

An Online Platform for Real-Time Sensor

Data Collection, Visualization, and Sharing

In Partial Fulfillment of the Requirements for the Degree of

Master of Informatics Engineering

Presented to the Department of Mathematics and Engineering of the University

of Madeira, Portugal by

Salvador Martinho Rodrigues Faria

in November 2010

Supervisor: Prof. Vassilis Kostakos, PhD

2

Declaration

Hereby I declare that I wrote this thesis myself with the help of no more than

the mentioned literature and auxiliary means.

Up to now, this thesis was not published or presented to another examinations

office in the same or similar shape.

Salvador Martinho Rodrigues de Faria

3

Abstract

Sharing sensor data between multiple devices and users can be

challenging for naive users, and requires knowledge of programming and use

of different communication channels and/or development tools, leading to

non uniform solutions. This thesis proposes a system that allows users to

access sensors, share sensor data and manage sensors. With this system we

intent to manage devices, share sensor data, compare sensor data, and set

policies to act based on rules. This thesis presents the design and

implementation of the system, as well as three case studies of its use.

4

Acknowledgments

I would like to start by thanking my supervisor, Professor Vassilis

Kostakos, for the support and guidance from the beginning to the end of the

project. He provided a fruitful weekly meeting for project discussion, and

shared his bright ideas which improved the project development.

My thanks also go to Professor Jose Carlos Marques, for providing access

to the wine laboratory, and for all explications and information‟s when

needed.

Lastly, I would like to thank to my family and offer my regards to all of

those who supported me in any aspect, during the completion of the project.

5

Table of Contents

Abstract .. 3

Acknowledgments .. 4

Table of Contents ... 5

List of Figures ... 7

List of Tables .. 10

List of Software Developed or Modified ... 11

List of Case Studies ... 12

1 Introduction .. 13

1.1 Motivation .. 15

1.2 Contribution ... 16

2 State of The Art & Related Work .. 17

2.1 Sensor data collection ... 17

2.2 Wireless sensor networks .. 17

2.3 Message oriented Middleware ... 18

2.4 Sharing sensor data .. 19

2.5 Smart environments .. 20

2.6 Sensor Andrew .. 21

2.6.1 Sensors over XMPP .. 22

2.7 XMPP .. 23

2.7.1 Streaming XML .. 26

2.7.2 XMPP Protocol ... 28

2.7.3 Publisher Subscriber .. 30

2.7.4 Publisher-Subscriber in XMPP ... 31

3 System Description ... 34

3.1 Example Scenarios .. 34

3.2 System requirements .. 35

3.3 High Level Architecture ... 37

6

3.4 System components .. 39

3.4.1 Services ... 39

3.4.2 Web Application .. 50

3.4.3 Tools ... 69

3.4.4 HTTP POST upload ... 73

3.4.5 Platform .. 74

4 Case Studies .. 81

4.1 Mail Box .. 81

4.2 Refrigerator ... 85

4.3 Wine Monitoring ... 89

4.3.1 Objectives ... 89

4.3.2 Selecting Sensors ... 89

4.3.3 Sensor testing and connections ... 91

4.3.4 Probe Construction .. 93

4.3.5 Installation .. 97

4.3.6 Sensor Data ... 98

4.3.7 Conclusion & Results ... 100

5 Tests ... 102

5.1 Reliability & Performance .. 102

5.2 Storage ... 103

6 Conclusion & Future Work ... 104

6.1 Future Work .. 104

6.2 Concluding Remarks ... 107

Bibliography .. 109

Appendices ... 115

7

List of Figures

Figure 1 - Wireless Sensor Network ... 18

Figure 2 – Sending XMPP Message ... 23

Figure 3 - PubSub vs HTTP .. 30

Figure 4 - High-Level Architecture ... 37

Figure 5 - Deployment Diagram .. 38

Figure 6 - Datarecorder Service ... 40

Figure 7 - Actionchecker Notification Execution 42

Figure 8 - Initializing Actionchecker .. 43

Figure 9 - SMS Notification .. 45

Figure 10 - Twitter Notification ... 46

Figure 11 - New Policy ... 49

Figure 12 – Main Interface ... 51

Figure 13 - Devices Map .. 52

Figure 14 - Sensor details and Network connections 52

Figure 15 - Community Networks .. 53

Figure 16 - Network details ... 53

Figure 17 - Sensor details .. 54

Figure 18 - Calling Actuator Function .. 55

Figure 19 - Adding a new Sensor Network ... 56

Figure 20 - Adding a new Sensor ... 57

Figure 21 - Adding a new Actuator .. 58

Figure 22 - Policy details ... 59

Figure 23 - Sensor Rule ... 60

Figure 24 - Date Rule .. 60

Figure 25 - History Rule .. 61

Figure 26 - Event Log .. 61

Figure 27 - Line Chart ... 64

Figure 28 - Bar Chart ... 64

Figure 29 - Pie Chart ... 65

Figure 30 - Radar chart ... 65

Figure 31 – Aggregate and Raw data ... 66

Figure 32 – Zooming in Raw Data .. 66

Figure 33 - Export Panel .. 67

Figure 34 - Platform Users... 67

8

Figure 35 - Services Status .. 68

Figure 36 - Platform Configuration .. 68

Figure 37 - HTTP POST Publishing ... 73

Figure 38 - Database Model ... 75

Figure 39- Magnetic Door Sensor, RF Module and Arduino 82

Figure 40 - Mail Detector ... 82

Figure 41 – Installed Components ... 83

Figure 42 - Policy Details ... 84

Figure 43 - SMS Notification Message .. 84

Figure 44 - Refrigerator Sensors .. 85

Figure 45 - Sensor Network ... 86

Figure 46 - Recorded Sensor Data ... 86

Figure 47 – Door open average time .. 87

Figure 48 - Average open count by hour .. 87

Figure 49 - Average Presence in Kitchen .. 87

Figure 50 - Presence and Refrigerator.. 88

Figure 51 - Wine Tank ... 89

Figure 52 - Wine Laboratory .. 89

Figure 53 - Alcohol Sensor .. 92

Figure 54 - Gas Sensors... 92

Figure 55 - Wiring Scheme ... 92

Figure 56 - Second attempt Probe ... 93

Figure 57 - Third attempt Probe Modules .. 93

Figure 58 - Liquid module ... 94

Figure 59 - Gas Sensors with Microcontroller ... 94

Figure 60 - Gas Module Parts ... 95

Figure 61 - Idealized Sensor Probe .. 95

Figure 62 - USB and DC Jack .. 96

Figure 63 - Gas Sensors... 96

Figure 64 - Final Probe .. 96

Figure 65 - Installation .. 96

Figure 66 – Installed Probe .. 97

Figure 67 - Sensor Gateway ... 97

Figure 68 - Sensor Variables .. 98

Figure 69 - Sensor Data from July .. 99

Figure 70 - Drilling Sensor Data by Day ... 99

9

Figure 71 - Ejabberd Pub-Sub features not implemented 115

Figure 72 - Updating chart .. 121

10

List of Tables

Table 1 - SOX library main functions ... 22

Table 2 - Message Types ... 28

Table 3 - IQ Types ... 29

Table 4 - Node Affiliations and Privileges .. 31

Table 5 - Node Types .. 32

Table 6 - Node Access Models ... 32

Table 7 - Data Representation Comparison .. 62

Table 8 - Platform File Structure .. 74

Table 9 - Liquid Measurable Parameters .. 90

Table 10 - Gas Measurable Parameters .. 90

Table 11 - Publishing Results .. 102

Table 12 - Notification Results .. 102

Table 13 - Upload Rates & Space Consumption 103

Table 14 - XMPP servers comparasion ... 116

Table 15 - PHP Framework Comparison ... 118

Table 16 - CodeIgniter Features .. 118

Table 17- Chart component comparison .. 120

Table 18 - OFC2 features .. 121

11

List of Software Developed or Modified

SOXLIB - SOX library is library developed by Sensor Andrew project.

It provides a set of common functions and a uniform interface for all

Sensor Andrew applications. This library implements the basic XMPP

Pub-Sub functionalities and XMPP user administration functions.

 79

SOX_TOOLS - Is a utility tool that uses SOX library and allows users

to manage XMPP nodes, affiliations and subscriptions. Also allows

publishing sensor data, listen, listen for actuator commands and

publishing actuator commands.

 69

SAWA_TOOLS - This tool is stripped version of SOX_TOOLS, and is

used by the web application to retrieve data from XMPP and to make

XMPP requests.

 71

SAWA - The web application provides a set of common

functionalities, network and sensor management, data exporting,

chart generation, policies and administration.

 50

ACTIONCHECKER - The actionchecker service is responsible for

matching in real-time user defined policies with sensor input, and

then to execute the associated notification.

 41

DATARECORDER - The datarecorder service is responsible for

subscribing and storing sensor data, when requested by users.

 39

SCHEDULER - The scheduler is a coordinator service, responsible for

managing new requests and other relevant operations. This service

is also responsible for communicating with other services to

delegate new tasks.

 48

12

List of Case Studies

Mail Box

The mail box use case, consisted in

adding sensors to a letterbox, and

setting a policy to notify by SMS when a

new letter arrived.

81

Refrigerator

The purpose of the refrigerator use case

was to monitor interesting statistic

parameters, such as the temperature,

door open times, open count, and others

more.

85

Wine Monitoring

The wine monitoring use case consisted

in building a sensor probe to monitor

important wine parameters. With the

objective of gaining scientific

understanding of the vinification process

of Madeira wine.

89

13

1 Introduction

A sensor can be defined as a device that measures a physical quantity

and converts it into a signal which can be read by an observer or by an

instrument [1]. They can be found everywhere, from sensor networks around

the world to personal processors in our clothes that detect nutrition and

hydration deficiencies in future [2].

Sensors come in all shapes and sizes, and are widely used in many fields,

industrial, commercial and home applications. The term sensor covers a

variety of applications and devices, which ultimately becomes a very broad

concept. Sensors can be used to alert people or systems; however the majority

of sensors are used to regulate and control the existing operations [3]. The

most common sensors are the temperature and fire detectors in alarm

systems.

Other common term is the transducer, which can be defined as “device

that converts one type of energy to another” [4], and this conversion can be in

different ways: electric, electromagnetic or mechanic. Transducers can be

categorized by their application, whether they are used as sensor or actuator

or as even as a combination.

With big advances in processor technologies and wireless

communication, sensor networks and home automation systems have been

growing in the last years [5,6]. Home automation is one field where the

communication between sensors, actuators and supervisor system is

necessary. In the home automation systems, many sensors distributed in the

house collect various physical data such as temperature, humidity, motion,

and light to provide information to the HVAC (Heating, Ventilating, and Air

Conditioning) control system [7].

Researchers have already successfully built many similar sensor

networking applications, but they are typically isolated, small-scale and short-

lived experiments [8]. This raises the necessity of interconnecting various

sensors, one good example is home automation where sensors and actuators

are all connected, but these systems are at smaller scale, they use bespoke

transducers, and mostly they are proprietary.

14

Many systems have been proposed for connecting sensors and sensor

networks. We will use Sensor Andrew middleware as the basis of our system,

and we intent to build a system to facilitate the process of sharing sensor

data, and access to data. More specifically, we want the system be able to

maintain the devices, whether registering sensors and actuators, allowing

persons or corporations to monitor their devices and define who has access to

information; present data to users in form of charts, giving a better

interpretation and meaning to data; supporting groups, allowing a set of

permissions and accesses; recording of sensor data when requested, enabling

monitoring at long term; and user policies which verify certain sensor

conditions and execute a set of actions, including calls to remote functions in

actuators.

Main proposed functionalities:

 Sensor network and sensor management

 Access groups

 Data visualization

 Data recording

 Policies

With the proposed system we hope to facilitate the access to sensor data,

providing a uniform and common access. We expect the system will not be

used essentially on web, but we hope the system will be a good basis, to be

used in smart homes and small organizations.

In this thesis we will describe our system as fallows. In Section 2 we

present related work that we based our system or we get some ideas and next

we describe the differences between our system and others. In Section 3.1,

some hypothetical scenarios of possible use the system are described. And in

section 3 we describe the system high-level architecture and the detailed

information about each component of the system.

15

1.1 Motivation

In this section we analyze the main factors of motivation that led to the

development of our work.

Sharing sensor data

Information available anywhere and anytime about the physical world has

value, with sensor networks deployed across the globe, by various

organization, governments, scientist and general public, it becomes clear that

data sharing is an important step to get more value [9].

With increasing penetration of embedded sensors in networked devices,

such as GPS sensor in mobile phones, enables the creation of applications that

take into account the current state of the real world [10]. This kind of

information may be useful to be shared in community places, such as social

networks, where users may share their personal state with their friends. With

such advantages in sharing, our system shall have the possibility of sharing

information, either for specific users or a bigger audience, to accomplish the

system will provide access policies.

Data visualization

Collected data from sensors is normally difficulty to interpret, and

combined with the fact that the specialists who interpret the data are usually

not experts in computers, they need an easy tool to use for manage the

collection of data [9]. The application domain may help scientists to leverage

computational power to simulate, visualize, manipulate, predict and gain

intuition about monitored phenomenon [11].

Visual representation of data can be done in many ways, the most

common are charts. Evolution charts are charts that represent one measure

over an evolving dimension, time for instance. These types of charts are useful

to compare new data with previous data, as well with different periods of time.

Our system shall use these types of charts, being possible to be configured

either by different sensors, and different periods of time.

16

1.2 Contribution

The broad objective of our proposed system is to simplify capturing and

sharing sensor data. Having multiple systems, which operate with their own

interface/tools, can be time consuming, and can be very difficult to execute

the same options in all. We will develop a platform where users can add their

sensor networks and sensors allowing sensor management from a common

and uniform portal.

Our system will give users the possibility of adding their networks and

sensors, along with the use of data recording and policies services. With the

integration of disperse sensors, it will be possible to reuse sensors, for

example a fire alarm siren could be used in gas leaks situations as well for

another critical situations.

The system will provide a set of different notifications, and users can

define their own policies, to act based on sensor input. For example, a policy

can be defined to evaluate if no presence is detected in a room for more than

20 minutes, and in affirmative case it can turn the lights off. The system

policies allow great flexibility, making possible to create policies that were

difficult to implement without our system.

17

2 State of The Art & Related Work

In this section we will start by introducing the different methods for

retrieving sensor data, next by introducing the wireless sensor networks and

the proposed middleware projects that had in mind the sensor nodes

limitations in wireless sensor networks.

Thereafter we introduce sensor web services which apply social

networking principles in sensor data sharing, the smart environments which

learn user behaviors to automate them, and finally a high-level middleware.

2.1 Sensor data collection

There are different methods for retrieving data from sensors, continuous,

event-oriented, query-oriented and hybrid. This can depend on network design

and resources constraints, like power and limited communication. In

continuous method, the sensor data is sent continuously at predefined rate

(e.g. temperature every hour). In event-oriented mode, the sensor data is sent

when an event of interest occurs (e.g. presence in room). In query-oriented

model, the applications are responsible for defining witch events are of

interest and then querying sensors (e.g “select sensors where temperature >

40 and C02 > 15”). Finally the hybrid method can use more than one of the

other three methods [12].

2.2 Wireless sensor networks

Sensing has evolved from manual metering to centralized data

acquisition system to a new era of distributed wireless sensor networks [13]. A

wireless sensor network (WSN) consists of spatially dispersed autonomous

sensors nodes to cooperatively monitor physical or environment conditions,

such as temperature, sound, vibration, pressure, motion and pollutants [14].

Motivated by military applications, the development of sensor networks is

currently applied to industrial and civil areas, including industrial process

monitoring and control, traffic control and home automation [15].

