprising the 

following composition 8:2:90. Gradient elution program was: 6 min at 100% A, to 20% A in 4 

min, 5 min at 20% A, to 100% A in 3 min and maintenance at 100% A during 5 min. The flow 

rate was adjusted to 0.60 mL/min and the injected volume was 10 μL. The DAD was operated 

with a resolution of 1.2 nm in the wavelength range of 240 – 390 nm. The analytes were 

detected at 280 nm and identified by superimposing the spectra of each peak with the 

corresponding spectra of the standards and by comparison of their retention times. Each 

sample was analysed in triplicate. 

 5.2.4 Validation and quantification 

Quantification was established by means of an external calibration curve. Analytical 

parameters of the validated methodology are summarised in Table 5.2. Standard solutions of 

HMF and F (1 g/L in methanol) were prepared, from which mixtures at different concentrations 

were made in the range of 2.5 – 75.0 mg/L, by dilution in ultra-pure water. The curves (five 

data points, n = 3) were linear with r2 values higher than 0.999. The limit of detection (LOD) 

and the limit of quantification (LOQ) were calculated as follows: 3.3σ/b and 10σ/b, 

respectively, where σ is the y-intercept standard deviation and b is the slope of the linear 

regression. The obtained LOD values were 1.22 mg/L for both analytes. The method 

reproducibility and recovery were checked. A RSD of 0.09% for HMF and 0.15% for F, and 

recoveries above 99% were obtained, when 5 replicates of a Tinta Negra Mole modern dry 

sample, spiked with 50 mg/L of HMF after heating at 55 °C, were injected. 

5.2.5 Statistics 

All determinations were carried out in triplicate and results were expressed as the 

mean value ± standard deviation. Significant differences between wines along heating and the 

initial state were assessed with analysis of variance (One-way ANOVA with Holm-Sidak Post 

Hoc test), using the statistical software SigmaPlot 11.0 for Windows.   

 

5.3 Results and discussion 

The initial alcoholic strength of both Malvasia wines was similar, about 17.0% (v/v) for 

Malvasia traditional wine and 17.5% (v/v) for Malvasia modern wine. It remained almost 

constant during the period of the experience. This behaviour was expected as the amount of 

samples taken was small compared to the total volume in the stainless steel vats, in which the 

evaporation processes is not significant. Analogous results (17% (v/v)) were observed for 
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Sercial and Tinta Negra Mole wines. The initial pH ranged between 3.41 and 3.57 and showed 

a small increase with the baking time (about 0.05, after 4 months) but independent of the 

heating temperature. The total amount of carbohydrates in the studied Madeira wines was 

also evaluated and initial values are presented in Table 5.1. Accordingly, Malvasia traditional 

was the sweetest wine and Sercial traditional the driest one, as expected due to their specific 

fermentation conditions and time of fortification. 

After the implementation of the conditions described in 5.2.3 it was evidenced that 

HMF and F eluted after 3.0 and 4.3 min of the analysis, respectively. The validation procedure 

and the obtained parameters (Table 5.2) showed that the method was adequate for 

quantification purposes and could be used to evaluate the F and HMF content during the 

baking of the Madeira wines under study. The advantage of the applied RP-HPLC-DAD method 

was that no additional clean-up methodology was necessary. 

TABLE 5.2 – Analytical parameters of the working method. 

 

As the thermal procedure applied to foodstuff favours the formation of HMF and F, the 

same can be expected in Madeira wines even if lower temperatures and longer times are used. 

Ho et al. (1999) determined F and HMF in several fortified wines including a 10 years old 

Verdelho Madeira wine, and the levels found were 8.8 and 361.0 mg/L, respectively. It was 

concluded that the high value obtained was probably due to the estufagem process. However, 

little was undertaken both to evaluate the real impact of temperature and sweetness on the 

Madeira winemaking process and to define operating conditions for minimisation. In a recent 

study (Oliveira e Silva, et al., 2008), it was determined the optimal temperature and baking 

time to obtain a Madeira wine considered typical by an expert panel, which were 4 months at 

45 °C. Furthermore, on the basis of AEDA results it was observed that several volatiles, usually 

related to Maillard reactions, such as sotolon, F, 5-methylfurfural, 5-ethoximethylfurfural, 

methional, and phenylacetaldehyde, were identified as common to both Malvasia and Sercial 

wines, conferring their typicity. In that study HMF was not identified as a key odorant of 

Madeira typical wines. Considering that HMF does not improve the characteristics of these 

wines and can be of some concern when present in higher concentrations in food or 

beverages, it is important to perform an adequate control and be able to find out the 

operating conditions for minimizing its levels in these wines. 

 

  HMF F 

Concentration range (mg/L) 2.5 - 75.0 2.5 - 75.0 

Linear regression 

y=bx + a 

a 20173 -37983 

b 116779 152773 

r
2
 0.999 0.999 

LOD 1.22 1.22 

LOQ 3.68 3.69 

RSD (%) (n = 5) 0.09 0.15 

Recovery (%) (n = 5) 100 99 
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 5.3.1 Development of the furanic compounds 

The amount of HMF showed a slight increase (sweet wines) or could not be quantified 

(dry wines) during the baking conducted at 30 °C. It was evidenced final concentrations lower 

than 12 mg/L. F was found in trace quantities in all wines baked at this temperature. These 

results suggested that sugar content was not the determinant factor for HMF and F 

development in Madeira wines. At higher temperatures, 45 and 55 °C, a continuous growth 

was verified with heating temperature and baking time (Table 5.3). HMF was reported to 

appear very high in wines submitted to 55 °C (overheating temperature), mostly in sweet 

wines, such as in the traditional Malvasia and Tinta Negra Mole sweet, where 1.2 g/L were 

reached. These results confirmed the high dependence of HMF levels on temperature and 

time, as is pointed out in different studies. It was evidenced that higher values were obtained 

for the sweetest wines, particularly when processed by the traditional method, where the 

sugar content was higher.  

The estufagem at standard procedures, up to 45 °C, did not promote HMF levels 

higher than 150 mg/L, even for non-fermented musts where the content in residual sugars 

remained high. So, the obtained results indicated that the formation of HMF can be controlled 

during estufagem if the temperature is carefully adjusted and maintained below 45 °C. At 

higher temperatures the increase of HMF formation in sweet wines was very important, 

attaining an amount 10 times higher with a 10 °C increase of the heating temperature. F was 

also reported to increase during the test, yet important changes were only detected at 

overheating conditions (55 °C), with slight variations observed between the two vinification 

procedures when the resulting wines were heated at 45 °C (e.g. 8.47 and 5.82 mg/L for 

Malvasia modern and traditional wines, respectively). At overheating conditions, F reached in 

average 19.65 mg/L in sweet wines and 8.98 mg/L in dry ones. Malvasia modern wine baked at 

55 °C had the lowest reducing sugar level of the sweet wines, but presented the highest level 

in F, showing that F amount cannot easily correlated with the sweetness of the wine. Under 

these conditions, the formation of F and HMF in dry wines remained low, with the exception of 

Sercial modern dry wine (189.05 mg/L and 11.71 mg/L, for HMF and F respectively), explained 

by the highest level of residual sugars between the dry wines under study. Câmara et al. (2004) 

showed that furanic aldehydes present a linear behaviour with the ageing of Madeira wines 

undergone in wood casks. The same seems to be valid for the wines submitted to estufagem 

up to 45 °C, with sweet wines showing an important increase at higher temperatures. This 

temperature was considered following the organoleptic analysis carried out by an expert 

panel. It was concluded that the typical characteristics of Madeira wines are achieved by 

estufagem whenever samples are baked at 45 °C during 4 months (Oliveira e Silva, et al., 

2008). Therefore, the present study also included the comparison with two experimental 

wines: a dry Malvasia and a sweet Sercial (both wines are not commercially produced) heated 

at 45 °C for 4 months. Results showed that Sercial sweet wine presented the same behaviour 

as other wines produced at similar conditions, though HMF evolution was less extended, not 

exceeding the 67.91 mg/L. This result is consistent with  
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TABLE 5.3 – HMF and F concentrations (mg/L) found in the studied wines submitted to heating at 30, 45 and 55 °C. 

 

the lower sugar potential of Sercial grapes; for this reason is traditionally used for dry wines. In 

the case of Malvasia dry wine, the amount of HMF was rather low 3.68 mg/L, and similar or 

lower than other dry wines. F amount was not high enough to be quantified in both wines. 

Means±SD 
HMF F 

30 ºC 45 ºC 55 ºC 30 ºC 45 ºC 55 ºC 

D
ry

 w
in

es
 

TmD 

Initial tr. tr. tr. n.d. n.d. n.d. 

2M tr. 3.72±0.01* 13.33±0.04* n.d. tr. 4.87±0.03* 

4M tr. 9.02±0.04* 15.83±0.01* n.d. tr. 6.85±0.05* 

TtD 

Initial tr. tr. tr. n.d. n.d. n.d. 

2M tr. 4.15±0.02* 23.50±0.12* n.d. tr. 5.90±0.04* 

4M tr. 6.21±0.04* 42.27±0.19* n.d. tr. 9.29±0.06* 

Sm 

Initial n.d. n.d. n.d. n.d. n.d. n.d. 

2M 5.90±0.01* 21.13±0.16* 83.51±0.09* tr. 4.19±0.02* 12.56±0.00* 

4M 6.10±0.04* 28.78±0.12* 189.05±0.60* tr. 7.01±0.07* 11.71±0.12* 

St 

Initial n.d. n.d. n.d. n.d. n.d. n.d. 

2M tr. 5.39±0.01* 14.24±0.05* n.d. tr. 5.53±0.03* 

4M tr. 10.01±0.02* 19.63±0.27* tr. 3.82±0.02* 8.08±0.14* 

MmD 

Initial 

_ 

tr. 

_ _ 

n.d. 

_ 2M tr. tr. 

4M 3.68±0.04* tr. 

S
w

ee
t 

w
in

es
 

TmS 

Initial 5.67±0.03 5.67±0.03 5.67±0.03 tr. tr. tr. 

2M 7.63±0.05* 40.06±0.61* 558.05±0.75* tr. tr. 11.35±0.03* 

4M 8.62±0.09* 95.37±0.16* 976.32±6.76* tr. 5.45±0.03* 18.09±0.06* 

TtS 

Initial 5.97±0.22 5.97±0.22 5.97±0.22 n.d. n.d. n.d. 

2M 7.63±0.05* 58.00±0.18* 637.97±1.49* tr. tr. 11.22±0.14* 

4M 10.90±0.04* 141.48±0.29* 1249.24±0.17* tr. 4.24±0.06* 21.29±0.15* 

Mm 

Initial n.d. n.d. n.d. n.d. n.d. n.d. 

2M 5.53±0.08* 55.12±0.31* 257.65±0.74* tr. 3.93±0.03* 8.32±0.07* 

4M 9.56±0.12* 136.65±0.08* 874.23±5.54* tr. 8.47±0.03* 22.90±0.36* 

Mt 

Initial tr. tr. tr. n.d. n.d. n.d. 

2M 2.49±0.08* 39.16±0.09* 354.55±0.14* tr. tr. 6.98±0.04* 

4M 11.54±0.02* 148.95±0.23* 1247.80±1.08* tr. 5.82±0.01* 16.33±0.15* 

SmS 

Initial 

_ 

4.11±0.01 

_ _ 

n.d. 

_ 2M 29.94±0.03* tr. 

4M 67.91±0.05* tr. 

 2M - 2 Months of heating  n.d. – not detected, below LOD  

 

4M - 4 Months of heating 

SD - Standard deviation 

tr.. – tr.ace amounts below LOQ 

*p<0.001, significant differences were detected  

when compared with the initial state 
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The main sugars present in grapes are glucose and fructose (hexoses), usually in similar 

amounts at harvest time. Although both decrease during fermentation, their ratio in musts 

depends on the conditions of the process, since glucose is consumed by the great majority of 

yeasts prior to fructose (Sanz & Martínez-Castro, 2009). Thus, when the fermentation of sweet 

wines is halted by fortification high amounts in glucose, fructose and others residual sugars are 

still present. So in this kind of wines the high amounts in HMF can be confirmed by glucose and 

fructose degradation essentially carried out by acidic dehydration, especially when higher 

temperatures are used in the winemaking process. F occurrence may indicate the existence of 

pentoses in these wines. These kind of carbohydrates are not fermentable by yeasts, which 

may explain the observed formation of F in dry wines heated at higher temperatures. It was 

also observed that HMF levels were always relatively higher than F, even when wines were 

completely fermented (traditional dry wines). 

To understand which sugar contributes more to the HMF formation, a simple test was 

carried out: a 18% (v/v) hydroalcoholic solution containing 125 g/L of fructose and other with 

equal amount of glucose were heated at 50 °C during 75 days. This preliminary test showed 

that the fructose solution produced 46 times more HMF than the glucose solution, attaining 

the amount of 226.41 mg/L. This may be due to the fact that fructose naturally exists in higher 

proportion in the open-chain form than does glucose, and easily dehydrates. Further studies 

should be conducted taking into account other factors likely to influence sugar degradation, 

during the estufagem of the wines. 

 5.3.2 Assessment of the furanic compounds in commercial wines 

The study was also extended to commercially available Madeira wines in order to 

evaluate F and HMF contents found in the market (from different producers). So it covered not 

only samples which might be submitted to estufagem (most 3-year-old wines) but also those 

which followed canteiro ageing (below 30 °C). Thus, the study analysed 24 samples from dry to 

sweet wines. Table 5.4 shows the obtained results and evidence points to the fact that 

commercial wines (under 5 years old) presented relatively low amounts of HMF and F, less 

than 71 mg/L and 5 mg/L, respectively.  

The highest amounts were found in sweet wines but those submitted to estufagem 

(presented in the table without reference to the variety) did not showed significant differences 

to the wines submitted to canteiro ageing (variety indicated in the table). The 10-year-old 

wines, prepared before current studies were carried out, showed higher amounts of HMF (4 

samples with more than 100 mg/L, corresponding to wines submitted to the heating stage 

before ageing). Even considering that HMF can increase with ageing, the high amounts 

detected in commercial wines were essentially the result of the initial heating stage, pointing 

out that its level can be controlled using adequate conditions of estufagem (45 °C). This was 

also confirmed by the lower values obtained in sweet wines aged in casks (canteiro). 
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TABLE 5.4 – HMF and F contents (mg/L) found in commercial Madeira wines. 

 

 

5.4 Conclusions 

A validated method was used with success for the evaluation of HMF and F contents in 

Madeira wines submitted to prolonged heating. The amount of HMF tended to increase with 

heating and ageing, where important amounts (greater than 1 g/L) were formed in sweet 

wines submitted to overheating conditions (55 °C), after a 4 month period. The study clearly 

showed that the amounts of HMF and F formed in sweet wines fermented in order to reduce 

the amount of residual sugars and baked at temperatures not higher than 45 °C, are under 

control even for longer ageing periods. On the contrary, dry wines can be fermented in order 

to maintain a low level of residual sugars, in order to induce the formation of some typical 

aromas resulting from sugar degradation, being heated up to 45 °C without a significant 

increase of the final amount of furans. 

The heating process known as estufagem, used in the production of Madeira wines 

since 1795, is associated to the bouquet of these fortified wines and may play an important 

role in their exceptional longevity. Heating conditions can be adjusted in order to maintain 

Commercial samples HMF F 

3-years-old 

dry 1 27.95±0.31 n.q. 

dry 2 4.80±0.06 n.d. 

medium dry 1 14.36±0.03 n.q. 

medium dry 2 5.85±0.04 n.d. 

medium sweet 1 60.32±0.20 n.q. 

medium sweet 2 6.83±0.30 n.d. 

sweet 1 90.95±0.19 3.82±0.01 

sweet 2 6.71±0.24 n.d. 

5-years-old 

dry 1 (Sercial) 21.95±0.02 n.q. 

dry 2 29.87±0.07 3.97±0.28 

medium dry 1 (Verdelho) 30.70±0.29 n.q. 

medium dry 2 36.18±0.05 4.11±0.02 

medium sweet 1 (Boal) 38.90±0.20 3.97±0.04 

medium sweet 2 20.45±0.05 n.q. 

sweet 1 (Malvasia) 70.83±0.07 4.98±0.06 

sweet 2 39.84±0.07 n.q. 

10-years-old 

dry 1 (Sercial) 40.57±0.16 4.60±0.02 

dry 2 367.39±1.32 8.29±0.01 

medium dry 1 (Verdelho) 59.63±0.11 5.40±0.08 

medium dry 2 195.57±0.40 6.87±0.47 

medium sweet 1 (Boal) 48.07±0.03 6.65±0.09 

medium sweet 2 491.90±1.72 11.55±0.13 

sweet 1 (Malvasia) 150.41±1.11 8.31±0.07 

sweet 2 287.43±2.21 9.77±0.50 

n.q.- under LOQ; n.d. - not detected or under LOD     

 



CHAPTER 5 

 

 
128 

these important characteristics without compromising the final amount of HMF and 

contributing to improve general quality. The observed tendency to enhance modern wines, 

resulting from organoleptic analysis and HMF evolution data, clearly suggests the importance 

of introducing changes in the fermentation process (sweetness) and baking (temperature). The 

results also showed that dry and sweet wines should not necessarily be heated at the same 

conditions, with dry wines having lower evolution and supporting higher temperatures. This 

conclusion can suggest changes in the differentiation of heating conditions applied to different 

wines, in accordance with the general idea that Sercial wines need extended ageing periods for 

attaining typicity. 
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Abstract 

Giving the role played by amino acids during fermentation, providing nitrogen to yeast 

and acting as metabolic precursors of higher alcohols, the current chapter presents a study 

focused on the impact of the subsequent heating, usually followed by Madeira wines. Two 

grape varieties (one red and one white) were used in the preparation of common sweet and 

dry wines. The amino acid profiles were obtained during the heating step (45 °C, 3 months) 

and compared with the profiles of the same wines baked at 70 °C for a month, following a 

previously described methodology based on a pre-column OPA/MCE derivarization carried out 

in the injection loop. Data was obtained for 18 amino acids and 4 amines and showed arginine 

as the most abundant amino acid, presenting a significant reduction during fermentation and 

heating. A significant decrease of the total amount of amino acids was detected during heating 

(up to 30% for Malvasia), indicating their importance in the formation of ageing products 

(namely aromas) enhanced by temperature (Stecker degradation). A slight increase of some 

amino acids, namely asparagine, was detected during the heating step and cysteine was not 

detected in sweet wines, probably due to the short fermentation. The total concentration of 

biogenic amines never exceeded 12 mg/L. 

 

6.1 Introduction 

Amino acid composition of musts and wines has received special attention in the 

literature, not only for its importance on fermentative step (as the nitrogen source of yeasts) 

but essentially for its significant effect on wine flavour development (as metabolic precursors 

of higher alcohols), as well as for authenticity studies and criteria for differentiation. Without a 

doubt, is essential to know the amino acid profile of each wine, since their composition varies 

from one wine to another. As previously pointed out, their composition, and consequently of 

biogenic amines, depends on the grape variety and technological procedures accomplished, 

during the entire vinification process, including vineyard practices and some critical 

winemaking factors and steps.   

Little is known about Madeira wine amino acid profile and concentration, in particular, 

from their evolution during the baking stage. Thus, the main purpose of this work was the 

determination of amino acids profile of different types of Madeira wines and their behaviour 

during estufagem. Additionally, was also performed the evaluation of amines present in these 

wines.  For this purpose, Tinta Negra Mole (TNM) dry and sweet wines were heated at 45 °C 

during 3 months and compared with a sweet wine produced from Malvasia variety. For 

comparison purposes, these wines were also baked at stress conditions, 70 °C during 1 month, 

to evaluate the temperature effect. 
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6.2 Experimental 

 6.2.1 Wines 

Two Vitis Vinifera L. grapes varieties, Tinta Negra Mole (red) and Malvasia (white), 

from the 2007 harvest were chosen and the corresponding wines were industrially elaborated 

in stainless steel tanks of local Madeira wine-producing cellars. The alcoholic fermentation was 

carried out by indigenous yeast under controlled temperature and malolactic fermentation 

was not encouraged. Two sweet wines, one from Malvasia grapes and other from TNM were 

produced and their fermentation was stopped by the addition of natural grape spirit, when 

must density attained 1019 and 1025 g/cm3, remaining 96 and 115 g/L of reducing sugars, 

respectively. A dry wine from TNM grapes was also produced and the fermentation was 

allowed until the density reached 986 g/cm3. When all subsequent procedures were 

accomplished, about 200 L of each wine was then placed in stainless steel vats and heated at 

45 °C during 3 months.  Additionally, small amounts of the three wines, about 250 mL, were 

also baked at stress conditions, 70 °C during 1 month. The experiment is schematized in Figure 

6.1 and was conducted in a lab oven while the heating at 45 °C was carried out in a special 

pilot scale system, equipped with 200 L stainless steel vats, designed for careful and 

independent control of temperature by the circulation of hot raw water.  

 

FIGURE 6.1 – Scheme of the conducted experience. 

Samples were monthly collected and preserved at -20 °C before being submitted to the 

analytical control. Some oenological parameters of wines were also determined according to 

winery current standard procedures, namely reducing sugars content, total and volatile acidity, 

pH and alcoholic strength. 

 6.2.2 Standards and reagents 

The amino acid γ-aminobutyric acid (GABA) was supplied by Fluka BioChemika AG 

(Buchs, Switzerland) while the others were supplied by Sigma–Aldrich (St. Louis, MO, USA): 

aspartic acid (Asp), glutamic acid (Glu), cysteine (Cys), asparagine (Asn), serine (Ser), glutamine 

(Gln), histidine (His), glycine (Gly), threonine (Thr), arginine (Arg), alanine (Ala), tyrosine (Tyr), 

methionine (Met), tryptophan (Trp), valine (Val), phenylalanine (Phe), isoleucine (Ile), leucine 

(Leu) and lysine (Lys). Histamine (Him), tyramine (Tym), phenylethylamine (Phm), 

isopenthylamine (Ism), and cadaverine (Cad) were from Fluka BioChemika AG (Buchs, 

Switzerland) while tryptamine (Trm) was from Acros Organics (Geel, Belgium). All standards 

have a minimum assay of 98%. 
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Ultra-pure water was obtained from a Milli Q-System (Millipore, Milford, MA, USA) 

while HPLC-grade methanol was obtained from Sigma–Aldrich (St. Louis, MO, USA). 

Tetrahydrofuran (99.5%), ethanol (99.9%), sodium hydroxide (98%), sodium phosphate 

monobasic monohydrate (98%), as well as iodoacetic acid (IDA, 99%) were from Panreac 

Quimica SA (Barcelona, Spain). The derivatization reagent o-phthaldialdehyde (OPA, p.a.) and 

2-mercaptoethanol (MCE, 99%) were supplied by Acros Organics (Geel, Belgium). Finally, 

hydrochloric acid (p.a.) was from Riedel-de Häen (Seelze, Germany) and boric acid (99.5%) 

from Merck Co. (Darmstadt, Germany). 

The OPA/MCE solution was prepared by diluting 50 mg of OPA in 1.50 mL of ethanol 

and adding 400 mM borate buffer (pH 10.5) up to 10 mL. Finally, after the addition of 200 µL of 

MCE reagent, the solution settled down for 90 min before use. The IDA solution was prepared 

by adding 0.583 g of IDA to 10 mL of borate buffer.  

 6.2.3 Amino acids and amines determination 

A Waters (Milford, MA, USA) HPLC system, consisting of a separations module with 

auto-injector (Waters 2695) and a Multi λ Fluorescence detector (Waters 2475), was used for 

the simultaneous amino acid and amine analysis. The Empower Pro software was used for data 

storage and integration. The methodology used was based on the previously described 

(Pereira, Pontes, Câmara, & Marques, 2008) adding an initial step to include cysteine 

derivatization by carboxymethylation using iodoacetic acid (IDA), as did Pripis-Nicolau and co-

workers (2001) in their methodology (see Figure 6.2).  

 

FIGURE 6.2 – Carboxymethylation of cysteine by reaction with iodoacetic acid (IDA) and subsequent reaction with 

OPA/MCE reagent. 

Briefly, the method was based on a pre-column OPA/MCE derivatization procedure 

carried out in the sample injection loop, according to the following sequence: to 5 µL of 

filtered (0.45 µm) standard/sample (200 µL of sample/standard are previously diluted in 1.5 

mL of borate buffer solution) were added 5 µL of IDA solution and 10 µL of OPA/MCE solution. 
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This mixture was kept in the injection loop for 2 min to promote the derivatization reaction, 

before being injected into a Nova-Pak RP-C18 column of 3.9 mm i.d. × 150 mm, 4 µm (Waters, 

Milford, MA, USA), thermostated at 35 °C. The separation of the 20 amino acids and 6 amines 

was accomplished using a gradient elution with a phase A: 10 mM sodium phosphate buffer 

(pH 7.3), methanol and tetrahydrofuran (91:8:1); and a phase B: methanol and phosphate 

buffer (80:20) as follow, with the flow rate set to 1.0 mL/min: 100% A isocratic for 6 min, 85% 

A in 11 min, 80% A in 8 min, 70% A in the following 8 min, 60% A in 12 min, 20% A in 16 min, 

0% A in 6 min, isocratic during 3 min and finally regeneration and equilibrium in the next 10 

min. The fluorescence signal was recorded using an excitation wavelength of 335 nm and an 

emission wavelength of 440 nm. As a consequence of the carboxymethylation step 

introduction, to derivatize cysteine, Table 6.1 briefly presents the linearity parameters of the 

current determination. 

TABLE 6.1 – Summary of the linearity parameters obtained from the applied method for the determination of the 

individual amino acids and biogenic amines in Madeira wines submitted to estufagem. 

 

 6.2.4 Statistical analysis 

Regular statistical analysis was performed with Microsoft Office Excel 2007, while 

Principal Component Analysis (PCA) was carried out with the computational platform MatLab 

(version 7.6, The Mathworks, Inc.). 

tR (min) Amino compound Abbrev. 

