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Resumo

Esta dissertação está dividida em duas partes. Na primeira parte apresentamos alguns con-
ceitos e noções básicas que levam à construção de sistemas dinâmicos não autónomos discre-
tos. Utiliza-se o conceito de “skew-product” para estudar algumas propriedades destes sistemas
no que concerne à sua periodicidade e estabilidade. É feita uma breve abordagem à variedade
central e à bifurcação dos pontos periódicos nas equações de diferenças não-autónomas unidi-
mensionais.

Na segunda parte faz-se um estudo de alguns modelos aplicados à ecologia/biologia e à
economia. Devido à dificuldade em manipular certas relações que surgem no estudo que se faz
aos modelos, apresentamos cálculo computacional por forma a ilustrar e a descrever a dinâmica
do modelo.

Uma das principais contribuições desta tese é o estudo da estabilidade dos sistemas não-
lineares quando o valor próprio se encontra no cı́rculo unitário. Outra é o estudo das bifurcações,
em particular, o diagrama de bifurcação no espaço dos parâmetros, do modelo de competição
entre duas espécies definido por equações de Ricker.

Constatou-se que a dinâmica do modelo de competição de Ricker é semelhante à do mod-
elo logı́stico de competição. Assim, acreditamos que deve existir uma certa classe de mapas
bidimensionais para os quais se poderá generalizar os nossos resultados.

Finalmente, não podemos deixar de realçar as técnicas que se utiliza na prova da existência
de solução positiva do sistema não-autónomo bidimensional de Ricker .

Key Words
Sistemas não-autónomos periódicos, Periodicidade, Estabilidade, Bifurcação, Modelos de competição,
Efeito Allee.
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Abstract

This work is divided in two parts. In the first part we develop the theory of discrete nonau-
tonomous dynamical systems. In particular, we investigate skew-product dynamical system,
periodicity, stability, center manifold, and bifurcation.

In the second part we present some concrete models that are used in ecology/biology and
economics. In addition to developing the mathematical theory of these models, we use simula-
tions to construct graphs that illustrate and describe the dynamics of the models.

One of the main contributions of this dissertation is the study of the stability of some con-
crete nonlinear maps using the center manifold theory. Moreover, the second contribution is the
study of bifurcation, and in particular the construction of bifurcation diagrams in the parameter
space of the autonomous Ricker competition model.

Since the dynamics of the Ricker competition model is similar to the logistic competition
model, we believe that there exists a certain class of two-dimensional maps with which we can
generalize our results.

Finally, using the Brouwer’s fixed point theorem and the construction of a compact invariant
and convex subset of the space, we present a proof of the existence of a positive periodic solution
of the nonautonomous Ricker competition model.

Key Words
Nonautonomous periodic systems, Periodicity, Stability, Bifurcation, Competition Models, Allee
effect.
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Introduction

In population dynamics, and from the mathematical point of view, there are two major modeling
strategies: (i) The continuous time approach using theory of differential equations; and (ii)
The discrete time approach which is more related with the structure of data of a population.
Hence, many laws of the nature are intrinsically discrete.

In particular, when we study a mathematical model, one of the main objectives is to give
relevant information/contribution for the importance of the model. Moreover, different mod-
eling strategies with different assumptions to describe particular features of the population, is
frequently used among researchers.

Throughout this work we use the discrete time analysis. Hence, this work deals with differ-
ence equations, or in other equivalent terminology, recursions, iterations and discrete dynamical
systems. Such kind of iterative procedures are omnipresent in mathematics, as well in a couple
of related sciences such as Biology, Ecology, Economic, Engineering, etc.

There are two main kind of discrete time approach: (i) The autonomous model in which the
dynamics of the system is given by the same map. This kind of systems predicts the evolution
without considering many changes along the time. In other words, the equation that generate
the system has a constant parameters. (ii) The nonautonomous model, i.e., difference equa-
tions whose right-hand side, explicitly depend on time or change. Hence, seasonal influences,
controlling, external effects, and other mechanisms are allow in nonautonomous models. In
concrete equations the constant parameters are replaced by time-dependent sequence of param-
eters.