18

Figure 1 - Wireless Sensor Network

A sensor node, also known as mote, is a node in a WSN, and is capable of

performing processing, gathering sensor information, and communicating

with other network nodes. Sensor nodes may contain more than one sensor,

and is typically equipped with a radio transceiver or other wireless

communication device, a small microcontroller, and an energy source [16].

Wireless sensor networks are exposed to many technical limitations, like

low power, limited computational capacity and transmission rate. In these

networks, the nodes are heterogeneous and the available applications have in

mind the devices constraints.

Due to these limitations, many protocol and middleware solutions have

been proposed, in order to minimize the resource usage. Mostly of these

solutions take in account low-level protocols and hardware implementations,

making difficult to create applications and integrate multiple systems without

“reinventing the wheel”.

2.3 Message oriented Middleware

Mires, is a message oriented middleware (MOM), that focus in WSN, and

was proposed in 2005, as solution to address applications requirements,

considering the characteristics of sensor networks (low processing power, cost

of communications).

In Mires, a sensor node advertises his attributes (e.g. temperature and

humidity) collected from local sensors. This advertisement is routed to the

sink node. User applications connected to the sink node are able to select the

advertised nodes attributes. The subscription is broadcasted to sensor nodes,

which will start to publish sensor data [17].

19

2.4 Sharing sensor data

Services like Pachube
1

 and SensorPedia
2

 have the objective of joining the

social network principles to sensor data. Pachube is an innovative web service,

which enables users to share and discover real time sensor data from objects,

devices and spaces around the world. A user can easily register a sensor feed

and start uploading sensor data.

These services have a map service, like Google Maps
3

, where sensors can

be searched geographically and be tagged. SensorPedia is currently in beta

version and is limited to invited testers only. However, Pachube is online for a

few years, has 10 years of evolution and has constructed a big community.

This community helped the project development, and currently has available

third party applications to interact with the system (mobile applications,

charts, etc).

Recently Patchube started to offer triggers, allowing users to have URL

event notification and experimental SMS notifications. The Pachube web

service has the major advantages of being simple, a big community and a set

of third party applications. As disadvantages; Pachube relies on

Representational State Transfer (REST) paradigm, no support for actuators and

has basic and limited triggers.

Our system is similar to Pachube, in the way it has the same objectives,

allowing users to easily share sensor data and visualize them. Besides the

similar objectives, our system allows a high scalability, extensibility, security

and privacy in the middleware. Our system allows multiple entities to

subscribe sensor data in a push method, define user access type and groups,

encryption and other relevant XMPP Pub-Sub features
4

. In the web interface, it

is possible to manage sensors networks and devices, allowing users to add

any sensor and actuator device with images and related information. From the

web interface it is possible to directly call commands in the actuators and

create advanced policies, which can use different types of rules and actions.

1

 www.pachube.com

2

 www.sensorpedia.com

3

 http://maps.google.com

4

 http://xmpp.org/extensions/xep-0060.html

http://maps.google.com/
http://xmpp.org/extensions/xep-0060.html

20

2.5 Smart environments

A smart environment can be defined as a small world where different

kinds of smart devices are continuously working to make inhabitants lives

more comfortable [18], and its major goal is to anticipate actions of a human

inhabitant and then automate them [19]. Smart environments are a recently

and promising area of study, it focuses in making use of context-aware data

from environments to predict inhabitants habits and then automate them.

Smart environments are classified by having remote control of devices,

device communication, information acquisition/dissemination, enhanced

services by intelligent devices, and predictive and decision-making capabilities

[18].

Smart environments can be used in many useful ways, like inhabitant‟s

safety; resource optimizations (e.g., energy consumption); task automation

and can be very useful for disabled people. We could imagine arriving at

home, and then the doors open automatically, the lights turn on if the light

intensity is low, the TV turn in the favorite TV program at that specific hour.

Currently in many systems, these kinds of events are only user defined;

the users expressly define the rules and respective actions (static policies).

Static polices work in most of the situations, but they do not adapt to the

changing environment and require user to change these policies. The smart

environment is a solution to introduce more dynamism to the user defined

policies. As cited in article [19], it is possible to learn human actions using

sensors, and then make predictions to execute actions.

Automation can be viewed as a cycle with two phases, with the

perception phase and the actuation phase. In smart environments, the

perception of an environment is a bottom-up process, sensors and physical

devices continuously monitor de environment, and upload the data to a central

database. The data archived on database is mined and processed by specific

applications to knowledge (models, patterns, etc). Finally, hidden knowledge is

used for intelligent decision making and subsequent actions [20].

Our system does not address smart environments, but due to nature of

the used middleware, in terms of scalability and extension, it is relatively

21

simple to integrate an artificial intelligence agent to cooperatively work with

our platform. An intelligent agent (IA) could benefit from the middleware and

the platform, the platform has user defined rules and centralizes all sensor

data in a database. The central database would be used for data mining, and

the platform policies, could be used to rate/disable/limit the IA actions.

2.6 Sensor Andrew

Sensor Andrew is a scalable campus-wide sensor middleware, developed

with the objectives of supporting ubiquitous large-scale monitoring and

infrastructure control [21]. The Sensor Andrew is a project developed by

Carnegie Mellon University in order to integrate multiple systems, and was

designed to be extensible, easy to use, and secure while maintaining privacy.

Sensor Andrew middleware allows application developers to be able to

transmit sensor data with no need to re-invent lower-level interfaces.

Sensor Andrew design goals:

 Ubiquitous large-scale monitoring and control: support for sensing

and actuation.

 Ease of management, configuration and use: easy to use, manage

and develop applications.

 Scalability and extensibility: support for any device, and support

extensions

 Built-In security and privacy: support for security and privacy,

encryption, key management, access control and user management.

 Infrastructure sharing: allow application to reuse of infrastructure

devices.

 Evolvability: support for different computational paradigms and

support changes.

 Robustness: built-in robustness and able to reconfigure itself.

For the communication protocol, they defined as requirements standard

messaging protocol; extensible message types; point-to-point and multicast

messaging; support for data tracking and/or event logging; security, privacy

and access control; and internet-scale. Given the requirements, they used the

eXtensible Messaging and Presence Protocol (XMPP). XMPP is an open protocol,

22

based in XML, and traditionally used in messaging applications. In Section

2.7.2 we detail more about the XMPP protocol.

Like our requirements, Sensor Andrew focuses on high-level applications,

and not on low-level sensor protocols which addresses the constraints of

sensor nodes and specific technologies. We selected Sensor Andrew solution

as our starting point, because many of our requirements were met by its

design.

Next we describe the Sensors Over XML extension, the XMPP, XMPP

protocol, and finally the XMPP Pub-Sub extension.

2.6.1 Sensors over XMPP

The Sensors Over XMPP (SOX) library is developed by Sensor Andrew

project; it provides a set of common functions and a uniform interface for all

Sensor Andrew applications. This library implements the basic XMPP Pub-Sub

functionalities and XMPP user administration functions. This library

implements the Sensor Andrew XML schema available at our project wiki
5

page; this XML schema allows devices to “talk” the same common language.

SOX library main dependencies are Glib
6

 and Loudmouth
7

, the last one is

a lightweight C library for programming with XMPP protocol, this lightweight

library provides a set of functions to interact with XMPP server, including

TLS/SSL security protocols. In the other side, Glib is a cross-platform utility

library which provides advanced data structures, doubly and singly-linked

lists, hash tables, dynamic strings and string utilities, and other advanced

functions [22].

Create XMPP connection Subscribe

Create new user Unsubscribe

Delete user Retrieve subscriptions

Create node Create sox message

Delete node Publish sox message

Retrieve last published item Send direct message

Table 1 - SOX library main functions

5

 http://hci.uma.pt/wiki/index.php/SAWA#Documents

6

 http://library.gnome.org/devel/glib/stable

7

 http://lexs.it.cx/loudmouth

http://library.gnome.org/devel/glib/stable/
http://lexs.it.cx/loudmouth/

23

2.7 XMPP

The Extensible Messaging and Presence Protocol is an open protocol

based on Extensible Markup Language (XML), designed for real time

communications, being the XML the base format for exchanging information.

With XMPP protocol it is possible to support a vast quantity of services, such

as, channel encryption, authentication, presence, contact lists, one-to-one

messaging, multi-party messaging, service discovery, notifications, structured

data forms, workflow management and peer-to-peer media sessions [23].

XMPP is used by many types of applications, instant messaging, multi-

party chat, voice and video calls, collaborations, lightweight middleware and

content dissemination [24,25], also expanded to the domain of message-

oriented middleware‟s. Built to be extendible, the protocol has been extended
8

with many features, including the Publisher-Subscriber paradigm.

For example, Google Talk and Google Wave use XMPP protocol and

extensions for information interchange. Referring this article [26], by 2003

was estimated that software using XMPP was installed in hundreds of server

across the internet and be used by ten millions of people.

Figure 2 – Sending XMPP Message

8

 http://xmpp.org/xmpp-protocols/xmpp-extensions

http://xmpp.org/xmpp-protocols/xmpp-extensions/

24

Figure 1 shows how XMPP uses a decentralized addressing, making it

highly scalable, in the same way a domain can run its own email server.

Addressing in XMPP is defined first with a client identification (referred to as a

JID) followed by a domain name and then a resource name [21].

salvador@hci.uma.pt/home

Messages are not sent between clients, but instead are sent using the

client XMPP server. XMPP is both, a client-to-server and server-to-server

protocol [27,28]. When a client sends a message, the message is sent to the

client local server (1 to 2), if the receiver XMPP client is using the same XMPP

server, then server will send the message directly to receiver recipient, if it

uses another XMPP server, the local XMPP server will send the message to the

corresponding server (2 to 3). Finally the message is sent when the message

reaches the server where the receiver recipient is in the same XMPP server (3-

4). For more technical details about the message protocol, please check the

XMPP core specifications
9

.

Advantages of XMPP:

Open Standards - the XMPP protocols are free, open, public, and easily

understandable; in addition, multiple implementations exist in the form

clients, servers, server components, and code libraries [25,29].

Decentralized - the architecture of the XMPP network is similar to

email; as a result, anyone can run their own XMPP server, enabling

individuals and organizations to take control of their communications

experience [25,29].

Security - XMPP has built-in support for channel encryption and strong

authentication, inherent resistance to many forms of malware. Any

XMPP server may be isolated from the public network, robust security

using SASL and TLS has been built into the core XMPP specifications,

and the XMPP network is virtually spam-free [25,29].

9

 http://xmpp.org/rfcs/rfc3920.html

mailto:salvador@hci.uma.pt/home
/rfcs/
http://xmpp.org/rfcs/rfc3920.html

25

Flexibility & extensibility - Custom functionality can be built on top of

XMPP; to maintain interoperability, common extensions are managed by

the XMPP Software Foundation. Because XMPP is at its core a technology

for rapidly delivering XML from one place to another, it has been used

for a wide range of applications beyond instant messaging, including

network management, content syndication, collaboration tools, file

sharing, gaming, remote systems monitoring, web services, lightweight

middleware, cloud computing, and much more [25,29].

Weakness of XMPP:

In-band binary data transfer is inefficient - Because XMPP is encoded

as a single long XML document, binary data must be first base64

encoded before it can be transmitted in-band. Therefore any significant

amount of binary data (e.g., file transfers) is best transmitted out-of-

band, using in-band messages to coordinate [25].

/wiki/Binary_data
/wiki/Base64
/wiki/File_transfer

26

2.7.1 Streaming XML

XMPP is, in essence, is a technology for streaming XML. When you want

to start a session with an XMPP server, you open a long-lived TCP connection

and then negotiate an XML stream to the server [30].

XMPP is built on top of three main blocks (<message/>, <presence/>

and <iq/>), these blocks are called stanzas and all others stanzas are build on

top of these primitives. An XMPP session consists of many XML stanzas sent

over an XML stream; each XML session has two streams, one stream from

client to server and another stream from server to client. After completing an

XML stream negotiation with the server, the client and the server can send an

unlimited numbers of stanzas over the stream [30].

In the following example we exemplify an XMPP session. The client

requests are marked as green and server response in red. To start a XMPP

stream with XMPP server the client sends a <stream:stream> element. The first

stanza sent is <presence>, which sends the client presence to server; this

stanza can have attributes, such as client status (away, working). The second

stanza used is <iq> (information query) to retrieve the roster contacts. Then

server retrieves user contacts from user roster, and in this case the roster list

only contains two users, Mike and Julia.

Client

<stream:stream>

 <presence/>

 <iq type='get'>

 <query xmlns='jabber:iq:roster'/>

 </iq>

Server

 <iq type='result' to='sapo@hci.uma.pt/mobile'>

 <query xmlns='jabber:iq:roster'>

 <item jid='mike@hci.uma.pt' name='mike'/>

 <item jid='julia@hci.uma.pt' name='julia'/>

 </query>

 </iq>

The client sends a message to user Mike, using the <message> stanza

and sometime after, the client is notified with the contact response coming

from server. Before closing the session by sending the </stream:stream>

element, the user updates his presence to unavailable using the presence

stanza.

27

Client

 <message type='chat' to='mike@hci.uma.pt'>

 <body>hey, are you there?</body>

 </message>

Server

 <message type='chat' to='sapo@hci.uma.pt/home' from=mike@hci.uma.pt/hp'>

 <body>yes, what’s up?</body>

 </message>

Client

 <presence type="unavailable"/>

</stream:stream>

After this brief example, in the next topic we pass to describe in more

detail the communications primitives. In section 0 we introduce the Publisher-

Subscriber paradigm and in section 2.7.4 we describe the XMPP Publisher-

Subscriber extension.

28

2.7.2 XMPP Protocol

In previous section we introduced XMPP protocol by exemplifying a XMPP

stream with the primitive stanzas. A stanza is no more than a basic packet for

communication, similar to packets and messages in other network protocols.

In this section we will introduce each stanza and explore the properties, the

type of attributes and payload definitions.

Communication primitives:

Presence - The presence stanza reports the availability of an entity in a

network, this availability can be more complex than online and offline status.

Presence is published under the paradigm of Publisher-Subscriber, allowing

user to subscribe or unsubscribe user presence.

Example of a Presence stanza with status:

<presence from="salvador@hci.uma.pt/laptop">

 <show>xa</show>

 <status>down the rabbit hole!</status>

</presence>

Message - Message stanzas are a basic method for sending messages from

one entity to another. They are used mostly for Instant Messaging, group chat,

and other similar applications. In this type of stanza, the messages are

typically not acknowledged.

chat One-to-one online chat, most common in IM applications

groupchat Type of messages exchanged in multi-user chat rooms

normal Default type for messages, similar to email messages

headline This type of message are used to send alerts an notifications

error This messages are sent when any entity detects a problem

Table 2 - Message Types

Messages may contain more than normal message text. They can carry

application specific payloads or any kind of formatted data. The following

example shows a message stanza, with chat type, and caries application

specific payload (geoloc).

29

<message from=”salvador@hci.uma.pt/laptop” to="mik@hci.uma.pt/home" type="chat">

 <body>Who are you?</body>

 <geoloc xmlns='http://jabber.org/protocol/geoloc' xml:lang='en'>

 <country>Italy</country>

 <lat>45.44</lat>

 <locality>Venice</locality>

 <lon>12.33</lon>

 </geoloc>

</message>

IQ – The majority of XMPP Instant Messaging traffic is composed of message

and presence packets, most of the work in implementing an IM client or server

lies in supporting a variety of administrative and management protocols that

support messaging and presence [31]. XMPP addresses these features with the

generic protocol Information/Query (IQ). The <iq> stanza provides a request

and response mechanism for XMPP communication. Like in messages, IQ

stanzas come in four flavors, differentiated by the stanza‟s type attribute.

get The entity asks for information, similar to HTTP GET.

set
The entity provides some information or makes a request,

similar to HTTP POST.

result
The responding entity returns the result of a get operation, or

acknowledges a request.

error

The responding entity notifies the requesting entity when a

problem is detected (malformed message, not implemented,

permissions).