Linearity parameters (y=ax+b) 

Concentration range a b R
2
 

LOD  

(mg/L) 

2.0 Aspartic acid Asp 3.01 - 60.18 673980 302623 0.9998 0.45 

3.2 Glutamic acid Glu 3.00 - 60.06 635438 293410 0.9998 0.42 

4.9 Cysteine Cys 3.00 - 60.00 127643 33774 0.9999 0.57 

9.4 Asparagine Asn 3.00 - 60.00 449956 173267 0.9999 0.51 

11.5 Serine Ser 3.01 - 60.24 1036916 827421 0.9994 0.68 

14.0 Glutamine Gln 3.00 - 60.07 182147 456093 0.9994 0.66 

14.9 Histidine His 3.01 - 60.12 324410 218263 0.9998 0.41 

17.4 Glycine Gly 3.00 - 60.06 1629176 337283 0.9999 0.68 

19.1 Threonine Thr 3.00 - 60.06 742561 230380 0.9999 0.49 

21.9 Arginine Arg 3.01 - 120.05 521261 1797214 0.9992 1.17 

25.9 Alanine Ala 3.01 - 60.18 1177658 83468 0.9998 0.51 

28.2 γ-aminobutyric acid GABA 3.00 - 120.24 992290 920153 0.9997 0.87 

32.3 Tyrosine Tyr 3.00 - 60.06 532135 230152 0.9998 0.39 

38.5 Unknown Unk --- --- --- --- --- 

44.5 Methionine Met 3.00 - 60.00 778083 307865 0.9998 0.39 

45.7 Tryptophan Trp 3.02 - 60.48 931939 357251 0.9998 0.40 

47.2 Valine Val 3.02 - 60.36 509248 204224 0.9999 0.40 

50.0 Phenylalanine Phe 3.01 - 60.18 755146 407337 0.9999 0.43 

52.5 Isoleucine Ile 3.01 - 60.18 941243 257488 0.9998 0.41 

53.7 Leucine Leu 3.01 - 60.12 927913 580392 0.9999 0.44 

59.6 Lysine Lys 3.00 - 60.00 177571 -229832 0.9990 2.02 

49.3 Histamine Him 3.00 - 60.00 851424 -284552 0.9996 0.72 

59.0 Tyramine Tym 3.00 - 60.06 897313 -196446 0.9997 0.80 

63.6 Tryptamine Trm 3.04 - 120.48 608809 -1013792 0.9993 1.18 

64.7 Phenylethylamine Phm 3.01 - 120.48 713629 -698822 0.9997 0.79 

65.8 Isopentylamine Ism 2.93 - 117.00 1127761 -1762345 0.9990 1.45 

67.1 Cadaverine Cad 3.13 - 125.28 505228 -3832866 0.9935 3.41 
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6.3 Results and discussion 

 6.3.1 Oenological parameters 

Basic oenological parameters of the wine samples in study are presented in Table 6.2. 

Before the thermal procedure wines pHs were similar (about 3.4) and only irrelevant changes 

could be observed during the baking step. The same applies to the total acidity but not to the 

volatile acidity. As observed, the TNM dry wine, before baking, showed twice the volatile 

acidity of the correspondent sweet wine. This parameter increased in sweet wines and 

decreased in dry wines, tending to similar values after the heating step. The volatile acidity of 

the current wines never reached the 0.6 g HAc/L, concentration limit above which the 

sensorial quality of table wines can be modified (Marco, Moreno, & Azpilicueta, 2006). The 

reducing sugar content was also determined before and after the thermal treatment. The 

sweet wines differed in 19.41 g/L before the heating step, and after the baking step at 

standard conditions, the sugar content of Malvasia decreased 7.04 g/L, while TNM sweet lost 

13.52 g/L. In the case of dry wine only decreased 1.07 g/L. These results may indicate that 

sugars may participate in some reactions namely in Maillard reactions and essentially 

degrading due to wine acidic conditions, darkening the wines colour. 

TABLE 6.2 – Basic oenological parameters of the selected sample set of Madeira wines submitted to estufagem. 

 

  

  0 m 1 m 2 m 3 m 

TNM sweet 

    Density (g/L) 1025.20 --- --- 1024.70 

Reducing sugars (g/L) 115.16 --- --- 101.64 

Alcohol (v/v) 17.5 --- --- 17.7 

pH 3.52 3.45 3.44 3.50 

Volatile acidity (g HAc/L) 0.09 0.12 0.15 0.12 

Total acidity (g TarAc/L) 6.53 6.75 6.53 6.53 

     TNM dry 

    Density (g/L) 986.10 --- --- 985.00 

Reducing sugars (g/L) 3.57 --- --- 2.5 

Alcohol (v/v) 16.7 --- --- 17.7 

pH 3.45 3.38 3.36 3.42 

Volatile acidity (g HAc/L) 0.21 0.21 0.18 0.15 

Total acidity (g TarAc/L) 6.90 7.13 6.90 6.75 

     Malvasia 

    Density (g/L) 1018.68 --- --- 1018.18 

Reducing sugars (g/L) 95.75 --- --- 88.71 

Alcohol (v/v) 18.0 --- --- 18.1 

pH 3.47 3.43 3.47 3.48 

Volatile acidity (g HAc/L) 0.09 0.12 0.15 0.18 

Total acidity (g TarAc/L) 6.68 6.45 6.38 6.53 

HAc – acetic acid; TarAc – tartaric acid 
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6.3.2 Amino acids and amines 

The primary amino acids and amines found in the different wine samples at the initial 

stage (0 m), after 1, 2 and 3 months of baking at 45 °C and after 1 month at 70 °C are exposed 

in Table 6.3 (A-C).  The total concentration of amino acids and amines was calculated as the 

sum of the concentrations of the individual corresponding compounds. In addition, was also 

determined the percentage of each compound in samples relative to the total value.  

As it can be seen in Table 6.3 (A-C), 18 amino acids were found from the 20 analysed. 

Arg was always the most abundant amino acid, varying from 23.83 to 355.89 mg/L, followed by 

Ala (12.84 - 84.29 mg/L) in TNM wines and by GABA (8.83 - 37.74 mg/L) in Malvasia wine. 

Similar results were usually obtained by others researchers in white wines (Csomós & Simon-

Sarkadi, 2002; Herbert, Cabrita, Ratola, Laureano, & Alves, 2006). Before the thermal 

procedure, TNM sweet wine had the highest content in amino compounds, about 666 mg/L, 

while the corresponding dry wine had at least 3 times less. This result confirms that extensive 

fermentations lower the amino acid content. The Malvasia wine, also a sweet wine, did not 

show a similar profile to the other one, only presenting about 225 mg/L. This result may be 

related with the fermentation process, which was slightly more extensive (lower density, see 

Table 6.2) and consequently, a higher amino acid consumption was observed, or even, this 

grape variety already offered a smaller amount of this kind of nitrogen source, associated to 

the fact that the yeast strain, naturally present in these grapes, could be different. Moreover, 

this result can justify the versatility of TNM variety that is being broadly used for the 

production of wines with different sweetness levels, whilst Malvasia is almost exclusively used 

for sweet wines. 

TABLE 6.3.A – Content of primary amino acids and amines found in TNM sweet wines at different stages: initial (0 

m), after 1, 2 and 3 months of baking at 45 °C and after 1 month at 70 °C. The percentage of each compound in 

samples relative to the total value is also presented (%). 

 

Amino 

compound 

0 m       1 m, 45 °C     2 m, 45 °C     3 m, 45 °C     1 m, 70 °C   

Mean  SD %   Mean  SD %   Mean  SD %   Mean  SD %   Mean  SD % 

Tinta Negra Mole sweet                                     

Asp 22.09 0.08 3.4   16.71 0.08 3.6   23.38 0.02 4.1   25.40 0.13 4.4   24.38 0.29 6.4 

Glu 31.99 0.06 4.9   17.10 0.11 3.7   17.98 0.03 3.1   14.24 0.11 2.5   2.66 0.02 0.7 

Cys n.d       n.d       n.d       n.d       n.d     

Asn 7.12 0.10 1.1   4.78 0.05 1.0   5.64 0.02 1.0   5.19 0.08 0.9   1.90 0.01 0.5 

Ser 19.15 0.09 2.9   13.62 0.12 3.0   18.44 0.09 3.2   19.06 0.14 3.3   13.70 0.04 3.6 

Gln n.d.       n.d.       n.d.       n.d.       3.80 0.09 1.0 

His 4.04 0.17 0.6   1.65 0.08 0.4   2.50 0.12 0.4   2.06 0.12 0.4   5.76 0.03 1.5 

Gly 4.03 0.09 0.6   3.41 0.04 0.7   4.85 0.10 0.8   5.40 0.10 0.9   5.40 0.11 1.4 

Thr 26.78 0.10 4.1   18.48 0.09 4.0   23.89 0.28 4.1   24.92 0.26 4.4   14.24 0.03 3.8 

Arg 355.89 1.15 54.4   254.40 1.05 55.3   306.48 1.47 53.2   301.79 3.81 52.8   172.41 0.32 45.4 

Ala 84.29 0.30 12.9   61.48 0.06 13.4   82.32 0.41 14.3   84.22 0.37 14.7   74.46 0.25 19.6 

GABA 37.74 0.55 5.8   25.22 0.18 5.5   33.32 0.80 5.8   32.92 0.79 5.8   16.52 0.23 4.4 

Tyr 14.40 0.02 2.2   10.30 0.06 2.2   13.80 0.05 2.4   13.96 0.17 2.4   11.44 0.04 3.0 

Unk* 9.77 0.04 1.5   6.61 0.04 1.4   7.73 0.04 1.3   7.19 0.02 1.3   3.32 0.05 0.9 

Trp 7.72 0.02 1.2   5.43 0.02 1.2   7.52 0.00 1.3   7.70 0.07 1.3   6.90 0.06 1.8 

Phe 7.96 0.07 1.2   5.59 0.03 1.2   7.63 0.04 1.3   7.75 0.08 1.4   5.96 0.04 1.6 

Ile 4.52 0.02 0.7   3.17 0.01 0.7   4.45 0.01 0.8   4.55 0.04 0.8   3.87 0.02 1.0 

Leu 8.19 0.04 1.3   5.76 0.02 1.3   7.91 0.02 1.4   8.02 0.09 1.4   6.06 0.02 1.6 

Lys 8.00 0.11 1.2   6.01 0.19 1.3   7.88 0.22 1.4   7.63 0.13 1.3   6.63 0.16 1.7 

TOTAL AA 653.68       459.72       575.71       572.02       379.42     

Him 0.82 0.00 6.9   n.d.       0.79 0.00 6.7   0.82 0.01 6.8   0.73 0.01 6.2 

Phm 1.22 0.00 10.2   1.16 0.01 10.7   1.19 0.02 10.0   1.22 0.01 10.3   1.22 0.00 10.4 

Ism 2.15 0.01 18.0   1.92 0.01 17.8   2.08 0.04 17.6   2.05 0.02 17.2   2.00 0.01 17.0 

Cad 7.74 0.01 64.9   7.73 0.01 71.5   7.75 0.03 65.6   7.83 0.01 65.7   7.81 0.01 66.4 

TOTAL BA 11.93       10.82       11.82       11.92       11.76     

The results are expressed in mg/L. *- The unknown compound was expressed in Gly equivalents; n.d. - under LOD 
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TABLE 6.3.B – Content of primary amino acids and amines found in TNM dry wines at different stages: initial (0 m), 

after 1, 2 and 3 months of baking at 45 °C and after 1 month at 70 °C. The percentage of each compound in samples 

relative to the total value is also presented (%). 

 

TABLE 6.3.C – Content of primary amino acids and amines found in Malvasia wines at different stages: initial (0 m), 

after 1, 2 and 3 months of baking at 45 °C and after 1 month at 70 °C. The percentage of each compound in samples 

relative to the total value is also presented (%). 

 

Notice that Arg seems to be the amino acid which consumption, during the alcoholic 

fermentation, was more pronounced, given that the content in the TNM dry was about 11 

times smaller than the correspondent sweet wine. The Arg consumption seems to be followed 

Amino 

compound 

0 m       1 m, 45 °C     2 m, 45 °C     3 m, 45 °C     1 m, 70 °C   

Mean  SD %   Mean  SD %   Mean  SD %   Mean  SD %   Mean  SD % 

Tinta Negra Mole dry                                     

Asp 11.21 0.10 5.9   13.14 0.12 7.5   15.63 0.07 8.9   17.31 0.00 10.5   30.34 0.13 19.8 

Glu 21.84 0.03 11.6   16.78 0.16 9.6   14.28 0.02 8.1   11.68 0.00 7.1   2.70 0.01 1.8 

Cys 5.74 0.15 3.0   1.44 0.04 0.8   1.38 0.02 0.8   1.19 0.03 0.7   0.77 0.00 0.5 

Asn 5.95 0.17 3.2   5.66 0.07 3.3   5.44 0.03 3.1   4.11 0.02 2.5   1.95 0.02 1.3 

Ser 4.49 0.03 2.4   4.54 0.06 2.6   5.14 0.11 2.9   5.02 0.03 3.0   5.89 0.05 3.8 

Gln n.d.       n.d.       n.d.       n.d.       n.d.     

His 1.76 0.05 0.9   0.84 0.02 0.5   1.00 0.04 0.6   1.00 0.02 0.6   0.59 0.02 0.4 

Gly 7.01 0.03 3.7   6.97 0.09 4.0   7.39 0.08 4.2   7.58 0.08 4.6   7.72 0.01 5.0 

Thr 4.93 0.19 2.6   4.82 0.21 2.8   4.94 0.10 2.8   4.86 0.07 2.9   3.22 0.04 2.1 

Arg 31.93 0.06 16.9   30.24 0.47 17.4   30.01 0.05 17.1   27.12 0.11 16.4   23.83 0.35 15.6 

Ala 28.66 0.05 15.2   27.68 0.34 15.9   28.36 0.13 16.2   27.77 0.08 16.8   28.42 0.13 18.6 

GABA 15.81 0.08 8.4   14.53 0.12 8.3   14.38 0.20 8.2   13.60 0.12 8.2   8.97 0.08 5.9 

Tyr 6.06 0.06 3.2   5.89 0.06 3.4   6.09 0.08 3.5   5.99 0.02 3.6   6.13 0.01 4.0 

Unk* 11.04 0.02 5.9   9.76 0.06 5.6   9.30 0.12 5.3   8.06 0.07 4.9   3.54 0.04 2.3 

Trp 4.02 0.01 2.1   3.92 0.04 2.3   4.16 0.03 2.4   3.90 0.01 2.4   4.41 0.02 2.9 

Phe 5.75 0.00 3.0   5.68 0.06 3.3   5.88 0.06 3.4   5.59 0.02 3.4   5.65 0.03 3.7 

Ile 2.66 0.01 1.4   2.65 0.03 1.5   2.84 0.03 1.6   2.81 0.01 1.7   3.17 0.02 2.1 

Leu 8.72 0.02 4.6   8.49 0.08 4.9   8.83 0.06 5.0   8.43 0.05 5.1   8.65 0.04 5.6 

Lys 11.09 0.48 5.9   11.05 0.43 6.3   10.53 0.57 6.0   9.52 0.03 5.8   7.19 0.25 4.7 

TOTAL AA 188.66       174.08       175.58       165.55       153.13     

Him n.d.       n.d.       n.d.       n.d.       n.d.     

Phm 1.21 0.01 11.2   1.18 0.01 11.0   1.16 0.00 10.9   1.12 0.01 10.5   1.08 0.01 10.3 

Ism 1.78 0.01 16.5   1.76 0.00 16.4   1.73 0.01 16.2   1.72 0.00 16.2   1.71 0.01 16.2 

Cad 7.81 0.01 72.3   7.79 0.01 72.6   7.79 0.01 72.9   7.78 0.01 73.3   7.76 0.01 73.5 

TOTAL BA 10.81       10.73       10.68       10.62       10.56     

The results are expressed in mg/L. *- The unknown compound was expressed in Gly equivalents; n.d. - under LOD 

Amino 

compound 

0 m       1 m, 45 °C     2 m, 45 °C     3 m, 45 °C     1 m, 70 °C   

Mean  SD %   Mean  SD %   Mean  SD %   Mean  SD %   Mean  SD % 

Malvasia                                       

Asp 6.13 0.26 2.7   5.63 0.05 3.0   5.94 0.07 3.4   6.21 0.07 3.9   6.53 0.32 7.3 

Glu 12.73 0.07 5.6   9.32 0.06 4.9   7.82 0.08 4.5   6.37 0.08 4.0   2.03 0.02 2.3 

Cys 1.33 0.06 0.6   n.d.       n.d.       n.d.       n.d.     

Asn 2.40 0.06 1.1   1.87 0.08 1.0   1.48 0.03 0.8   1.05 0.02 0.7   n.d.     

Ser 5.48 0.13 2.4   5.94 0.08 3.2   5.32 0.07 3.0   5.07 0.06 3.2   3.49 0.03 3.9 

Gln n.d.       n.d.       n.d.       n.d.       n.d.     

His 3.45 0.18 1.5   2.27 0.11 1.2   1.57 0.05 0.9   0.83 0.06 0.5   1.66 0.03 1.9 

Gly 3.48 0.09 1.5   3.97 0.02 2.1   4.10 0.08 2.3   4.47 0.05 2.8   3.65 0.08 4.1 

Thr 5.91 0.07 2.6   5.31 0.05 2.8   4.85 0.04 2.8   4.22 0.04 2.7   1.46 0.01 1.6 

Arg 111.99 3.75 49.7   91.88 2.22 48.7   82.94 1.26 47.5   73.56 0.63 46.5   37.10 0.31 41.6 

Ala 17.00 0.20 7.5   16.02 0.09 8.5   16.37 0.22 9.4   15.98 0.12 10.1   12.84 0.15 14.4 

GABA 30.84 0.35 13.7   25.41 0.35 13.5   24.74 0.40 14.2   22.55 0.12 14.3   8.83 0.02 9.9 

Tyr 1.96 0.05 0.9   1.82 0.03 1.0   1.79 0.03 1.0   1.68 0.02 1.1   1.28 0.02 1.4 

Unk* 9.60 0.41 4.3   7.01 0.21 3.7   5.81 0.08 3.3   4.67 0.03 2.9   1.09 0.01 1.2 

Trp 2.86 0.04 1.3   2.73 0.01 1.4   2.75 0.04 1.6   2.69 0.04 1.7   2.11 0.11 2.4 

Phe 2.69 0.08 1.2   2.44 0.03 1.3   2.43 0.05 1.4   2.28 0.03 1.4   1.65 0.07 1.8 

Ile 1.20 0.01 0.5   1.21 0.04 0.6   1.26 0.05 0.7   1.25 0.02 0.8   0.99 0.01 1.1 

Leu 3.27 0.06 1.4   2.99 0.07 1.6   2.99 0.11 1.7   2.77 0.04 1.8   1.92 0.07 2.2 

Lys 3.15 0.09 1.4   2.74 0.10 1.5   2.51 0.04 1.4   2.57 0.12 1.6   2.59 0.02 2.9 

TOTAL AA 225.48       188.57       174.66       158.22       89.20     

Him n.d.       n.d.       n.d.       n.d.       n.d.     

Phm 1.05 0.01 10.0   1.05 0.00 10.0   1.05 0.00 9.9   1.05 0.01 10.0   1.03 0.00 9.9 

Ism 1.78 0.01 16.9   1.76 0.01 16.6   1.74 0.01 16.5   1.73 0.00 16.5   1.70 0.01 16.2 

Cad 7.72 0.02 73.1   7.75 0.00 73.4   7.75 0.00 73.5   7.73 0.00 73.6   7.72 0.00 73.9 

TOTAL BA 10.55       10.56       10.54       10.50       10.45     

The results are expressed in mg/L. *- The unknown compound was expressed in Gly equivalents; n.d. - under LOD 
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by Thr and Ser. Amino acid consumption during fermentation is usually associated with 

formation of aromas, namely alcohols, but others compounds can also be formed. Particularly, 

Arg consumption may be related with the production of proline, citrulline (precursor of ethyl 

carbamate) and others compounds like amines. Ser depletion may be associated with Cys 

formation through condensation with homocysteine formed by yeasts, through sulphide 

sequestration, during fermentation (Ugliano & Henschke, 2009). Indeed, Cys levels were higher 

in TNM dry wine than in sweet wines (less fermented), indicating that its occurrence may be 

essentially from Ser decomposition.  

Analysing Table 6.3 (A-C) it is also observed that the total amino acid content 

decreased after 3 months at 45 °C, about 12% for the TNM wines and 30% for the Malvasia 

wine. The diminishment is more pronounced when wines were submitted to stress conditions 

(1 month at 70 °C), falling down up to 60% in the case of the wine made of Malvasia grapes. 

This result indicates that temperature seems to favour the consumption of some amino acids 

during this stage. Probably their consumption is related with the flavour formation through 

Strecker degradation, as it was suggested by Escudero et al. (2000) and Marchand et al. (2000). 

Cys (in average 90%, when present), Gln (51%) and His (56%) revealed an evident decrease, 

when wines were heated at standard conditions, as well as, when baking was set to 1 month at 

70 °C. In this case, the decrease was more expressive and at least 6 amino acids reduce more 

than 50%. Other amino acids slightly increased during the heating period, especially Asp, Gly 

and Ile, mostly at stress conditions, wherein Asp raised 3 times more. During the traditional 

elaboration of sparkling wines the amino acid increase was also observed (Martínez-Rodríguez 

& Puey, 2009) and this increase was related with the yeast autolysis which occurs during its 

ageing. Peptides and amino acids are considered the major compounds released into wine 

during autolysis. In the case of Madeira wine production, the yeast autolysis probably occur 

before the heating step, but eventually the temperature (especially high temperatures) can 

promote the hydrolysis of peptides present in wine, and consequently enhance some amino 

acids. It was also verified that the amino acid evolution with time was not so linear, probably 

due to the balance between release and consumption. 

Regarding amines, from the 6 analysed only 4 (Him, Phm, Ism and Cad) were found in 

the studied wines. Considering that OIV (Organisation Internationale de la Vigne et du Vin) or 

any other European legislation, including Portugal, did not set any maximum limits for biogenic 

amines in wines, we chose to follow the suggestion of Leitão et al. (2005), that considered the 

contents of biogenic amines lower than 8 mg/L, a reasonable starting value for discussion. The 

concentrations found in wines of His and Phm did not represent any concern, since 2 mg/L 

were never exceeded. Tym was not found in these wines and Cad amount, usually associated 

with deficient sanitary conditions, was higher than other amines, but never exceeding the 8 

mg/L. The total concentration of biogenic amines of all samples never exceeded the 12 mg/L, 

which is quite low. This result was expected, since malolactic fermentation is not encouraged 

in Madeira wine production, as biogenic amine development is usually associated with this 

type of fermentation. It was observed that amine amounts practically remained constant 

during the heating period, so that, it seems that temperature and also time did not promote 

their formation or development. Moreno and Azpilicueta (2004) also showed that natural oak 

ageing of red wines did not have any influence on the accumulation of biogenic amines.  
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The obtained results lead us to conclude that these wines appear to be safe from a 

healthy point of view, since the levels of histamine were very low and tyramine was not found. 

Additionally, these wines seem to be in adequate sanitary conditions as cadaverine never 

surpassed the 8 mg/L. 

 6.3.3 Principal Components Analysis (PCA) 

The analysis performed on previous section allows us to understand the evolution of a 

particular wine according to a specific amino acid composition. However, when one looking for 

comparing all analysed samples to identify evolution trends, understand and explain their 

differences and similarities, it makes sense use all the measured information instead of using 

just one of the 22 variables quantified. In this regard, PCA becomes a natural framework for 

analysing such data, since allows compressing data, retaining essential information, in order to 

facilitate its visualization and interpretation. 

Mathematical description of PCA can be found elsewhere (Jackson, 2004; Jolliffe, 2002; 

Westerhuis, Gurden, & Smilde, 2000). Briefly, PCA determines underlying information from 

multivariate raw data, by constructing new variables, known as principal components (PC), 

which are determined by their ability to account variability. The first component (t1) is 

computed as the linear combination of the original x-variables (amino acids and biogenic 

amines composition) with the highest possible variance. The vector defining the linear 

combination is denoted by (p1). The second component is defined in the same way, but under 

the constraint that is uncorrelated with (t1), and the second direction vector is denoted by (p2), 

being orthogonal to (p1). The process continues until the desired number of components has 

been determined, in such a way that matrix can be approximated by a product of the first 

scores and corresponding loadings (X≈T×P), such data with few variables it is possible to 

describe a very large proportion of the variability in multivariate data, highlighting the 

differences among the various samples and determining at the same time which variables are 

principally involved in the patterns identified. 

To carry out PCA, the data matrix of samples (45) by variables (22) was scalded, that is, 

each variable (relative to a given compound) was centred in its mean and divided by its sample 

standard deviation. In Figure 6.3, it is represented the biplot of the first two dimensions of PCA 

model which best approximate the original data, explaining altogether 77% of the total 

variability present in the original data set. Through biplot representation it is possible to 

simultaneously analyse how samples cluster together in the reduced PCA subspace, and which 

variables contribute more significantly for the observed separation patterns. From Figure 6.3, 

it is possible to identify three different clusters, each one representing a different type of wine 

(TNM dry wines, TNM sweet wines and Malvasia wines). Across the first PC, the clusters 

formed appear to be in agreement with wine type, while the second PC contributes to make 

the distinction among sweet and dry wines. In order to analyse which variables contribute to 

differentiate these clusters and also, to analyse how variables are related to each other, the 

loading information was analysed. This analysis could also be carried out from biplot, namely 

according to the coordinates of the variables, which reveal the weights that each variable has 

in each principal component. With exception of Cys and Gly, we can conclude that remaining 
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amino acid and biogenic amines are closely related to the distinction found across the first PC, 

and correlated positively among them.  On the other hand, Cys and Gly correlate positively on 

the second PC, indicating their importance in sweet and dry wines distinction. Also, GABA, Arg 

and His are prominent compounds in that differentiation.   

 

FIGURE 6.3 – Biplot of the first two PC relative to the amino acids profile of the studied Madeira wines submitted to 

estufagem. 

The amino acids Arg, GABA, His, Ser, Thr, Ala, Trp, Tyr and Gln and the amines Him and 

Isn are associated with TNM sweet wines group. According to PCA subspace analysis, it can be 

seen a differentiation according to the fermentation extent, since the same variety produced 

under different conditions was well differentiated, essentially due to the content of the amino 

acids Gly, Lys, Cys, Leu, GABA, Arg and His not be the same. Moreover, PCA also enabled 

distinguish the two varieties despite of being both sweet wines (closer fermentation times). In 

previous sections, two hypothesis were supposed to explain the amino acid contents of 

Malvasia, namely the higher extent of fermentation process or/and as a consequence of an 

intrinsic characteristic of this grape variety. The PCA analysis leads us to consider that the 

latter hypothesis is more likely than the first one, since a similar behaviour regarding sweet 

TNM wines on principal component subspace was expected if the fermentation extent 

determined the amino acid content in these wines.  