In this work we have both, autonomous and nonautonomous models. Explicitly, an au-
tonomous difference equation is defined by

xn+1 = f (xn), n = 0, 1, 2, . . . . (1)

If x0 is the initial population, its evolution along the time n is given by

x1 = f (x0),
x2 = f (x1) = f ◦ f (x0) = f 2(x0),

...

xn+1 = f n(x0),
...

As it is clearly seen, the evolution of the population is generated by the same map.
The nonautonomous difference equation is governed by the rule

xn+1 = fn(xn), n = 0, 1, 2, . . . . (2)

1



2 INTRODUCTION

Here the evolution of the population is generated by the composition of the sequence of maps

f0, f1, f2, . . . .

Explicitly,

x1 = f0(x0),
x2 = f1(x1) = f1 ◦ f0(x0),

...

xn+1 = fn ◦ fn−1 ◦ . . . ◦ f1 ◦ f0(x0),
...

If the sequence of maps is periodic, i.e., fn+p = fn, for all n = 0, 1, 2 . . . and some positive
integer p > 1, then we talk about nonautonomous periodic difference equations. Systems where
the sequence of maps is periodic model population with fluctuation habitat, and they are com-
monly called periodically forced systems. Under this scenario, the evolution of the population
is given by

x1 = f0(x0),
x2 = f1 ◦ f0(x0),

...

xp = fp−1 ◦ . . . ◦ f1 ◦ f0(x0),
xp+1 = f0 ◦ fp−1 ◦ . . . ◦ f1 ◦ f0(x0),

...

Throughout this work, the nonautonomous part is about periodic forced systems.
Notice that the nonautonomous periodic difference equation (2) does not generate a discrete

(semi)dynamical system [30] as it may not satisfy the (semi)group property. One of the most
effective ways of converting the nonautonomous difference equation (2) into a genuine discrete
(semi)dynamical system is the construction of the associated skew-product system as described
in a series of papers by Elaydi and Sacker [28, 29, 30, 31]. It is noteworthy to mention that this
idea was originally used to study nonautonomous differential equations by Sacker and Sell [68].

Most of the contents in Chapter 1 is devoted to this theory. We present all the necessary
machinery to develop the skew-product system. The principal results and new developments
concerning the periodicity of the system and its stability is present. These new developments
include results associated with the introduction of the notion of the derivative in the skew-
product. Hence a natural extension to nonautonomous periodic systems of the main stability
results of autonomous systems is developed. One entire section is about the center manifold
and the stable and unstable manifold as well for any nonlinear periodic system. Finally we end
the chapter presenting a brief extension of the main results of bifurcation of one-dimensional au-
tonomous maps to periodic equations, i.e., maps with one variable and p parameters. Moreover,
degeneracy conditions for both, variables and parameters is studied.

In Chapter 2 and in Chapter 3 we study some concrete models trying to apply, whenever
need, the theory developed in Chapter 1. So Chapter 2 is totally dedicated to the study of
the properties of some competition models for two species. Stability, bifurcation and attenu-
ance/resonance are the main focus here. We study in deep the autonomous Ricker competition
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map. We found out that the new model that we propose, the logistic competition model, ex-
hibits a similar behavior than the Ricker competition model. We also turn our attention to the
nonautonomous Ricker competition model and to the Leslie-Gower competition model.

In Chapter 3 we study the properties of unimodal Allee maps for both autonomous and
nonautonomous systems. The first model is devoted to population dynamics while the second
is in economic theory.

Finally, in Chapter 4 we present some ideas of the possible continuation of our current
research. Open problems and conjectures are given.





Chapter 1

Nonautonomous periodic systems

Dynamical systems occur in all branches of science. “The main goal of the study of dynamical
systems is to understand the long behavior of states in a system for which there is a determin-
istic rule for how a state evolves” (Martin Rasmussen [62]). For this reason “an understanding
of the asymptotic behavior of a dynamical systems is probably one of the most relevant prob-
lems in sciences based on mathematical modeling” (Christian Potzsche [61]). Hence, one of
the mathematical concept of a dynamical system is based on the simple fact that there are cer-
tain rules that governs our natural laws. These rules, in general, can be described by discrete
mathematical models.

A good example that illustrates what is a discrete dynamical system is the following: “Take
a scientific calculator and input any number whatsoever. Then start striking one of the function
keys over and over again. . . . For example, if we repeatedly strike the exp key, given an initial
input x, we are computing the sequence of numbers

x, ex, eex
, eeex

, . . . .