Table 3 - IQ Types

Example: Requesting roster contacts. In this example, the user asks the XMPP

server to retrieve his contact list, by sending an IQ-get stanza, containing an

empty payload qualified by the jabber:iq:roster namespace.

<iq type='get'>

 <query xmlns='jabber:iq:roster'/>

</iq>

After receiving the IQ request, server replies with a non-empty payload

qualified by the same namespace.

<iq type='result' to='sapo@hci.uma.pt/mobile'>

 <query xmlns='jabber:iq:roster'>

 <item jid='mike@hci.uma.pt' name='mike'/>

 <item jid='julia@hci.uma.pt' name='julia'/>

 </query>

</iq>

mailto:salvador@hci.uma.pt/laptop

30

2.7.3 Publisher Subscriber

Publisher-Subscriber or Pub-Sub is a paradigm of asynchronous

communication, based on notifications by events. This paradigm has three

main components, publishers, subscribers and event nodes. The publishers

are the entity who publishes information; the subscribers are the entities who

consume information. And event nodes are virtual channels, where the

information is published and consumed. These nodes can have many

properties, such as access permissions, subscription options, members and

storage policies [32,33]

This paradigm provides the possibility of consumers subscribe to events,

to be notified when new information is published [34]. As Figure 3 shows, the

Pub-Sub paradigm is much more efficient than Representational State Transfer

(REST) paradigm, to retrieve data from server without knowing the data

availability.

The loosely coupling between publisher and subscribers, allows a higher

scalability and more dynamism in the network topology [32]. Due to this

nature, of scalability and flexibility, the publisher-subscriber middleware‟s are

becoming popular for distributed applications [33].

Figure 3 - PubSub vs HTTP

31

2.7.4 Publisher-Subscriber in XMPP

XMPP has currently over 150 published extensions
10

, including the

publisher subscriber extension (XEP-060). The Pub-Sub extension defines a

generic protocol, enabling any application to implement the most basic Pub-

Sub features. In this section we will describe some features associated with

nodes, publishers, subscribers, and exemplify basic Pub-Sub operations using

IQ stanzas.

Affiliations – an affiliation defines the role that a user has in relation to a

node, it can be the owner, publisher, member, or other. The Pub-Sub

extension currently has six different types of affiliations, and an application

may not be required to support all types [35].

Affiliation Subscribe Retrieve

Items

Publish

Item

Delete

Item

Configure

Node

Delete

Node

Purge

Node

Owner Yes Yes Yes Yes Yes Yes Yes

Publisher Yes Yes Yes Yes No No Yes

PublishOnly No No Yes No Yes No No

Member Yes Yes No No No No No

None Yes No No No No No No

Outcast No No No No No No No

Table 4 - Node Affiliations and Privileges

Nodes - nodes are virtual channels, where information can be published and

subscribed; each node has an access model and type. A node by default is

created with default configuration, but is possible to specify or change a node

configuration. This configuration may contain options like: max_items,

item_expiration, max_payload_size, notify_delete, and others more.

Another aspect of nodes, it is the hierarchy, a node can be the type of

leaf node, where information is published and can be consumed; or the type of

collection node, this type of nodes only allow subscription and are used to

form an hierarchy structure. The collection feature is supported by XEP-0248
11

extension, this extension defines subscription for collection of nodes, making

the subscription process simpler when an entity is interested in notifications

from a set of nodes [36].

10

 http://xmpp.org/extensions

11

 http://xmpp.org/extensions/xep-0248.html

http://xmpp.org/extensions/
http://xmpp.org/extensions/xep-0248.html

32

Node Type Description

Leaf
A node that contains published items only, and cannot contain

other nodes.

Collection
A node that contains nodes and/or other collections, but no

published items.

Table 5 - Node Types

Access Model Description

Open

In this access mode, any entity may subscribe to the node, without

any subscription approval. And any entity may retrieve items

without being subscribed.

Presence

This access model applies mainly to the instant messaging

systems. Any entity with a subscription of type "from" or "both"

may subscribe to the node and retrieve items from the node

Roster

This access model applies mainly to instant messaging systems.

Any entity in the specific roster may subscribe and retrieve items

from node.

Authorize
The node owner must approve all subscription requests, and only

subscribers may retrieve items from the node.

Whitelist

A node with this access model has list, the users who are in the

list, are allowed to subscribe or retrieve items from node. The

node owner is responsible for managing the list, and can add or

remove members.

Table 6 - Node Access Models

In the following example we define an IQ stanza, to create an XMPP Pub-Sub

node named “madeira”, with whitelist access model.

<iq type='set' to='pubsub.hci.uma.pt' id=’create1’>

 <pubsub xmlns='http://jabber.org/protocol/pubsub'>

 <create node='madeira' access='whilelist'/>

 </pubsub>

</iq>

IQ stanza to affiliate user “julia@hci.uma.pt” as publisher in node “madeira”.

<iq type='set' to='pubsub.hci.uma.pt' id=’affill1’>

 <pubsub xmlns='http://jabber.org/protocol/pubsub#owner'>

 <affiliations node='madeira'>

 <affiliation jid='julia@hci.uma.pt’ affiliation='publisher'/>

 </affiliations>

 </pubsub>

</iq>

33

IQ stanza to publish the book status in node “latest_books”.

<iq type='set' to='pubsub.hci.uma.pt' id=’publish1’>

 <pubsub xmlns=’http://jabber.org/protocol/pubsub’>

 <publish node=’latest_books’>

 <item>

 <book xmlns=’jabber:x:data’ type=’result’>

 <field var=’title’>

 <value>XMPP for Noobs</value>

 </field>

 <field var=’status’>

 <value>available</value>

 </field>

 </book>

 </item>

 </publish>

 </pubsub>

</iq>

IQ stanza to subscribe from “madeira” node.

<iq type='set' to='pubsub.hci.uma.pt' id=’publish1’>

 <pubsub pubsub xmlns=’http://jabber.org/protocol/pubsub’>

 <subscribe node=’madeira’ jid=’julia@hci.uma.pt/home’/>

 </pubsub>

</iq>

IQ stanza to delete node “madeira”.

<iq type='set' to='pubsub.hci.uma.pt' id=’del1’>

 <pubsub xmlns='http://jabber.org/protocol/pubsub'>

 <delete node='madeira'/>

 </pubsub>

</iq>

34

3 System Description

This section gives a high level overview of system architecture, starting

with example scenarios to exemplify system‟s potential. Secondly, we

demonstrate a high view of architecture, and finally we describe each

component individually. By the end of this section, we finalize with a

description of system particularities and technical details.

3.1 Example Scenarios

For example, it is possible to create a policy to alert a person via SMS, to

notify when a value is detected, which can be the concentration of a gas. As

example, Mike has a butane gas sensor in the kitchen, when by any reason a

gas leak happens the system will inform Mike about the situation.

The system has big potential for real-time uses, for non real-time, it can

be used also as data recording tool. A good example is monitoring energy

consumption. It is possible to monitor many situations, like average time and

frequency of televisions, computers, and lights turned on without any person

present.

Using GPS technology is possible to create policies to detect when a

device enters or exits a geographical area. Considering a bus sending its GPS

position every minute, for instance, when a bus is detected in special area,

let‟s say a bus stop, an action can be triggered with many purposes.

A more interesting example is to have a policy with geographical and

history rules, for example, when detecting a new user via Bluetooth technology

in a touristic place, and sometime after, detect the same user in another

touristic place, the system could send a message via Bluetooth with touristic

information or nearby shop information‟s.

The system can be used to optimize energy consumption and to execute

common human actions. It is possible to detect a person in a room and the

system can turn automatically the lights on if the luminosity is sufficient (e.g.

during day). And turn off the same lights when presence is not detected. Thus

avoiding users to repeat continuously the same everyday actions as well can

reduce energy consumptions.

35

3.2 System requirements

The initial objectives were to build a middleware, where people could add

sensors and actuators, read data from sensors and control actuators.

First functional requirements:

R1. Read data from sensors

R2. Control actuators

R3. Report status of environment

R4. Act based on policies

R5. Support for multiple sensors and actuators

After some search in related work, we found that many of these

requirements were addressed in existing solutions. We selected Sensor

Andrew middleware solution as the starting point of our work, since many of

the first requirements were meet and to avoid “reinventing the wheel” we

suggested implementing a platform, which used the middleware benefits with

a web interface to users easily manage their devices.

Sensor Andrew is a campus-wide high-level middleware that supports

sensing and actuation (meets R1and R2). Allows the registry and use an

unlimited number of installations, sensors and actuators (meets R5).

New functional requirements:

 Support user authentication – The user‟s access platform should be

authenticated before accessing platform functionalities and sensor data.

 Support account creation – The system should be able to create new

user accounts.

 Support device registration – The system must allow users to add

sensors and actuators.

 Supports sensor search - The system should have a mechanism to

search for sensors.

 Supports definition of device access – The system should allow only

authorized users to perform operations with user‟s devices.

 Supports sensor data recording – The system should be able to store

sensor data.

36

 Supports sensor data download – The system should allow user to

download their sensor data in multiple formats and from allowed

devices.

 Supports charts generation - The system should support the

generation of different charts using sensor data.

 Supports creation of Policies – The system should allow users to

define policies, and match every sensor data against these policies. And

execute the defined actions when a policy matches.

37

3.3 High Level Architecture

In order to understand system functionalities, we present a keyword list,

with a brief description to make a simpler understanding.

Web application – The component responsible to represent all information to

users, and enable users to manage their devices and associated options.

Datarecorder – The component responsible for storing sensor data, when

requested by users.

Actionchecker – The component responsible for matching sensor input to

existing policies, and trigger actions when a policy matches.

Scheduler – The component responsible for handling new recording requests

and new policies. It is also responsible to communicate with datarecorder and

actionchecker services to enable these new requests.

Figure 4 - High-Level Architecture

38

Figure 5 - Deployment Diagram

In Figure 5 is represented a high-level architecture of our system using a

deployment diagram. Our system mainly consists in two parts: the

middleware, composed by the XMPP server with publisher-subscriber support,

which is responsible for transporting and handling all sensor data. The other

part consists in the applications (web application and services) that interact

with the middleware.

The architecture style of our system is a shared repository, being this

repository passive, unlike the blackboard architecture style. Architectures

based on repository allow a loosely coupling between system components. All

interactions are made through database, allowing a greater facility in

modifying system components without affecting other components.

The web application interacts with the middleware using a dedicated

XMPP client, but most of the work done by the web application is stored in

repository. As Figure 4 shows, the services also use the repository to modify,

read and create new entries. The services datarecorder and actionchecker

connect to the XMPP server and the repository; these services listen for

published data in Pub-Sub nodes and then process the sensor data according

to user definitions in repository.

Given a brief overview of the high-level architecture, we now proceed to

describe individually each component in the system.

39

3.4 System components

3.4.1 Services

In our system we developed three services, the datarecorder, the

actionchecker and the scheduler service. The datarecorder service allows users

to record sensor data, enabling users to download sensor data or generate

charts from the web application. On the other hand, actionchecker is a service

which enables to execute certain actions when a certain group of rules

matches. Finally scheduler is a utility service that is responsible for checking

and resolving new user requests.

3.4.1.1 Datarecorder

The datarecorder service, written in C and using cross-platform utility

library GLIB, is responsible for recording sensor data to database. The main

dependencies of this service is GLIB, a cross-platform C library that contains

functions like data structure and string functions. The other dependency is a

modified SOX library, which is used for establishing XMPP connections and

parse messages according to XSL schema.

Datarecorder process starts by reading the main configuration file, in

order to read database connection settings (host, username and password),

and repeats the same operation for XMPP connection settings. After reading

the configuration file, the process tries to establish a database connection,

and a long lived XMPP connection to receive data from sensors.

For communicating with scheduler service, a socket named

“datarecorder.sock” is created in to receive subscribe/unsubscribe orders.

At the time of the creation of XMPP connection, a callback function

(handle_event) is specified to parse messages. The handle_event function

receives a pointer to an LmMessage data type.

static void handle_event(LmMessage* message)

The received LmMessage is parsed using XML parser Expat, by setting a parser

handler function for starting and end tags of XML elements.

XML_SetElementHandler(p, startElement, endElement);

40

The next XML block, is an example of a received message payload.

<System xmlns="http://jabber.org/protocol/pubsub">

 <DeviceInstallation id="6" regid="6" timestamp="1281526867">

 <TransducerInstallation name="" id="6" regid="6" canActuate="false">

 <TransducerValue

 typedValue="12.13"

 rawValue=""

 timestamp="1281526867"

 variableId="14"

 unit="">

 </TransducerValue>

 </TransducerInstallation>

 </DeviceInstallation>

</System>

The XML parser handler verifies if the message contains

“DeviceInstallation” as element, in affirmative case, the XML element attributes

are copied, and the same steps are produced for “TransducerInstallation”

elements. If “TransducerInstallation” contains a child element

“TransducerValue”, then this message is recognized as message with

sensor data. The values are copied and then the sensor value is added to a

SQL insert query. This insert query will only insert if there is at least one

recording request. If the message does not contain sensor values, the

message is ignored.

Figure 6 - Datarecorder Service

The sequence diagram in Figure 6 exemplifies the steps executed for

recording the sensor data. A publisher (sensor gateway) publishes sensor data

and the XMPP server accepts the message and then replies for all subscribers.

When any message arrives to datarecorder, the process parses the message,

looking for sensor data, and then sends an SQL query to insert the sensor in

database.

41

To avoid unnecessary waste of bandwidth and CPU processing, the

datarecorder service only subscribes to nodes, where sensor data is published

from sensors with recording requests. The scheduler process takes the job of

verifying which nodes to subscribe or unsubscribe and manage the active

subscriptions when the services start.

The datarecorder service runs a socket, where it can receive “subscribe”

and “unsubscribe” orders from the scheduler process. The message format is

defined as follow:

#subscribe#node1#node2#node3#....#nodeN

#unsubscribe#node1#node2#node3#....#nodeN

When messages with the exemplified format are received, the service will

subscribe/unsubscribe to specified nodes in message. The request is made to

the XMPP server using the appropriate protocol, and when the approval

arrives, the service is able to receive message from these new nodes.

3.4.1.2 Actionchecker

Actionchecker is also a service written in C, and has the responsible for

matching sensor values to existing policies. It starts by reading connection

settings from the main configuration file, and loads a set of specified action

plug-ins. After the registration of plug-ins, a XMPP and database connections

are established.

For every received event, actionchecker starts by querying the database,

to see if there is any policy with the sensor in rules. If there is any policy, the

service retrieves all policies rules to start matching. If there is any policy with

all rules matching, it means that policy matches. When a policy matches, the

process delegates the notification execution on plug-ins, these plug-ins are

responsible for communicating with external services, like email, SMS, URL‟s

and other kind of tools and services.

42

Figure 7 - Actionchecker Notification Execution

The execution of notifications can take a few seconds or a few more

time, in order to handle this situation with more precaution, a pool of threads

is used to handle the execution of notifications. Using thread functions

available in GLIB, we can set restrictions to these threads, such as thread

reuse, pool size, and other options.

The actionchecker service also accepts “subscribe” and “unsubscribe”

orders from scheduler, by activating a socket and handling socket messages in

the same way as datarecorder process.

43

3.4.1.3 Actionchecker Plug-ins

The advantages of using plug-ins are well known, they are easy to

deploy, they are small, and they increase the extensibility of applications. To

achieve this functionality, we used GModule functions, which provide a

portable way to dynamically load object files.