Analysing each type of wine separately, it can be recognized a small evolution trend 

relative to the heating process, developed along PC1. In fact, all clusters identified follow a 

negative direction in the first PC, with exception of TS1m45 which does not seem to fit into this 

pattern. TNM dry wines have also exhibit a clear evolution trend along PC2, once again to the 

negative side. 
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6.4 Conclusions 

The current study showed some interesting results related with the heating step 

followed in Madeira wine production, specially related with the decrease of specific amino 

acids. The TNM sweet wine had the higher content of total amino acids, clearly showing the 

decrease of amino acids during fermentation (initially, TNM dry wine had contents about 3 

times lower than TNM sweet), but surprisingly had a higher content and different profile than 

sweet Malvasia, even if this variety is usually considered having a more complex bouquet. This 

result can also explain the versatility of TNM that is being extensively used for the production 

of wines with different sweetness, while Malvasia is almost exclusively used for sweet wines. 

The decrease of total amino acids was more pronounced in sweet wines (about 109 mg/L of 

amino acids were transformed), which can be related with the development of the wine 

bouquet with ageing. This can explain the lower evolution of dry wines during the heating 

process, showing that the conditions for heating sweet and dry wines are not necessarily the 

same, as is currently done. This also increases the evidence that most changes during heating 

are related with Maillard reactions and sugar degradation, involving specific amino acids and 

controlled by the residual sugars after fermentation time.  

Cysteine was not detected in sweet wines, probably as a consequence of the short 

fermentation period. Dry TNM showed a significant lower amount of serine than sweet TNM, 

which can explain the important amount of cysteine in the dry wine. This amino acid decreases 

during heating processes probably due to its involvement in Maillard and sugar degradation 

reactions. Arginine was the most abundant amino acid and presented a significant reduction 

(up to about 35% in Malvasia, after 3 months at 45 °C) clearly showing its involvement in the 

formation of ageing aromas.  
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Abstract 

This chapter is focused on the evolution of the polyphenolic composition, antioxidant 

potential and colour changes in Madeira wines during the baking step, at 45 °C for 3 months. 

Three different types of Madeira were studied: a traditional sweet Malvasia (white), a sweet 

and a dry Tinta Negra Mole (red). Results obtained at overheating conditions (1 month at 70 

°C) were also included. The polyphenolic composition was assessed by determining the total 

polyphenols (TP), total monomeric anthocyanins (TMA) and total flavonoids (TF), as well as by 

the non-anthocyanin polyphenols, determined individually by HPLC-DAD. Furfural and 5-

hydroxymethylfurfural were assessed due to their sensitivity to heating conditions. Antioxidant 

potential (AP) was estimated by ABTS, DPPH and FRAP assays, while colour was evaluated 

using chromatic parameters generated by Glories and CIELab systems. 

The results showed that the TP content of the wines slightly decreased during the 

heating process, varying between 434.42 and 617.10 mg (GAE)/L, which is comparable with 

most white wines, whilst TMA levels decreased progressively in the wines produced from red 

grapes. Several polyphenols were found in these wines: 6 hydroxybenzoic acids, 3 

hydroxycinnamic acids, 1 stilbene, 3 flavonols and 3 flavan-3-ols. The most abundant phenolics 

were hydroxycinnamates and hydroxybenzoates, even after baking. Most polyphenols 

decreased during the heating step, with the exception of caffeic, ferulic, p-coumaric, gallic and 

syringic acids. Finally, both chromatic systems revealed that all wines tend to the same 

chromatic characteristics when the heating procedure was applied, with white wine turning to 

brownish colour and red wines becoming clearer, with yellow tones becoming predominant.  

 

7.1 Introduction 

Together with aroma and taste, colour is an essential feature in the sensory evaluation 

criteria of wine quality, influencing wine consumer selection. Polyphenols are main 

contributors for certain organoleptic characteristics of wines, as astringency and bitterness but 

in particular colour. In addition, the interest for wine phenolics is still increasing due to their 

antioxidant and free radical-scavenging proprieties, supported by the health benefits resulting 

from the moderate wine consumption with respect to cardiovascular diseases, cancer, 

diabetes, and others (López-Vélez, Martínez-Martínez, & Valle-Ribes, 2003).  

Phenolics structure and occurrence in wine is strongly affected by grape variety and 

vineyard location (soil, climate and sun exposure), vine cultivation practices, ripening stage at 

harvesting time and vinification techniques, like the fermentation with the grape solids, 

pressing, sulphite addition, maturation, fining and ageing techniques (Lachman, Šulc, Faitová, 

& Pivec, 2009). The most important fraction of wine phenolics is firstly removed from grapes 

during wine vinification, mainly from skins but also from seeds, stems and pulp. Additionally, 

yeasts and wood-ageing can improve the wine polyphenolic content (López-Vélez, et al., 2003). 

In general, white wines possess less polyphenols than red wines, with 

hydroxycinnamates as the major ones. These compounds, namely the esters of tartaric acid 
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(caftaric and coutaric acids) together with some flavanols, like (+)-catechin and (-)-epicatechin, 

are considered the major oxidation substrates and browning precursors of white wines, to 

form yellow-brown products due to the polymerisation of ortho-quinones (Betes-Saura, 

Andres-Lacueva, & Lamuela-Raventos, 1996; Kallithraka, Salacha, & Tzourou, 2009). Flavanols 

react with other flavanols through direct or acetaldehyde- and glyoxylic acid-mediated 

condensations (Monagas, Gómez-Cordovés, & Bartolomé, 2006). In the case of red wines, free 

anthocyanins are progressively transformed into more stable oligomeric and polymeric 

pigments, since the beginning of the vinification and ageing. Indeed, anthocyanins condense 

with flavanoids (catechins), directly or mediated by acetaldehyde, and with yeast metabolites 

(essentially pyruvic acid) to form pyranoanthocyanins (Sun, Leandro, de Freitas, & Spranger, 

2006). The reactivity of polyphenols increases the complexity due to the variety of new 

resulting compounds and has an important effect on the sensorial properties of wines, 

especially on colour due to wine browning, but also in taste and colloidal stability during 

storage and ageing (Es-Safi, Fulcrand, Cheynier, & Moutounet, 1999). 

Besides sensory attributes, antioxidant potential can presumably be affected by the 

oxidation of polyphenolic compounds in wines that developed non-enzymatic browning. It 

would be expected that oxidation of phenolics could lead to a lower antioxidant capacity, but 

this is not necessarily true as novel polyphenolic compounds may be produced. 

In recent years, several studies were published concerning the effect of the ageing on 

colour and phenolic content especially in red wines, including the wood effect (Cadahía, 

Fernández de Simón, Sanz, Poveda, & Colio, 2009; del Álamo, Nevares, & Cárcel, 2006; 

Fernández de Simón, Hernández, Cadahía, Dueñas, & Estrella, 2003; Gutiérrez, Lorenzo, & 

Espinosa, 2005; Revilla & González-SanJosé, 2002) and ageing in bottle (Monagas, Martín-

Álvarez, Bartolomé, & Gómez-Cordovés, 2006). In the case of white wines, the attention has 

been centred in browning due to polyphenolic oxidation, considered as an undesirable 

occurrence in table wines (Fernandez-Zurbano, Ferreira, Escudero, & Cacho, 1998; Kallithraka, 

et al., 2009; A. Lopez-Toledano, Mayen, Merida, & Medina, 2004; Lopez-Toledano, Mayen, 

Merida, & Medina, 2006; Maria-Ioanna, Samatina, & Irini, 2008; Mayén, Barón, Mérida, & 

Medina, 1997; Peinado, Lopez de Lerma, Moreno, & Peinado, 2009; Sioumis, Kallithraka, 

Makris, & Kefalas, 2006). In contrast, browning of Madeira wines, made from white and red 

grapes, is seen as a pleasant phenomenon, associated to quality and typical characteristics. 

The characteristic taste and complex bouquet together with the browning colour, can be 

associated to polyphenolic oxidation and eventual sugar degradation through Maillard type 

reactions, acidic degradation or even caramelization, especially in sweet wines (Li, Guo, & 

Wang, 2008).  

Considering the limited information available, the main objective of the present study 

was to determine the influence of baking step in the development of some organoleptic 

characteristics, specifically colour, focused on the polyphenolic composition and the 

antioxidant potential. The study involved the estimate of colour, total phenolics, antioxidant 

potential and polyphenolic composition on sweet and dry wines produced from Tinta Negra 

Mole (TNM) grapes (red variety), compared with a traditional sweet wine produced from 

Malvasia grapes (white variety). The wines were fortified and heated at 45 °C for a 3 month 
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period. Additionally, in order to evaluate the temperature effect, the wines were also 

submitted to overheating conditions, at 70 °C during 1 month. 

 

7.2 Experimental 

 7.2.1 Wine samples 

Two Vitis Vinifera L. grapes varieties recommended for the production of Madeira 

wine, Tinta Negra Mole (TNM, red variety) and Malvasia (white variety), were used in the 

study. The grapes were collected during the 2007 harvest and the corresponding wines were 

elaborated following the procedures of a local Madeira wine-producing cellar. The alcoholic 

fermentation was conducted under controlled temperature without maceration or adding any 

commercial yeast. 

Two types of wines were produced from TNM grapes in adequate stainless steel tanks, 

stopping the fermentation by the addition of natural grape spirit when the density of grape 

must reached 1025 g/cm3 (115 g/L of reducing sugars) or 986 g/cm3 (about 4g/L of reducing 

sugars) for sweet and dry TNM wine, respectively. The sweet Malvasia was prepared in a 

similar way and the fermentation was stopped when density reached 1019 g/cm3 (about 96 g/L 

of reducing sugars). After fortification, each wine was forced-aged in a special pilot scale 

system equipped with 200 L stainless steel tanks fitted with heating coils, allowing the 

circulation of pre-heated tap water, and maintained at 45 °C during 3 months. For comparison 

purposes, about 250 mL of each wine were submitted to overheating conditions, 70 °C during 

1 month, carried out in a lab oven. The wines were monthly sampled and kept at -20 °C before 

analysis. 

 7.2.2 Standards and reagents 

Folin-Ciocalteu reagent and gallic acid (≥ 98.0%) were supplied by Fluka Biochemika AG 

(Buchs, Switzerland) while sodium carbonate (99.8%), potassium chloride and sodium acetate 

(≥ 99%) were from Panreac Química S.A. (Barcelona, Spain). Aluminium chloride-6-hydrate and 

quercetin (≥ 99%) were from Riedel de Haën (Seelze, Germany) and methanol HPLC gradient 

grade was supplied by Fisher Scientific (Loughborough, United Kingdom).  

For the preparation of the PBS buffer solution the following chemicals were used: 

sodium chloride, potassium chloride, sodium hydroxide, di-sodium hydrogen phosphate 12-

hydrate and potassium di-hydrogen phosphate, supplied by Panreac Química S.A. (≥ 98%). 2,2’-

Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) diammonium salt (98.0%) and 

potassium persulfate (≥ 98.0 %) were supplied by Fluka Biochemika AG.  

For the DPPH assay, 2,2-diphenyl-1-picrylhydrazyl (DPPH•, 90.0%) and Trolox (6-

hydroxy-2,5,7,8-tetramethylchloromane-2-carboxylic acid, ≥ 98%) were obtained from Fluka 

Biochemika AG. For the FRAP assay 2,2’- dipyridyl (99%), trichloroacetic acid (TCA, ≥ 99.0%), 

sodium tartrate (≥ 99.0%) and citric acid monohydrate (≥ 99.5%) were purchased from Fluka 

Biochemika AG while iron chloride (≥ 99%) was supplied by Riedel de Haën.  
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The following polyphenolic standards (purity higher than 95%) were used: gallic acid, 

gentisic acid, vanillic acid, caffeic acid, p-coumaric acid, ferulic acid, sinapic acid, ellagic acid, 

cinnamic acid, p-hydroxybenzoic acid, (+)-catechin, (-)-epicatechin, (-)-epigallocatechin, 

myricetin, sinapic acid, rutin and kaempferol from Fluka Biochemika AG, protocatechuic acid, 

vanillin, syringic acid and trans-resveratrol from Sigma-Aldrich (St. Louis, MO, USA), 

syringaldehyde, HMF and furfural were from Acros Organics (Geel, Belgium) and quercetin 

from Riedel-de-Haën.  

 7.2.3 Polyphenolic composition 

Wines were assayed for total polyphenols (TP, gallic acid equivalents, mg/L), total 

monomeric anthocyanins (TMA, cyanidin-3-glucoside equivalents, mg/L) and total flavonoids 

(TF, quercetin equivalents, mg/L). 

TP were analysed by the Folin-Ciocalteu’s method adopted from OIV Compendium 

(MA-E-AS2-10-INDFOL), using gallic acid as standard. The method is based on the reduction of 

phosphomolybdic and phosphotungstic acids, present in Folin Ciocalteau reagent, by phenolics 

in the presence of sodium carbonate, forming blue products with maximum absorption close 

to 750 nm. Briefly, 100 µL of wine/calibration standards were diluted 100 times adding the 

following reagents strictly in this sequence: 5 mL of distillate water, 0.5 mL of Folin–Ciocalteu 

reagent and 2 mL of 20% (w/v) sodium carbonate aqueous solution, bringing the volume to 10 

mL with distilled water and mixed. The mixture was then incubated at room temperature for 

30 min, followed by absorbance measurement at 750 nm. The concentration of phenolic 

compounds was calculated according to the following gallic acid calibration curve: A750 = 

0.0008 GAE(mg/L) + 0.0058 (R2 = 0.999), set for the range of 100 to 800 mg/L. 

The TMA of the wines was determined using the pH-differential method proposed by 

AOAC, Official Method 2005.02 (Lee, Durst, & Wrolstad, 2005). This determination was only 

performed for the red wines. Wine samples were tentatively diluted in 0.025 M potassium 

chloride buffer pH 1.0 until the absorbance at 510 nm was lower than unity. The same samples 

were then diluted using the determined factor (5) in 0.4 M sodium acetate buffer pH 4.5. 

Absorbance readings at 510 and 700 nm in each buffer were performed, using distilled water 

as blank. The concentration of TMA was calculated with the following formula and expressed 

as cyanidin-3-glycoside (cyd-3-glu) equivalents (mg/L): TMA = (A × MW × DF × 103) / (ε × l), 

with A = (A520 – A700)pH 1.0 – (A520 – A700)pH 4.5 and where MW is the cyd-3-glu molecular weight 

(449.2 g/mol), DF is the dilution factor, l is the path length cell (1 cm), ε is cyd-3-glu molar 

absorptivity coefficient (26,900 L/mol cm) and 103, a conversion factor (g to mg). 

The TF were determined according to the aluminium chloride colorimetric method 

proposed by Meda et al. (2005), with small adjustements: 5 mL of 2% (w/v) aluminium chloride 

(AlCl3) solution in methanol was mixed with the same volume of wine/standard. Absorbance 

readings at 415 nm were carried out after 10 min of incubation at room temperature, using 

methanol as blank. The concentrations of TF were calculated according to the obtained 

equation of the standard quercetin calibration graph (10 – 50 mg/L): A415 = 0.0240 QE(mg/L) – 

0.0100 (R2 = 0.999). 
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All determinations were performed in a Perkin-Elmer Lambda 2 spectrophotometer 

(Waltham, MA, USA) using 1 cm quartz cells. The average of the relative standard deviation 

(%RSD) among replicates was 14%. 

Individual polyphenols were determined by direct injection of the samples in a high 

performance liquid chromatography (HPLC) system, following the methodology previously 

described (Pereira, Câmara, Cacho, & Marques, 2010), with slight modifications. Briefly, 

chromatographic system (Waters Alliance, Milford, MA, USA) was equipped with an auto-

injector (Waters 2695, separations module), a photodiode array detector (Waters 2996) and 

the Empower Pro software, for data handling.  The polyphenolic compounds were separated in 

an Atlantis T3 column (250 × 4.6 mm, i.d.; 5 μm; Milford, MA, USA) using the gradient 

described in Table 7.1, based on 3 solvents: A (10 mM of phosphate buffered at pH 2.70), B 

(acetonitrile) and C (methanol), and setting the column temperature to 30 °C. 20 μL of each 

sample/standard were injected after filtration using 0.45 µm Acrodisc® GHP filters (Pall 

Gelman Sciences, Ann Arbor, MI, USA). All standards and wine samples were injected in 

triplicate.  

TABLE  7.1 – Polyphenols gradient program. Mobile phase solvents: A – 10 mM of phosphate buffered at pH 2.70; B 

– acetonitrile; C – methanol. 

 

Detection was performed at specific wavelengths after scanning from 200 to 780 nm. 

The identification of the analytes was carried out by comparing retention times and spectra 

with those of original standards, when available. All others were tentatively identified based 

on spectra obtained from the literature and assayed by assuming similar molar absorptivities 

to compounds with structural similarities. Quantitative determinations were attempted using 

standard external calibration method. Wavelengths used for quantification were 210 nm for 

flavan-3-ols and benzoic acids, 280 nm for furans, 315 nm for hydroxycinnamic acids and trans-

resveratrol, and 360 nm for flavonoids and ellagic acid. 

 7.2.4 Determination of antioxidant potential 

The antioxidant potential was estimated by different methods, namely by the 

interaction of antioxidants compounds with highly reactive free radicals or reactive oxygen 

species: ABTS, DPPH and FRAP assays. This interaction can be based on one or both of the 

following transference mechanisms, single electron transfer and hydrogen atom transfer. All 

photometric measurements were carried out in triplicate, with RSD values below 9%. 

   

 

Time (min) Flow (mL/min) %A %B %C Curve 

--- 1.00 100.0 0.0 0.0 --- 

30.00 1.00 79.0 10.0 11.0 6 

42.00 1.00 73.0 10.0 17.0 6 

55.00 1.00 40.0 60.0 0.0 6 

58.00 1.00 40.0 60.0 0.0 6 

65.00 1.00 100.0 0.0 0.0 1 
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7.2.4.1 ABTS assay 

The antioxidant potential was firstly measured according to the ABTS assay based on 

Re et al. (1999) with some modifications, using gallic acid as antioxidant standard. This method 

is based on the ability of antioxidants compounds to interact with the radical cation ABTS 

(ABTS•+, blue chromofore), decreasing its absorbance at 734 nm. Firstly, a phosphate buffered 

saline (PBS) solution was prepared as follows: 8.18 g NaCl, 0.27 g KH2PO4, 3.94 g 

Na2HPO4.12H2O and 0.15 g KCl in 1 L of distilled water. Then, a 2 mM ABTS•+ stock solution was 

prepared by reacting the ABTS salt with 200 µL of 70 mM potassium persulfate in 50 mL of PBS 

and allowing the mixture to stand in the dark at room temperature for 16 h before use. The 

ABTS•+ stock solution was then diluted with PBS to obtain an absorbance value of 0.800±0.030 

at 734 nm. Finally, 12 µL of sample were mixed with 3 mL of the ABTS•+ working solution, and 

absorbance measurements were performed at room temperature during 20 min, at every 60 

to 60 seconds, using PBS as blank sample. The antioxidant power was calculated as the 

percentage of inhibition (%I = [(A734(0 min) –A734(20 min))/A734(0 min)] × 100, with A734(0 min) as the 

absorbance of the ABTS•+ at 734 nm at t = 0 min, A734(20 min) as the absorbance of the remaining 

radical at the end of the reaction (t = 20 min)) and converted into gallic acid equivalents (GAE) 

by means of the following calibration curve (50 – 240 mg/L), submitted to the same procedure 

described above: %I = 0.328 GAE(mg/L) + 11.638 (R2=0.996).  

  7.2.4.2 DPPH assay 

The antioxidant potential was also evaluated by the ability of wines to scavenge DPPH 

free radicals, adapting the DPPH assay proposed by Paixão and co-workers (2007), and 

expressing the results as efficient concentration EC50 and as Trolox® equivalent antioxidant 

capacity (TEAC). The DPPH is known to be stable in the radical form due to the delocalisation 

of the unpaired electron over whole molecule, also responsible to its purple colour (Molyneux, 

2004). When wine antioxidant substances interact with the DPPH radical solution, they can 

donate a hydrogen atom reducing its radical form. This interaction is traduced by the loss of 

the purple to a residual yellow colour (derived from the picryl group belonging to DPPH 

molecule) and can be measured at 515 nm. Aliquots of 6, 12, 18, 24, 36 and 60 µL of wine 

sample were individually mixed with 2.5 mL of DPPH• (60 µM in methanol, daily prepared) and 

analysed immediately. The absorbance of the remaining DPPH• was determined after 20 min, 

in 30 sec periods, at 515 nm, using methanol as blank. The EC50 determination was achieved by 

firstly plotting the DPPH• linear regression in the range 6 to 60 µM: A515=0.0121[DPPH•]-0.0223 

(R2=0.992), calculating the percentage of remaining DDPH• as follow: %[DPPH•]REM= [DPPH•](20 

min)/ [DPPH•](0 min) × 100 and fitting the best curve to the graph sample concentration (µL) 

against %[DPPH•]REM. Finally, The EC50 parameter was calculated for each sample as the 

substrate concentration to produce 50% reduction of the DPPH. 

To express the TEAC, Trolox® concentration was plotted vs. %I: %I = 0.0752 

TE(mg/L)+1.9269 (R2=0.999), with % I = [(A515 (0 min) - A515 (20 min))/A515 (0 min)] × 100, and A515 (0 min) 

as the absorbance value measured at the beginning of the reaction and A515 (20 min) the 

absorbance value after 20 min of reaction of 18 µL of the Trolox® standards (25 – 1250 mg/L), 

following the above procedure. 
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  7.2.4.3 FRAP assay 

The ferric reducing/antioxidant power (FRAP), a simple direct test, was also performed 

to estimate the antioxidant potential of the wines. FRAP assay is based on the formation of a 

coloured Fe (II) form (ferrous) from the reduction of a colourless Fe (III) compound (ferric) by 

the action of electron donating antioxidants, measured at 525 nm. The current determination 

was based on the protocol established by Makris et al. (2003), using ferric chloride (3 mM FeCl3 

in 5 mM citric acid) as oxidant and measuring the coloured ferrous product formed with 2,2’-

dipyridyl at 525 nm. Briefly, 250 µL of working FRAP solution, daily prepared, was mixed with 

250 µL of sample properly diluted, and then mixed with 4.5 mL of 0.5% 2,2’-dipyridyl in 1.2% 

TCA after a 20-min incubation at 50 °C in a water bath. After 5 min, the FRAP values were 

obtained from the absorbance recordings at 525 nm and expressed as quercetin equivalents 

determined from the linear regression set from 3 to 60 mg/L, A525 = 0.0099 QE(mg/L + 0.3893 

(R2=0.999), and introducing the dilution factor. 

 7.2.5 Colour study 

The colour of the wines submitted to estufagem was determined by means of the 

chromatic Glories and CIELab parameters. Both colour measurements were performed using 1 

cm path length quartz cells. The wine samples were filtered by cellulose membranes prior to 

the spectrophotometric analysis.  

The Glories parameters, yellow percentage (%Ye), red percentage (%Re), blue 

percentage (%Bl), colour intensity (CI) and tonality (To), were determined at 420, 520 and 620 

nm. These chromatic indexes are currently used by oenologists, but as the CIELab space 

defines better the wine colour and differentiation (Heredia, Troncoso, & Guzmán-Chozas, 

1997; Pérez-Magariño & González-San José, 2006), the CIELab parameters (L*, a*, b*) were 

also determined measuring the transmittance from 380 to 770 nm at 5 nm intervals, following 

the recommendations of the International Organization of Vine and Wine (OIV, resolution 

OENO 1/2006)  and considering the illuminant D65 (daylight source) and 10° standard observer 

(human perception). The colour-opponent coordinates, a* and b*, correspond to reddish / 

greenish and yellowish / bluish colours, respectively, and the colour lightness, L*, is evaluated 

in a black and white scale (ranging from 0 to 100).  The psychophysical parameters C*, H* and 

S* were also estimated (Meléndez, Sánchez, Íñiguez, Sarabia, & Ortiz, 2001), where the 

chromaticity (C*) was calculated as     √            and determines the degree of 

distinction of each hue when compared with the same lightness grey, the hue as     

             ), which is the attribute allowing the differentiation of a colour with reference to 

same lightness grey and S* as         , which represents the saturation. 

 7.2.6 Data processing 

All analyses were performed in triplicate and the results were expressed as the mean 

value ± standard deviation. Regular statistical analyses were performed with Microsoft Office 

Excel 2007. 
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7.3 Results and discussion 

The current experiments were focused on the transformations that take place in the 

polyphenolic composition, antioxidant potential, and colour of Madeira wines submitted to the 

heating step usually undertaken, with the purpose of setting up common patterns of change 

and the influence of temperature. These issues will be further discussed. 

 7.3.1 Polyphenolic composition 

The effect of temperature on the polyphenolic composition was estimated by 

spectrophotometric measurements and correlated with individual determination by HPLC-

DAD. Table 7.2 summarizes the attained results in terms of total polyphenols (TP), total 

flavonoids (TF) and total monomeric anthocyanins (TMA). The results showed that young wines 

produced from TNM grapes (red wines) presented similar levels of TP when compared with the 

white variety Malvasia. This may be related to the fact that the fermentation of Madeira wines 

is usually performed as in white table wines, in absence (or limited contact) of grape solids. As 

shorter fermentation times should lead to lower phenolic contents, sweet wines were 

expected to have similar phenolic contents. 

TABLE 7.2 – Total polyphenols (TP), total flavonoids (TF) and total monomeric anthocyanins (TMA) of Madeira wines 

at the initial stage and at the end of each month of heating at 45 °C (3 months) and 70 °C (1 month). 