That is, we are iterating the exponential function.” (Robert Devaney [24]).
In this example the evolution of the system is due to the same function. This is known as an

autonomous discrete dynamical system and it may be defined by the difference equation

xn+1 = f (xn), n = 0, 1, 2, . . . .

The evolution here is based in the successive composition of the map f . Hence, a natural
question in the theory of discrete dynamical systems is the following: given an initial value x0,
what happens to the sequence of iterates

x0, f (x0), f ( f (x0)), f ( f ( f (x0))), . . .?

Notice that this law is time-independent.
However, in many concrete cases, this notion of discrete dynamical system, is not enough to

describe real world phenomena. For instance in population dynamics is more realistic to con-
sider evolutionary adaptations due the influence of the environment. The appropriate technique
to solve such problem is the use of nonautonomous models or time-dependent equations. Such
kind of models can be governed by the difference equation

xn+1 = fn(xn), n = 0, 1, 2, . . . .

5
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According to this law, the evolution is time-dependent because the sequence of functions fi,
i = 0, 1, 2, . . . usually is not equal. In general, this kind of models possesses a parameter which
changes in time.

In real world, in general, most of the known phenomena have the tendency to repeat af-
ter some time. Here arises the nonautonomous periodic models. According to our termi-
nology, in the sequence of functions we have for some integer p > 1, fn+p = fn, for all
n = 0, 1, 2, . . .. However, the nonautonomous periodic difference equation does not generate
a discrete (semi)dynamical system as it may not satisfy the (semi)group property. This problem
was positively solved by Elaydi and Sacker, in a series of articles [28, 29, 30, 31], where these
mathematicians developed the theory of skew-product systems.

It should be noted that Ziyad AlSharawi, a former Elaydi’s PhD student, used the skew-
product theory in his dissertation [6]. He was able to extend the Sharkovsky’s theorem and its
converse to periodic difference equations. An extension of the well-known Singer’s theorem is
present in [6]. Moreover, AlSharawi did a relevant work in the construction of concrete periodic
systems and almost periodic systems according to certain previous properties on the maps.

We are going to use the skew-product theory in another perspective. We focus here in the
properties of the stability of the solutions of periodic difference equation. Moreover, we study
the bifurcation for such kind of systems.

Hence in Section 1.1 we present the principal definitions and techniques that permit us the
construction of a discrete (semi)dynamical system via the nonautonomous periodic difference
equation.

In Section 1.2 we study some properties of the solutions of the nonautonomous periodic
systems and in the next section we focus our attention in its stability. A natural extension of the
more common properties of autonomous systems is introduced.

The theory of the center manifold and the stable and unstable manifold for these systems
is study in Section 1.4. We introduce techniques that allow us to study the stability of a fixed
point, for any non-linear map, when one (or more) of the eigenvalues are on the unit circle.

In Section 1.5 a natural extension to periodic difference equations of the main results of
bifurcation is treated. The techniques are similar to differential equations and are known for
maps with one variable and one parameter. Moreover, degeneracy conditions for both variable
and parameters are developed.

1.1 Skew-product Systems
Let X be a topological space and Z be the set of integers. A discrete dynamical system (X, π)
is defined as a map π : X × Z → X such that π is continuous and satisfies the following two
properties

1. π(z, 0) = z for all z ∈ X,

2. π(π(z, s), t) = π(z, s + t), s, t ∈ Z and z ∈ X (the group property).

We say (X, π) is a discrete semidynamical system if Z is replaced by Z+, the set of nonneg-
ative integers, and the group property is replaced by the semigroup property.

Notice that (X, π) can be generated by a map F defined as π(z, n) = Fn(z), where Fn denotes
the nth composition of the map F. We observe that the crucial property here is the semigroup
property.
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A difference equation is called autonomous if it is generated by one map such as

zn+1 = F(zn), z ∈ X, n ∈ Z+. (1.1)

Notice that for any z0 ∈ X, zn = Fn(z0). Hence, the orbit O(z0) = {z0, z1, z2, . . .} in Eq. (1.1) is
the same as the set O(z0) = {z0, F(z0), F2(z0), . . .} under the map F.