Figure 8 - Initializing Actionchecker

3.4.1.3.1 Email plug-in

Email is a very used communication method and is used in almost

every notification system. The email plug-in was the first developed, we now

exemplify in two lines of code how the plug-in can be easily created. First we

use a command line tool called “mail” to send emails, this command line tool

is a Mail User Agent (MUA), which can be used to read and send emails.

In first line of code, a command line string is formatted using the

message, subject, destination address and the body message. In the second

line the plug-in tells the operating system to execute the created command

line.

sprintf(fpBuffer, "echo '%s' | mail -s '%s' %s", message, subject, to);

system (fpBuffer);

3.4.1.3.2 URL plug-in

A good notification can be the URL notification, a simple and basic

notification, but can be very useful to communicate between two unknown

systems. Using the HTTP GET method is possible to notify another web

application, using a given URL with or without parameters. Like in email plug-

in, we also used a command line tool called “GET”, which is a command line

tool that implements HTTP Get Protocol.

44

As example, let‟s consider a web application running in host

example.com that turns lights on and off.

http://example.com/lights/set/33/off

With the given example, we can set a policy with URL notification, which

turn on or off lights, in a simpler and firewall friendly way.

3.4.1.3.3 Function plug-in

The function plug-in enables the publication of events in XMPP nodes, in

particular, it allows the publication of commands to actuators, such as

“activate”, “turn_off”, “increase”, or any possible command.

The Sensors Over XMPP extension has the “TransducerCommand”

element defined, which is intended to send commands to actuators.

As stated, a function can have arguments, but a simple command can be

like “00129”, these strategies can be chosen by the users. Considering the

light example, and we want to turn lights on for a period of time, we could

send a message with the function name as “activateLight(int)”.

Example of a message payload directed to an actuator with id 7.

<System xmlns="http://jabber.org/protocol/pubsub">

 <DeviceInstallation id="4" regid="4" type="" description="" timestamp="1281545117">

 <TransducerInstallation name="" id="7" regid="7" canActuate="false">

 <TransducerCommand

 name="activateLight(int)"

 value="33"

 timestamp="1281545117">

 </TransducerCommand>

 </TransducerInstallation>

 </DeviceInstallation>

</System>

When the message is received, the gateway parses the XML message to

get the command or function, and can easily identify if the function contain

arguments. After that, the sensor gateway is responsible for calling the local

actuator with the right communication protocol. Optionally the sensor gateway

may report the new status of the actuator, such as “running” or “active”.

http://example.com/lights/set/33

45

3.4.1.3.4 SMS plug-in

Short Message Service (SMS) is a widely spread text communication

service, allowing people to send text messages to other people. With the

spread of mobile phones, almost everyone has an instant access to SMS

messages. Unlike Email, SMS is a paid service, and to send SMS messages,

there is two possible ways, using a GSM modem, or use SMS Gateway

providers.

Meanwhile there is an experimental and non-reliable Perl script, which

connects to a mobile provider client web page, and sends SMS messages from

that page. After testing the script, we decided to use the script as

experimental SMS plug-in.

In SMS plug-in, well call the Perl script to send an SMS message for the

specified destination along with message body and user credentials.

gchar *cmd;

cmd = g_strconcat("perl ", script_path, " ", user, " ", pass, " ", destination_number, NULL);

cmd = g_strconcat(cmd, " ", msg, "' > /dev/null", NULL);

system(cmd);

g_free(cmd);

The use of SMS notifications is better than email notifications in some

points, GSM coverage, and availability, making a good choice for notifications

in critical situations (e.g., gas leaks, fire, motion detected). In Figure 9, is

shown a received SMS message, alerting that a mail was received in mail box.

Figure 9 - SMS Notification

46

3.4.1.3.5 Twitter plug-in

Twitter
12

 is a social networking and micro blogging service that enables

its users to send and read messages known as tweets [37]. We created a plug-

in for sending post‟s to this social network.

Following the official tutorial
13

 we developed the twitter plug-in which

uses CURL
14

 to create a new twitter post.

Figure 10 - Twitter Notification

3.4.1.3.6 Creating a plug-in

Create a plug-in is very easy to achieve. We now demonstrate the creation

of the URL plug-in.

At start, we must include sawa_plugin.h header file, this header file

includes the GLib and GModule include declarations, and the definitions of

Policy and Action data structures.

#include <sawa_plugin.h>

G_MODULE_EXPORT void

run(gpointer data) {

 Action* act;

 Policy* pl;

 char** tokens;

 pl=(Policy*)data;

 act=pl->action;

 tokens = g_strsplit(act->cmd->str, "#", 0);

 system(g_strconcat("GET ", tokens[1], " > /dev/null", NULL));

}

12

 http://twitter.com

13

 http://apiwiki.twitter.com/Authentication

14

 http://curl.haxx.se

http://twitter.com/
http://apiwiki.twitter.com/Authentication
http://curl.haxx.se/

47

The Policy data structure contains a name, status, id, the execution

interval and an Action structure. The Action structure contains the command,

the type and the date of last execution.

Since we are delegating the execution of the action on the plug-in, we do

not want to receive any result. The plug-in “run” function argument is a

gpointer, a gpointer is an untyped pointer, which can be used to pass any data

type. The actionchecker process passes a Policy structure pointer to the “run”

function in plug-in, which contains all information needed for the executing of

the notification.

The command string is concatenated with cardinal characters; the

function g_strsplit is used to split in multiple tokens. When the split is

complete, any action can be executed with the available information, from a

simple print, to the most complex operations.

At the end of code, is used the “system” function, which runs the given

string as a system call, in this example is a simple HTTP GET to an URL.

After compiling the plug-in and moving it to the plug-ins folder, the

actionchecker can load this new plug-in, if is set to load in main configuration

file.

48

3.4.1.4 Scheduler

Scheduler is a helper service, responsible for managing new recordings,

new policies and their status. Before explaining how the process works, a brief

description of policies and recording status is necessary to a better

understanding.

A policy has four types of status, active, pending, removing and inactive.

Active – the policy is active and is recognized by actionchecker process

Pending – the policy is a new policy and waits to be activated by

scheduler process.

Removing – the policy is ignored by actionchecker process and waits to

be deleted by scheduler process.

Inactive – the policy is suspended and only the owner can activate or

remove.

A recording has three types of status, running, starting and stopping.

Running – the recording is activated and the process stores sensor

data.

Starting – the recording is waiting to be activated by scheduler process.

Stopping – the recording waits to be stopped.

The scheduler service acts as intermediary between the Web application

and the other two services. The policies and recording requests made by users

in the web application and sent to the database where they wait to be

resolved.

In Figure 11 the sequence diagram represents the interactions between

scheduler and other participants, when a new policy is created. When a policy

is created by one user, the policy is stored in database with pending status.

The scheduler service checks periodically for new policies, when a new policy

is detected, the scheduler process retrieves the networks nodes which are not

49

being subscribed by actionchecker process, and then sends a subscribe order

to actionchecker process. Finally the scheduler changes the policy status to

active.

To remove or disable a policy, the process is almost identical as

explained above, but instead subscribing orders, the scheduler process sends

a unsubscribe order with unused network nodes.

Figure 11 - New Policy

Besides new policies, by default all sensors have the recording enabled,

being possible to stop and resume. The scheduler process handles the resume

of recordings, and new recording, by sending a subscribe order to

datarecorder socket, in the same way as actionchecker process.

50

3.4.2 Web Application

The web application was built with the objective to enable users to

manage their sensors and sensor networks. The application was built with

CodeIgniter
15

 PHP Framework, which uses the Model-View-Controller (MVC)

development pattern. With the use of a PHP Framework, a fast and easier

development was achieved.

The management of a sensor network in web application can be done

using the most basic operations, create and remove. In a sensor network it is

possible to have an unlimited number of sensors and actuators. Also in

sensors is possible to have an unlimited number of sensor measured

parameters, which we call “variables”. In actuators is possible to add actuator

commands and functions, and is possible to call these commands from the

web application.

Besides the ability to manage sensor and networks, in web application is

possible to record sensor data and share our sensors with other users. Users

may share their network devices, and to do that, the owner must add members

to the network group. A user which is a member of a network is allowed to

access sensor data from that network, and is able to create policies with

networks sensors, as well export data and generate charts.

Sensor data can be represented in charts. We included two chart

components called Open Flash Charts 2 and Dygraphs, enabling interactive

and dynamic charts. We have four types of charts, the basic line chart, bar

charts, pie charts and radar charts. The representation of sensor data starts

with the selection of a chart type, the selection of sensor variables and finally

the time interval (day, month, etc).

Policies are an important feature of our system; they can be used to alert

persons or systems. The web application allows the creation of policies with a

combination of different rules, and the respective action.

15

 http://codeigniter.com

http://codeigniter.com/

51

Given the brief description of the web application functionalities, in this

section we present simple and illustrative examples of application

functionalities.

3.4.2.1 Main Interface

The main interface consists in a modified Openfire
16

 Cascade Style

Stylesheet (CSS), in the construction of the web application we faced the

problem of a growing number of features, being impossible to fit every option

in a single menu. The interface contains a menu, similar to a tree, starting

from generic root options, and then subdividing into multiple sections. This

menu allows us to expand the platform features without having to constantly

change the menu or interface layout.

Figure 12 – Main Interface

16

 http://www.igniterealtime.org/projects/openfire/

http://www.igniterealtime.org/projects/openfire/

52

3.4.2.2 Browsing Sensors and networks

3.4.2.2.1 Map

In the web interface is possible to locate geographically the devices. The

Map panel allows the selection of sensors, actuators and networks. Another

aspect is support for area search and connection between networks and their

devices.

Figure 13 - Devices Map

The web interfaces uses Google Maps API, this web mapping service

contains geographical data (places, images, streets) from a numerous set of

countries.

Figure 14 - Sensor details and Network connections

53

3.4.2.2.2 Networks & Network information

User networks and community networks are listed in two different pages,

in community page, it is possible to browse all network and network details.

The user networks page contains a set of administration options (remove,

manage gallery, etc).

Figure 15 - Community Networks

The Figure 16 shows the detailed information about “sal_home” sensor

network. Sensor and actuators are listed and is possible to a set of options

(view more info, record, view charts). The page also contains an image gallery,

allowing users to add and show images from their resources.

Figure 16 - Network details

54

3.4.2.2.3 Device Details

The page “sensor info” shows detailed information about a specific

sensor. This detailed information contains the basic sensor information, an

image gallery and the sensor variables list.

Figure 17 - Sensor details

The web application provides the possibility of calling the defined

actuator functions and commands. When a function has arguments, a

javascript dialog input box is created and waits for user input. When the user

confirms, the system publishes the command with arguments to the XMPP

node. The actuator gateway, which subscribes the network node, parses the

actuators commands, and call‟s the actuators using the local network

protocols (e.g. RF, Bluetooth).

In Figure 18, the “actuator info” page displays the actuator information

along with the actuator commands and functions. The image exemplifies the

calling of an actuator function, as describe in previous use case.

55

Figure 18 - Calling Actuator Function

56

3.4.2.3 Management

3.4.2.3.1 Add Network

To create a network, three steps are needed: the specification of network

name, the access mode, and the location where the network will be located.

There is also three types of access modes, whitelist, open and authorize.

Open – any user of the system can access the sensor data, create policies

with network sensors, and can subscribe to published data

Whitelist – in this access mode, the network has a list of members with

access to the network resources. The whitelist is managed by owner, he

can add or remove members.

Authorize – an access mode based on requests, when a user wants to

access a network resources, an authorization request has to be made.

The owner of the network may allow or deny. This access mode was not

implemented, but is an important feature to be implemented in future.

Figure 19 - Adding a new Sensor Network

57

3.4.2.3.2 Add Sensor

To add a new sensor, the network, category and location are specified. A

sensor can sense more than one physical parameter: e.g. accelerometers can

report X, Y and Z axis values, as well pre-processed and derived data. We call

variable as a sensor measurement either in raw, processed or derived. In

Figure 20, we add a presence sensor, which senses motion in a room. For this

sensor we add two sensor variables, the “motion”, meaning “0” for no motion

and “1” for motion. And the variable “seconds_detected”, that represents the

time in seconds which the presence sensor detected the motion continuously.

Figure 20 - Adding a new Sensor

58

3.4.2.3.3 Add Actuator

Similar to adding a sensor is adding a new actuator, like sensors, the

network name, sensor name, category and location fields are specified. The

difference stays in commands, these defined commands or functions enables

us to change the behavior of actuators. The actuator commands and functions

are added using semicolons to separate them, and a function with arguments

contains brackets with arguments types separated by commas. As example

“turnOn(int,float);”.

Figure 21 - Adding a new Actuator

59

3.4.2.4 Policies

We introduce policies with a description about the policy associated

concepts and we exemplify the use of a Policy for gas leaks.

Notification interval - is the time in seconds, the system should execute

the repeatedly the same action when a policy matches. This avoids the

continuous notifications when a policy is constantly matched (We do not

want to receive a SMS notification every second).

Notification type - is the type of notification, which can be SMS, URL, or

other. Each notification has a different form, and is possible to add tags

(“{value}”, “{date}”) in messages. These tags are replaced by the real

values and sent along with the message.

Rule – is a part of policy and is the definition of specific conditions,

either expected or not expected. A rule is associated to a sensor variable

and dependently of type, may contain conditions and/or intervals.

3.4.2.4.1 Add Policy

In Figure 22, we created a policy named “gas_alert”, the selected

notification type is SMS, and in the message field we used the tag ({value}) to

be replaced on SMS message. This policy contains only one rule, the defined

rule uses gas_value variable, the operator „>‟ and the match value 100. The

refrigerator use case has a gas sensor which detect the amount of gas in the

air, we use the gas sensor to detect butane gas leaks, resuming, this policy

alerts via SMS when there is a gas leak (gas_value > 100).

Figure 22 - Policy details

60

3.4.2.4.2 Add Rule

Three types of rules are supported by the system, the sensor rule accepts

a sensor input and verifies if the input value matches a certain condition (e.g.,

>300). In numeric variables we can use the operators “<”, “<=”, “=”, “>=” and

“>”. And for variables of type string, “is”, “is not”, “starts with”, “ends with”,

“contains” and “does not contain” operators can be used.

Figure 23 - Sensor Rule

The date rule, allows us to check if a sensor input is between a specified

time interval (day or hour). As example, we may set a policy to notify when

presence is detected in our office between 2am and 5 am.

Figure 24 - Date Rule

History rules are similar to simple SQL queries, it allows to define a

sensor input, define a condition (“is present”, “is not present”), an interval

(minutes or records) and a matching value. As shown in Figure 25, the history

rule will verify if presence (“denoted as 1”) is not present in the last 20

minutes. With this simple rule, is possible to turn off lights when human

presence is not detected in a room.

61

Figure 25 - History Rule

3.4.2.4.3 Event log

When a policy matches, the system creates a log record called event,

where its stores the date and sensor values at matching time.

Figure 26 - Event Log

62

3.4.2.5 Data & Charts

The web application provides time based charts, with four types of

charts, line, bar, pie and radar charts. In every chart, is possible to add sensor

variables to compare. As shown in Figure 27, we are representing the gas

amount, temperature and human presence. For a better user interaction, we

added a configuration panel, which provides basic chart options. Saving the

chart as image, selecting the time interval of the chart (minutes, hour, day,

week, month, year or years), the Y-axis minimum and maximum size, and

offset to change the period of time, are some options of the chart panel.

Another important aspect is how we represent sensor data. We use two

methods, aggregation and raw mode.

Aggregate chart – the sensor data is grouped by interval and an average

is represented.

Raw chart – All data points are represented.

One problem that arose when using charts to represent many sensor data

points, was the rendering of thousands of data points. The browser takes time

to download the sensor data; the flash plug-in allocates a larger amount of

memory to render the data; the rendering takes more time and the user

interaction with charts was slow.