 

Ageing can also affect the content of phenolics, as they can suffer hydrolysis, 

oxidations and complexations, with temperature increasing their degradation (Recamales, 

Sayago, González-Miret, & Hernanz, 2006). The heating process carried out in current the 

Madeiras promoted some changes on the phenolic content, decreasing up to 25% of the initial 

amount. After the baking step at 45 °C, the TP was found to vary from 469.98 to 434.42 mg 

(GAE)/L in TNM sweet wine, and from 609.98 to 493.09 and 617.10 to 492.16 mg (GAE)/L in 

TNM dry and Malvasia wines, respectively (Table 7.2). Increasing the temperature, no 

Samples TP 

GAE (mg/L) 

± SD TMA  

Cyd-3-glu (mg/L) 

± SD TF 

QE (mg/L) 

± SD 

TNM 

sweet 

0 m 469.98 13.63 15.02 0.01 28.96 0.39 

1 m, 45 °C 332.17 9.58 4.43 0.03 23.47 1.55 

2 m, 45 °C 474.15 15.64 3.16 0.03 38.06 0.33 

3 m, 45 °C 434.42 9.03 0.93 0.02 30.70 0.54 

1 m, 70 °C 444.01 17.21 1.62 0.05 51.44 0.60 

TNM 

 dry 

0 m 609.98 25.83 22.05 0.05 49.42 0.56 

1 m, 45 °C 576.68 23.60 2.99 0.10 45.97 0.31 

2 m, 45 °C 561.02 4.17 5.05 0.02 45.80 0.25 

3 m, 45 °C 493.09 3.04 2.50 0.02 45.39 0.16 

1 m, 70 °C 573.57 6.37 0.30 0.04 82.87 2.92 

Malvasia 

0 m 617.10 7.22 - 28.48 0.11 

1 m, 45 °C 565.11 47.84 - 33.60 0.32 

2 m, 45 °C 517.12 18.02 - 46.48 1.60 

3 m, 45 °C 492.16 40.92 - 47.76 0.48 

1 m, 70 °C 466.02 18.06 - 133.74 4.18 
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significant changes were detected, showing that temperature has a relatively small effect on 

TP decrease. TP final values range from 434.42 to 573.57 mg (GAE)/L, which were comparable 

with those presented in the literature for white wines (Li, Wang, Li, Li, & Wang, 2009; Minussi 

et al., 2003; Paixão, et al., 2007), or slightly higher (Mitid, Obradovid, Grahovac, & Pavlovid, 

2010; Roussis, Lambropoulos, & Soulti, 2005; Sánchez-Moreno, Larrauri, & Saura-Calixto, 

1999). Although only responsible for up to 4% of the phenolics, anthocyanins may also 

contribute for the diminishment. The loss of anthocyanins was proved by the progressive 

decrease of the total monomeric anthocyanins (TMA) obtained in TNM wines (Table 7.2). The 

initial TF values were in general very low, ranging from 28.48 to 49.42 mg/L, as result of the 

small skin contact in winemaking. These values were close to those obtained by Mitid et al. 

(2010) (between 45 to 81 mg/L as catechin equivalents) when they analysed 10 Serbian white 

wines using the same test. The flavonoids did not represent more than 8% of the total 

polyphenolic content of the wines at the initial circumstances and, surprisingly, the aluminum 

chloride assays revealed that TF values increased with the heating period, especially when 

overheating temperature was applied. This was not expected since it is frequently refered that 

flavonoids participate in several reactions, namely anthocyanin and flavanols degradation to 

form new polymeric complexes (Monagas, Gómez-Cordovés, & Bartolomé, 2006), which could 

induce the decrease in the TF values. Eventually, other substances with similar structure of 

flavonoids were formed during this period and respond positively to this test. 

Regarding the HPLC-DAD analysis, 16 polyphenols (from the 22 standards assayed) 

were found in the current sample set of Madeira wines (Table 7.3 (A-C)), including non-

flavonoids: 6 hydroxybenzoic acids, 3 hydroxycinnamic acids and 1 stilbene; and flavonoids: 3 

flavonols and 3 flavan-3-ols. Additionally, 2 furans were also found: 5-hydroxymethylfurfural 

(HMF) and furfural, while some compounds were never found, as gentisic, sinapic and cinnamic 

acids and the flavonol rutin. Moreover, the most important unknown peaks were tentatively 

identified, by the elution order and UV spectrum when compared with those found in 

literature. The first 6 unknown peaks exhibit cinnamic-type UV spectra, and is believed that 

they correspond to hydroxycinnamates, currently found in wines. In fact, evidences indicate 

that some of them are hydroxycinnamoyltartaric acids. These compounds were recently 

investigated by Buiarelli and colleagues (2010) that identified them in wine by HPLC-tandem 

mass spectrometry. Using a similar chromatographic column, they established the following 

elution order: caftaric, coutaric, fertaric, caffeic, p-coumaric and ferulic. Darias-Martín et al. 

(2008) also reported that the cis forms elute first than trans. Consequently, comparing the UV 

spectra with those obtained by Guerrero et al. (2009), Mozetič et al. (2006) and Gutiérrez et al. 

(2005), Unk 1 (maximum at 326 nm with a shoulder at 300 nm) was identified as trans-caftaric 

acid, Unk 2 and Unk 3 as cis- and trans-coutaric acids, with maximums at 310 and 313 nm, 

respectively, and Unk 4 as fertaric acid (maximum at 327 nm with a shoulder at 287 nm), 

probably the trans form, the most common in wines. Unk 5 and 6 should correspond to the 

hydroxycinnamate family, but the identification was not established. Unk 7, has a UV spectrum 

similar to rutin (standard available) and may have structural similarities. 
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TABLE 7.3.A – Individual polyphenols (mg/L) of TNM sweet wines during the heating at 45 °C (3 months) and 70 °C 

(1 month). 

 

Before heating, hydroxycinnamates represent in average 59% of the non-anthocyanin 

polyphenols, followed by hydroxybenzoic acids (about 20 %). Caftaric acid was the most 

abundant compound found in all wines, varying from 14.53 to 37.34 mg/L (caffeic acid 

equivalents). Similar amounts were found by Fernández-Pachón and colleagues (2006) in 

sherry wines (6.29 to 42.90 mg/L). During accelerated ageing, a noticeable decrease of caftaric, 

coutaric and fertaric acids was registered, especially when heating conditions were more 

severe. Conversely, caffeic, p-coumaric and ferulic contents increased during the same period, 

suggesting the hydrolysis of the correspondent hydroxycinnamoyltartaric acids, increasing with 

temperature (Table 7.3). Flavan-3-ols, initially ranging from 0.55 mg/L for (-)-epigallocatechin 

to 16.19 mg/L for (+)-catechin, also progressively declined during the baking process. Similar 

findings have also been pointed out by others researchers during wine ageing (Fernandez-

Zurbano, et al., 1998; Kallithraka, et al., 2009; Recamales, et al., 2006). 

    TNM sweet 

0 m ± SD   1 m, 45 °C ± SD   2 m, 45 °C ± SD   3 m, 45 °C ± SD   1 m, 70 °C ± SD   

Non-flavonoids 

 

                              

Hydroxybenzoic acids                               

  Gallic acid 3.70 0.01   4.91 0.07   5.29 0.03   6.23 0.12   9.16 0.09   

  Protocatechuic acid 2.57 0.11   2.35 0.06   1.97 0.02   1.55 0.08   1.64 0.05   

  p-Hydroxybenzoic acid 0.94 0.05   0.57 0.02   0.77 0.03   0.51 0.02   1.00 0.06   

  Vanillic acid 2.52 0.09   2.57 0.06   2.23 0.06   2.24 0.11   3.08 0.08   

 

Syringic acid 4.89 0.06   5.29 0.08   5.03 0.18   5.03 0.06   5.93 0.04   

  Ellagic acid n.d.      n.d.      n.d.      n.d.      n.d.      

  Total 14.62     15.69     15.29     15.56     20.81     

Hydroxycinnamates                               

  Unk 1* 14.53 0.01   13.37 0.01   11.31 0.02   10.82 0.05   3.24 0.04   

  Unk 2* 4.45 0.04   3.71 0.02   2.91 0.01   2.73 0.11   0.62 0.02   

  Unk 3* 7.87 0.02   7.66 0.01   7.07 0.03   6.67 0.15   2.99 0.06   

  Unk 4* 0.91 0.02   0.82 0.02   0.71 0.02   0.78 0.01   1.80 0.05   

  Unk 5* 2.20 0.04   2.57 0.10   2.34 0.03   2.40 0.03   2.70 0.02   

  Caffeic acid 1.72 0.02   1.82 0.07   2.06 0.02   2.53 0.10   3.34 0.15   

  Unk 6* 1.96 0.05   2.07 0.02   1.91 0.01   2.05 0.02   2.09 0.01   

  p-Coumaric acid 0.58 0.01   0.85 0.02   1.02 0.01   1.27 0.01   4.31 0.09   

  Ferulic acid n.q.      0.45 0.02   0.47 0.00   0.68 0.03   0.45 0.02   

  Total 34.22     33.32     29.81     29.93     21.52     

Stilbene                                 

  trans-Resveratrol n.d.      n.d.      n.d.      n.d.      n.d.      

                                  

Flavonoids                               

Flavonols                                 

  Unk 7** 8.03 0.07   7.13 0.06   5.71 0.09   5.30 0.04   0.56 0.03   

  Myricetin n.d.      n.d.      n.d.      n.d.      n.d.      

  Quercetin n.q.      n.q.      n.q.      0.53 0.01   0.67 0.01   

  Kaempferol n.q.      n.q.      n.q.      n.q.     n.q.     

  Total 8.03     7.13     5.71     5.83     1.23     

Flavan-3-ols                               

  (-)-Epigallocatechin n.d.      n.d.      n.d.      n.d.      n.d.      

  (+)-Catechin 3.94 0.02   2.49 0.05   1.48 0.02   0.93 0.03   0.47 0.00   

  (-)-Epicatechin 0.92 0.01   0.65 0.03   0.47 0.03   0.40 0.01   0.36 0.01   

  Total 4.86     3.13     1.95     1.32     0.84     

                                  

Furans                                 

  HMF 1.56 0.02   17.90 0.00   49.32 0.03   97.50 0.12   1728.07 2.80   

  Furfural n.d.      n.q.      2.02 0.05   3.08 0.05   20.26 0.18   

  Total 1.56     17.90     51.34     100.58     1748.32     

* Quantification relative to caffeic acid; ** Quantification relative to rutin                     

n.d. - not detected, bellow LOD; n.q. - not quantified, bellow LOQ                       
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TABLE 7.3.B – Individual polyphenols (mg/L) of TNM dry wines during the heating at 45 °C (3 months) and 70 °C (1 

month). 

 

The decrease of hydroxycinnamic acid esters and flavanols - yellow pigments (Jackson, 

2000) - due to oxidation is referenced to contribute to the development of the brownish 

shades in white wines, although flavanols have been considered more effective in browning, 

especially (-)-epicatechin (Es-Safi, et al., 1999). 

Some hydroxybenzoic acids increased during the heating period (gallic and syringic 

acid) and others declined (protocatechuic, p-hydroxybenzoic and vanillic acids). Gallic acid was 

the major hydroxybenzoate and its growth during ageing is usually explained by the hydrolysis 

of gallic tannins (García Parrilla, Heredia, & Troncoso, 1999; Moreno-Arribas & Polo, 2009). The 

values found (3.70 to 13.85 mg/L) are slightly above of those found by Darias-Marin and co-

workers (2008) in white wines from Canary Islands (0.97 to 1.64 mg/L), but similar to those 

reported by Fernández-Pachón et al. (2006) in sherry wines (4.42 to 10.70 mg/L). Syringic acid 

    TNM dry 

0 m ± SD   1 m, 45 °C ± SD   2 m, 45 °C ± SD   3 m, 45 °C ± SD   1 m, 70 °C ± SD   

Non-flavonoids 

 

                              

Hydroxybenzoic acids                               

  Gallic acid 9.47 0.37   9.81 0.01   9.91 0.14   9.50 0.05   10.44 0.08   

  Protocatechuic acid 6.84 0.39   3.53 0.15   2.47 0.14   2.19 0.09   4.74 0.06   

  p-Hydroxybenzoic acid 1.15 0.02   1.31 0.05   1.22 0.06   1.28 0.04   1.67 0.06   

  Vanillic acid 4.92 0.17   3.81 0.11   3.42 0.03   3.23 0.06   3.27 0.08   

 

Syringic acid 3.39 0.16   3.72 0.05   4.27 0.09   4.11 0.08   4.90 0.04   

  Ellagic acid n.q.     n.q.     n.q.     n.q.     n.q.     

  Total 25.77     22.18     21.29     20.31     25.02     

Hydroxycinnamates                               

  Unk 1* 37.34 0.14   32.78 0.02   27.63 0.01   27.64 0.04   5.71 0.02   

  Unk 2* 5.14 0.02   4.37 0.05   3.69 0.04   3.67 0.00   0.64 0.01   

  Unk 3* 20.55 0.15   19.60 0.04   17.37 0.08   17.32 0.01   5.03 0.12   

  Unk 4* n.d.     n.d.     n.d.     n.d.     n.d.     

  Unk 5* 2.20 0.06   2.66 0.01   2.68 0.03   2.66 0.03   2.93 0.01   

  Caffeic acid 2.75 0.09   4.29 0.03   5.18 0.04   5.21 0.04   6.00 0.02   

  Unk 6* 1.63 0.03   2.19 0.03   2.19 0.08   2.19 0.06   2.62 0.03   

  p-Coumaric acid 1.61 0.03   2.31 0.05   2.78 0.04   2.77 0.00   8.32 0.02   

  Ferulic acid 0.45 0.01   0.66 0.02   0.66 0.01   0.65 0.02   0.51 0.02   

  Total 71.69     68.85     62.19     62.12     31.76     

Stilbene                                 

  trans-Resveratrol 0.63 0.02   0.51 0.01   n.q.     n.q.     n.q.     

                                  

Flavonoids                               

Flavonols                                 

  Unk 7** 6.13 0.03   4.93 0.07   4.04 0.06   3.98 0.10   0.46 0.01   

  Myricetin 0.71 0.03   0.75 0.01   0.72 0.01   n.q.     1.15 0.03   

  Quercetin 0.82 0.01   0.89 0.01   0.81 0.01   0.81 0.01   1.53 0.01   

  Kaempferol n.q.     n.q.     n.q.     n.q.     n.q.     

  Total 7.66     6.57     5.56     4.79     3.15     

Flavan-3-ols                               

  (-)-Epigallocatechin 3.54 0.12   3.18 0.06   1.47 0.04   1.41 0.05   n.d.     

  (+)-Catechin 16.19 0.02   13.06 0.06   6.16 0.06   6.20 0.04   4.27 0.11   

  (-)-Epicatechin 4.78 0.18   3.21 0.06   1.46 0.07   1.30 0.06   1.07 0.03   

  Total 24.52     19.45     9.08     8.91     5.33     

                                  

Furans                                 

  HMF n.d.     1.61 0.01   2.70 0.03   2.68 0.03   41.28 0.05   

  Furfural n.d.     n.q.     1.66 0.01   1.65 0.00   12.20 0.02   

  Total 0.00     1.61     4.36     4.33     53.47     

* Quantification relative to caffeic acid; ** Quantification relative to rutin                     

n.d. - not detected, bellow LOD; n.q. - not quantified, bellow LOQ                       
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increase during ageing is usually related with the anthocyanins cleavage or the breakdown of 

lignin during wine wood-ageing (Ribéreau-Gayon, Glories, Maujean, & Dubourdieu, 2006). The 

former could explain the result obtained for TNM wines. The degradation of the others 

hydroxybenzoates may be related with the formation of ethyl esters of vanillic and p-

hydroxybenzoic acids, and methyl esters of vanillic and protocatechuic acids already found in 

wines (Moreno-Arribas & Polo, 2009). Regarding ellagic acid, only trace amounts were 

detected.  

TABLE 7.3.C – Individual polyphenols (mg/L) of Malvasia wines during the heating at 45 °C and 70 °C. 

 

Flavonols, common in the skins of both red and white grapes in glycoside form, with 

the aglycone form prevailing in wines, were found but represent a small fraction (less than 

13%). The results were consistent with the absence or limited contact with grape solids during 

fermentation, and the highest values were found in TNM dry wines due to a more extensive 

fermentation. Unk 7 is important and decreased with baking. Quercetin was found in small 

    Malvasia 

0 m ± SD   1 m, 45 °C ± SD   2 m, 45 °C ± SD   3 m, 45 °C ± SD   1 m, 70 °C ± SD   

Non-flavonoids 

 

                              

Hydroxybenzoic acids                               

  Gallic acid 11.62 0.42   13.73 0.07   13.85 0.02   13.27 0.08   12.93 0.12   

  Protocatechuic acid 3.40 0.01   2.67 0.15   2.66 0.03   2.95 0.05   3.48 0.15   

  p-Hydroxybenzoic acid 0.92 0.03   0.88 0.04   0.68 0.03   0.61 0.01   0.90 0.01   

  Vanillic acid 1.71 0.03   0.93 0.04   0.66 0.01   0.57 0.02   0.55 0.01   

 

Syringic acid n.d.      n.d.      n.d.      0.93 0.05   0.75 0.03   

  Ellagic acid n.d.      n.d.      n.d.      n.d.      n.d.      

  Total 17.66     18.21     17.85     18.33     18.61     

Hydroxycinnamates                               

  Unk 1* 37.33 0.07   30.47 0.02   23.31 0.02   16.87 0.02   7.25 0.04   

  Unk 2* 7.40 0.03   6.32 0.02   5.28 0.31   3.91 0.13   0.93 0.00   

  Unk 3* 15.51 0.08   13.27 0.06   10.76 0.01   8.20 0.04   4.88 0.00   

  Unk 4* 3.08 0.05   2.71 0.16   2.14 0.03   1.60 0.02   0.86 0.02   

  Unk 5* 0.62 0.01   0.48 0.01   n.q.     n.q.     n.d.      

  Caffeic acid 1.71 0.03   3.10 0.02   3.60 0.02   3.55 0.05   6.72 0.02   

  Unk 6* n.d.      n.d.      n.d.      n.d.      n.d.      

  p-Coumaric acid 0.76 0.01   1.35 0.00   1.63 0.02   1.65 0.05   7.72 0.09   

  Ferulic acid 0.37 0.02   0.66 0.01   0.72 0.04   0.62 0.01   1.00 0.02   

  Total 66.77     58.36     47.42     36.39     29.36     

Stilbene                                 

  trans-Resveratrol n.q.     n.q.     n.q.     n.d.      n.d.      

                                  

Flavonoids                               

Flavonols                                 

  Unk 7** 7.25 0.07   6.80 0.11   5.31 0.18   3.79 0.06   0.48 0.03   

  Myricetin n.d.      n.d.      n.d.      n.d.      n.d.      

  Quercetin 0.64 0.01   0.96 0.01   0.85 0.00   0.65 0.01   0.75 0.01   

  Kaempferol n.q.     n.q.     n.q.     n.q.     n.q.     

  Total 7.89     7.76     6.17     4.44     1.24     

Flavan-3-ols                               

  (-)-Epigallocatechin 0.55 0.01   n.q.     n.q.     n.q.     0.60 0.02   

  (+)-Catechin 6.98 0.05   4.23 0.06   1.25 0.03   0.49 0.02   n.q.     

  (-)-Epicatechin 1.47 0.04   0.90 0.02   0.49 0.03   0.39 0.01   0.37 0.02   

  Total 9.00     5.12     1.74     0.88     0.97     

                                  

Furans                                 

  HMF 1.48 0.00   12.17 0.01   30.42 0.01   52.10 0.15   1651.50 2.78   

  Furfural n.d.      n.q.     1.80 0.02   2.33 0.05   19.48 0.01   

  Total 1.48     12.17     32.22     54.43     1670.98     

* Quantification relative to caffeic acid; ** Quantification relative to rutin                     

n.d. - not detected, bellow LOD; n.q. - not quantified, bellow LOQ                       
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amounts (ranging from 0.53 to 1.53 mg/L) and did not present a regular trend with the baking 

process, as myricetin, only found in the TNM dry wine (about 0.71 mg/L). Traces of kaempferol 

were found but below the quantification limit and trans-resveratrol (not detected in sweet 

wines and up to 0.63 mg/L in TNM dry wine) is clearly affected by temperature (Table 7.3).  

This value is within the range of 0.1–0.8 mg/L found in white wines (Moreno-Arribas & Polo, 

2009). In the opposite side, HMF and furfural, formed essentially from sugar degradation, were 

clearly improved with temperature, as pointed out in a previous work (Pereira, Albuquerque, 

Ferreira, Cacho, & Marques, 2011), especially HMF in the sweet wines. Low levels obtained for 

the dry wine (less than 3 mg/L), except in overheating conditions, suggest the need of accurate 

control of the temperature used in the estufagem, with eventual differentiation according to 

wine sweetness. 

 7.3.2 Antioxidant potential 

TABLE 7.4 – Antioxidant potential of Madeira wines during the heating at 45 °C (3 months) and 70 °C (1 month) 

expressed in terms of ABTS, DPPH and FRAP assays. 

 

The antioxidant potential (AP) was determined by three different tests: ABTS, DPPH 

and FRAP, and the results are depicted in Table 7.4. DPPH (R2 = 0.725) and ABTS (R2 = 0.7411) 

assays likely reflected better the AP of the studied wines rather than FRAP assay (R2=0.1158), 

because of the higher correlation with the TP. DPPH assay presented the highest values (in 

average 382.22 mg (Trolox)/L) and the FRAP the lowest (about 55.39 mg (QE)/L). FRAP assay 

measures the reducing capacity of antioxidants and depends totally on the electron 

transference mechanisms while DPPH and ABTS assays determine the radical scavenging 

activity by electron and hydrogen transfer (Prior, Wu, & Schaich, 2005). The results showed 

that with the baking step no drastic changes took place in the AP (DPPH and ABTS); only a 

slightly decrease was observed even when the heating process was carried out at higher 

temperatures. At the end of the heating procedure the AP values were in the range 234.84 - 

409.66 mg/L in terms of TEAC (or 0.94 – 1.64 mM) slightly above of the results obtained by 

Samples 
ABTS assay   DPPH assay       FRAP assay   

GAE (mg/L) ± SD TEAC (mg/L) ± SD EC50 (µL) ± SD QE (mg/L) ± SD 

TNM 

sweet 

0 m 150.76 1.16 313.99 12.34 49.99 2.56 40.65 2.18 

1 m, 45 °C 103.07 2.52 276.66 13.27 65.51 0.86 19.88 0.69 

2 m, 45 °C 174.07 3.16 308.73 16.45 50.93 1.51 51.50 2.37 

3 m, 45 °C 153.93 3.50 305.52 2.36 53.85 2.39 53.49 0.92 

1 m, 70 °C 149.82 1.23 234.84 5.37 68.90 3.49 42.98 0.29 

TNM dry 

0 m 268.61 0.13 502.93 19.46 25.68 0.49 36.83 3.22 

1 m, 45 °C 249.74 9.13 496.66 13.50 25.84 0.78 28.67 2.42 

2 m, 45 °C 235.36 8.50 504.98 9.22 27.06 0.28 33.67 1.90 

3 m, 45 °C 198.45 7.25 409.66 9.42 36.79 0.31 102.46 4.31 

1 m, 70 °C 218.21 6.32 403.53 5.13 34.30 0.68 120.27 1.86 

Malvasia 

0 m 183.93 4.95 445.92 7.00 32.56 0.73 70.21 3.39 

1 m, 45 °C 214.76 9.34 426.01 3.55 34.67 0.55 75.30 1.25 

2 m, 45 °C 219.29 8.08 389.33 22.98 39.07 0.65 60.76 2.55 

3 m, 45 °C 177.06 2.85 362.99 6.36 43.10 0.45 55.33 3.89 

1 m, 70 °C 144.65 0.39 351.60 6.39 60.54 2.79 38.81 1.85 
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Fernández-Pachón et al. (2006) in sherry wines (0.49 – 0.98 mM), and comparable of those 

found by de Quirós et al. (2009) in Spanish white wines (0.77 – 2.01 mM).  

 7.3.3 Colour study 

As colour is one of the principal attributes of a wine and is considered decisive for the 

choice of consumers, colour studies can be a helpful tool in the recognition of the typical 

characteristics of a wine or on the influence of the vinification procedures. As Madeira wines 

can present pronounced colour changes during estufagem, Glories and CIELab systems were 

applied in this study. Glories parameters, %Ye, %Re and %Bl, are presented in Figure 7.1 while 

colour intensity (CI), tonality (To) and the absorbance readings at 420, 520 and 620 nm are 

reported in Table 7.5. The results showed that before heating, red colour (about 47%) 

predominates in TNM dry wine (TD0m), while the yellow tones characterized sweet wines, 

especially Malvasia (M0m) with 65% (Figure 7.1) and limited contribution of blue hue (up to 

16%). The heating process clearly affected colour, expressed in the increase of yellow tones 

(%Ye increase reaches about 35% and 15% in the dry and sweet wine submitted to heating at 

45 °C for 3 months, TD3m45 and TS3m45, respectively) and in the decrease of red tones. The 

change was intensified at overheating temperatures, up to 81% in TD1m70 and 59% in 

TS1m70. The decrease of the reddish and the increase of the yellowish shades are in 

agreement with the observations reported by other authors (Cadahía, et al., 2009; Monagas, 

Martín-Álvarez, et al., 2006) and can be associated to the anthocyanins degradation, to form 

new polymeric complexes. Indeed, the anthocyanin degradation was confirmed by the TMA 

analysis (see Table 7.2).  

 

FIGURE 7.1 – Glories parameters, %Ye, %Re and %Bl of Madeira wines during the heating at 45 °C (3 months) and 70 

°C (1 month). 

In Malvasia wine, the yellow pigments were always preponderant (at least 57%), as 

expected for a white variety. TNM wines presented high CI values before baking (Table 7.5) 

which decreased with estufagem, following the decrease of red hues, while To slightly 

increased.  Almost the opposite is observed for Malvasia.  
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TABLE 7.5 – Glories chromatic parameters: intensity (CI), tonality (To) and absorbance readings at 420, 520 and 620 

nm of the Madeira wines submitted to heating at 45 °C (3 months) and 70 °C (1 month). 

 

Usually used as a browning index in white wines, the absorbance at 420 nm did not 

revealed a consistent trend during the heating period, but the absorbance increased 

significantly in sweet wines under overheating conditions (70 °C), in good agreement with 

Mayén and co-workers (1997), which found that A420nm did not increase during the browning of 

white wines from Pedro Ximenez and Baladi grapes at accelerated ageing (50 °C), in corked 

bottles. However, an increase was registered when the bottles were opened and exposed to 

air. Recently, Kallithraka and colleagues (2009) reported that A420 nm of white wines significantly 

increased only after accelerated ageing at 55 °C over a period of 10 days.  