A difference equation is called nonautonomous if it is governed by the rule

zn+1 = F(n, zn), n ∈ Z+, (1.2)

which may be written in the friendlier form

zn+1 = Fn(zn), n ∈ Z+, (1.3)

where Fn(z) = F(n, z), z ∈ X. Here the orbit of a point z0 is generated by the composition of the
sequence of maps {Fn}. Explicitly,

O(z0) = {z0, F0(z0), F1(F0(z0)), F2(F1(F0(z0))), ...}
= {z0, z1, z2, ...}.

When Fi = Fi mod p, i ∈ Z+ then we say that Eq. (1.3) is p−periodic, where p is the minimal
period.

It should be pointed out here that the nonautonomous difference equation may not generate
a discrete semidynamical system as it may not satisfy the semigroup property. The following
example illustrates this point.

Example 1 Consider the two-dimensional nonautonomous difference equation

(xn+1, yn+1) =
(
(−1)n

(
n + 1
n + 2

)
xn,

1
n + 1

yn

)
, n ∈ Z+. (1.4)

The solution of Eq. (1.4) is

(xn, yn) =
(
(−1)

n(n−1)
2

x0

n + 1
,

y0

n!

)
.

Let π((x0, y0), n) = (xn, yn). Then

π(π((x0, y0),m), n) = π
(
((−1)

m(m−1)
2 · x0

m + 1
,

y0

m!
), n

)
=

(
(−1)

n(n−1)
2 (−1)

m(m−1)
2 · x0

(n + 1)(m + 1)
,

1
n!

1
m!

y0

)
.

However,

π((x0, y0),m + n) =
(
(−1)

(n+m)(n+m−1)
2

x0

m + n + 1
,

1
(m + n)!

y0

)
.

Now we are going to present the appropriate framework in which the nonautonomous dif-
ference equation generate a discrete semidynamical system.

Consider the nonautonomous difference equation (1.2) where F(n, ·) ∈ C(Z+ × X, X) = C,
C is the space of continuous functions. The space C is equipped with the topology of uniform
convergence on compact subsets of Z+ × X. Let Ft(n, ·) = F(t + n, ·) andA = {Ft(n, ·) : t ∈ Z+}
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be the set of translates, denoted by H, in C. Then G(n, ·) ∈ ω(A), the omega limit set of A, if
for each n ∈ Z+,

|Ft(n, z) −G(n, z)| → 0

uniformly for z in compact subsets of X, as t → ∞ along some subsequence {tni}. The closure
ofA in C is called the hull of F(n, ·) and is denoted by Y = cl(A) = H(F).

On the space Y , we define a discrete semidynamical systemσ : Y×Z+ → Y byσ(H(n, ·), t) =
Ht(n, ·); that is σ is the shift map.

Define the composition operator Φ as follows

Φi
n = Fi+n−1 ◦ . . . ◦ Fi+1 ◦ Fi ≡ Φn(F(i, ·)).

When i = 0, we write Φ0
n as Φn.

The skew-product system is now defined as

π : X × Y × Z+ → X × Y,

with

π((z,G), n) = (Φn(G(i, z)), σ(G, n)).

If G = fi, then π((z, fi), n) = (Φi
n(z), fi+n).

The following commuting diagram illustrates the notion of skew-product systems where
P(a, b) = b is the projection map in the second component.

X × Y × Z+ π //

P×id
��

X × Y

P
��

Y × Z+ σ
// Y

For each G(n, ·) ≡ gn ∈ Y , we define the fiber Fg over G as Fg = P−1(G). If g = fi, we write
Fg as Fi.

Theorem 2 [30] π is a discrete semidynamical system.

Example 3 (Example 1 revisited) Let us reconsider the nonautonomous difference equation

(xn+1, yn+1) =
(
(−1)n

(
n + 1
n + 2

)
xn,

1
n + 1

yn

)
, (x(0), y(0)) = (x0, y0) , n ∈ Z+.

Hence,

F(n, x, y) =
(
(−1)n n + 1

n + 2
x,

1
n + 1

y
)
= fn(x, y) = ( f1,n(x), f2,n(y)).

Its omega limit set is given by G(n, x, y) = ((−1)nx, 0), that is, gn is a periodic sequence given
by g0 = g2n, g1 = g2n+1, for all n ∈ Z+, in which g0(x, y) = (x, 0), and g1(x, y) = (−x, 0).