To reduce this problem, we used aggregate data and a faster chart

component to represent thousands of points. Aggregate charts allows

grouping by an interval of interest, and by using average, the number of

records are reduced drastically. With fewer records, the data transmission,

rendering and chart interaction are faster. And for representing data in raw

mode, we reduced the time interval which users can select to display sensor

data.

 Aggregation Charts Raw Charts

Advantages

Less data points to represent

Faster to transmit and render

Less memory consumed

Faster chart interaction

True representation of data

Ideal for detecting anomalies

Disadvantages Difficulty to detect anomalies

Many data points

More time to transmit and render

Consumes more memory

Slow chart interaction

Table 7 - Data Representation Comparison

63

3.4.2.5.1 Chart types

The system provides a charting component, the chart pages contains the

chart area, a chart configuration panel and a sensor variable list.

Configuration panel:

Save chart – Enables the users to export and download the chart as

image.

Interval – Is the desired time interval to be represented in chart. As

example, if one month is selected “1M”, the chart will show all days

from that month.

Area fill – If checked, the chart will fill the area. When disabled, the

chart only represent the lines.

Auto-Y – When enabled, the chart finds the best Y-axis range to fit all

data inside of chart area. When disabled the user can specify the Y-axis

range (minimum and maximum).

Auto-reload – The auto reload option enables to chart to reload itself

after a minute.

The variable panel contains the variables from the sensor we have

selected to generate the chart. This panel allows to choose what sensor

variables to represent, and is possible to compare with variables from other

sensors.

64

Figure 27 - Line Chart

In Figure 27 is represented a line chart, which represents sensor data

over the time. This type of charts allows simple comparisons between sensor

variables, as well as a browser to the sensor data history.

Figure 28 - Bar Chart

The Figure 28 represents the average time open (in seconds) of the

refrigerator door from a particular day. The graphs show hours with no data,

meaning that refrigerator door was not open in that hour. With this simple

chart, we can make conclusions about many aspects (time open, particular

hours, difference between hours, etc).

65

Figure 29 - Pie Chart

Pie charts, represents the proportion of each slice, in relation to the total

quantity represented. The pie chart in Figure 29 represents the proportion

between hours of the refrigerator door open time (average in seconds).

Figure 30 - Radar chart

Radar charts display the desired variables using the equivalent polar

coordinates. The x-axis values are mapped clockwise, and y-axis values are

indicated by their distance from the center of the chart.

66

In Figure 31 is represented an overlay of two charts, the darkest green

line represents an aggregate chart line, from refrigerator temperature; the

other line represents all data points from the same day. The aggregate line

behaves as a trend line, and hides important data, such as maximum,

minimum and other important aspects.

We can notice the frequency of work in refrigerator without noise,

between 3 am and almost 8 am, when there is less human activity on

refrigerator. The graph shows the refrigerator temperature as expected, the

temperature starts to increase after the cooling process finishes. When the

temperature increases to a value, the process of cooling starts again. By the

chart, in average, it takes 44 minutes to temperature increase and half of

these 44 minutes to cool down.

Figure 31 – Aggregate and Raw data

Figure 32 – Zooming in Raw Data

67

3.4.2.5.2 Export Data

In Figure 33 is shown the export panel. The export panel allows the user

to select a sensor from a network, select the export fields such as id‟s and

names. The users can select the number of records to export and a file format.

Figure 33 - Export Panel

3.4.2.6 Administration

The platform administrators have a set of monitoring pages, this pages

enables the administrators to track users, services status and platform

configuration.

3.4.2.6.1 Users

The user list contains all users in the platform, their details and an option

to delete the user.

Figure 34 - Platform Users

68

3.4.2.6.2 Services

The services page, allows administrators to monitor the platform

services, the list in Figure 35 contains the process status for each service

(status, memory consumption, cpu usage, etc).

Figure 35 - Services Status

3.4.2.6.3 Edit Configuration

The platform configuration file can be edited online by administrators.

The configuration file contains all settings and credentials for services to be

able to connect to XMPP server and database server.

Figure 36 - Platform Configuration

69

3.4.3 Tools

Sensor Andrew project has developed a set of command line tools, each

tool is responsible for execute an operation. They were useful for managing

nodes from command line, and useful to be used by other applications. We

have improved and integrated these command line tools into a single tool,

which provides the most important functions and contains a configuration file

to avoid the use of user credentials in command line.

sox_tools – Is a utility tool that uses SOX library and allows users to manage

XMPP nodes, affiliations and subscriptions. Also allows publishing sensor data,

listen, listen for actuator commands and publishing actuator commands.

sawa_tools - This tool is stripped version of sox_tools, and is used by the web

application to retrieve data from XMPP and to make XMPP requests.

3.4.3.1 sox_tools

The first problem in using the Sensor Andrew command line tools was

the need of specifying every time the user credentials and server settings, in

order to execute each tool. When we developed new command line tools, such

as “get_affiliations”, which retrieves the affiliations of a user, most of the code

was the same and all tools followed the same structure (parse user input,

connect, execute operation and report result).

We developed sox_tools, a specific client to interact with our system. This

tool joins all command line tools functions, and uses a configuration file, with

server settings and user credentials.

./sox_tools

Available options:

--user Select user from config

listen Listens for pubsub events

commands Listens for commands and call appropriate action in actuator

publish Publish to a pubsub node

publish_cmd Publish a command to a pubsub node

last_item Get last item from a pubsub node

create Creates a pubsub node

subscribe Subscribe to a pubsub node

unsubscribe Unsubscribe from a pubsub node

add_member Add a member to a pubsub node

subscriptions List pubsub subscriptions

affiliations Lists pubsub affiliations

delete Deletes a pubsub node

create_user Creates a XMPP user

delete_user Deletes a XMPP user

70

The sox_tools configuration is in user home, normally in POSIX systems

at “~/.sox_tools.cfg” path. Next, we explain each configuration option and the

less common functions in sox_tools.

this file in your home ~/.sox_tools.cfg

[XMPP]

PORT=10223

HOST=hci.uma.pt

PUBSUB_SERVER_NAME=pubsub.hci.uma.pt

TIMEOUT=10

[DEFAULT_USER]

JID=salvador@hci.uma.pt/laptop-user

PASSWORD=**********

[sapo]

JID=sapo@hci.uma.pt/soxtools

PASSWORD=********

[COMMANDS]

9.21.on()=echo -n "up#8#*" > /dev/ttyUSB0

9.21.off()=echo -n "down#8#*" > /dev/ttyUSB0

9.21.blink(int)=echo -n "up#8#{1}#*" > /dev/ttyUSB0

The configuration file contains four groups, the “XMPP”, “DEFAULT_USER”,

“sapo” and “commands” group. The XMPP group contains the server settings

and timeout value, which sets the number of seconds a request should be

completed. If the request is not finished on time, the program will return a

negative value.

We can specify more than one user in configuration file, allowing us to

use the tool with different users, without changing the configuration file every

time. When no user is specified (using --user option), the default user is

assumed.

In sox_tools we have the “commands” option, being this option

experimental and built for demonstration purposes. This option makes the

tool listen for actuator commands and then execute the specified command

from configuration file.

As example, supposing we are receiving the command “off()”, to be called

in actuator with id 21 from network 9. The tool will look for “9.21.off()” and

execute what is in front of equal sign. Function arguments are also supported,

in the third line of commands group, there is “{1}”, this tag is replaced by the

first argument.

71

3.4.3.2 sawa_tools

Before starting to develop the web application we looked for available

PHP libraries to interact with XMPP server. We have found XMPPHP
17

 and JAXL
18

projects, which allows interacting with XMPP servers, but they do not support

XMPP Pub-Sub extension. However we found an XMPPHP project extension that

supports Pub-Sub called “SIXTIES”.

After testing and exploring SIXTIES
19

 project, we have found a few

problems, first the non support for XMPP administration extension (which

supports user management) and the lack of documentation. If we choose to

use the SIXTIES library, we would have to implement the Administration

extension support and the Sensor Andrew sensor schema. For time constraints

and because we were using the SOX library to develop tools/services, we

selected to use the command line tools in web application instead of this PHP

library.

At the beginning of the construction of web application, the sox

command line tools were used to retrieve data and to make requests to XMPP

server. In order to make a better output and easier parsing in web application,

custom tools were developed. By the end, we had more than 20 command line

tools, which included most of Sensor Andrew command line tools, our new

created tools and adapted tools.

After the development of sox_tools, an adapted version was built to be

used by the web application to replace all those command line tools. In the

sawa_tool, the listen and commands options were stripped, the output was

changed to be easier to parse, and server settings are read from the platform

configuration file (/opt/sawa/etc/sawa.cfg). The sawa_tools, is no more than a

replacement of an XMPP API, this tool is used by the web application to: create

and remove users, create and remove nodes, retrieve user

subscriptions/affiliations, unsubscribe, retrieve nodes, and publish actuator

commands.

17

 http://code.google.com/p/xmpphp

18

 http://code.google.com/p/jaxl

19

 https://labo.clochix.net/projects/show/sixties

http://code.google.com/p/xmpphp/
http://code.google.com/p/jaxl/
https://labo.clochix.net/projects/show/sixties

72

./sawa_tools

Available options:

--user X --pass Y Uses the specified user X with password Y

publish Publish to a pubsub node

publish_cmd Publish a command to a pubsub node

last_item Get last item from a pubsub node

create Creates a pubsub node

subscribe Subscribe to a pubsub node

unsubscribe Unsubscribe from a pubsub node

add_member Add a member to a pubsub node

subscriptions List pubsub subscriptions

affiliations Lists pubsub affiliations

delete Deletes a pubsub node

create_user Creates a XMPP user

delete_user Deletes a XMPP user

nodes List all event nodes on server

Some servers may allow users to create an account by their own, other

may not. We use an admin user to create and delete user accounts. In platform

configuration file, a new group was added, the admin group, which contains

an admin user in XMPP.

[ADMIN]

XMPP_USERNAME=sawa@genbox

XMPP_PASSWORD=***********

73

3.4.4 HTTP POST upload

For low resource devices, unable to use XMPP connections, we support

publishing via HTTP. The following Bash script exemplifies how to publish

using HTTP method. The server accepts 3 parameters, the sensor key (KEY),

which grants publishing permissions; the sensor parameter id (VAR), which

identifies the parameter of the sensor; and the parameter value (DATA).

#!/bin/bash

SERVER_URL=’http://dev.hci.uma.pt/sawa/xmpp/publish’

KEY='5596dd8ee347131'

TEMP_VAR_ID=6

DATA=33

curl –X POST -d "KEY=$KEY&VAR=$TEMP_VAR_ID&DATA=$DATA" $SERVER_URL

The Figure 37 shows the sequence of publishing via HTTP, acting as

proxy, and due to more one intermediary the time for publishing is higher.

The web application when receives an HTTP POST request, checks if there is

any sensor with the given key, when the sensor exists, the system retrieves

sensor information from database (owner credentials, network and sensor

details) and then uses the decrypted user credentials along with other

information to publish via XMPP.

Figure 37 - HTTP POST Publishing

74

3.4.5 Platform

Instead of using system folders, the platform files reside in one folder

“/opt/sawa”. The main reason for this option was the difficulty to track all files

and to manage the dispersed files. With this option, the platform folder can be

easily removed, transported and replicated.

Path File/Directory Description

/opt/sawa/etc sawa.cfg Platform configuration file

/opt/sawa/modules actionchecker/email.so

actionchecker/function.so

actionchecker/sms.so

actionchecker/twitter.so

actionchecker/url.so

Email plug-in

XMPP publish event plug-in

SMS plug-in

Twitter plug-in

URL plug-in

/opt/sawa/usr/bin actionchecker

datarecorder

scheduler

sox_tools

sawa_tools

Policy matching service

Data recording service

Helper service

Command line tool for interacting with system

Utility tool, used by web application

/opt/sawa/usr/lib libsox.so SOX library

/opt/sawa/usr/include soxlib.h

sawa_plugin.h

SOX library header file

actionchecker plug-in header file

/opt/sawa/web non-www/application (1)

non-www/system

www/assets

(1)/config/config.php

(1)/config/email.php

(1)/config/database.php

Web application files

PHP Framework files

All accessible files (JavaScript, images, CSS)

Web application configuration

Email connection settings

Database connection settings

Table 8 - Platform File Structure

Currently the platform depends of path “/opt/sawa”, but with some

tweaks, we can use any path. The platform configuration file contains the

database settings, xmpp connection settings and services settings, such as

XMPP users and passwords.

The web folder, contains “www” and “non-www” folders, the “www” folder,

contains all readable files like CSS, JavaScript, images, and others files. Inside

“non-www” is two main folders, the “system” folder that is the PHP framework

and contains all framework files. The “application” folder contains the

developed web application with the PHP framework.

The include path, contains the development headers, to be able to

develop application with SOX library, we included SOX library header (soxlib.h).

For developing actionchecker plug-ins, the header file sawa_plugin.h is also

needed.

75

3.4.5.1 Database

The database is composed by 31 tables, 7 of them virtual (database

views). The database includes certain features that the web application

currently does not support, like policy groups, requests, posts and comments.

For a better understanding, we now describe each table individually.

Figure 38 - Database Model

GEOCODES – This table stores the geographical reference of locations.

LOCATIONS – This table stores the location of sensors and networks.

USERS – This table stores information about users, either normal or admin

users.

NETWORKS - This table stores sensor network records.

MEMBERS – This table stores the members of a network.

TRANSDUCERS – This table stores information about sensors and actuators.

76

REQUESTS – This table stores information about user request, which can be

simple messages between users.

PROPERTIES – This table stores dynamic properties of transducers.

POSTS – This table stores user posts or news in news wall.

COMMENTS – This table stores comments to posts.

RECORDINGS – This table stores the recordings request by authorized users.

CATEGORIES – This table stores categories for sensors.

COMMANDS – This table stores actuator commands.

POLICYGROUPS – This table stores groups of policies.

POLICIES – This table stores information about policies.

ACTIONS – This table stores information about actions.

EVENTS – This table stores the log of the execution of one action.

RULES – This table stores information about rules.

VARIAVLES – This table stores sensor parameters.

DATA – This table stores sensor parameters values.

DATERULES – This table is a specialization of rules and stores information

about date rules.

HISTORYRULES – This table is a specialization of rules and stores information

about history rules.

SENSORRULES – This table is a specialization of rules and stores information

about sensor rules.

ci_sessions – This table is used by the PHP framework to store user session

data.

The database views (represented in yellow in Figure 38), are the result of

queries that join multiple tables, reducing the amount of code to retrieve

information from database, and also are used to hide sensitive information.

For example the POSTSVIEW table uses data from two tables: from USERS

table, the name and id of the author that created the post, and from POSTS

table, the number of comments for each post.

77

3.4.5.2 Web Application Files and Views

The developed web application contains 14 controllers, 10 models and 7

different views layouts. We now give a brief description of the developed code

and the views.

Controllers:

actuator.php – this controller contains Create Retrieve Update Delete

(CRUD) functions and functions to call commands in actuators.

category.php – this controller basically contains CRUD functions.

dashboard.php – is an experimental controller to enable user custom

panels (with sensors, actuators and graph widgets).

data.php – the data controller contains CRUD functions, and functions

to export and retrieve sensor data for charts (e.g., average).

gallery.php – this controller is responsible for adding and managing

images in sensors and networks galleries.

location.php - this controller basically contains CRUD functions.

main.php - this controller contains the login, logout and register

functions and is the first controller to accept user connections.

network.php – this controller has the functions to manage the user

networks.

policy.php – this controller has CRUD functions for policies, rules and

actions.

sensor.php – this controller has CRUD functions to add sensors and

retrieve sensor information.

system.php – this controller contains functions to monitor the platform

services, users, and to edit the platform configuration.

user.php – this controller contains CRUD functions related to users.

wall.php – is an experimental controller to enable user news and user

posts, enabling users to comment when a new user adds a resource in

the system, or when any user shares a post.

xmpp.php – this controller is responsible accepting HTTP POST

requests with sensor data to publish via XMPP.