In addition, Fernandez-Zurbano et al. (1998) established three categories for the 

browning of white dry wines, considering intense when absorbance (AU) was higher than 0.5, 

moderate between 0.2 and 0.5 AU and light when less than 0.2 AU. Considering these 

categories, the current Madeira wines presented an intense browning at the end of the baking 

process, especially when sweet wines were baked at 70 °C, for 1 month (Table 7.5). At the 

initial stage, TNM wines already presented very high A420 nm values, possibly due to the 

presence of anthocyanins and others phenolics. At overheating conditions, reactions between 

polyphenolic compounds and sugars degradation, namely caramelization, were certainly 

favoured.  

The CIELab chromatic coordinates a*, b* and L* were also obtained and are 

represented in a 3D plot (Figure 7.2). Colour differences were more noticeable than with the 

Glories procedure, confirming the conclusions. Major changes were observed again in TNM dry 

wine, reflecting the decrease on the a* positive coordinate (red hue) associated with an 

increase of the b* positive values (yellow hue), even more pronounced at overheating 

conditions. The variations with the heat presented by TNM sweet wine and Malvasia were 

significantly smaller, except for overheating conditions.  

Samples A420 nm ± SD A520 nm ± SD A620 nm ± SD CI ± SD To ± SD 

TNM 

sweet 

0 m 1.435 0.033 1.224 0.031 0.479 0.024 3.14 0.09 1.17 0.00 

1 m, 45 °C 1.840 0.117 1.403 0.104 0.687 0.077 3.93 0.30 1.31 0.01 

2 m, 45 °C 1.174 0.120 0.772 0.094 0.323 0.059 2.27 0.27 1.52 0.03 

3 m, 45 °C 1.167 0.052 0.716 0.043 0.308 0.034 2.19 0.13 1.63 0.03 

1 m, 70 °C 2.149 0.019 0.556 0.016 0.238 0.014 2.94 0.05 3.87 0.08 

TNM 

dry 

0 m 1.580 0.019 1.970 0.018 0.671 0.026 4.22 0.06 0.80 0.00 

1 m, 45 °C 1.064 0.004 1.013 0.003 0.189 0.001 2.27 0.01 1.05 0.00 

2 m, 45 °C 1.311 0.007 1.000 0.006 0.220 0.002 2.53 0.02 1.31 0.00 

3 m, 45 °C 1.743 0.043 1.255 0.034 0.457 0.021 3.46 0.10 1.39 0.00 

1 m, 70 °C 0.948 0.003 0.372 0.001 0.089 0.002 1.41 0.00 2.55 0.00 

Malvasia 

0 m 0.692 0.001 0.293 0.001 0.082 0.000 1.07 0.00 2.36 0.00 

1 m, 45 °C 1.070 0.004 0.488 0.002 0.151 0.001 1.71 0.01 2.19 0.00 

2 m, 45 °C 1.253 0.030 0.654 0.019 0.298 0.012 2.21 0.06 1.92 0.01 

3 m, 45 °C 0.859 0.011 0.420 0.010 0.192 0.008 1.47 0.03 2.05 0.02 

1 m, 70 °C 2.135 0.016 0.530 0.018 0.301 0.019 2.97 0.05 4.03 0.11 
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FIGURE 7.2 – 3D representation of the CIELab chromatic coordinates a*, b* and L* of the Madeira wines submitted 

to heating at 45 °C (3 months) and 70 °C (1 month). 

 

TABLE 7.6 – CIELab chromatic parameters: chromaticity (C*), hue (H*) and saturation (S*) of the Madeira wines 

submitted to heating at 45 °C (3 months) and 70 °C (1 month). 

 

Figure 7.2 clearly shows that all wines tend to the same chromatic characteristics when 

the heating procedure is applied: red wines become clearer (L* increases) due to anthocyanin 

decrease, while yellow tones (b* increases) predominate rather than red (a* decreases).  This 

can also be visualised in Figure 7.3. No defined trend was observed for chromaticity (C*, 

ranging from 32.53 to 63.46 units), hue (H*, ranging from 0.62 and 1.52 units) and saturation 

(S*, ranging from 0.40 to 1.32 units) during the heating period (Table 7.6). Differences 

detectable by the human eye were estimated by the measurement of colorimetric differences 

Samples C* ± SD H* ± SD S* ± SD ΔE* 

TNM 

sweet 

0 m 47.05 0.00 0.91 0.00 0.69 0.00 - 

1 m, 45 °C 32.58 0.00 1.12 0.00 0.40 0.00 - 

2 m, 45 °C 49.85 0.00 1.11 0.00 0.70 0.00 - 

3 m, 45 °C 41.80 0.00 1.21 0.00 0.54 0.00 16.45 

1 m, 70 °C 63.33 0.00 1.46 0.00 0.82 0.00 34.90 

TNM 

dry 

0 m 63.46 0.00 0.62 0.00 1.32 0.00 - 

1 m, 45 °C 58.18 0.00 0.82 0.00 0.99 0.00 - 

2 m, 45 °C 62.56 0.00 1.01 0.00 0.98 0.01 - 

3 m, 45 °C 55.32 0.00 1.14 0.00 0.75 0.00 40.21 

1 m, 70 °C 51.36 0.00 1.31 0.00 0.65 0.00 50.55 

Malvasia 

0 m 41.11 0.00 1.43 0.00 0.47 0.00 - 

1 m, 45 °C 54.88 0.00 1.35 0.00 0.68 0.00 - 

2 m, 45 °C 43.16 0.00 1.41 0.00 0.51 0.00 - 

3 m, 45 °C 40.64 0.00 1.42 0.00 0.47 0.00 1.34 

1 m, 70 °C 61.46 0.00 1.52 0.00 0.72 0.00 20.96 
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(ΔE*) for every pair of wines after the heating period, as follows: 

    √                    , assuming that ΔE* higher than 3 units means that the 

colour of the samples is different enough to be easily distinguished by human observers 

(Gómez-Míguez, Gómez-Míguez, Vicario, & Heredia, 2007). Results (Table 7.6) revealed that 

the colour of the wines after being baked was clearly distinguishable from the initial stage 

(16.45 < ΔE*< 50.55), with the exception of Malvasia, at standard conditions. 

 

FIGURE 7.3 – Colour evolution of Madeira wines submitted to heating at 45 °C. TS0m – initial TNM sweet; TD0m – 

initial TNM dry; M0m – initial Malvasia; TS3m – TNM sweet after 3 months of heating; TD3m – TNM dry after 3 

months of heating; M3m – Malvasia  after 3 months of heating. 

 

7.4 Conclusions 

The work showed that the estufagem did not greatly affected the total content of 

polyphenols of the Madeira wines submitted to this procedure and moderately decreased the 

total polyphenolic composition, up to 25%, with at least 434.42 mg (GAE)/L of total 

polyphenols present after estufagem, comparable with most white wines. The antioxidant 

potential (0.94 – 1.64 mM) was also similar to white wines. In terms of individual polyphenols, 

6 hydroxybenzoic acids, 3 hydroxycinnamic acids, 1 stilbene, 3 flavonols and 3 flavan-3-ols 

were found in these wines, with hydroxycinnamates and hydroxybenzoates being the most 

abundant phenolics. Most polyphenols decreased during the estufagem, except caffeic, ferulic, 

p-coumaric, gallic and syringic acids. 

Finally, the colour of wines tends to the same chromatic characteristics when the 

heating procedure was applied and even red wines became clearer, with yellow tones 

becoming predominant, as monomeric anthocyanins gradually declined. Browning index 

values (absorbance at 420 nm) did not reveal a consistent trend during the heating period, but 

increased significantly at overheating conditions, especially for sweet wine, indicating the 

probable relation between Madeira wine browning and sugar degradation. 
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Abstract 

The evolution of monovarietal Madeira wines from Tinta Negra Mole (TNM) and 

Malvasia grape varieties, aged by the traditional thermal processing, was studied in terms of 

volatile compounds. Additionally, the organic acid profile was also evaluated. The wines were 

monthly analysed after heating at 45 °C for 3 months (standard conditions) and at 70 °C for 1 

month (overheating conditions). The characterization of the volatile profile was performed 

analysing the dichloromethane extracts (SPE) by GC–MS, while the organic acid profile was 

examined by the simple injection of diluted samples (1:3) into the HPLC-DAD equipment.  

The results showed that estufagem introduced significant changes in the volatile 

composition of Madeira wines, especially promoting the increase of the volatile fraction of 

both Madeira wine types (dry and sweet). At least 190 volatile compounds were identified, 53 

of which were only encountered in wines after baking. Most chemical families increased after 

heating, especially furans and esters. On the contrary, alcohols, acetates and fatty acids 

presented a slight decrease after heating. Additionally, several varietal aromas, such as 

monoterpenic alcohols, especially encountered in Malvasia wine, disappear after baking. The 

obtained results also showed that estufagem favoured the development of some volatiles 

previously reported as typical aromas of Madeira wines, particularly phenylacetaldeyde, β-

damascenone and 5-ethoxymethylfurfural. Additionally, ethyl butyrate, ethyl 2-

methylbutyrate, ethyl hexanoate, ethyl isovalerate, guaiacol, 5-hydroxymethylfurfural and γ-

decalatone were also found as potential contributors to the global aroma of baked wines. The 

obtained data also showed that Madeira wines are especially rich in malic acid (about 55%). 

Most acids declined during the thermal processing, especially succinic acid (up to 75%). 

However, lactic, acetic and formic acids did not show the same trend, increasing especially 

when overheating conditions were performed.  

 

8.1 Introduction 

Flavour is one of the most significant factors of wine quality, determining the 

consumer acceptance or rejection. Generally speaking, the aroma of wines is influenced by 

several different compounds, originated from grapes or resulting from winemaking and 

storage. In fact, these compounds act as a fingerprint for each wine type. Notwithstanding, in 

some cases, the occurrence of a particular compound is enough to give the characteristic 

aroma of a wine.  

Madeira wine is characterized by marked and intense flavours. Its winemaking can 

include a peculiar maturation process, a baking phase so-called estufagem, wherein the 

fortified wines are heated up to about 45 °C, for at least 3 months. Then, the oxidative ageing 

goes further, since wine is placed in oak used casks (leaving some space at the top), ageing for 

a minimum period of 3 years. With baking a premature ageing takes place, being acquired 

some characteristics typical of the finest Madeiras (older wines only maturated in oak casks 

during several years), namely some aromas. 
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It is known that heating promotes important changes in the aroma of foods. Until date, 

there are some studies dealing with the accelerated oxidative ageing, promoted by thermal 

processing, on the volatile profile of wines. According to Cutzach et al. (1999), Deibner and 

Bernard, in 1956, studied the effect of the heat treatment on wine, pointing out the important 

role of Maillard reactions in the formation of the aroma of thermal processed sweet fortified 

wines, but were unable to identify the respective compounds. Cutzach et al. (1999) 

investigated the ageing of red and white sweet fortified wines (Vins doux Naturels)  following 

an experimental laboratory study, in which, wines were forced-aged through heating at 37 °C 

for 12 months. Among the developed molecules during the accelerated ageing, they found 

that sotolon (3-hydroxy-4,5-dimethyl-2(5H)-furanone), 5-ethoxymethylfurfural, 5-

hydroxymethylfurfural (HMF), furfural acetylformoin and hydroxymaltol were involved in the 

aroma of sweet fortified wines. Latter, Escudero et al. (2000) also performed studies dealing 

with wine oxidative ageing, through laboratory oxidized samples at 20 °C for several weeks. 

According to olfactometric studies (GC-O analysis), they have found that the impact odorants 

of oxidized white wines were essentially 2, 4, 5-trimethyldioxolane, methional, sotolon and 

eugenol. Changes in the volatile content of Fino Sherry wines exposed to high temperature (45 

°C) and UV–Vis radiation has also been reported (Benítez, Castro, Natera, & Barroso, 2006). 

These experiments revealed the decrease of most esters, acids and alcohols, and the increase 

of furfural and benzaldehyde. Recently, López de Lerma (2010) thermally processed sweet 

Pedro Ximénez wines at 65 °C up to 30 days and reported the increase of volatile Maillard 

products, specifically of HMF, 5-ethoxymethylfurfural, dihydromaltol, 2,3-dihydro-3,5-

dihydroxy-6-methyl-4H-pyran-4-one (DDMP), 2-methyltetrahydrofuran-3-one, furaneol, 

dihydro-2-methyl-3(2H)-furanone and cyclotene (corylon). Finally, Loscos et al. (2010) reported 

that the accelerated ageing, at 50 °C for 9 weeks, of wines supplemented with grape flavour 

precursors also introduced important changes in the volatile composition. This study showed 

that the main differences were observed in the first week of accelerated ageing. Most 

compounds first showed a significant increase and later a steady reduction, including Riesling 

acetal, 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), and (E)-1-(2,3,6-trimethylphenyl)buta-

1,3-diene (TPB). However, vanillin derivatives, furan linalool oxides, 3-oxo-β-ionone, actinidols, 

4-ethylphenol, and guaiacol showed a continuous increase during the ageing process.  

In the case of Madeira wines, which are traditionally forced-aged, few studies were 

done regarding the effect of the baking step on their volatile profile. The first study, carried 

out by Oliveira e Silva (2008) based on GC-O analysis, highlight the occurrence of those 

volatiles imparting notes considered typical of finest Madeiras. Those volatiles were the 

following volatile Maillard products: sotolon, furfural, 5-methylfurfural, 5-

ethoxymethylfurfural, methional, and phenylacetaldehyde. In this sense, the aim of this study 

was to evaluate the effect of estufagem on the volatile profile of Madeira wines. For this 

purpose, three Madeira wines were prepared: dry and sweet Tinta Negra Mole (TNM), and the 

traditional sweet Malvasia, and heated at 45 °C during 3 months, after fortification. 

Additionally, overheating conditions, 70 °C for 1 month, were also accomplished to force the 

development of volatiles specific from heating. The organic acid profile was also evaluated 

during this period, to understand their involvement in the development of the volatile profile. 
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8.2 Experimental 

 8.2.1 Wines 

Three Madeira wines were prepared from two Vitis Vinifera L. grapes varieties from 

the 2007 harvest: dry TNM (red variety), sweet TNM and sweet Malvasia (white variety). The 

wines were produced using the winemaking practices of a local Madeira wine-producing cellar. 

The elaboration of these wines was conducted in separate stainless steel tanks. The alcoholic 

fermentation was conducted under controlled temperature and without adding any 

commercial yeast. The fermentation of the sweet TNM was stopped by the addition of natural 

grape spirit when grape must density attained 1025 g/cm3, remaining 115 g/L of reducing 

sugars, while for the dry TNM it was allowed the density reaches 986 g/cm3 before 

fortification, maintaining a low level of residual sugars (about 4 g/L). In the case of sweet 

Malvasia, the must was fermented until 1019 g/cm3 before fortification, maintaining 96 g/L of 

reducing sugars. After the final adjustments, each wine was heated at 45 °C during 3 months in 

a special pilot scale system equipped with 200 L stainless steel tanks, fitted with heating coils 

for the circulation of hot tap water. To force the development of volatiles specific from 

heating, about 250 mL of each wine were overheated in a lab oven at 70 °C during 1 month 

(overheating conditions). All wines were monthly sampled and kept at -20 °C before being 

analysed. 

 8.2.2 Standards and reagents 

All reagents were of analytical quality. HPLC-grade dichloromethane, acetonitrile and 

methanol were from Fisher Scientific (Loughborough, UK) while absolute ethanol was supplied 

by Sigma-Aldrich (St. Louis, MO, USA). Ultra-pure water was obtained from a Milli-Q system 

(Millipore, Milford, MA, USA). Disodium hydrogen phosphate dihydrate was supplied by 

Panreac Química S.A. (Barcelona, Spain) while sulphuric acid was supplied by Riedel-de-Haën 

(Seelze, Germany). Solid anhydrous sodium sulphate was from JMGS (Lisbon, Portugal) while 

the 3-octanol standard was from Sigma–Aldrich. LiChrolut EN resin was supplied by Merck Co. 

(Darmstadt, Germany). 6 mL polypropylene cartridges and respective frits were obtained from 

Supelco (Bellefonte, PA, USA). Solid phase extraction was carried out in a 12-port Visiprep™ 

SPE vacuum manifold from Supelco. For the HPLC analyses, eluents were previously filtered 

with 0.45 µm membrane filters obtained from Pall (Ann Arbor, MI, USA). The organic acids 

standards were those previously reported in Chapter 4 (section 4.2.1).  

 8.2.3 Analysis of volatile compounds 

The screening of volatile compounds was accomplished based on the solid phase 

extraction (SPE) method proposed by López et al. (2002). Briefly, 120 mg of LiChrolut EN resin, 

a poly-(styrene-divinyl benzene) polymer used as reverse phase sorbent, was packed in a 6 mL 

cartridge. After conditioning the resin, in the SPE station, with 4 mL of dichloromethane, 4 mL 

of methanol and 4 mL of ethanolic solution (18%, v/v), 50 mL of wine spiked with 25 μL of 3-

octanol (491 mg/L) were passed through the resin at about 2 mL/min. Then, the sorbent was 

dried by letting pass a small flow of air for 15 min. Finally, wine volatiles were eluted with 1.3 
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mL of dichloromethane and the extract dried with sodium sulphate, being kept at −20 °C until 

analysis. All samples were extracted in duplicate.  

FIGURE 8.1 – Typical chromatograms of the dichloromethane extracts of TNM sweet wine before (A) and after (B) 

the heating process at 70 °C for 1 month. For peak identification see Table 8.2. The highlighted peaks correspond to 

the major peaks identified. 

 

The extracts were analysed by GC-MS using the TRACE GC Ultra gas chromatograph 

equipped with the ISQ single quadrupole (electron impact mode) and the TriPlus autosampler 

(liquid mode) from Thermo Scientific (Hudson, NH, USA). Before injection the extracts were 

diluted in dichloromethane (1:5). Then, 1 µL of extract was vaporized in the injector port set to 

230 °C, in splitless mode. All extracts were injected twice. The column was a DB-WAXetr 30 m 

× 0.250 mm with 0.50 µm film thickness from Agilent J&W (Folsom, CA, USA). The carrier gas 

was He at 1 mL/min. The ionization voltage was 70 eV with transfer line and ion source 

temperatures kept at 230 and 240 °C, respectively. The oven temperature program started at 
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40 °C for 5 min then increased up to 230 °C at 3 °C/min and finally was kept at 230 °C for 15 

min. A 30–400 m/z mass range was recorded and the extracted ion peaks (m/z) described in 

Table 8.2 were considered to estimate the volatile concentration, overcoming some coelution 

problems. Figure 8.1 depicts typical chromatograms of the dichloromethane extracts of wines 

before and after the heating process at overheating conditions. The identification of 

compounds was made by comparison of the mass spectra obtained with those present in 

NIST08 and Wiley 6.0 MS library database, and comparing the obtained Kovats indexes with 

those stated on NIST Chemistry WebBook (Stein, 2008). Sixteen compounds (highlighted with * 

in Table 8.2) were only identified by comparison of the mass spectra obtained with those 

present in NIST08 and Wiley 6.0 MS library database, but all with at least a fair match (> 70%). 

A C7–C30 n-alkanes mixture (Supelco) was used to calculate the Kovats indexes. 3-octanol was 

chosen as internal standard being added to each sample. The amount of each volatile 

compound was estimated, semi-quantitatively, regarding the added amount of internal 

standard (246 µg/L) and the relative concentrations of the investigated compounds, which 

were calculated by dividing the compounds area by the 3-octanol area. The coefficient of 

variation (% CV) was in average 7%. The concentration became underestimated when the 

single ion monitoring (SIM) was used, since the accounted area was smaller. To minimize this 

effect, the sum of the characteristics ion peaks was considered. 

 8.2.4 Analysis of organic acids 

Organic acids were analysed based on the RP-HPLC-DAD method previously proposed 

(V. Pereira, et al., 2010). The analyses were carried out using a Waters Alliance liquid 

chromatograph (Milford, MA, USA) equipped with an auto-injector (Waters 2695, separations 

module), a photodiode array detector (Waters 2996) and the Empower Pro software, for data 

handling. Briefly, the samples were simply diluted (1:3) with Milli-Q water and 20 µL were 

directly injected in an Atlantis T3 column (250 × 4.6 mm, i.d.; 5 μm; Waters), after being 

filtered through membrane filters Acrodisc® CR PTFE (0.45 µm, Pall). The analysis was 

performed in 25 min using the gradient described in Table 8.1. All organic acids elute in the 

first 10 min and the next 15 min correspond to the regeneration and equilibrium period. The 

eluent flow was set to 1.0 mL/min and the column thermostated at 30 °C. The analytes were 

detected at 210 nm. All standards and wine samples were analysed in triplicate.  

TABLE 8.1 – Organic acids gradient. Mobile phase solvents: A – 10 mM of phosphate solution buffered at pH 2.70; B 

– acetonitrile; C – methanol. 

 

Chromatographic peaks were identified comparing their retention times with those of 

standards and spiking samples with pure compounds. The quantification was carried out using 

the external standard method. 

Time (min) Flow (mL/min) %A %B %C Curve 

--- 1.00 100.0 0.0 0.0 --- 

10.00 1.00 90.0 10.0 0.0 6 

12.00 1.00 50.0 25.0 25.0 6 

16.00 1.00 50.0 50.0 0.0 1 

25.00 1.00 100.0 0.0 0.0 1 

 



CHAPTER 8 

 

 
174 

8.3 Results and discussion 

 8.3.1 Volatile compounds 

Table 8.2 resumes the data of volatiles obtained for the current Madeira wines, before 

and after the heating at standard conditions (45 °C for 3 months) and at overheating conditions 

(70 °C for 1 month). The concentrations given in Table 8.2 should be interpreted with caution 

since they are rough estimates, but still, give an orientation to which order of magnitude the 

compounds are sensorially active and elucidate about the evolution of each compound with 

heating.  

The GC-MS analyses of the current sample set allowed the identification of 190 volatile 

compounds including 42 esters, 29 alcohols, 18 carbonyl compounds, 19 volatile phenols, 17 

fatty acids, 15 furan compounds, 15 monoterpenes, 8 acetals, 7 lactones, 4 sulphur 

compounds, 6 norisoprenoids and also 10 miscellaneous compounds. At least 171 compounds 

could not be identified by the regular strategies and should require specific methods of 

isolation and characterization. Acetaldehyde and ethyl acetate, both extremely polar and small 

odorants, usually referred as present in Madeira wines (Câmara, Alves, & Marques, 2006), 

could not be measured since in this conditions they elute with the solvent peak, which was not 

recorded.  

The current study also revealed that a large number of compounds were developed 

during the traditional heating of Madeira wines, at least 53 compounds were only found in 

wines after baking. The results showed that TNM dry wine presented the highest fraction of 

volatiles, about 52 mg/L before heating, which is in agreement with the fermentation 

extension, essentially due to the higher levels of esters and higher alcohols. This study also 

showed that the volatile fraction of these Madeira wines increased after the heating process 

has been performed: up to 88% in sweet wines and up to 28% in the dry wine. 

  8.3.1.1 Esters 

Esters were one of the most abundant groups. Before the heating step they 

represented in average 35% of the volatiles of these wines. This chemical family was 

represented by 19 fatty acid ethyl esters, 18 esters of organic acids and 5 acetates, but it was 

the esters of organic acids that represented the highest fraction (Table 8.2). Indeed, esters are 

generally ubiquitous in wines since they are secondary aromas, usually considered important 

to the sensory properties of wines, contributing with positive aromas, essentially with fruity 

notes. As expected, they appeared at higher amounts in the dry wine namely because it was 

more fermented. The most abundant fatty acid ethyl ester was diethyl 2-

hydroxypentanedioate followed by ethyl hexanoate. The first is not so commonly found in 

wines but it was also found by Lee & Noble (2003) when they characterize the odour-active 

compounds of Californian Chardonnay wines. They reported that this ester has a cotton candy 

aroma. 
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Regarding to ethyl hexanoate, this ester is commonly 

reported in wines, namely was already reported as important 

odorant of young TNM wines (Perestrelo, Fernandes, 

Albuquerque, Marques, & Câmara, 2006), as well as of aged 

Madeira wines (Campo, Ferreira, Escudero, Marqués, & Cacho, 

2006). In the current sample set, ethyl hexanoate levels (25.7 – 

150.8 µg/L) appeared higher than its odour threshold (Table 8.2), 

so probably contributed to the aroma of these wines with fruity 

notes. Additionally, it was verified that both esters increased 

after the wines baking up to 125% for diethyl 2-

hydroxypentanedioate and up to 56% for ethyl hexanoate. In fact, 

it was generally shown the increase of fatty acid ethyl esters after 

the heating step except for the following ethyl esters: octanoate, 

decanoate, dodecanoate and 4-hydroxybutyrate which, did not 

denoted a clear tendency. Temperature increase seems to 

accelerate the upward tendency. Contrary to these results, 

Câmara et al. (2006) observed the decrease of this esters during 

the oak-ageing of Madeira wines. Oliveira et al. (2008) found that 

ethyl esters of straight chain fatty acids related to yeast lipid 

metabolism (such as ethyl butyrate, hexanoate, octanoate and so 

on) decreased during bottle maturation of Loureiro wines but did 

not significantly decreased in Alvarinho wines. However, the 

same authors also reported the increased of ethyl esters of fatty 

acids related to yeast nitrogen metabolism of both varieties 

during the conservation period. Fatty acid ethyl esters increase 

during wine maturation or storage may be related with 

esterification while the decrease may be associated with 

hydrolysis reactions (Benítez, et al., 2006). Some fatty acid ethyl 

esters only appeared after baking, such as ethyl 2-

methylbutyrate, ethyl 3-ethoxypropionate, ethyl levulinate and 

propyl ethyl hydroxypentanedioate. Ethyl levulinate was also 

encountered in sweet fortified wines by Cutzach et al. (1999) 

when they accelerated their ageing (heating at 37 °C for 12 

months). According to them, levulinic acid, which can be formed 

by the heat breakdown of glucose, furfuryl alcohol or HMF in 

acidic medium and react with ethanol, being formed ethyl 

levulinate. Ethyl 3-ethoxypropionate, as far as we know, was only 

identified in brandies (Ledauphin et al., 2004; Schreier, Drawert, 

& Winkler, 1979) while propyl ethyl hydroxypentanedioate, 

apparently, was never identified in beverages. 

Relative to esters of organic acids they represented the 

major fraction of esters (96%) and greatly increased (up to 72%) 

after baking, namely due to chemical esterification of the 
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corresponding organic acids. The most prevalent esters of organic acids were diethyl malate, 

ethyl hydrogen succinate, diethyl succinate and ethyl lactate, but none of them seemed to 

contribute to the flavour of these wines, because never surpassed their odour threshold, even 

after the heating. Some of them exhibited a large increase after estufagem, especially diethyl 

succinate, whose amount grew up to 6-fold after the standard baking and up to 10-fold at 

overheating conditions. Similar results were obtained by Câmara et al. (2006). Other ester that 

showed a marked development was diethyl tartrate, which came to grow up to almost 30-fold 

its initial value. This ester might be formed by esterification of tartaric acid with ethanol, 

contributing to the drop of the tartaric acid levels (Table 8.3). Once again, some esters were 

only found after wine’s thermal processing: ethyl isovalerate, diethyl methylsuccinate and 

ethyl citrate. The concentration of ethyl isovalerate even surpassed its odour threshold (3 

µg/L), especially in dry wine, and therefore accounted for a potential participation in the global 

aroma of these fortified wines. Diethyl methylsuccinate was previously identified in oak-aged 

Madeira wines by A. C. Pereira et al. (2010). Actually, these authors, following chemometric 

studies, found out that this ester together with ethyl lactate, ethyl methylsuccinate, diethyl 

succinate and ethyl hydrogen succinate were especially important in the ageing trends of older 

wines. Ethyl citrate was also found by Schneider et al. (1998) in sweet fortified wines from 

Grenache Noir. Its occurrence might be explained by the chemical esterification of citric acid 

with ethanol. In fact, this reaction may have contributed to the citric acid decline (Table 8.3).  

Finally, the group of acetates was also present, although in much lower quantities (less 

than 0.2%). The major acetate found in these wines was isoamyl acetate, with higher levels in 

TNM dry. Actually, the young TNM dry wine presented higher levels of this acetate than its 

odour threshold, but the contribution of its banana-like scent diminished since its 

concentration decreased after the thermal processing. Similar to Câmara et al. (2006) results, 

most acetates declined after baking, except ethyl phenylacetate and ethyl 4-

hydroxyphenylacetate, which indeed increased after this procedure. Both compounds are not 

commonly reported in wines, however it has been found in Aglianico del Vulture wines by Tat 

et al. (2007) and in Riesling wines by Güntert et al. (1986), respectively. Tat et al. (2007) 

suggested that ethyl phenylacetate occurrence might be related with shikimate pathway, such 

as phenylalanine and tyrosine, and also cinnamic acids, and therefore be produced during 

alcoholic fermentation by enzymatic esterification of phenylacetic acid. Likewise, Güntert et al. 

(1986) associated the occurrence of 4-hydroxyphenylacetate with the esterification of 4-

hydroxyphenylacetic acid, a product of tyrosine metabolism. Probably the development of 

these esters with heating might be associated with the chemical esterification of phenylacetic 

acid with ethanol. In spite of its positive development, the concentration never attained the 

odour threshold (73 µg/L). The decrease shown by most of acetates after baking may have 

contributed for the loss of fruitiness of these wines. 

  8.3.1.2 Higher alcohols 

Higher alcohols were quantitatively the largest group of volatiles, representing in 

average 57% of the total content of volatiles accumulated during the fermentation of these 

Madeira wines. However, taking into account their perception threshold, they did not seem to 

have influence on the aroma of these fortified wines. 
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These secondary aromas are essentially formed either from sugar catabolism or from 

amino acids decarboxylation and deamination (Ebeler, 2001). In this sense, unsurprisingly, 

sweet wines (short fermentation) presented the lowest content of alcohols (Table 8.2). From 

the 29 alcohols identified, isoamyl alcohol, phenylethyl alcohol and 1-hexanol were by far the 

most abundant higher alcohols, with concentrations between 1.0 and 16.5 mg/L. After the 

thermal processing of these wines, alcohols did not change very much, only small fluctuations 

were encountered, and so it was not possible identify a clear tendency. Câmara et al (2006) 

also obtained comparable results during Madeira wines oak-ageing. Only 2-ethoxybenzyl 

alcohol was formed during the heating step. As far as we know, this compound has never been 

reported in wines and may be derived from the reaction of ethanol with benzyl alcohol, which 

indeed slightly decreased after baking.  

  8.3.1.3 Fatty acids 

Fatty acids in wines may have origin in grapes or be developed during the fermentative 

step by microbial organisms. Several compounds belonging to this chemical family were 

identified in these wines, including short chain (propanoic, butyric and pentanoic acids), 

medium chain (hexanoic, octanoic, nonanoic and decanoic acids), long chain (dodecanoic acid) 

and branched-chain fatty acids (isobutyric, isovaleric, 2-methylbutyric, 2-ethyl hexanoic, 4-

hexenoic and (E)-2-hexenoic acids). Together, they did not represent more than 3.5% of the 

volatile fraction of these wines. Fatty acids were more abundant in TNM dry wine (Table 8.2), 

probably due to the extra fermentation time.  

The most abundant was octanoic acid, with levels ranging from 199.7 to 953.7 µg/L. 

Actually, it was the only fatty acid exceeding its odour perception (500 µg/L), but only in TNM 

dry wine. Uncommonly, 4-hexenoic acid was encountered in the current Malvasia wine. 

According to deMan (1999), the presence of this acid in wines is usually related with the 

microbial degradation of sorbate, generating a geranium off-flavour note. Regarding to acetic 

acid, seems to be underestimated in the GC-MS analyses (values less than 156.1 µg/L) while its 

concentration was rigorously quantified by HLPC-DAD. The difference might be explained 

taking into consideration that the different signal responses of each compound in the GC-MS 

and the different capacity of LiChrolut EN extract each compound were not taken into account. 

Once again, acetic acid did not show a clear tendency with heating. In general, fatty acids 

decreased after the baking step (Table 8.2), probably due to their participation in esterification 

reactions with ethanol.  

  8.3.1.4 Volatile phenols 

Nineteen volatile phenols were identified in this sample set of Madeira wines. 

Quantitatively, they represent a minority group (less than 1.1%) among the volatiles 

encountered. However, some of these compounds may negatively affect the overall aroma of 

a wine if present at concentrations above its low odour thresholds, imparting off-flavours 

described as animal, horse sweat, leather or medicinal. The most common examples are 

vinylphenols and ethylphenols which can be originated from the decarboxylation of p-

coumaric and ferulic acids through the action of Brettanomyces yeasts or by pyrolysis 
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(Domínguez, Guillén, & Barroso, 2002). Actually, 4-ethylphenol, 4-ethylguaiacol, 4-vinylphenol 

and 4-vinylguaiacol were identified in these wines but all bellow their odour threshold (Table 

8.2). Guaiacol was found above its odour perception (up to 3-fold higher) only in the TNM 

wines heated at 70 °C. Guaiacol is frequently considered a cause of defects in wines, imparting 

smoky notes. This result suggests that temperature accelerates its development whereat high 

temperatures should be avoided in the heating process. In wine, guaiacol occurrence is 

normally associated with oak barrel maturation, being formed by the lignin breakdown during 

wood toasting and then transferred to wine (Arapitsas, Antonopoulos, Stefanou, & 

Dourtoglou, 2004). However, this route does not explain its development with the heating. 

Probably, its development may be related with hydroxycinnamates pyrolysis (Singleton, 1981). 

Vanillin and its esters, acetovanillone, syringaldehyde and 4-hydroxybenzadehyde were also 

detected, but all bellow their odour perception limit. The occurrence of vanillin in wines is also 

commonly related with the release during oak wood lignin breakdown (Pérez-Coello & Díaz-

Maroto, 2009), but in this case this observation is not likely because these wines did not pass 

through oak-ageing. A reasonable explanation is that maybe vanillin and its esters were 

transferred from grapes to wines (Flamini & Traldi, 2010). The slight increase of acetovanillone 

after wines heating is also interesting. Similarly, Escudero et al. (2000) also found 

acetovanillone in laboratory oxidized white wines. According to them, wine oxidation may 

release the glycosylated acetovanillone extracted from grapes. Others volatile phenols were 

only detected after baking, namely 4-vinylguaiacol, 4-vinylphenol, 4-allyl-syringol and syringol. 

Actually, generally speaking, volatile phenols seem to be promoted by the thermal treatment 

of wines.    

  8.3.1.5 Monoterpenes 

In the current sample set, 15 monoterpenes were found: 12 alcohols and 3 oxides. 

Monoterpenic compounds are usually considered as varietal compounds because they are 

present in grapes, especially on skins, or arise from grape precursors. This group represents a 

small fraction of the volatiles found in these wines, less than 0.5%. The highest levels were 

presented in young Malvasia wine (white variety), with at least 8 times more.  

In general, monoterpenic alcohols such as linalool, hotrienol, citronellol, nerol and 

geraniol, when present, disappeared with the wines heating. It was also observed the same 

tendency for most monoterpenic diols, excepting p-menthane-3,8-diol, which was only 

detected in baked TNM dry wine. It is known that the profile and content of monoterpenes can 

be altered during ageing essentially due to acid-catalysed reactions. For example, linalool can 

be transformed into α-terpineol and successively in 1,8-terpines, and geraniol and nerol into 

linalool and α-terpineol (Versini, Dellacassa, Carlin, Fedrizzi, & Magno, 2008). Probably, this 

explains the arising of eucalyptol (1,8-cineole), 3-terpinen-1-ol, p-menthane-3,8-diol and the 

increasing α-terpineol in TNM wines. According to Marais (1983) review, eucalyptol was also 

found in wines heated at 70 °C (wine pH at 1.0). Relative to monoterpenic oxides, namely the 

isomeric forms of linalool oxides, they sharply increased their levels after the heating process, 

while most monoterpenic diols tend to disappear after baking like most monoterpenic 

alcohols. Linalool oxides may have been formed by linalool oxidation via epoxide (Marais, 

1983).  
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  8.3.1.6 Norisoprenoids 

Norisoprenoids have been frequently found in wines and are usually associated with 

carotenoids degradation during ageing processes, but can also be released through glycoside 

hydrolysis (Vinholes, Coimbra, & Rocha, 2009). Six norisoprenoids were identified in these 

Madeira wines: 2,6,6-trimethyl-2-cyclohexen-1-one, vitispirane, 1-(2,4,6-trimethylphenyl)buta-

1,3-diene, TDN, β-damascenone and 1-(2,3,6-trimethylphenyl)-3-buten-2-one. These 

compounds were only detected in wines after being heated, indicating that temperature 

accelerates their formation. Kanasawud and Crouzet (1990) demonstrated that 2,6,6-

trimethyl-2-cyclohexen-1-one formation in aqueous medium is related with the thermal 

degradation of carotenoids, namely β-carotene. Apparently, this ketone was never been 

identified in wines.  

In the current study, an isomer of TPB, the 1-(2,4,6-trimethylphenyl)buta-1,3-diene, 

was identified according to Wiley 6.0 MS library, with the following ion peaks (m/z), ordered 

according to their abundance: 157, 142, 141, 128, 172, 115, and eluting before β-damascenone 

with a KI of 1768. Janusz et al. (2003) were the first researchers to report the occurrence of 

TPB in wines as a potent grape-derived odorant, with a very low odour perception limit of 40 

ng/L. According to them, this compound exhibits green and cut-grass notes at low 

concentrations and pungent or chemical scents when present at higher concentrations. They 

also reported that TPB elutes just after the elution of β-damascenone on a Carbowax column, 

with a Kovats GC retention index of 1830 and a mass spectrum with the following ions, 

ordered according to their abundance: m/z 157, 142, 141, 172, 128, 115. Additionally, in the 

current study was also found in the studied Madeiras another compound with structural 

similarities with TPB, the 1-(2,3,6-trimethylphenyl)-3-buten-2-one, which, as far as we know, 

was only identified by Nykanen (Nykanen, 1986) in wine and distilled alcoholic beverages. 

Finally, vitispirane and TDN were never been encountered above their odour 

perception, however β-damascenone, only detected in baked sweet wines, reached 300-fold 

above its odour threshold (0.05 µg/L) in wines heated at overheating conditions. This result 

leads us to conclude that this compound might play an important role in the aroma of Madeira 

baked wines. Campo et al. (2006) found that β-damascenone has a great contribution to the 

aroma of oak-aged Madeira wines. 

  8.3.1.7 Carbonyl compounds 

Carbonyls group includes aldehydes and ketones. In the current sample set 18 

carbonyls were found, of which 3 were aldehydes.  

It is known that the major wine aldehyde is acetaldehyde, typically reaching 

concentrations between 350 to 450 mg/L and occasionally as a high as 1000 mg/L (Peinado & 

Mauricio, 2009). However, Câmara et al. (2006) has reported lower values for oak-aged 

Madeira wines (less than 117 mg/L). On the other hand, Campo et al. (2006) has observed that 

acetaldehyde was quite important for the aroma of oak-aged Madeira wines, reaching values 

up to 18.5 mg/L. In the current samples it was not possible to quantify this aldehyde since, as 
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already mentioned, elutes to earlier. However, other aldehydes were identified, namely 

hexanal, benzaldehyde and phenylacetaldehyde. The latter compound reached values far 

above its odour perception (98-fold higher) and it seems that baking favours its development 

(Table 8.2). These results indicate that phenylacetaldehyde was apparently important to the 

aroma of these wines. Actually, Oliveira e Silva (2008) through GC-O analysis found out that 

phenylacetaldehyde impart a significant contribution for the definition of baked Madeira 

wines flavour. Similar results were obtained by Campo et al. (2006) in oak-aged Madeira wines. 

Phenylacetaldehyde has been related with wine oxidative processes, imparting honey-like 

scents (Silva Ferreira, Guedes de Pinho, Rodrigues, & Hogg, 2002). The occurrence of this 

aldehyde in beverages has been related with Maillard reactions, specifically with Strecker 

degradation, through the phenylalanine degradation (Soares da Costa et al., 2004). According 

to Campo et al. (2006) the presence of hexanal is most likely due to the direct oxidation of 

hexanol.    

Several ketones were identified in these wines, specifically some usually found in 

sweet fortified wines, namely cyclotene, 3-hydroxy-4-phenyl-2-butanone and hydroxymaltol 

(Brock, Kepner, & Webb, 1984; Câmara, et al., 2006; Cutzach, et al., 1999; López de Lerma, et 

al., 2010). Cyclotene and hydroxymaltol were only detected in baked wines at levels ranging 

from 9.6 to 119.4 µg/L. The presence of these two carbonyls in wines is usually associated with 

Maillard reactions (Pérez-Coello & Díaz-Maroto, 2009). Were also identified several carbonyls 

which are rarely identified in wines, namely (E)-3-penten-2-one, 4-ethoxy-2-pentanone, 4-

ethoxy-2-butanone, cyclopenten-3-one, 2-cyclopentene-1,4-dione, phenylacetone, ethyl 

nicotinate, ethyl picolinate, and 2H-pyran-2,6(3H)-dione. (E)-3-penten-2-one, already 

encountered in wines before heating, was also found by Perestrelo et al. (2006) in young TNM 

wines. Cyclopenten-3-one, only detected in Malvasia baked at 70 °C, has been detected in 

foods submitted to thermal processing, especially in coffees (Nebesny, Budryn, Kula, & Majda, 

2007; C. Sanz, Maeztu, Zapelena, Bello, & Cid, 2002). The formation of 2-cyclopentene-1,4-

dione in foods has been related with the sugar degradation promoted by heating, namely in 

Maillard reaction (Ames, Guy, & Kipping, 2001; Tai & Ho, 1998). In fact, this compound was 

only found in sweet wines submitted to heating. As far as we know, this carbonyl has never 

been detected in wines. It seems that phenylacetone formation is also associated with the 

heating process since was only detected in baked Malvasia wines. Actually, it was identified in 

roasted model reactions consisting of glucose and phenylalanine (Baltes & Mevissen, 1988). 

2H-Pyran-2,6(3H)-dione was previously identified in oak aged Madeira wines (A. C. Pereira, et 

al., 2010). It seems that the ethyls nicotinate and picolinate were only detected in these baked 

wines.  

  8.3.1.8 Furan compounds 

At least 15 furan compounds were developed by the thermal processing of Madeira 

wines. Generally speaking, the heating developed more furans in sweet wines than in dry 

wines as well as higher contents. In sweet wines baked at standard conditions furans 

characterized in average 6.5% of the volatile fraction, while in the dry wine they represent less 

than 0.3%. Nevertheless, after baking at 70 °C, furans representation raised up to 40.6% in 

sweet wines and less than 2.5% in TNM dry wine. These results can be explained by the fact 
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that furans in wines are especially generated by the thermal degradation of sugars due to acid-

catalysed reactions, or even through Maillard reaction (M. L. Sanz & Martínez-Castro, 2009). 

Some furans provided remarkable increases with baking, especially 5-hydroxymethylfurfural 

(HMF), 5-ethoxymethylfurfural, furfural, furyl hydroxymethyl ketone, 2,5-

furandicarboxaldehyde and 5-methylfurfural (Table 8.2). Two furans exceeded their odour 

threshold in wines baked at 70 °C, 5-ethoxymethylfurfural and HMF. The former has surpassed 

40-fold the odour perception and the second only almost 2-fold. This result indicates that 

these furans may be potential odorants of baked Madeira wines. Indeed, Oliveira e Silva (2008) 

observed that  5-ethoxymethylfurfural had an important role in the definition of the global 

aroma of baked Madeira wines. Cutzach et al. (1999) observed the same in sweet fortified 

wines and suggested that 5-ethoxymethylfurfural was obtained by the reaction of 5-

hydroxymethylfurfural with ethanol catalysed by the wine acidic medium and temperature.  

Other minor furans, usually reported in aged wines or wine vinegars (Chinnici et al., 

2009; Cutzach, et al., 1999; Lee & Noble, 2003; A. C. Pereira, et al., 2010) were also identified, 

such as 2-acetylfuran, 2-acetyl-5-methylfuran, ethyl 2-furoate and furfuryl alcohol. 

Additionally, were also detected in baked wines minor furans rarely detected in wines, namely 

2,2-dimethyl-5-(1-methyl-1-propenyl)-tetrahydrofuran, dihydro-2-methyl-3(2H)-furanone, 2-

furyl ethyl ketone and 1-(5-hydroxymethyl-2-furanyl)-1-propanone. 2,2-Dimethyl-5-(1-methyl-

1-propenyl)-tetrahydrofuran was already detected in the volatile fraction of ice wine (Setkova, 

Risticevic, & Pawliszyn, 2007). 

  8.3.1.9 Lactones 

Lactones are essentially formed by yeast during alcoholic fermentation (Jackson, 

2000). However, significant odorants lactones are usually accumulated during wine ageing. The 

most common example is sotolon which imparts powerful nutty, sweet, burnt, curry notes on 

those wines that is present. Very small amounts, slightly above than 5 µg/L, are sufficient to 

characterize the flavour of some wines, especially of fortified wines such as Port, Sherry and 

Madeira (Câmara, Marques, Alves, & Silva Ferreira, 2004; Martin, Etievant, Le Quere, & Schlich, 

1992; Silva Ferreira, Barbe, & Bertrand, 2003). Specifically, Oliveira e Silva (2008) confirmed 

the importance of sotolon in the typicity of Madeira wines and observed the progressively 

increase of sotolon in Madeira wines submitted to estufagem. However, in the current baked 

Madeiras, this lactone was not detected, probably because the used procedure was not 

appropriated to detect this lactone. Nonetheless, 7 lactones were currently detected, most of 

them never surpassing their odour perception. The exception was γ-decalactone, which slightly 

surpassed its low flavour threshold (2.6 µg/L) in TNM dry wine. The results also showed that 

this lactone, as well as most lactones, suffered a slight increased after baking. Quantitatively, 

the most abundant lactone was γ-carboethoxy-γ-butyrolactone, with values ranging between 

79.9 and 539.3 µg/L. Its content was higher in TNM dry wine indicating that longer 

fermentations favour its formation. Additionally, the results also showed that γ-carboethoxy-γ-

butyrolactone greatly increased after heating, indicating that temperature favours its 

formation. This lactone was already reported in Madeira wines aged in oak casks (A. C. Pereira, 

et al., 2010). γ-Butyrolactone, commonly considered the most abundant wine lactone since it 

is essentially derived from the fermentative process, was also detected with values (13.0 – 
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44.3 µg/L) well below from those often found in wines (about 1 mg/L) (Ribéreau-Gayon, 

Glories, Maujean, & Dubourdieu, 2006). γ-Ethoxybutyrolactone was also detected (5.2 – 17.5 

µg/L), probably formed by the reaction between ethanol and γ-butyrolactone. This lactone was 

previously identified in the volatile fraction of toasted wood chips (Fernández de Sim n, 

Esteruelas, Mu oz, Cadahía, & Sanz, 2009; Vichi et al., 2007). Other minor lactones were also 

detected, namely γ-nonalactone and the two isomers (α and β) of angelica lactone. Pisarnitskii 

(2001) has suggested that angelica lactones in wines are products of sugar decomposition. 

Actually, these lactones were only detected in sweet wines baked at overheating conditions.  

  8.3.1.10 Sulphur compounds 

Volatile sulphur compounds in wines are usually responsible for offensive odours, even 

when present in trace amounts, since they possess low perception thresholds (Jackson, 2000). 

Usually, their presence in wines is associated with the enzymatic (fermentative process) or 

non-enzymatic (storage or maturation processes) degradation of sulphur-containing 

compounds, especially amino acids (Mestres, Busto, & Guasch, 2000). In the current wines 

only 4 sulphur compounds were encountered and all apparently below their odour perception 

limit. The volatile profile of TNM sweet wine did not show any sulphur compound, even after 

estufagem. Methionol was the most abundant sulphur compound, especially in TNM dry wine 

(135.4 - 161.9 µg/L). In fact, TNM dry wine accumulated higher contents, probably because it 

was more fermented. Besides methionol, ethyl 3-(methylthio)propionate was also detected 

(3.1 – 17.4 µg/L). Both compounds are usually considered products of methionine metabolism 

(Mestres, et al., 2000). 4-(Methylthio)-1-butanol, usually related with homomethionine 

metabolism (Mestres, et al., 2000), was also found in TNM dry wine (7.2 - 8.5 µg/L). 2-Methyl-

3-thiolanone, already identified in other wines (Aznar, López, Cacho, & Ferreira, 2001; Ferreira, 

Aznar, López, & Cacho, 2001), was also encountered in the current Madeira wines, with values 

ranging from 4.9 to 12.5 µg/L. Generally speaking, it seems that the heating process did not 

promote significant changes in the levels of sulphur compounds.  

  8.3.1.11 Acetals 

The origin of acetals in wines is usually associated with the reaction of aldehydes with 

hydroxyl groups of two alcohols (Jackson, 2000). Madeira wines present favourable conditions 

for their production, since the alcoholic content is high and several aldehydes are present. In 

fact, 8 acetals were detected in the current sample set.  

Similar to Câmara et al. (2003) we also encountered heterocyclic acetals in the current 

Madeiras, specifically cis-5-hydroxy-2-methyl-1,3-dioxane (cis-dioxane), cis-4-hydroxymethyl-2-

methyl-1,3-dioxolane (cis-dioxolane) and trans-5-hydroxy-2-methyl-1,3-dioxane (trans-

dioxane). Trans-dioxolane was not detected in these current sample set. Interestingly, cis-

dioxane always increased when the baking was conducted at standard conditions, but did not 

always increased when the heating took place at higher temperatures. Similar trends were 

usually observed for cis-dioxolane and trans-dioxane. 
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Four diethyl acetals were also identified, namely the diethyl acetals of 

isovaleraldehyde, glycolaldehyde, furfural and phenylacetaldehyde, with values ranging from 

2.0 to 20.4 µg/L. Additionally, an acetal probably originated from the reaction of acetaldehyde 

with ethanol and amyl alcohol (1-pentanol), the acetaldehyde ethyl amyl acetal, was also 

encountered. The acyclic acetals did not present a clear trend with the heating process. 

  8.3.1.12 Miscellaneous compounds 

Finally, 11 compounds which do not belong to the aforementioned chemical families 

were also found in the current Madeiras. Among them were 4 phtalates, usually transferred to 

wines during winemaking from the plastic materials degradation (Carrillo, Salazar, Moreta, & 

Tena, 2007). Specifically, diethyl phthalate, isobutyl phthalate, dibutyl phthalate and 

phtalimide were detected. The most abundant was dibutyl phthalate, with values between 

91.7 and 457.3 µg/L. In general, phtalates concentration decreased after the thermal 

processing.  

Another compound, N-(3-methylbutyl)acetamide, that is often reported in wines 

(Oliveira, et al., 2008; Perestrelo, et al., 2006) was also found in the current Madeiras, 

especially in TNM dry wine. Finally, some compounds were only developed after baking, which 

was the case of the following compounds, tentatively identified by mass spectra (comparison 

with NIST and Wiley libraries): 3,7-dimethyl-2,3-epoxy-6-octanyl-1-oxythiocarbonylimidazolide, 

ethyl pyrrole-2-carboxylate, 2,3-dihydroxypyrazine, curvulol and ethyl 2-formylpyrrole-1-

acetate. Interestingly, the compound identified as 3,7-dimethyl-2,3-epoxy-6-octanyl-1-

oxythiocarbonylimidazolide sharply increased after baking from not detected up to 1,351.7 

µg/L. Its increase was especially high in sweet wines. 

 8.3.2 Organic acids 

The determination of organic acids in wines is of high interest, since they play an 

important role on the final characteristics of wines. During ageing, they can participate in the 

development of volatiles, namely ethyl esters, and in this sense contribute to the wine aroma. 

8 organic acids were determined along with the Madeira wine heating process. Table 8.3 

present the organic acids levels found during the thermal processing of the current Madeira 

wines.  

The most abundant organic acid found on these Madeira wines was malic acid, ranging 

from 3.519 to 4.541 g/L. These values were higher than those found for other wines, such as 

fortified wines (0.491 – 2.378 g/L (Cunha, Fernandes, Faria, Ferreira, & Ferreira, 2002; Esteves, 

Lima, Lima, & Duarte, 2004)), red wines (0.040 – 2.627 g/L (Casella & Gatta, 2001; Peres et al., 

2009; Villiers, Lynen, Crouch, & Sandra, 2003)) and white wines (0.656 – 3.103 g/L (Casella & 

Gatta, 2001; Peres, et al., 2009; Villiers, et al., 2003)). These values suggest that possibly the 

grapes used for the preparation of these wines should hold at harvest time, a large amount of 

this acid. The concentration of malic acid represented in average 55% of the acids present in 

these Madeira wines and generally decreased 16% during their thermal processing at standard 
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conditions. The temperature increase (overheating conditions) did not enlarge this effect. 