78

Models:

actuator_model.php

category_model.php

data_model.php

location_model.php

network_model.php

policy_model.php

sensor_model.php

user_model.php

wall_model.php

These models mostly contain CRUD

functions. They accept an array of options

and then use CodeIgniter Active Record to

create dynamic SQL queries.

gallery_model.php

The gallery model is different from other

models, since it does not interact with

database but with the file system. This

controller is responsible for managing the

gallery images on the system.

Views:

In the views we have mostly phtml files, these file are composed by

HTML, PHP and some JavaScript code. These files are executed using the

supervised data coming from controllers, and then the output is sent to the

user web browser to be rendered. Our web application uses layouts, enabling

multiple output formats such as HTML, PDF, RSS.

ajax – the phtml files in this layout folder, mostly contain operation

outputs (success and errors messages) for AJAX requests.

csv – this layout folder contain views that are used to generate CSV files

for exporting and for Dygraphs chart component.

default – when no layout is specified the default is assumed. This folder

is a HTML layout; it contains all views rendered to the user‟s web

browser.

json – in this layout, all views are rendered in JSON format. For example

all networks and sensors lists are requested in this format to be used in

chain dropdown boxes.

ofcjson – this layout contain views dedicated to generate OFC2

configuration files.

rss - this layout contains views for generating RSS files.

xml – this layout contains views that export sensor data in XML format.

79

3.4.5.3 SOXLIB modifications

The sox library implements the essential extension features

(administration and pub-sub). But for creating more advanced applications a

few changes was needed.

The library provided a function to retrieve subscriptions, but not for

affiliations. We added a function in the library to retrieve affiliations, with the

affiliation list the users can see what nodes they own and the user role to a

node (owner, member, publisher, etc).

The original SOXLIB supported subscribing and unsubscribing, but it did

not have support for unsubscribing from multi-subscribe. A user may

subscribe to the same node several times with or without different

subscription options, for these situations the subscription id must be used to

unsubscribe from a particular subscription. We did a small modification on the

library to support unsubscribing from a specific node with a subscription id.

As we intended to create system services, the services would have to

handle problems when the connection goes down. SOX library had a function

to handle this situation, but it only reported the cause of the problem. We

needed to handle the problems in the service (e.g. when internet connection

goes down), to fix this we cloned the function that starts the XMPP connection

and we added one more argument. This argument points to a handler

function, to be executed when the connection has problems. Thus the services

we developed handle the connection problems by their own, being possible to

reconnect after a XMPP connection problem.

80

3.4.5.4 Dygraphs modification

The Dygraphs chart component accepts the sensor values in CSV format,

with date in first column and the next columns for sensor values.

Date, temperature, gas_amount

2010/10/09 20:17:47, 10.78, 50.12

2010/10/09 20:18:49, 10.87, 50.15

For a successful integration of this chart component in the platform, the

support for multiple data series was required. Meanwhile the Dygraphs had an

assumption that became specific problem, if a data series did not have any

value for the specific time, it was assumed as a gap. However in our system,

the data is received at any time and with different intervals, making the chart

to display only dots (gap before and after). To solve this issue we modified the

Dygraphs source code to support the representation of data series with

different time intervals.

81

4 Case Studies

During the project development, we implemented basic cases, such as

monitoring a room door. When the platform has become more developed, we

started to setup uses cases to test the platform and to demonstrate the

platform potentials.

4.1 Mail Box

The mail box case of study was the first to be implemented. The idea for

this use case consisted on alerting the user when a mail arrives to the physical

mail box. Using a notification for new mails, avoids people walking to mail box

and verify if there is mail or not.

The plan to concretize this idea was to use an Arduino
20

 board, with a

mail detector, a door sensor and a simple RF transmitter module. The reasons

to use the Arduino board were the ease of use, fast deployment, affordable

and easy interfacing.

To detect when a mail box door is open, a magnetic door switch was

used, the sensor is composed by two parts, the magnet and the magnet

detector. The magnet was attached to the rotating lock mechanism and the

magnetic sensor was glued to mail box, as shown in Figure 39.

To transmit data from mail box to the sensor gateway, we used a radio

frequency (433 MHz) transmitter module. These modules are cheap and very

easy to use, and can be found in many applications to do simple remote

control.

20

 http://www.arduino.cc

http://www.arduino.cc/

82

Figure 39- Magnetic Door Sensor, RF Module and Arduino

After testing a distance sensor for detecting new mails entering the mail

box, the detection rate was very low (4 in 10), we decided to build a mail

detector. This sensor acts like a button, when a new mail is inserted; the metal

plates touch, making a closed circuit.

Figure 40 - Mail Detector

In the installation, we used an external power supply unit, but a battery

or a solar panel can be used. The mail sensor was attached to the box, a few

centimeters above mail box slit. In effectuated tests (using a regular letter),

the sensor detected the insertion of all mails.

83

Figure 41 – Installed Components

In web application we registered a new sensor in the network, and we

registered two variables for the mail sensor, new_mail and door_status, the

new_mail variable is updated to server when a new mail is detected, and the

door_status is updated to server when the mail door is closed or open.

The local sensor network was built, using an Arduino with an RF receiver

module and with an Ethernet shield. This gateway is resource limited, and only

can do simple HTTP POST and GET operations. The message protocol used

between sensors and the RF gateway was defined as fallow.

message_number#sensor_id#variable_id#variable_value

The tested RF module works well for small distances in clean air, since

we used these modules indoor, the thickness of walls affect the transmission

reliability. In order to minimize the effects of distance and the objects between

the transmitters and the receiver, the transmitters were programmed to send

five times each message. The message number is used to sensor base know if

the message has been accepted before or not.

The sensor id identifies a sensor in the network, and the variable id is the

id of the sensor parameter. When a message is sent from transmitter, the

gateway (receiver) parses the message and makes an HTTP POST call to the

web application, which then publishes via XMPP.

In the web application a policy was created, as shown in Figure 42 with a

rule that applies to the new_mail variable from mail sensor in the

salvadorlaptop network. This policy matches when the uploaded new_mail

value is “1”, and the SMS action is triggered with the message “New mail

arrived!”.

84

Figure 42 - Policy Details

Figure 43 - SMS Notification Message

With this experience we have learned some lessons. Hardware choices

are very important, because the physical world limits in various conditions. In

this experience, the distance, rain, energy, mail box material, and others

constraints must be taken into account. But in the end, the experience was

useful, with a simple policy, we got notifications when new mails arrived, and

we could see the mail history in charts. And in future we could develop a

custom mail sensor node, much smaller and with better hardware, to do the

same as this experience.

85

4.2 Refrigerator

The idea to monitor a refrigerator was to test the system and possible

monitor the impact of opening the door in energy consumption. To

accomplish this idea, we ordered a temperature sensor, a photo-resistor

sensor and a non-invasive current transformer (CT) sensor. The CT sensor

required external circuit and our knowledge was very limited in that field, we

skipped the energy monitoring, and we added a gas sensor to detect butane

gas leaks, and a presence sensor to monitor presence in the kitchen.

Figure 44 - Refrigerator Sensors

Every refrigerator has a light which is turned on when the door opens,

and is turned off when the door is closed. To detect when the door was open,

a photoresistor sensor was used, a photoresistor can be defined as “a resistor

whose resistance decreases with increasing incident light intensity” [38], by

other words, it measures the light intensity. When the door is closed (no light

present) the sensor will report “0” and when the light intensity is more than

zero, means the door is open.

86

Along with light intensity sensor, was attached a thermistor, which is a

resistor whose resistance varies with temperature [39], to monitor the

refrigerator temperature. The gas sensor, is high sensitive to gases, and was

used to monitor the presence of gases in the kitchen, more particular the

butane or propane gas.

The buzzer as shown in Figure 44 emits a sound alert when the gas

sensor detects high values. The installation was very easy to achieve, like in

mail box experience, we used an Arduino board platform, a RF transmitter

module, and the same protocol for sending messages.

Figure 45 - Sensor Network

Figure 46 - Recorded Sensor Data

87

The chart from Figure 46 represents the data from four variables within

one hour (10h). The blue line contains seven points, with the time in x-axis

and the number of seconds in y-axis. The darkest brown line is the refrigerator

temperature and the light brown represents the gas sensor data. Finally the

line with magenta color represents presence in that hour.

The graph in Figure 47 represents in seconds the average time, which the

refrigerator door was open. On Figure 48 is represented the average number

of times the refrigerator door was open by hour.

Figure 47 – Door open average time Figure 48 - Average open count by hour

The presence graph, in Figure 49, shows the presence count average for each

hour in the kitchen.

Figure 49 - Average Presence in Kitchen

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20 22

S

e

c

o

n

d

s

Hours

0

0,5

1

1,5

2

2,5

0 2 4 6 8 10 12 14 16 18 20 22
Hours

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20 22

Minutes

Hours

88

The Chart in Figure 50 shows the average presence in the kitchen, the

door open count frequency, and the average door open time for each hour.

Figure 50 - Presence and Refrigerator

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

time open (seconds) presence count (minutes) open count (times)

89

4.3 Wine Monitoring

4.3.1 Objectives

The objective of wine monitoring use case was to gain scientific

understanding of the vinification process of Madeira wine. Was intent to use

sensors to study various parameters of the vinification process, as well use

actuators to control the environment.

Figure 51 - Wine Tank

Figure 52 - Wine Laboratory

4.3.2 Selecting Sensors

The first step was to search for related projects, and in overall we find

the basic temperature measurements and commercial projects that monitor

few parameters (e.g, CO2). The next step consisted in search of sensors, and

we set a few requirements to select the sensors:

Easy interfacing – the sensor should be easy to interconnect with

microcontrollers, and not require external circuits.

No maintenance – the sensor should operate for long time without

maintenance.

Affordable – the price of sensor should be relatively affordable,

considering the possibility of extending to multiple wine tanks.

90

The following tables 8 and 9, resumes the reasons to select or not the

various types of sensors.

Reasonable – The sensor seemed easy to interface and use.

Expensive - The system or sensor is expensive.

Specific HW and SW – The parameter can be measured with a special lab

machine, which requires specific hardware and software.

No sensor - No available standalone sensor for sale.

Maintenance – The system or sensor requires human intervention,

and/or chemical products.

Parameters Order Use

pH Yes (+) Seems reasonable

Temperature Yes (+) Reasonable

Color No

(-) Expensive

(-) Specific HW and SW

(-) No Sensor

Dissolved Oxygen No

(-) Expensive

(-) Specific HW and SW

(-) Maintenance

Volatile acidity No (-) No sensor

Total acidity No (-) No sensor

Oxidation No (-) No sensor

Ethanol No

(-) Expensive

(-) Specific HW and SW

(-) Maintenance

Sulfur Dioxide No (-) No sensor

Specific gravity No

(-) Expensive

(-) Specific HW and SW

(-) No sensor

Table 9 - Liquid Measurable Parameters

Parameters Order Use

Relative Humidity Yes (+) Reasonable

Carbon Dioxide Yes (+) Reasonable

Monoxide Carbon Yes
(+) Reasonable

(-) Less important in wine

Alcohol Yes (+) Reasonable

Table 10 - Gas Measurable Parameters

91

4.3.3 Sensor testing and connections

After the arrival of the ordered sensors, the testing phase started as

described next.

Alcohol sensor – The MQ-3 gas sensor, has a high sensitivity to alcohol

and small sensitivity for benzene, and is common used in alcohol

checkers and breathalyzers [40]. To use and test this sensor, we had do

use a variable resistor as explained in datasheet. The calibration of the

sensor is made through the potentiometer (variable resistor) and the

sensor must have at least more than 24h of preheat time.

CO2 module - The CO2 module, uses the MG811 CO2 Gas Sensor, in

order to use the MG811 sensor, would be necessary a complex external

circuit to amplify the sensor output. The CO2 module implements the

required circuit and has the MG811 CO2 Gas Sensor. The CO2 sensor has

a good CO2 sensitivity and selectivity for typical applications, which

include, air quality control, fermentation process control and room CO2

concentration detection [41].

The CO2 module has a potentiometer for alarm calibration and

requires at least five minutes of preheating time. In order to use this

module, a pin had to be soldered in sensor amplified output.

PH probe – The PH probe, has a measurement range from 0 to 14 pH

units, and has a fast response time. This pH probe contains an amplifier

circuit to amplify the signal from electrode. Most available pH probes

require external circuit or hardware to make readings. We specially

ordered this probe because of the amplifier circuit, making possible an

easy interfacing with the microcontroller.

Temperature sensor – the temperature sensor is a thermistor with a

steel head, being appropriate for temperature measurements in liquids.

LM34 temperature sensor – LM34 is a high precision Fahrenheit

temperature sensor, this sensor is an integrated circuit, whose output

voltage is linearly proportional to the Fahrenheit temperature [42]. The

calibration for this sensor was not necessary, and no complex wiring was

needed.

92

Relative humidity sensor – The HIH-4030 relative humidity sensor, has a

near linear analog output and has fast response times. Common

applications are refrigeration equipment, HVAC systems, metrology and

others more. No special effort was necessary for use this sensor, since it

has a simple interface.

Figure 53 - Alcohol Sensor

Figure 54 - Gas Sensors

The Figure 55 schematizes the wiring from the sensors to the microcontroller.

Figure 55 - Wiring Scheme

1 Arduino Nano 4 Thermistor 7 Alcohol Sensor

2 RF Module 5 Relative Humidity Sensor 8 CO2 Module

3 Direct Current Jack 6 Temperature Sensor 9 PH Probe

93

4.3.4 Probe Construction

Four attempts were made to integrate all these sensors, components and

wires, into one single probe. In the first attempt, we used a stainless tube with

3 cm of diameter. The first difficulties were the drill process to make holes for

gas sensors, and the second problem was the limited space and the difficult of

moving the cables.

In second attempt, a common plastic tube was used, with more flexibility

to make holes for sensors and with more length in diameter. The lack of space

and difficulty for moving and wiring sensors inside the tube made us abandon

this approach.

Figure 56 - Second attempt Probe

The third attempt consisted in having two modules; the liquid module

would have the pH probe and the temperature sensor. And the other module

would have the gas sensors and the microcontroller. The liquid module was

filled with a heavy silicone, forcing it to submerge at certain level. The wiring

to the Arduino platform was made with less difficulty than the previous

experience, but there were difficulties in wiring everything. The problems

started when the two modules were connect, the whole probe not kept

equilibrated and the water level was too much close to the gas sensors.

Figure 57 - Third attempt Probe Modules

94

From this attempt, was decided to split in two parts, the gas part where

we would have the gas sensors and the microcontroller, and the part floating

in the water.

In the construction of final solution, a plastic tube was used to hold the

pH probe and temperature sensor. A heavy metal object was added to keep

the module more equilibrated. To build the gas module, a rectangular plastic

box from an old scanner was used. Using this material the manipulation and

wiring was much easier to achieve.

In Figure 59, in the left side of the black box, is the alcohol sensor PCB

(Printed Circuit Board) and under the same PCB is the humidity sensor with the

temperature sensor. The green PCB is from CO2 module and on the right side

of this module is a soldered mini distribution of ground and positive voltage.

The distribution board was needed because Arduino Nano has only two

ground pins and one pin for five volts.

In the right side of the box is Arduino Nano, with analog and digital pins

connected to sensors; ground and voltage pins connected to the distribution

PCB. Arduino is also connected to a DC jack, where receives energy from.

Figure 58 - Liquid module

Figure 59 - Gas Sensors with Microcontroller

This construction had a problem, the temperature and humidity sensor

was between the two gas sensors, these gas sensors contain heaters which

increase the temperature of surrounding objects. The probe was installed in

the wine tank, and after one month we did an improvement to fix the problem.