Malic acid was followed by acetic and tartaric acids.  

TABLE 8.3 – Concentrations of organic acids in Malvasia, TNM sweet and dry wines during the heating at 45 °C (3 

months) and 70 °C (1 month). 

 

Acetic acid levels were also high, 0.824 - 1.979 g/L. Mato et al. (2007) suggested that 

acetic acid levels superior than 1 g/L could change the wine quality. In this sense, acetic acid 

attributes (vinegar-like odour) may be perceptible in these samples, but due to Madeira wine 

complexity is very difficult predict it. Indeed, some authors support the idea that acetic acid 

odour perception depends on wine type and style (Ugliano & Henschke, 2009). During the 

heating process, acetic acid did not seem to have a clear tendency: in sweet TNM decreased 

about 21% but in dry TNM increased 39%, while in Malvasia first increased and then decreased 

to values very close to the initial. However, the overheating conditions seem to potentiate the 

increase of the acetic acid levels, always more than 49%, eventually due to the thermal 

degradation of sugars as proposed by Ginz et al. (2000).  

Regarding to tartaric acid contents, 0.331 - 1.123 g/L, were low when comparing with 

other wines: fortified (0.824 – 2.752 g/L (Cunha, et al., 2002; Esteves, et al., 2004)), red (1.088 

Organic acids (g/L) 0 m ± SD 
  

1 m, 45 °C ± SD 
  

2 m, 45 °C ± SD 
  

3 m, 45 °C ± SD 
  

1 m, 70 °C ± SD 
  

          

TNM sweet                               

Oxalic 0.117 0.002   0.108 0.002   0.100 0.002   0.104 0.000   0.073 0.002   

Tartaric 0.638 0.008   0.481 0.006   0.512 0.013   0.621 0.016   0.532 0.015   

Formic  0.126 0.007   0.156 0.004   0.141 0.006   0.142 0.006   0.249 0.008   

Malic 4.541 0.018   4.010 0.011   3.666 0.016   3.760 0.005   3.885 0.008   

Lactic  0.250 0.007   0.302 0.013   0.325 0.014   0.350 0.008   1.588 0.011   

Acetic  1.108 0.003   0.890 0.019   0.824 0.007   0.878 0.004   1.773 0.006   

Citric  0.214 0.005   0.166 0.005   0.146 0.005   0.183 0.010   0.206 0.005   

Succinic  0.091 0.002   0.071 0.002   0.082 0.003   0.069 0.003   0.132 0.006   

Total   7.09     6.18     5.80     6.11     8.44     

TNM dry                               

Oxalic 0.046 0.000   0.040 0.001   0.041 0.002   0.044 0.003   0.037 0.001   

Tartaric 1.123 0.014   0.480 0.010   0.527 0.012   0.522 0.001   0.331 0.006   

Formic  0.228 0.008   0.256 0.008   0.224 0.009   0.231 0.012   0.223 0.010   

Malic 3.901 0.017   3.731 0.039   3.519 0.015   3.522 0.007   3.532 0.057   

Lactic  0.912 0.018   0.938 0.022   0.924 0.007   0.911 0.009   0.937 0.046   

Acetic  1.328 0.019   1.569 0.009   1.635 0.034   1.840 0.013   1.979 0.008   

Citric  0.360 0.003   0.267 0.015   0.228 0.009   0.223 0.001   0.210 0.006   

Succinic  0.359 0.001   0.330 0.001   0.154 0.001   0.089 0.003   0.193 0.003   

Total   8.26     7.61     7.25     7.38     7.44     

Malvasia                               

Oxalic 0.047 0.002   0.047 0.001   0.047 0.001   0.040 0.002   0.036 0.001   

Tartaric 0.806 0.003   0.597 0.013   0.666 0.006   0.481 0.011   0.434 0.003   

Formic  0.189 0.004   0.222 0.006   0.215 0.011   0.186 0.008   0.268 0.009   

Malic 4.028 0.010   3.871 0.015   3.619 0.014   3.189 0.002   4.069 0.028   

Lactic  0.362 0.010   0.425 0.005   0.460 0.020   0.435 0.004   1.089 0.034   

Acetic  1.062 0.012   1.309 0.015   1.269 0.016   1.096 0.006   1.842 0.016   

Citric  0.170 0.004   0.123 0.005   0.133 0.007   0.123 0.007   0.193 0.003   

Succinic  0.079 0.002   0.022 0.000   0.025 0.000   0.028 0.001   0.096 0.004   

Total   6.74     6.62     6.44     5.58     8.03     
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– 3.8 g/L (Casella & Gatta, 2001; Peres, et al., 2009; Villiers, et al., 2003)) and white (0.964 – 2.4 

g/L (Casella & Gatta, 2001; Peres, et al., 2009; Villiers, et al., 2003). These results might be 

associated with the tartaric levels already present in grapes used for the preparation of these 

wines or be related with previous precipitation of tartrates salts. In general, tartaric acid 

concentration decreased during the heating of the studied Madeira wines, especially in dry 

TNM (53%), although some oscillations were verified. The temperature increase seems to 

amplify this effect since the decrease raised up to 71% in one month (dry TNM).  

Usually, the malolactic fermentation is not encouraged in Madeira winemaking, but 

anyway, was found considerable levels of lactic acid, 0.250 - 1.588 g/L, maybe derived from 

alcoholic fermentation through the action of yeasts. Indeed, lactic acid levels in the initial 

wines were higher in the TNM dry wines which were more fermented. Interestingly, lactic acid 

concentration increased during Madeira wine baking especially in sweet wines up to 40% when 

the heating was conducted at standard conditions and up to 6-fold when the heating was 

performed at overheating conditions. 

Citric acid derives from grapes and in the initial wines its amount ranged from 0.170 to 

0.360 g/L comparable with those found for Port wines (0.235 – 0.312 g/L) by Cunha et al. 

(2002). This acid generally decreased during the thermal processing.  

Succinic acid is derived from the alcoholic fermentation and for that reason the initial 

TNM dry wine presented the highest levels (0.359 g/L). This acid decreased during the standard 

baking process up to 75%, representing in fact the greatest decrease at these conditions. The 

decrease was not always observed at overheating conditions.  

Formic acid ranged from 0.126 to 0.256 g/L and increased up to 97% when the baking 

process was performed at 70 °C during 1 month, but only in sweet wines. As aforementioned, 

this growth may be related with sugar degradation promoted by temperature.  

Finally, oxalic acid was the acid present at lowest concentrations, never exceeding the 

0.117 g/L, and slightly decreased during the thermal processing. 

 

8.4 Conclusions 

The current study showed that estufagem introduced significant changes in the volatile 

composition of Madeira wines. The heating process promoted the increase of the volatile 

fraction of both Madeira wine types (dry and sweet), especially in sweet wines up to 88%, 

increasing the complexity of these wines. At least 190 volatile compounds were identified, 53 

of which exclusively encountered in wines after baking. In quantitative terms, the volatile 

profile of baked Madeira wines was mostly represented by esters (more than 38.4%) and 

alcohols (more than 15.1%). Furan compounds can also play a significant role in the volatile 

fraction of sweet wines, especially if baking was performed at overheating conditions (up to 

40.6%). It was also observed that most chemical families increased after baking, especially 

furan compounds and esters, specifically esters of organic acids. Interestingly, 6 

norisoprenoids were developed during baking, particularly β-damascenone which exceeded 
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the limit of olfactory perception, at least 70-fold more. Contrarily, alcohols and fatty acids 

presented a slight decrease after heating. Similarly, most acetates declined after baking 

contributing for the loss of fruitiness. Additionally, several varietal aromas, such as 

monoterpenic alcohols usually related to the floral character of some wines and especially 

encountered in Malvasia wine, disappear after baking. In terms of odorant impact, the 

obtained results showed that estufagem favoured the development of some volatiles 

previously reported as typical aromas of Madeira wines, particularly phenylacetaldeyde, β-

damascenone and 5-ethoxymethylfurfural. Additionally, estufagem also promoted the 

development of positive potential contributors to the global aroma of baked wines such as 

ethyl butyrate, ethyl 2-methylbutyrate, ethyl hexanoate, ethyl isovalerate, 5-

hydroxymethylfurfural and γ-decalatone. In contrast, promoted the increase of volatile 

phenols usually considered off-flavours such as guaiacol, especially when higher temperatures 

were used.  

Furthermore, the analysis of organic acids indicated that Madeira wines are especially 

rich in malic acid, representing in average 55% of the acids, probably because grapes contain 

high values of this acid at the time of harvest. Malic, tartaric, citric, succinic and oxalic acids 

decreased during the thermal processing confirming their involvement in the production of the 

corresponding volatile esters. Succinic acid showed the greatest decreased, up to 75%. 

However, lactic acid clearly increased up to 6-fold during the baking at 70 °C. Acetic and formic 

acids clearly increased only when overheating conditions were performed, probably because 

of thermal sugar degradation. 
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Abstract 

Following the previous chapters, the current one presents a study where the purpose 

was to evaluate the profiles of volatiles developed in glucose and fructose model systems 

prepared under similar conditions of Madeira wines submitted to baking (estufagem), in order 

to elucidate the occurrence of Maillard reaction vs. acidic sugar degradation. To do so, 16 

different model systems (MS) were prepared in synthetic wine (ethanolic solution with acid 

pH) containing fructose and glucose, with or without the amino acids: arginine, cysteine, γ-

aminobutyric acid and aspartic acid. To simulate Madeira wine baking, model systems were 

heated at 50 °C during 4 months. The results clearly showed the development of several 

volatile compounds (up to 29 compounds were identified), particularly in the model systems 

containing fructose which presented the highest amounts. The identified compounds belong 

to four different chemical families: carbonyls, ethyl esters, pyrans and mainly furans. The main 

component was 5-hydroxymethylfurfural, representing about 84% of the compounds formed 

during the heating of model systems containing fructose. Additionally, was evaluated the 

antioxidant capacity of the prepared model systems, which ranged from 3.03 mg/L to 65.11 

mg/L GAE. The antioxidant potential was more expressive in fructose model systems. 

Moreover, the current experiment could confirm that the development of colour, aroma and 

chemical composition is strongly associated with sugar degradation due to baking, particularly 

when the sugar is fructose. The fructose model systems originated darker (brown colour) and 

richer volatile profiles. 

 

9.1 Introduction 

It is commonly known that sugar in acidic media can be degraded into several low-

molecular weight compounds, such as furans and pyrans (Belitz, Grosch, & Schieberle, 2009; 

Sanz & Martínez-Castro, 2009) and brown-coloured compounds can be formed. Furthermore, 

sugar in presence of amino compounds can undergo Maillard reaction. This complex reaction 

is known to develop non-enzymatic browning due to the reaction of carbonyl compounds and 

free amino groups (usually amino acids). This reaction is of prime importance in food quality, 

mainly in heat-processed foods, affecting colour (inducing browning), flavour, taste and 

nutritional value. This reaction can eventually have toxicological implications, such as 

acrylamide formation, but in contrast, also produces high antioxidant capacity products 

namely melanoidins (Bressa, Tesson, Dalla Rosa, Sensidoni, & Tubaro, 1996; Osada & 

Shibamoto, 2006; Wagner, Derkits, Herr, Schuh, & Elmadfa, 2002; Yilmaz & Toledo, 2005). It is 

widely stated on the literature that Maillard reaction encompasses a series of subsequent and 

parallel reactions, which can be divided into three stages, starting with the condensation 

between an amino group and a reducing sugar, leading to an Amadori product from an aldose 

(or Heyns product, if the reducing sugar is a ketose) (Belitz, et al., 2009). The Amadori/Heyns 

product leads to the formation of deoxyosones which are transformed into sugar 

fragmentation products. It is commonly accepted that in the initial stage of Maillard reaction, 

the amino group acts as catalyst increasing the reaction rate, resulting higher levels of very 

reactive intermediate products. In the final stage of Maillard reaction, amino groups 
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participate again, but this time, are integrated in molecules to originate dehydration, 

fragmentation, cyclization and polymerisation products. Parallel to the Maillard reaction, sugar 

degradation reactions (in the absence of amino groups) can occur, leading to similar products. 

The formation of flavoured, coloured or colourless Maillard products is influenced by several 

factors such as temperature, pH, time, water activity and the amount and type of reactants 

(Ames, Bailey, & Mann, 1999; van Boekel, 2006). In general, the sugar molecule determines 

the flavour compounds formed and amino acids affects the kinetics. Coloured Maillard 

products can be divided into two main groups: the low-molecular weight compounds (MW < 

1000) and the macromolecules, also known as melanoidins (Rizzi, 1997).  

Since Maillard reaction develops complex intermediate and final reaction products, 

researchers commonly use model systems to limit the scope of this reaction. These studies 

usually use water as solvent (Adams, Polizzi, van Boekel, & De Kimpe, 2008; Ames, et al., 1999; 

Osada & Shibamoto, 2006; Venskutonis, Vasiliauskaite, Galdikas, & Setkus, 2002; Yilmaz & 

Toledo, 2005) and only a limited number of reports have dealt with non-aqueous systems 

(Hofmann, 1998; Pripis-Nicolau, de Revel, Bertrand, & Maujean, 2000; S.-C. Shen, Tseng, & Wu, 

2007; S. C. Shen & Wu, 2004). Shen and Wu (2004) used ethanolic systems and proved that the 

browning extent and the HMF content rise with the ethanol increase. They also found different 

product profiles in aqueous and ethanolic model systems indicating some differences in the 

Maillard reaction mechanisms (S.-C. Shen, et al., 2007). Furthermore, there are some studies 

that highlight the formation of flavour components in wine model systems, at low pH but at 

low temperatures. According to Sanz & Martínez-Castro (2009), Kroh (1994) studied wine 

model systems containing glucose with alanine, arginine and proline. Pripis Nicolau and co-

workers (2000) researched the reaction of carbonyl (acetoin and acetol) and dicarbonyl 

(glyoxal, methylglyoxal, diacetyl and pentan-2,3-dione) compounds with 14 amino acids. They 

realized that this reaction gave rise to many products, including pyrazines, methylthiazoles, 

acetylthiazoles, acetylthiazolines, acetylthiazolidines, trimethyloxazole, and 

dimethylethyloxazoles, especially due to the cysteine presence. Moreover, they also found out 

that these compounds have a remarkable odour, with notes resembling to sulphur, corn, 

pungent, nut, popcorn, roasted hazelnut, toasted, roasted, and ripe fruits. Later, Marchand et 

al. (2002) have indeed proved the occurrence of a Maillard intermediate in wine model 

systems: N-(2-sulfanylethyl)-2-oxopropanamide, the intermediate in the formation of 2-

acetylthiazole from methylglyoxal and cysteine. On the other hand, Cutzach et al. (1999) 

studied the formation mechanisms of some volatile compounds during ageing of sweet 

fortified wines and conclude that the majority is formed by Maillard mechanisms. 

Taking into consideration that Maillard reaction takes place at 50 °C, favoured at pH 4 

– 7 and that caramelisation requires higher temperatures but is favoured at pH 3 – 9 (Kroh, 

1994; Morales & Jiménez-Pérez, 2001), it is reasonable to admit that these reactions can 

eventually occur during the heating process traditionally applied to Madeira wines, 

contributing to browning, flavouring and antioxidant activity. Thus, the aim of the current 

study was to elucidate the sugar availability (fructose and glucose) to develop Maillard 

reaction and/or acidic sugar degradation though the preparation of 16 different model 

systems (MS), under the same conditions of baked Madeira wines, evaluating the colour, the 

antioxidant activity and especially the development of volatile compounds. 
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9.2 Experimental 

 9.2.1 Chemicals 

ᴅ(+)-Glucose, ᴅ(-)-fructose and L(+)-tartaric acid were obtained from Merck Co. 

(Darmstadt, Germany), the amino acids L-arginine, L-cysteine, L-aspartic acid were purchased 

from Sigma Chemical Co. (St. Louis, MO, USA) and γ-aminobutyric acid was supplied by Fluka 

BioChemika AG (Buchs, Switzerland). Ethanol was obtained from Panreac (Barcelona, Spain). 

Ethyl acetate was supplied by Lab-Scan (Dublin, Ireland). All chemicals had a purity grade 

higher than 98%. 2,2’-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the 

crystallized diammonium salt form (≈ 98.0%), gallic acid monohydrate (≥ 98.0%) and potassium 

persulphate were obtained from Fluka BioChemika AG (Buchs, Switzerland). 

 9.2.2 Preparation of model systems (MS) 

TABLE 9.1 – Composition of the 16 model systems. 

 

For the preparation of the 16 MS, four amino acids were chosen: arginine (Arg), 

cysteine (Cys), γ-aminobutyric acid (GABA) and aspartic acid (Asp), since they are important 

Model System Sugar (g/L) Amino acid (mg/L) 

GluArg 

Glucose, 125 

Arginine, 100 

GluCys Cysteine, 100 

GluGABA GABA, 100 

GluAspac Aspartic acid, 100 

FruArg 

Fructose, 125 

Arginine, 100 

FruCys Cysteine, 100 

FruGABA GABA, 100 

FruAspac Aspartic acid, 100 

FruGlu(4aa) 
Fructose, 62.5 

Glucose, 62.5 

Arginine, 25 

Cysteine, 25 

GABA, 25 

Aspartic acid, 25 

Glu Glucose, 125  

Fru Fructose, 125  

FruGlu 
Fructose, 62.5 

Glucose, 62.5 
 

FruArg(×2) 

Fructose, 125 

Arginine, 200 

FruCys(×2) Cysteine, 200 

FruGABA(×2) GABA, 200 

FruAspac(×2) Aspartic acid, 200 
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amino acids present in Madeira wines, as shown in Chapter 5. The selected sugars were 

fructose (Fru) and glucose (Glu) as they usually are the main sugars present in wines. The 16 

model systems were prepared according to the composition described in Table 9.1. All model 

systems were prepared in synthetic wine containing 6 g/L of tartaric acid, 18% of ethanol and 

pH adjusted to 3.5 (Madeira wine typical conditions). The first nine models intended to 

simulate Maillard reaction, the following three to simulate acidic sugar degradation and the 

last four intend to evaluate the influence of the amino acid concentration. The models systems 

were heated at 50 °C during 4 months to simulate estufagem. 

 9.2.3 Liquid-Liquid Extraction 

The extraction procedure was adapted from Ortega et al. (Ortega, López, Cacho, & 

Ferreira, 2001). 5 mL of sample (model system) were added to 3 mL of distilled water. Then, 2 

g of ammonium sulphate and 5 μL of the internal standard (422 mg/L of 3-octanol, prepared in 

synthetic wine) were added. The extraction was carried out with 1 mL of ethyl acetate. This 

mixture was mechanically agitated during 30 min and finally the extract was separated from 

the aqueous phase and analysed. The extraction was carried out in triplicate (3 extractions / 

MS). 

 9.2.4 Gas Chromatography–Mass Spectrometry Analysis 

GC–MS analysis was carried out on an Agilent 6890N (Palo Alto, CA, USA) gas 

chromatograph coupled to an Agilent 5975 quadrupole inert mass selective detector. The 

column was a BP–20 (WAX) from SGE (Austin, TX, U.S.A.), 30 m × 0.25 mm i.d., with 0.25 µm 

film thickness. The carrier gas was helium (helium N60, Air Liquid, Portugal) at 1 mL/min 

(column-head pressure of 13 Psi). 1 µL of extract was vaporized in the injector port maintained 

at 250 °C in splitless mode (1 min). The oven temperature was then raised from 40 °C to 220 °C 

at 3 °C/min and finally held at 220 °C for 5 min. The quadrupole ion source and transfer line 

temperatures were maintained at 230 and 250 °C, respectively. The ionization energy was set 

to 70 eV. The mass range 30–300 m/z were recorded in full-scan mode.  

The identification of the compounds was made by comparison of the mass spectra of 

the compounds formed with those present in the NIST05 MS library database.  

 9.2.5 Spectrophotometric Analysis 

The colour development of the several MS after the heating step was evaluated by 

spectrophotometric analysis. UV spectra of the different MS were recorded on a Perkin Elmer 

Lambda 2 spectrophotometer, covering the wavelength range 240 – 600 nm and using a 1 cm 

path length quartz cell. 
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9.2.6 Determination of the total antioxidant capacity 

Additionally, the MS antioxidant potential was also determined. The determination of 

the antioxidant capacity, according to the reaction with a stable ABTS radical cation (ABTS•+), 

was based on the method reported by Re et al. (Re et al., 1999). Briefly, ABTS•+ was obtained 

by the reaction of 2 mM ABTS diammonium salt with 70 mM potassium persulphate in 50 mL 

of phosphate buffered saline (PBS). The mixture was left to stand in the dark at room 

temperature for about 16 hours before use. For the antioxidant capacity evaluation, the ABTS•+ 

solution was diluted with PBS to obtain the absorbance of 0.800 ± 0.030 at 734 nm. Then 12 µL 

of MS were mixed with 3 mL of ABTS•+ solution. The absorbance was recorded at room 

temperature during 20 min. PBS solution was used as the blank sample. The decrease 

percentage of the absorbance at 734 nm was calculated by the formula I = [(AB -AA)/AB] × 100, 

where I = ABTS•+ inhibition (%), AB = absorbance of the blank sample (t = 0 min), AA = 

absorbance of a tested wine at the end of the reaction (t = 20 min). The results were expressed 

as mg/L of gallic acid equivalents (GAE). 

 

9.3 Results and discussion 

 9.3.1 Volatile composition of MS 

 

FIGURE 9.1 – Typical gas chromatogram of the FruArg ethyl acetate extract. Peak identification: 1 - ethyl pyruvate; 2 

– hydroxyacetone; 3 – methyl 3-hydroxybutanoate; 4 – ethyl L(-)-lactate; 5 – octan-3-ol (IS); 6 – ethyl glycolate; 7 – 

Acetic acid; 8 – furfural; 9 – acetylfuran; 10 – propanoic acid; 11 – 5-methylfurfural; 12 – 2-cyclopentene-1,4-dione; 

13 – ethyl 3-hydroxybutanoate; 14 – ethyl levulinate; 15 – furfuryl alcohol; 16 – 2(5H)-furanone; 17 – 2-hydroxy-2-

cyclopenten-1-one; 18 – 5-ethoxymethylfurfural; 19 – 2,5-furandicarboxaldehyde; 20 – methyl 2-furoate; 21 – 

dihydroxyacetone; 22 – 5-acetoxymethyl-2-furaldehyde; 23 – 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one;  

24 – 3,5-dihydroxy-2-methyl-4H-pyran-4-one; 25 – diethyl tartrate; 26 – ethyl hydrogen succinate; 27 – 5-

hydroxymethylfurfural. 

All MS, sampled after 2, 3 and 4 months of heating, were extracted with ethyl acetate 

and analysed by GC-MS to evaluate the volatile compounds developed during this period. 

Figure 9.1 depicts a typical chromatogram of the ethyl acetate extracts, in the case is shown 

the chromatogram of a FruArg extract. The chromatographic peaks were integrated and the 

relative areas (relative to internal standard) were measured with an average RSD of 7.2%. The 

applied chromatographic procedure, allowed the identification of a total of 29 chemicals 

compounds in all heated MS (see Table 9.2). The chemical families found involve carbonyls, 

ethyl esters, furans and pyrans. Most of them can be found in Madeira wines, namely some of 
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the ethyl esters and furans. In general, these compounds contribute to the aroma with sweet, 

caramel, almond or even burnt notes.  

TABLE 9.2 – Relative areas of the compounds identified in the MS at the end of the heating step, according to the 

applied methodology. 

 

TABLE 9.2 – (continued) 

 

tR (min) Compounds GluArg GluCys GluGABA GluAspac FruArg FruCys FruGABA FruAspac

9.8 ethyl pyruvate 1.66 ± 0.30 2.18 ± 0.09 1.96 ± 0.08 2.06 ± 0.28 1.43 ± 0.10 1.27 ± 0.13 1.08 ± 0.17 1.25 ± 0.06

10.3 ethyl ethoxyacetate n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.24 ± 0.02

10.9 hydroxyacetone 0.38 ± 0.02 0.37 ± 0.07 0.41 ± 0.10 0.34 ± 0.09 0.87 ± 0.08 0.88 ± 0.07 0.80 ± 0.11 0.83 ± 0.13

11.6 methyl 3-hydroxybutanoate n.d. n.d. n.d. n.d. 0.23 ± 0.03 0.22 ± 0.03 0.20 ± 0.02 0.49 ± 0.05

12.0 ethyl lactate n.d. n.d. n.d. n.d. 1.82 ± 0.00 1.23 ± 0.06 1.55 ± 0.03 1.79 ± 0.06

14.3 ethyl glycolate 0.10 ± 0.01 0.34 ± 0.03 0.12 ± 0.01 0.15 ± 0.01 0.90 ± 0.09 1.12 ± 0.03 0.89 ± 0.01 1.47 ± 0.10

15.5 acetic acid 0.82 ± 0.02 7.15 ± 0.71 1.00 ± 0.25 0.73 ± 0.14 3.56 ± 0.12 3.89 ± 0.42 4.05 ± 0.50 7.02 ± 1.61

15.7 furfural n.d. 2.14 ± 0.13 1.07 ± 0.18 n.d. 5.65 ± 0.15 4.20 ± 0.53 5.80 ± 0.54 5.17 ± 0.72

16.9 acetylfuran n.d. n.d. n.d. n.d. 0.23 ± 0.02 0.24 ± 0.01 0.25 ± 0.03 0.27 ± 0.04

18.1 propanoic acid n.d. 0.35 ± 0.07 n.d. n.d. 0.34 ± 0.04 0.65 ± 0.04 0.53 ± 0.04 0.88 ± 0.13

19.0 5-methylfurfural n.d. n.d. n.d. n.d. 0.72 ± 0.02 0.69 ± 0.03 0.59 ± 0.03 0.54 ± 0.03

19.3 2-cyclopentene-1,4-dione n.d. 0.36 ± 0.03 n.d. n.d. 1.85 ± 0.07 3.53 ± 0.32 1.41 ± 0.07 2.65 ± 0.06

19.8 ethyl 3-hydroxybutanoate n.d. n.d. n.d. n.d. 1.10 ± 0.04 0.92 ± 0.05 0.97 ± 0.03 1.30 ± 0.08

20.2 ethyl levulinate n.d. n.d. n.d. n.d. 0.32 ± 0.03 0.43 ± 0.03 0.23 ± 0.02 0.29 ± 0.03

21.7 furfuryl alcohol n.d. n.d. n.d. n.d. 0.43 ± 0.02 0.41 ± 0.04 0.36 ± 0.01 0.42 ± 0.08

22.2 diethyl butanoate n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.36 ± 0.01

24.4 2(5H)-furanone n.d. n.d. n.d. n.d. 0.28 ± 0.03 0.36 ± 0.03 0.26 ± 0.01 0.43 ± 0.03

24.9 2-hydroxy-2-cyclopenten-1-one n.d. 0.22 ± 0.04 n.d. n.d. 0.30 ± 0.01 0.24 ± 0.04 0.24 ± 0.01 0.27 ± 0.05

29.3 5-ethoxymethylfurfural n.d. n.d. n.d. n.d. 1.96 ± 0.06 1.44 ± 0.08 1.39 ± 0.09 1.27 ± 0.08

29.9 2-furoic acid n.d. n.d. n.d. n.d. 0.63 ± 0.13 n.d. n.d. n.d.