95

After the previous experience we came with a simpler solution, using

modules, one for liquid sensors, and the other for gas sensors and to be

attached to the top of the wine container. The upper module contains two

parts; the top one contains the micro-controller, power connector and RF

modules. The bottom part contains the c02, alcohol and relative humidity

sensors.

Figure 60 - Gas Module Parts

Figure 61 - Idealized Sensor Probe

To construct the gas module part, we cut in half a sealant silicone tube,

and we used the tube cap to add the transmitter/receiver modules with an

antenna (yellow wire). In the upper part of the gas module was added the

Arduino board, with the USB port exposed to exterior, and we added a DC

jack. In the tube part destined for gas sensors, was drilled three holes with the

diameter to fit each sensor.

96

Figure 62 - USB and DC Jack

Figure 63 - Gas Sensors

The Alcohol and CO2 sensors were attached to the tube using tube

sleeves and glued with hot glue. The power hub board was built to connect the

sensor power pins and sensor output pins. The hub allows an easier plug of

these two parts.

Figure 64 - Final Probe

Figure 65 - Installation

97

4.3.5 Installation

After the construction of the probe, we used an elastic screw cover to

hold the probe in the openning of wine tank, and also to avoid major

temperature and gases changes. The installed sensor gateway was an Arduino

board with an Ethernet shield, being responsible to connect with server, accept

RF messages from the probe and then upload the sensor data via HTTP POST.

Figure 66 – Installed Probe

Figure 67 - Sensor Gateway

The sensor calibration consisted in using liquids with different pH values,

for the pH probe. For gas sensors, we used the ambient, the sensor datasheet

charts, and linear formulas to calculate the approximate sensor values.

98

4.3.6 Sensor Data

We have created a network in the system named “wine_lab_network” and

created a sensor named “wine_probe_1”. We added 11 variables for the sensor,

some variables contain raw values and some contain processed values. The

advantage of uploading the raw value is the future possibility of correcting

processed sensor values when the calibration or data processing was not done

correctly.

ph – the processed value of ph.

ph_raw – the raw voltage (in mV) sensed from analog sensor output.

c02_raw – the raw voltage (in mV) sensed from sensor output.

co2_ppm – the processed value of co2_raw in parts per million (ppm).

c02_per – the processed value of co2_ppm in percentage.

temp_wine – the processed temperature measured in wine.

temp_air – the temperature measured in air.

alcohol_raw – the raw voltage (in mV) adquired from sensor output.

alchohol_ppm – the processed value of alcohol_raw in ppm units.

rh_raw – the raw voltage measured from relative humidity sensor.

rh_per – the relative humididy percentage (0% to 100%), processed from

rh_raw and temp_air values.

Figure 68 - Sensor Variables

99

In Figure 69, is shown the available sensor data from the first nine days

of July, the pH values maintain constant at 3.35 ph units, with some variation

of 0.01 units. The temperature value also maintains constant; the temperate in

the gas is in average 31 degrees Celsius and the temperature in the wine

rounds the 30ºC.

Figure 69 - Sensor Data from July

Drilling by day, we can observe by hour the same parameter values; the

first aspect we can notice is the dropping of temperature and an increase

between 18h and 19h. This process also happens with the refrigerator, but

instead of cooling the system heats, to maintain the temperature constant at

30ºC.

Figure 70 - Drilling Sensor Data by Day

100

4.3.7 Conclusion & Results

In this use case, we firstly focused in monitoring only, and we have

installed the hardware just for the monitoring process. We have selected

simple components like the RF modules and limited devices (Arduino in

gateway). But the choice for the cheap and simple hardware penalized us. As

example, the RF modules are limited to transmit 27 characters at once, do not

have any transmission protocol, no encryption support and no data integrity

mechanism. The use of a resource limited sensor gateway, do not allowed

secure connections and support for actuation.

We faced with the problem of resistance of materials/construction in long

term monitoring in harsh environments. A few weeks after prove

improvement, the liquid module was flooded by wine, destroying the liquid

module and circuits around.

During the writing of this thesis we found that two new interesting

products. A company focused in wireless sensor networks, libellium
21

, is

selling sensor boards and gas sensor for their motes. Another relevant project

in wine is fermonitor
22

, which promotes a probe (currently in development) to

measure interesting parameters (specific gravity, sugar, alcohol, ABX,

pressure) for beer monitoring.

We suggest for the next improvements, the use of more reliable

hardware in communication (e.g., xbee), and the use of a sensor gateway with

resources and capable of establishing secure connections (e.g., desktop,

laptop, mini-pc). For the probe construction we suggest the use of better

materials (e.g., insulate materials), and the construction of custom parts. For

the probe sensing components, we suggest the integration of more liquid

sensors and gas sensors.

Despite all problems and difficulties, this use case was a starting point in

wine monitoring, like any project development, we learn and improve with

iterations. With more iteration we could develop a more reliable probe for wine

monitoring, and for beer. This probe then could be used as tool for gaining

21

 http://www.libelium.com

22

 http://fermonitor.com

http://www.libelium.com/
http://fermonitor.com/

101

scientific understanding of Madeira wine fermentation process, and as a utility

tool to know when the wine is ready to go to market.

102

5 Tests

We tested the system in order to check the performance and reliability

under various conditions.

5.1 Reliability & Performance

The first test consisted in publishing the same sensor data for 1.000

times, using the two methods XMPP and HTTP POST. The objective was to

measure the time to complete and the success rate. To achieve this, we

developed a small program to connect to the XMPP server and publish to a

sensor node 1.000 times.

We created two programs for testing each method, for XMPP method the

program started by creating an XMPP connection, then a SOX message with

sensor data was created, and finally a cycle to publish the message and report

failures. For HTTP POST method, we created a small C program that used

libcurl POST functions. The program started by creating a POST form request

and then started requesting the server in a cycle.

Performance/Reliability LAN Internet (hci.uma.pt)

Method Tests Time (s) Success Time (s) Success

XMPP

1 000

 23 sec 100% 86 sec 100%

HTTP POST 266 sec 100% 280 sec 100%

Table 11 - Publishing Results

The Table 11 shows the results effectuated in 7 October 2010, we did the

same tests in a local area network and a server located in internet. The first

aspect to notice is the success rate of 100%, making the system publishing

very reliable. The times to publish in the two methods are smaller in LAN than

internet server, and there is a huge difference in publishing time (at least 3

times faster) between both methods.

Performance/Reliability Internet (hci.uma.pt)

Notification type Tests Success rate Average time (s)

Email

10

100% 2 sec

URL 100% 2 sec

SMS 100% 6 sec

Twitter 100% 4 sec

XMPP Event 100% 1 sec

Table 12 - Notification Results

103

The results in Table 12 show the performance and reliability of the

notification mechanism. The average time of SMS and Twitter plugins depends

of external service providers. The time was measured using a chronometer

from the publish moment to the end of notification.

5.2 Storage

The users may define at what rate to upload sensor data, this selection is

made in the sensor device, either by sending data at given rate or when an

interesting event happens. The X represents the time needed to consume 1GB

of space, for 12 different upload rates. A record is a sensor parameter value

in database, as example, if we have 100 sensors in the system uploading 1000

records per minute (e.g., 100 sensors x 10 parameters), the database size will

increase 1GB per week.

Time to fit one Gigabyte

Upload Interval Records

Days

Years

Second

1 126,928792 0,34775012

10 12,6928792 0,03477501

100 1,26928792 0,00347750

1000 0,12692879 0,00034775

Minute

1 7615,72754 20,8650070

10 761,572754 2,08650070

100 76,1572754 0,20865007

1000 7,61572754 0,02086501

Hour

1 456943,653 1251,90042

10 45694,3653 125,190042

100 4569,43653 12,5190042

1000 456,943653 1,25190042

Table 13 - Upload Rates & Space Consumption

The database DATA_VALUE field in DATA table is of type VARCHAR,

allowing storing sensor data up to 2000 characters. At the time of this test, we

had 279.521 records in database, with total size of 26.1MiB (megabibytes),

which gives an average of 98 bytes per record. The values in Table 13 are

calculated with the calculated average record size in our database.

104

6 Conclusion & Future Work

6.1 Future Work

Security issues

Despite all security mechanism that the PHP framework has built-in and

the security option provides by SOX library, attacks could be made. As

example, the Arduino used in the uses cases, and is not capable of handling

SSL connections, making possible to catch the sensor upload key in HTTP

POST via packet sniffing. The actionchecker plugins that use the “system()” call

and does not verifies the input string, are an flaw and may be exploited by

intruders using commands injection, and then calling any command on the

server.

Another security aspect is the definition of policies that creates loops;

this problem is not as critical as the previous but can consume system

resources unnecessarily. As example if a policy is defined as:

IF sensorX.temperature >0 THEN PUBLISH sensorX.temperature = 100

These situations may be difficult to detect and prevent, but in the next

platform improvements this security problem should be taken into account.

The platform stores the user credentials in database, to connect with

XMPP server and to execute operations. This represent another problem, if any

intruder have access to the database, it is possible to decrypt the users

password. To avoid this, the platform should implement more secure

mechanisms like oAuth
23

.

23

 http://oauth.net

http://oauth.net/

105

Collection of nodes

Hierarchies are great for structuring and organizing elements, the XMPP

server that we used does not have full support for the node collection

extension. This extension permits hierarchies, where parent nodes are called

collections nodes, and the children elements are called leaf nodes. With

support for this extension in the XMPP server, our system could support

hierarchy with a few changes in the web application and also on services.

Charts

Would be useful to compare different periods of time, as example,

compare current month with the same month of previous year, as well any

other interesting period of time. Also useful would be to have chart support

for non numerical sensor parameters, this is, if a sensor reports “on” and “off”

as values, the chart would have the possibility to map these string values as a

numeric value defined by users. In this case a user could set “on” to be

mapped as 1 and “off” as zero, being possible the representation of the sensor

parameter in charts.

To create more interactivity with the users, the charts should allow users

to define formulas to be represented on chart. As example, if we have the

water consumption in a chart by liter, the user could add a new chart element

to represent the cost of the water consumption.

Custom user panels would be interesting to users manage how they want

to see the sensor charts and actuators control panels. As example the user

could have more than one customized page (with chart, sensor and actuator

widgets). The platform currently does not support user preferences in chart

visualization (max, min, fill, etc), making the users reconfigure every time they

access the chart page.

106

Social sharing

To add more “life” to the platform, would be interesting to add a public

wall page where users could see the last events (new sensors added, new

networks, etc). As example, when a user added a new sensor, the public wall

would show that information along with sensor pictures, and everyone could

comment and discuss.

Another possibility is to link the platform with social networks like

Facebook. Then for example, the user could post automatically a chart of user

weight over a month measured by a balance chair.

Policies

Another aspect is that policies are currently defined for a set of specific

variables, but would be interesting to have policy templates, where the user

could specify the sensors where the policy would apply.

107

6.2 Concluding Remarks

In this work, we presented a platform for real-time sensor data collection,

visualization, and sharing. We demonstrate how we used a scalable, flexible

and extensible real-time middleware to transport sensor data with security.

Also, we demonstrate with use cases that our system is useful for many

applications, such as, data collecting data for statistics, data visualization and

actuation based on policies.

In the practical use cases we demonstrated with a simple policy, in the

mail experience, the platform potential in the real world. In the refrigerator

use case we demonstrated that the platform is suitable for data collection for

statistics and data analysis. With the wine experience, we give the first steps in

building a wine monitoring probe that with more improvements can be used to

collect data for analysis, used for actuation and for wine production control.

108

109

Bibliography

[1] Hichem Kenniche and Vlady Ravelomananana, "Random Geometric Graphs

as model of Wireless Sensor Networks," Computer and Automation

Engineering (ICCAE), 2010 The 2nd International Conference on, vol. 4, pp.

103-107, February 2010.

[2] James Truchard. (2008, Nov.) EETimes. [Online].

http://www.eetimes.com/design/industrial-control/4008153/In-2028-

sensors-are-everywhere

[3] ThomasNet. ThomasNet. [Online].

http://www.thomasnet.com/about/sensors-73740607.html

[4] Wikimedia Foundation. (2010, November) Wikipedia - Transducer. [Online].

http://en.wikipedia.org/wiki/Transducer

[5] Frost & Sullivan. (2008, January) Frost & Sullivan. [Online].

http://www.frost.com/prod/servlet/market-insight-

top.pag?docid=118964127

[6] Wire Service. (2007, September) SmartHouse. [Online].

http://www.smarthouse.com.au/Automation/General/W3G7L2H2

[7] Boyd Fletcher, "XMPP & Cross Domain Collaborative Information

Environment (CDCIE) Overview For Net-Ready Sensors Summer Worksho,"

in Net-Ready Sensors: The Way Forward.

[8] Sensor Andrew. [Online]. http://sensor.andrew.cmu.edu/about/

[9] Robert F. Dickerson et al., "MetroNet: Case Study for Collaborative Data

Sharing on the World Wide Web," in 2008 International Conference on

Information Processing in Sensor Networks (ipsn 2008), 2008, pp. 557-

558.

[10] B Maryam Elahi, Kay Romer, Benedikt Ostermaier, Michael Fahrmair, and

Wolfgang Kellerer, "Sensor ranking: A primitive for efficient content-based

sensor search," in Proceedings of the 2009 International Conference on

http://www.eetimes.com/design/industrial-control/4008153/In-2028-sensors-are-everywhere
http://www.eetimes.com/design/industrial-control/4008153/In-2028-sensors-are-everywhere
http://www.thomasnet.com/about/sensors-73740607.html
http://en.wikipedia.org/wiki/Transducer
http://www.frost.com/prod/servlet/market-insight-top.pag?docid=118964127
http://www.frost.com/prod/servlet/market-insight-top.pag?docid=118964127
http://www.smarthouse.com.au/Automation/General/W3G7L2H2
http://sensor.andrew.cmu.edu/about/

110

Information Processing in Sensor Networks, Washington, 2009, pp. 217-

228.

[11] Mohammad Hammoudeh, Robert Newman, Sarah Mount, and Christopher

Dennett, "A combined inductive and deductive sense data extraction and

visualisation service," in Proceedings of the 2009 international conference

on Pervasive services, London, 2009, pp. 159-168.

[12] Admilson Ribeiro, Fabio Silva, Lilian Freitas, Joao Costa, and Carlos

Frances, "SensorBus: a middleware model for wireless sensor networks," in

Proceedings of the 3rd international IFIP/ACM Latin American conference

on Networking, Cali, Columbia, 2005, pp. 1-9.

[13] Ankit Tiwari, Prasanna Ballal, and Frank L. Lewis, "Energy-efficient wireless

sensor network design and implementation for condition-based

maintenance," ACM Transactions on Sensor Networks, vol. 3, no. 1, 2007.

[14] Lian Xing Zhang, "An Efficient Energy Adaptive Clustering LEACH in

Wireless Sensor Network," Key Engineering Materials, vol. Advanced

Measurement and Test X, pp. 510-515, 2010.

[15] Qinghua Wang, "Paradigms in the Research Community of Wireless Sensor

Networks," Mid Sweden University, Sundsvall,.

[16] Muhammad Rashid and Mutarraf Mumtaz, "Remote Surveillance and

Measurement," Halmstad University, Halmstad, Master Thesis IDE0836,

October 30, 2008.

[17] Eduardo Souto et al., "Mires: a publish/subscribe middleware for sensor

networks," Personal and Ubiquitous Computing, vol. 10, no. 1, pp. 37-44,

December 2005.

[18] Diane Cook and Sajal Das, Smart Environments: Technology, Protocols and

Applications (Wiley Series on Parallel and Distributed Computin.: Wiley-

Interscience, September 2004.

[19] G. Michael Youngblood, Edwin O. Heierman, Lawrence B. Holder, and

Diane J. Cook, "Automation intelligence for the smart environment," in

111

International Joint Conference On Artificial Intelligence, Edinburgh, 2005,

pp. 1513-1514.

[20] Sajal Das and Diane Cook, "Designing and Modeling Smart Environments,"

in Proceedings of the 2006 International Symposium on on World of

Wireless, Mobile and Multimedia Networks, Washington, DC, USA, 2006,

pp. 490-494.

[21] Anthony Rowe et al., "Sensor Andrew: Large-Scale Campus-Wide," Carnegie

Mellon University, Pittsburgh, Technical Report CMU-ECE-TR-08-11, 2008.

[22] Wikimedia Foundation. (2010, August) Wikipedia - GLib. [Online].

http://en.wikipedia.org/wiki/GLib

[23] Kathryn Barrett. (2009, May) O'Reilly. [Online].

http://fyi.oreilly.com/2009/05/what-can-you-do-with-xmpp.html

[24] (2010, January) XMPP Standards Foundation. [Online].

http://xmpp.org/about-xmpp/

[25] Wikimedia Foundation. (2010, October) Wikipedia - Extensible Messaging

and Presence Protocol. [Online].

http://en.wikipedia.org/wiki/Extensible_Messaging_and_Presence_Protocol

[26] XMPP Software Foundation. (2003, September) Jabber Instant Messaging

User Base Surpasses ICQ. [Online]. http://xmpp.org/xsf/press/2003-09-

22.shtml

[27] Boyd Fletcher. (2006, August) XMPP & Cross Domain Collaborative

Information Environment. PowerPoint Slides.

[28] Isode. (2007, July) Isode's Presence, Real Time Messaging and XMPP

Strateg. Whitepaper.

[29] XMPP Software Foundation. (2010, August) XMPP Technologies Overview.

[Online]. http://xmpp.org/about-xmpp/technology-overview/

[30] Peter Saint-Andre, Kevin Smith, and Remko Tronçon, XMPP: The Definitive

http://en.wikipedia.org/wiki/GLib
http://fyi.oreilly.com/2009/05/what-can-you-do-with-xmpp.html
http://xmpp.org/about-xmpp/
http://en.wikipedia.org/wiki/Extensible_Messaging_and_Presence_Protocol
http://xmpp.org/xsf/press/2003-09-22.shtml
http://xmpp.org/xsf/press/2003-09-22.shtml
http://xmpp.org/about-xmpp/technology-overview/

112

Guide.: O'Reilly Media, 2009.

[31] Iain Sadawo Shigeoka, Instant messaging in Java: the Jabber protocols.

San Diego, CA: Manning Publications C, 2002.

[32] Wikimedia Foundation. (2010, September) Wikipedia - Publish/subscribe.

[Online]. http://en.wikipedia.org/wiki/Publish/subscribe

[33] Umar Farooq, Eric Walter Parsons, and Shikharesh Majumdar, "Performance

of publish/subscribe middleware in mobile wireless networks," ACM

SIGSOFT Software Engineering Notes, vol. 29, no. 1, pp. 278-289, January

2004.

[34] Patrick Thomas Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-

Marie Kermarrec, "The many faces of publish/subscribe," ACM Computing

Surveys (CSUR), vol. 35, no. 2, pp. 114-131, June 2003.

[35] XMPP Standards Foundation. (2010, july) XEP-0060: Publish-Subscribe.

[Online]. http://xmpp.org/extensions/xep-0060.html

[36] (2010, September) XEP-0248: PubSub Collection Nodes. [Online].

http://xmpp.org/extensions/xep-0248.html

[37] Wikimedia Foundation. (2010, October) Wikipedia - Twitter. [Online].

http://en.wikipedia.org/wiki/Twitter

[38] Wikimedia Foundation. (2010, October) Wikipedia - Photoresistor. [Online].

http://en.wikipedia.org/wiki/Photoresistor

[39] Wikimedia Foundation. (2010, October) Wikipedia - Thermistor. [Online].

http://en.wikipedia.org/wiki/Thermistor

[40] HANWEI ELETRONICS CO.,LTD. TECHNICAL DATA MQ-3 GAS SENSOR.

Datasheet.

[41] Hanwei Electronics. MG811 CO2 Sensor. Datasheet.

[42] National Semiconductor. LM34 Precision Fahrenheit Temperature Sensors.

Datasheet.

http://en.wikipedia.org/wiki/Publish/subscribe
http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0248.html
http://en.wikipedia.org/wiki/Twitter
http://en.wikipedia.org/wiki/Photoresistor
http://en.wikipedia.org/wiki/Thermistor

113

[43] Alessandro Vermeulen. (2008, November) Alessandro Vermeulen Blog.

[Online]. http://alessandrovermeulen.me/2009/07/12/extending-the-v-in-

mvc-revisited/

[44] Vitaly Friedman. (2007, October) Smashing Magazine. [Online].

http://www.smashingmagazine.com/2007/10/18/charts-and-graphs-

modern-solutions/

[45] Jacob Gube. (2009, April) Six Revisions. [Online].

http://sixrevisions.com/flashactionscript/10-useful-flash-components-for-

graphing-data/

[46] Wikimedia Foundation. (2010, November) Wikipedia - Google Maps.

[Online]. en.wikipedia.org/wiki/Google_Maps#Google_Maps_API

[47] jQuery. (2010) jQuery. [Online]. http://jquery.com/

[48] Wikimedia Foundation. (2010, November) Wikipedia - Ajax. [Online].

http://en.wikipedia.org/wiki/Ajax_(programming)

[49] json.org. JSON. [Online]. http://www.json.org/

http://alessandrovermeulen.me/2009/07/12/extending-the-v-in-mvc-revisited/
http://alessandrovermeulen.me/2009/07/12/extending-the-v-in-mvc-revisited/
http://www.smashingmagazine.com/2007/10/18/charts-and-graphs-modern-solutions/
http://www.smashingmagazine.com/2007/10/18/charts-and-graphs-modern-solutions/
http://sixrevisions.com/flashactionscript/10-useful-flash-components-for-graphing-data/
http://sixrevisions.com/flashactionscript/10-useful-flash-components-for-graphing-data/
en.wikipedia.org/wiki/Google_Maps#Google_Maps_API
http://jquery.com/
http://en.wikipedia.org/wiki/Ajax_(programming)
http://www.json.org/

114

115

Appendices

In this section we present the comparison between components which we

selected to integrate in our system. Starting by comparing the XMPP server,

then the PHP framework, then the chart component and finally we give a brief

introduction in other technologies we used.

XMPP Server with Pub-Sub support

In Table 14 is compared three servers with support for Pub-Sub, all of

them support the basic functionalities of Pub-Sub extension (XEP-060). Also

they do not have implemented all protocol features. We started using

Openfire
24

 server, and after we tested Ejabberd
25

 and Tigase
26

 XMPP servers. We

tested each server for the basic PubSub features (node management,

subscriptions, affiliations, publishing, etc), and we found Openfire as the one

with more support for PubSub features. We selected Openfire as our XMPP

server for that reason but also for being the most easy to use and configure.

Figure 71 - Ejabberd Pub-Sub features not implemented

24

 http://www.igniterealtime.org/projects/openfire/

25

 http://www.ejabberd.im

26

 http://www.tigase.org

http://www.igniterealtime.org/projects/openfire/
http://www.ejabberd.im/
http://www.tigase.org/

116

 Openfire Ejabberd Tigase

Pros

Web interface Very scalable
Multi platform

Installer

Commercial

Support
Live console Java

Easy configuration Erlang

Java

Popular

PubSub support

Publish Yes Yes Yes

Subscribe Yes Yes Yes

unsubscribe Yes Yes Yes

Create node Yes Yes Yes

Delete node Yes Yes Yes

Retrieve

subscriptions
Yes Not implemented Not implemented

Retrieve affiliations Yes Not implemented Not implemented

Retrieve last item Yes Not implemented Not implemented

Add member Yes Yes Yes

Node collections Not implemented Yes
Partially

implemented

Table 14 - XMPP servers comparasion

117

PHP Framework

We had previous experience with PHP in developing web applications

from scratch, but this was time consuming and slow to implement (eg: handle

form validation, url redirection, security). In order to not repeat the same work

we did in previous web applications, we decided to read about existing PHP

frameworks.

Criteria to select a PHP framework were:

 Use of MVC

 Rapid development

 Small learning curve

 Good documentation

Advantages of using a PHP framework:

Time saving: development is faster, the amount of saved time can be

up to 50% in most cases.

Reuse of code: many websites share the same features, these features

are included.

Community assistance: there is a large community around a

framework, which helps a lot in many situations (bugs, problems,

getting help).

Libraries: all frameworks comes with a set of helpers/libraries, for

example url, session, form validation, routing.

Disadvantages:

Learning curve: the time to learn to use a framework, some

frameworks could take more time.

Memory foot print: Some frameworks have many associated libraries,

making it slow.

118

There are various PHP Frameworks available today, CodeIgniter
27

, Cake

PHP
28

, Zend
29

, Symphony
30

, each has a different coding convention. Most

comparison tables only compare the features like, Ajax, Database, security,

templating, caching, etc. The most popular frameworks are similar in the

features, but only reading from user experience (user comments and posts),

we could get some information about the learning curve, and other aspects.

CodeIgniter Symphony Zend

Ease-of-use Used in enterprise world Very popular

Lightweight Code generation Set of libraries

Performance and speed Complete Commercial support

Very good documentation Mature Large community

Table 15 - PHP Framework Comparison

We installed Symphony, Zend and CodeIgniter, from these three

frameworks we found CodeIgniter simpler, with good documentation and with

the smallest learning curve comparing with the other two. We made this choice

based on our user experience, and in the small learning curve necessary and

the ease-of-use.

Model-View-Controller System

Extremely Light Weight

PHP 4 Compatible

Full Featured database classes

Active Record Database

Support

Form and Data Validation

Security and XSS Filtering

Session Management

Email Sending Class

File Uploading Class

Image Library

FTP Class

Localization

Pagination

Data Encryption

Benchmarking

Full Page Caching

Error Logging

Application Profiling

Scaffolding

Calendaring Class

User Agent Class

Zip Encoding Class

Template Engine Class

Table 16 - CodeIgniter Features

27

 http://codeigniter.com

28

 http://cakephp.org

29

 http://www.zend.com

30

 http://www.symfony-project.org

http://codeigniter.com/
http://cakephp.org/
http://www.zend.com/
http://www.symfony-project.org/

119

CondeIgniter basically consists in two main folders, the system folder, that

contains all framework files, and the application folder, like the name says, is

where the applications are built.

Short description of application folder:

config – all configuration files are here, such as database connection

settings, email, url settings.

controllers - this is where the program logic is programmed.

errors - Just defines what the various error pages are like, such as 404

error pages and database error pages.

helpers – collections of helper functions.

language – Used for dealing with more than one language.

libraries – Groups of related functions, such as charting component.

models – Used to represent objects, do all the interaction with the

database.

Views – Where all html files go.

Layouts hack

During the development, we found a modification to select different

layouts, as author explains “A layout is the representation of data in a specific

format. So the layout of a page can be either, xhtml, RSS, PDF, PPT or any

other data format” [43]. With the ability of selecting different layouts, only by

adding the extension to the function, we increased the flexibility of our web

application without changing controller‟s code.

120

Chart Component

In order to display data in charts, we searched for chart components to

generate charts for our sensor data.

Our criteria to select a chart component were:

 Interactive (not a static image)

 Various types of charts (line, bar, pie)

 Open source

 PHP support

Most of charting components in web applications use CSS, JavaScript or

Adobe Flash technologies. From these three technologies, the Flash charts

were the ones with more quality (graphics and interactivity) and the ones with

more chart types. There is many chart options around [44,45], in the end we

selected three options to compare: OpenFlash Chart 2
31

, XML/SWF Charts
32

 and

FusionCharts
33

.

Open Flash Chart 2 XML/SWF Charts FusionCharts

Open source Free (with restrictions) Commercial product

Json format Xml format High quality charts

Codeigniter plugin Technical support High flexibility

Popular Technical support

Table 17- Chart component comparison

From these three options, FusionCharts was the better one, charts with

more quality, high flexibility and many types of charts. Due to license

restrictions in XML/SWF and FusionCharts, the Open Flash Charts 2 (OFC2)

option gives more freedom in redistributing the platform without special

attention to licenses. Besides being open source, the OFC2 was selected

because it is popular and has many libraries for generating the charts.

31

 http://teethgrinder.co.uk/open-flash-chart-2

32

 http://www.maani.us/xml_charts

33

 http://www.fusioncharts.com

http://teethgrinder.co.uk/open-flash-chart-2/
http://www.maani.us/xml_charts/
http://www.fusioncharts.com/

121

Chart types Features Libraries

Line Charts

Bar Charts

Horizontal Bar Chart

Stacked Bar Chart

Candle Chart

Area Charts

Pie Charts

Scatter Charts

Radar Charts

Tooltips

Re-size charts

Missing data

Save charts as image

PHP

Ruby

Java

.Net

C

Perl

Python

Coldfusion

Google WebToolkit

Smalltalk

Pentaho

Table 18 - OFC2 features

Brief overview of Open Flash Chart 2 components:

open-flash-chart.swf: is a SWF object, wich receives a data file with a

special format, and then renders into a chart.

Server library: a server library is used to create the accepted format by

SWF object.

The flash object is loaded by the client web browser. When the user

makes a request to server, for example, update the chart. The server has the

responsibility to get the data from database and then create the chart

configuration file and send back to client browser. Finally when chart

configuration is received, the flash object renders it.

Figure 72 - Updating chart

122

Mapping Service

Google Maps is a web mapping service application and technology

provided by Google. This technology enable us to navigate and search through

the map of world, using different map views, and allowing to mark points of

interest, which can be a single point, a line or a more complex shape.

Google Maps API
34

 enables developers to integrate Google Maps into their

web applications with their own data points of interest. Currently is a free

service for non-commercial products [46].

The idea to use this popular service in our project was to represent

geographically the networks and sensors.

 Represent networks

 Represent networks sensors

 Enable geographical search

 Show information about the networks

 Add networks and sensors in a geographic location

34

 http://code.google.com/apis/maps/index.html

http://code.google.com/apis/maps/index.html

123

Jquery

jQuery
35

 is a fast and concise JavaScript Library that simplifies HTML

document traversing, event handling, animating, and Ajax interactions for

rapid web development [47].

Today any rich web application contains JavaScript. This technology

enables most of the interactions between users and the web applications.

jQuery is an easy to use and popular JavaScript library that we selected to use

in our platform development.

Advantages of using jQuery:

 Event handling

 Animations

 Ajax calls (posts and gets)

 JSON support

 Fast development

 Very small

 Easy to use

 Popular

35

 http://jquery.com

http://jquery.com/

124

AJAX

AJAX short for “Asynchronous JavaScript and XML”, is a technology based

on the client side, allowing the construction of interactive web applications,

with this technology it is possible to receive information from the server

asynchronously without interfering with visual or behavior of the page web

visualization [48].

Advantages of using this technology:

 refreshed dynamically

 refresh parts of web page instead of everything

 less data transmitted

 less overload on servers

JSON

JSON
36

 or JavaScript Object Notation is a lightweight data format, easy

for humans to read and write, is often used in data serialization and data

transmission on networks, the most common application is in Ajax

programming [49].

{

 "name": "John",

 "age": 25,

 "address": { "city": "New York", "state": "NY"}

}

This format makes concurrency with XML, but JSON is very used in web

development mostly to transport data. Here are some advantages of using

JSON over XML.

 JSON is simpler than XML

 JSON is faster

 Creates smaller files

36

 http://www.json.org

http://www.json.org/

125