30.7 2,5-furandicarboxaldehyde n.d. n.d. n.d. n.d. 6.34 ± 0.07 5.86 ± 0.49 5.65 ± 0.21 5.76 ± 0.22

31.2 methyl 2-furoate n.d. n.d. n.d. n.d. 3.54 ± 0.12 3.31 ± 0.18 2.92 ± 0.11 3.21 ± 0.27

33.3 dihydroxyacetone 0.61 ± 0.05 0.63 ± 0.03 0.46 ± 0.09 0.34 ± 0.11 1.66 ± 0.01 1.18 ± 0.18 1.28 ± 0.10 1.83 ± 0.50

36.0 5-acetoxymethylfurfural n.d. n.d. 0.17 ± 0.03 0.19 ± 0.00 1.53 ± 0.05 1.36 ± 0.19 1.58 ± 0.10 1.11 ± 0.06

36.3 dihydro-6-methyl-2H-Pyran-3(4H)-one n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

37.6 DDMP 
a

n.d. n.d. n.d. n.d. 0.83 ± 0.02 0.57 ± 0.14 0.65 ± 0.04 0.72 ± 0.18

38.2 hydroxymaltol n.d. n.d. n.d. n.d. 6.61 ± 0.10 2.74 ± 0.23 5.90 ± 0.28 4.08 ± 0.45

39.2 diethyl tartrate 15.61 ± 0.89 17.01 ± 0.73 11.07 ± 0.60 11.42 ± 2.02 20.16 ± 0.48 17.76 ± 1.03 15.19 ± 0.36 19.24 ± 2.03

40.4 ethyl hydrogen succinate n.d. n.d. n.d. n.d. 1.24 ± 0.05 0.70 ± 0.07 1.02 ± 0.06 2.02 ± 0.16

43.0 HMF 
b

16.71 ± 0.94 9.10 ± 0.16 10.28 ± 0.59 8.92 ± 0.99 383.38 ± 38 288.27 ± 12.71 309.70 ± 8.15 278.83 ± 11.91

Number of Compounds 7 11 9 8 27 26 26 28

tR (min) Compounds FruGlu(4aa) Glu Fru FruGlu FruArg(×2) FruCys(×2) FruGABA(×2) FruAspac(×2)

9.8 ethyl pyruvate 1.18 ± 0.16 1.81 ± 0.17 1.56 ± 0.07 1.62 ± 0.08 1.49 ± 0.29 1.13 ± 0.17 0.96 ± 0.07 1.27 ± 0.24

10.3 ethyl ethoxyacetate n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

10.9 hydroxyacetone 0.50 ± 0.09 0.26 ± 0.03 0.73 ± 0.03 0.62 ± 0.04 0.89 ± 0.17 0.60 ± 0.13 0.76 ± 0.16 0.70 ± 0.07

11.6 methyl 3-hydroxybutanoate 0.19 ± 0.02 n.d. 0.16 ± 0.03 n.d. n.d. 0.13 ± 0.01 0.14 ± 0.01 0.19 ± 0.03

12.0 ethyl lactate 0.76 ± 0.01 n.d. 1.53 ± 0.05 0.87 ± 0.04 1.45 ± 0.04 0.92 ± 0.02 1.30 ± 0.07 1.31 ± 0.09

14.3 ethyl glycolate 0.74 ± 0.02 n.d. 0.93 ± 0.03 0.55 ± 0.04 0.73 ± 0.04 0.84 ± 7.07 0.66 ± 0.07 0.78 ± 0.04

15.5 acetic acid 3.07 ± 0.33 0.55 ± 0.13 2.71 ± 0.43 1.95 ± 0.75 3.60 ±  0.22 4.35 ± 0.15 3.70 ± 0.80 3.54 ± 0.17

15.7 furfural 3.74 ± 0.23 n.d. 4.71 ± 0.53 4.13 ± 0.30 4.64 ± 0.42 3.54 ± 0.66 5.43 ± 0.51 4.93 ± 0.24

16.9 acetylfuran 0.17 ± 0.03 n.d. 0.26 ± 0.05 n.d. 0.23 ± 0.02 0.20 ± 0.02 0.29 ± 0.03 0.25 ± 0.02

18.1 propanoic acid 0.63 ± 0.04 n.d. 0.48 ± 0.05 0.16 ± 0.02 0.38 ± 0.07 0.47 ± 0.03 0.41 ± 0.05 0.52 ± 0.01

19.0 5-methylfurfural 0.41 ± 0.02 n.d. 0.61 ± 0.03 0.38 ± 0.04 0.62 ± 0.04 0.49 ± 0.02 0.53 ± 0.05 0.54 ± 0.07

19.3 2-cyclopentene-1,4-dione 1.95 ± 0.04 n.d. 1.53 ± 0.09 0.61 ± 0.04 1.40 ± 0.07 2.75 ± 0.06 1.32 ± 0.11 2.28 ± 0.21

19.8 ethyl 3-hydroxybutanoate 0.58 ± 0.02 n.d. 0.89 ± 0.05 0.45 ± 0.02 0.86 ± 0.03 0.61 ± 0.05 0.83 ± 0.05 0.77 ± 0.06

20.2 ethyl levulinate 0.19 ± 0.04 n.d. 0.25 ± 0.02 n.d. 0.24 ± 0.01 0.38 ± 0.03 0.20 ± 0.03 0.22 ± 0.02

21.7 furfuryl alcohol 0.22 ± 0.05 n.d. 0.34 ± 0.02 0.24 ± 0.05 0.33 ± 0.02 0.33 ± 0.03 0.34 ± 0.03 0.37 ± 0.03

22.2 diethyl butanoate n.d. n.d. 0.18 ± 0.01 n.d. n.d. n.d. n.d. n.d.

24.4 2(5H)-furanone 0.33 ± 0.01 n.d. 0.26 ± 0.00 0.15 ± 0.02 0.25 ± 0.01 0.30 ± 0.02 0.24 ± 0.02 0.33 ± 0.02 

24.9 2-hydroxy-2-cyclopenten-1-one 0.23 ± 0.02 n.d. 0.24 ± 0.02 0.25 ± 0.04 0.26 ± 0.04 0.23 ± 0.03 0.25 ± 0.03 0.25 ± 0.02

29.3 5-ethoxymethylfurfural 0.62 ± 0.01 n.d. 1.32 ± 0.12 0.58 ± 0.06 1.47 ± 0.07 1.03 ± 0.02 1.17 ± 0.03 1.17 ± 0.02

29.9 2-furoic acid n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.43 ± 0.02

30.7 2,5-furandicarboxaldehyde 3.47 ± 0.19 n.d. 6.05 ± 0.20 3.45 ± 0.18 5.76 ± 0.27 4.39 ± 0.20 5.19 ± 0.32 5.19 ± 0.31

31.2 methyl 2-furoate 1.47 ± 0.09 n.d. 2.77 ± 0.18 1.44 ± 0.12 2.80 ± 0.13 2.94 ± 0.11 2.71 ± 0.18 2.94 ± 0.13

33.3 dihydroxyacetone 0.83 ± 0.10 n.d. 1.19 ± 0.06 0.85 ± 0.10 1.40 ± 0.26 0.93 ± 0.07 1.21 ± 0.16 1.35 ± 0.05

36.0 5-acetoxymethylfurfural 1.01 ± 0.08 n.d. 1.59 ± 0.10 1.18 ± 0.13 1.75 ± 0.07 1.17 ± 0.09 1.49 ± 0.10 1.24 ± 0.10

36.3 dihydro-6-methyl-2H-Pyran-3(4H)-one n.d. n.d. n.d. n.d. n.d. 0.44 ± 0.07 n.d. 0.36 ± 0.04

37.6 DDMP 
a

0.27 ± 0.05 n.d. 0.56 ± 0.09 0.38 ± 0.03 0.58 ± 0.07 0.45 ± 0.03 0.67 ± 0.05 0.59 ± 0.03

38.2 hydroxymaltol 1.65 ± 0.15 n.d. 5.28 ± 0.51 2.08 ± 0.21 4.96 ± 0.60 2.50 ± 0.31 5.76 ± 0.45 5.02 ± 0.19

39.2 diethyl tartrate 15.14 ± 0.61 11.62 ± 0.43 15.31 ± 0.76 14.40 ± 1.11 15.13 ± 0.71 16.01 ± 0.69 13.02 ± 0.84 16.30 ± 0.86

40.4 ethyl hydrogen succinate 0.71 ± 0.05 n.d. 1.00 ± 0.16 0.54 ± 0.09 0.71 ± 0.09 0.47 ± 0.09 0.79 ± 0.07 1.05 ± 7.43

43.0 HMF 
b

153.54 ± 2.36 3.93 ± 0.12 298.43 ± 12.61 178.38 ± 10.09 303.20 ± 3.75 227.30 ± 7.93 289.52 ± 15.88 272.05 ± 15.87

Number of Compounds 26 5 27 23 25 27 26 28

Values are means of triplicate determination (n=3) ± SD

n.d. - not detected
a
 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one

b
 5-hydroxymethylfurfural
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In acidic medium, fructose more easily opens its ring structure than glucose, therefore 

is more reactive. Thus, this can be a good explanation for fructose MS developed a large 

number of volatiles, up to 27, comparatively to those formed in glucose MS (about 8 

compounds) (see Table 9.2). These results may also indicate that fructose in wines might be 

chemically more reactive than glucose. Göğüş et al. (1998) also found that fructose was more 

reactive than glucose when studied the kinetics of Maillard reactions through the preparation 

of MS containing the major sugars (fructose and glucose) and amino acids (glutamine and 

arginine) of boiled grape juice.  

Additionally, we could confirm that it is sugar that determines the volatile promotion, 

rather than the amino acid type, since MS prepared with different amino acids originated 

similar volatile profiles (see Table 9.2).  

Nursten (1981) verified that sugars by themselves show similar reactions to those 

produced between sugars and amino acids. Indeed, the current study showed that MS with or 

without amino acids developed similar compounds, especially those prepared with fructose 

(see Table 9.2). In this sense becomes difficult to elucidate if the Maillard reaction takes place. 

At this pH, the Maillard pathway more likely to happen it is the 1,2-enolisation that gives 

essentially the same products of acidic sugar degradation. Moreover, the change in the amino 

acid content did not revealed significant effect in the volatile profile (see Table 9.2). 

 

FIGURE 9.2 – Evolution of the chemical families during the heating of the FruArg model system. 

The obtained data show that, in general, the concentration of all chemical families 

increase during the heating step, especially furans, as can be seen for FruArg in Figure 9.2. 

Furans represent about 90% of the total compounds formed for the MS containing fructose, 

being HMF the most representative, about 95%, followed by 2,5-furandicarboxaldehyde (≈ 

2.1%) and furfural (≈ 1.5%)  - for FruArg MS see Table 9.3.  As it can be seen for FruArg, MS 

containing fructose did not show significant variation in the composition along the period of 

heating, with HMF representing about 84.2% of the total compounds formed.  
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TABLE 9.3 – Normalized amounts (%) of chemical families found in FruArg during its heating process. Distribution of 

the detected furans. 

 

It seems that the fructose is an important factor in the formation of HMF, given that, 

for example, FruGlu(4aa) and FruGlu, with the same amount of fructose (62.5 g/L) and glucose 

(62.5 g/L) showed higher percentages (about 81%) relative to glucose MS  (125 g/L, about 

33%).  

The predominance of furans can be explained by the fact that the heating of hexoses in 

an acid medium leads, after enolization, to the elimination of water molecules, originating 

furanic derivatives, essentially HMF (from a 1,2-endiol). Additionally, the dehydration of 

Amadori/Heyns compounds via 1,2-enolisation can contribute to the formation of furans, in 

the MS in which amino acids are present. Indeed, the 1,2-enolization is favoured by acid 

conditions (low pH) instead the 2,3-enolization. The 2,3-enolization originates carbonyl 

compounds, namely furanones and pyranones (Mottram, 2007). Although 2,3-enolization is 

not so favoured in acidic medium, it could be verified that it occurs, in less extension, since 

that DDMP and hydroxyacetone, typical markers of this pathway, were identified (Davidek, 

Clety, Devaud, Robert, & Blank, 2003; Martins, Jongen, & van Boekel, 2000). DDMP was found 

only in MS containing fructose and hydroxyacetone was found in all MS.  

Cutzach et al. (1999) found out that 5-ethoxymethylfurfural is formed during the 

ageing process of sweet fortified wines and suggested that its presence can be justified by the 

reaction between ethanol and HMF. In fact, we can confirm the presence of this compound in 

the MS. This furan was previously found in baked Madeira wines. In addition, 5-

ethoxymethylfurfural has been identified in wood-aged Madeira wines by Câmara et al. (2006). 

Organic acids were found in the current MS, and its formation can follow the scheme 

suggested by Ginz et al. (2000) (Figure 9.3). Actually, formic acid and acetic acid have been 

frequently found in glucose and fructose MS (Ginz, et al., 2000; Martins, et al., 2000). Acetic 

Carbonyls 2.8 ± 0.3 2.2 ± 0.2 1.9 ± 0.1

Ethyl esters 5.0 ± 0.8 6.2 ± 0.5 6.1 ± 0.2

Furans 89.8 ± 6.7 89.3 ± 3.8 90.4 ± 0.6

Pyrans 2.3 ± 0.3 2.3 ± 0.1 1.7 ± 0.0

Furfural 1.9 ± 0.1 1.4 ± 0.1 1.4 ± 0.0

Acetylfuran 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.0

5-Methylfurfural 0.2 ± 0.0 0.1 ± 0.0 0.2 ± 0.0

Furfuryl alcohol 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0

2(5H)-Furanone 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.0

5-Ethoxymethylfurfural 0.0 ± 0.0 0.3 ± 0.0 0.5 ± 0.0

2-Furoic acid 0.0 ± 0.0 0.2 ± 0.0 0.2 ± 0.0

2,5-Furandicarboxaldehyde 2.5 ± 0.2 2.2 ± 0.2 1.6 ± 0.0

 Methyl 2-furoate 1.0 ± 0.0 1.0 ± 0.0 0.9 ± 0.0

5-Acetoxymethyl-2-furaldehyde 0.2 ± 0.0 0.1 ± 0.0 0.4 ± 0.0

HMF 94.1 ± 7.1 94.7 ± 3.9 94.7 ± 0.5

% 4 Months3 Months2 Months
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acid, propanoic acid and formic acid (detected but not measured) could be found in the 

present MS. The group of ethyl esters found in the analysed MS may result from organic acid 

esterification in the presence of ethanol, namely the ethyl esters from pyruvic acid, lactic acid, 

glycolic acid and levulinic acid.  

 

FIGURE 9.3 – Formation of organic acids by sugar degradation.   

The total amount of the compounds formed during the heating step is exhibited in 

Figure 9.4. Other than the large number of compounds formed by fructose MS, these model 

systems also present a higher amount when compared with glucose MS. Moreover, fructose 

MS also showed a greater increase with heating. The effect of doubling the amino acid amount 

does not affect significantly the kinetics of production of volatile compounds. 

The experimental results were complemented with a preliminary olfactometric test 

performed by persons involved in the production of Madeira wines. MS prepared with fructose 

and cysteine (FruCys) revealed the presence of aromas usually found in Madeira wine, namely 

caramel and dried fruits. 
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FIGURE 9.4 – Evolution of the total amount, relative to internal standard, of the volatile compounds formed in all 

MS, during the heating step. 

 9.3.2 Colour development 

The colour developed by the several MS after the heating step was evaluated from the 

UV spectra recorded between 240–600 nm. At the initial stage, all MS were colourless but 

along baking became yellowish. As it can be seen in Figure 9.5, all MS absorb mainly bellow 

300 nm, after the heating step. The absorbance is higher whenever fructose is present in the 

MS. This absorption may be principally due to furans formation, which absorb below 300 nm. 

Actually, the yellowish colour developed by the MS containing only fructose was less intense 

than the developed by MS containing fructose and an amino acid. 

 

FIGURE 9.5 – UV spectra recorded between 240 – 600 nm of A: GluArg, GluCys, GluGABA, GluAsp; B: FruArg, FruCys, 

FruGABA, FruAspac; C: GluFru(4aa), Glu, Fru, GluFru; D: FruArg(×2), FruCys(×2), FruGABA(×2), FruAspac(×2). 
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The extent of browning of the several MS along heating was measured by the 

absorbance determination at 420 nm (Figure 9.6). It can be observed that MS in which fructose 

exists presented higher absorbance, generally showing a significant increase during the heating 

period. Furthermore, Figure 9.6 also shows that the presence of amino acids tends to favour 

the browning, perhaps by occurrence of the Maillard mechanism together with acidic sugar 

degradation. The absorbance increase seems to be slightly more pronounced in MS where the 

amino acid content was doubled, probably due to the increasing of the reaction kinetic, 

through the amino acids action. Indeed, the MS containing cysteine, mainly FruCys and 

FruCys(×2), attained higher browning values at the current heating conditions. 

 

FIGURE 9.6 – Absorbance at 420 nm of the MS during the heating step at 50 °C. 

 9.3.3 Total antioxidant capacity 

The antioxidant activity of Maillard products has been studied by numerous 

investigators (Chawla, Chander, & Sharma, 2007; Moreno, Peinado, & Peinado, 2007; Osada & 

Shibamoto, 2006; Yilmaz & Toledo, 2005). The total antioxidant capacity (TAC) of the MS was 

determined by bleaching the pre-formed ABTS radical cations. The addition of free radical-

scavengers to a solution containing ABTS-derived radical cations leads to a decrease in the 

absorbance of the MS at 734 nm. Table 9.4 shows that MS presented antioxidant capacity. The 

obtained results varied from 3.03 mg/L (GluGABA) to 65.11 mg/L (FruArg). The fructose MS 

presented higher TAC, averaging 56.39 ± 8.40 mg/L, than glucose MS, 6.40 ± 4.45 mg/. These 

results indicate that antioxidant potential is dependent on the sugar type. Moreover, the TCA 

values obtained in the present study, showed minor differences between the MS with or 

without amino acids, suggesting that the presented antioxidant potential is exclusively from 

products formed from sugar degradation. 
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TABLE 9.4 – Total antioxidant activity (TAC) of the MS after 4 months of heating at 50 °C, expressed as mg/L of gallic 

acid equivalents (GAE). 

 

 

9.4 Conclusions 

This work revealed that an important number of volatiles are formed through sugar 

degradation in model systems prepared under the same conditions of baked Madeira wines.  

The sugar derived-products found belongs to different chemical families, like carbonyls, ethyl 

esters, pyrans and furans.  Furans are the main family of compounds formed in the conditions 

of the experiment, namely HMF, which represent about 84% of the major volatiles of the 

fructose MS. The prepared MS showed that the volatile formation is independent from amino 

acids, but strongly dependent from sugar type. In this sense fructose MS develop more volatile 

compounds than glucose MS, indicating that fructose is more reactive than glucose. 

Nevertheless, the amino acids (namely cysteine) seem to have a greater impact in the colour 

formation. In terms of antioxidant activity fructose MS presented higher levels (about 56.4 

mg/L GAE) than glucose MS (about 6.4 mg/L GAE). 
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CHAPTER 10 

Conclusions 

 

The main aim of this thesis was to explore the effects of estufagem on some chemical 

constituents of Madeira wines. From the overall work, some conclusions can be drawn: 

(a) Two validated analytical methods were developed to overcome the need of 

monitoring target compounds, namely amino acids, biogenic amines, polyphenols and 

organic acids, combining precision and reproducibility to execution effectiveness. The 

methodology for the simultaneous quantification of amino acid an biogenic amine in 

wines was achieved through a RP-HPLC-FLD method, using a pre-column o-

phthaldialdehyde (OPA) derivatization procedure, performed in the sample injection 

loop, simplifying the derivatization procedure and achieving reproducible results 

(average RSD of 2%). The developed method allowed the quantification of 19 amino 

acids and 6 amines within 80 min. Moreover, the methodology for the quantification 

of monomeric polyphenols and organic acids in wines was achieved through a RP-

HPLC-DAD procedure, which allowed the quantification of 8 organic acids, 22 

polyphenols and also 2 furanic compounds simply by direct injection of wine samples, 

ensuring sensitivity and reproducibility (RSD below 9.0%). The elution was performed 

in 12 min for the organic acids and in 60 min for the phenolic and furan compounds. 

 

(b) Now, regarding the effect of estufagem on Madeira wines, it was clearly demonstrated 

that there is a strong relation between HMF, sugar content and baking 

temperature/time, ie, the amount of HMF tends to increase with heating, and 

important amounts (greater than 1 g/L) can be formed in sweet wines if heated above 

standard conditions (more than 50 °C). The results also suggest that HMF levels can be 

easily controlled when Madeira wines are submitted to adequate conditions of heating 

during estufagem (about 45 °C during 4 months; HMF levels up to about 150 mg/L). 

Furthermore, different temperatures/periods for the baking of sweet and dry wines 

may be considered. 

 

(c) Most amino acids decreased with heating, suggesting their participation in the 

formation of aromas (Strecker degradation). The decrease was more pronounced in 

sweet wines (about 109 mg/L of amino acids were transformed), which can be 

associated with the development of the wine bouquet with ageing. This can explain 

the lower evolution of dry wines during the heating process, showing once again that 

the conditions for heating sweet and dry wines are not necessarily the same, as it is 

currently done. 

 

 



 

 
216 

(d) The total concentration of biogenic amines never exceeded 12 mg/L, indicating that 

the Madeira wines appear to be produced under adequate hygienic conditions and 

safe from a healthy point of view, including when wines are submitted to heating. 

Moreover, the results indicate that amines practically remained constant during the 

heating period, so that, it can be concluded that temperature and time do not 

promote their development. 

 

(e) It seems that estufagem do not greatly affect the total polyphenolic composition of 

the Madeira wines, moderately decreasing up to 25%, with at least 434.42 mg (GAE)/L 

of total polyphenols present after heating, which is comparable with most white 

wines. Similarly, the antioxidant potential of baked wines (0.94 – 1.64 mM) is also 

comparable to white wines. 

 

(f) The most abundant class of phenolics in Madeira wines were hydroxycinnamates and 

hydroxybenzoates, even in baked wines. Most individual polyphenols decline after 

estufagem be applied, with the exception of caffeic, ferulic, p-coumaric, gallic and 

syringic acids.  

 

(g) The results showed that all baked wines tend to the same chromatic characteristics: 

white wine turns to brownish colour and red wines become clearer, loosing the red 

tones since the monomeric anthocyanins decline, and also acquire yellow tones. 

 

(h) The analyses of organic acids showed that Madeira wines are especially rich in malic 

acid (about 55%) and that estufagem promote the decline of most acids, excepting for 

lactic, acetic and formic acids. 

 

(i) Estufagem introduced important changes in the volatile composition of dry and sweet 

Madeira wines, especially promoting its increase. The increase is especially important 

in furans and esters. On the contrary, some chemical families tend to the opposite 

trend, namely varietal aromas, such as monoterpenic alcohols often encountered in 

Malvasia wine, which disappear after baking. It was also verified that estufagem 

favoured the development of some volatiles usually reported as typical aromas of 

Madeira wines, particularly phenylacetaldeyde, β-damascenone and 5-

ethoxymethylfurfural. Additionally, estufagem also promoted the development of 

positive potential contributors to the global aroma of baked wines such as ethyl 

butyrate, ethyl 2-methylbutyrate, ethyl hexanoate, ethyl isovalerate, 5-

hydroxymethylfurfural and γ-decalactone. In contrast, promoted the increase of 

volatile phenols usually considered off-flavours such as guaiacol, especially when 

higher temperatures were used. 

 

(j) Finally, according to glucose and fructose model systems prepared under similar 

conditions of Madeira wines submitted to baking it was observed that several volatile 

compounds are developed (up to 29 volatiles were identified). The identified 

compounds enclose carbonyls, ethyl esters, pyrans and mainly furans, most of them 
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usually identified in baked Madeira wines. HMF represented about 84% of the 

compounds formed principally during the heating of model systems containing 

fructose. It was also demonstrated that the development of colour, aroma and 

chemical composition is highly associated with thermal degradation of sugars, 

particularly when the sugar is fructose. 
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CHAPTER 11 

Future perspectives 

 

The conclusions presented in the current thesis satisfy the objectives which were 

initially outlined, but raise new questions and request additional studies in order to 

increase the knowledge about the impact of estufagem on Madeira wines. New tests are 

fundamental to elucidate and reinforce some encountered trends, as well as other issues 

and prospects for future work have to be done. As future work we consider important to: 

(a) Improve the developed methodologies - whenever possible, increase their 

sensitivity and reduce the analysis time/chemical consumption, namely using 

shorter columns. 

 

(b) Get a better insight about the involvement of amino acids in the development of 

specific ageing aromas formed during the heating step, particularly by continuing 

to study model systems involving the reaction of sugars with amino acids, 

according to the Strecker degradation. Preliminary studies were already 

performed, but different extraction procedures should be applied in order to 

obtain a better response to minor volatiles. 

 

(c) Confirm the identification of the volatiles formed in the performed model systems 

preparing new model systems. Elucidate their odorant importance through GC-O 

studies. 

 

(d) Pursue with the identification of the several volatile compounds that remain 

unknown with the intention of improving the understanding of their origin and 

specific role in the aroma of the baked Madeira wines. 

 

(e) Apply a convenient methodology to evaluate the presence of sotolon in the 

studied Madeira wines. 
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