It is easy to verify that π defined as π((x, y, fi), n) = (Φi
n(x, y), fi+n) is a semidynamical

system, i.e, the map

π ((x, y, fi) , n) =

(−1)in+ n(n−1)
2

i + 1
i + n + 1

x,
1∏n−1

j=0(i + 1 + j)
y

 , ((−1)(n+i) n + i + 1
n + i + 2

x,
1

n + i + 1
y
)

satisfy the semigroup property.
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1.2 Periodicity
In this section our focus will be on the p−periodic nonautonomous difference equation of the
form

zn+1 = Fn(zn), n ∈ Z+, (1.5)

where z ∈ X, Fi = Fimod p, i ∈ Z+ with Fi ∈ X, where p is the minimal period of the equation.
Recall that z∗ is a fixed point of the autonomous equation zn+1 = F(zn) if F(z∗) = z∗ and z∗

is a fixed point of the nonautonomous equation (1.5) if it is a fixed point for all the maps, i.e.,
Fi(z∗) = z∗, ∀i ∈ Z+.

We begin by defining an r−periodic cycle.

Definition 4 An ordered set of points Cr = {z0, z1, . . . , zr−1} is an r−periodic cycle in X if

F(i+nr) mod p(zi) = z(i+1) mod r, n ∈ Z+.

In particular,
Fi(zi) = zi+1, 0 ≤ i ≤ r − 2,

and
Ft(zt mod r) = z(t+1) mod r, r − 1 ≤ t ≤ p − 1.

It should be noted that the r−periodic cycle Cr in X generates an s−periodic cycle on the
skew-product X × Y (Y = {F0, F1, . . . , Fp−1}) of the form

Ĉs = {(z0, F0), (z1, F1), ..., (z(s−1) mod r, F(s−1) mod p)},

where s = lcm[r, p] is the least common multiple of r and p.
To distinguish these two cycles, the r−periodic cycle Cr on X is called an r−geometric cycle

(or simply r−periodic cycle when there is no confusion), and the s−periodic cycle Ĉs on X × Y
is called an s−complete cycle.

Example 5 Let α, β ∈ (0, 1) with α , β and define

fn(x, y) =


1 + α(1 + x − y) if n = 0 mod 4
α(−1 + x + y) if n = 1 mod 4
1 + β(1 + x − y) if n = 2 mod 4
β(−1 + x + y) if n = 3 mod 4

,

and

gn(x, y) =


β(−1 + x + y) if n = 0 mod 4
1 + β(1 − x + y) if n = 1 mod 4
α(−1 + x + y) if n = 2 mod 4
1 + α(1 − x + y) if n = 3 mod 4

,

n ∈ Z+. This leads to a 4−periodic two-dimensional nonautonomous difference equation. There
is, however, a 2−periodic geometric cycle, namely, C2 = {(0, 1) , (1, 0)} (see Fig. 1.1). This
periodic cycle in the space R2

+ generates the following 4−complete cycle in the skew-product
R2
+ × Y

Ĉ4 = {((0, 1) , ( f0, g0)) , ((1, 0) , ( f1, g1)) , ((0, 1) , ( f2, g2)) , ((1, 0) , ( f3, g3))} ,

where Y = {( f0, g0) , ( f1, g1) , ( f2, g2) , ( f3, g3)}.
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Figure 1.1: A 2−periodic geometric cycle on X = R2
+ and a 4−periodic complete cycle on the skew product X × Y

where Y = {F0, F1, F2, F3}, Fi = ( fi, gi), i = 0, 1, 2, 3 for the difference equation defined in example 5.

We are going to provide a deeper analysis of the preceding example. Let d = gcd(r, p) be
the greatest common divisor of r and p, s = lcm[r, p] be the least common multiple of r and p,
m = p

d , and ℓ = s
p . The following result is crucial in the setting of periodic cycles. It is published

in [29] for a general metric space.

Lemma 6 [29] Let Cr = {z0, z1, . . . , zr−1} be a set of points in X. Then the following statements
are equivalent.

1. Cr is a periodic cycle of minimal period r.

2. For 0 ≤ i ≤ r − 1, F(i+nd) mod p(zi) = z(i+1) mod r.

3. For 0 ≤ i ≤ r − 1, we have that

Fi mod p (zi mod r) = F(i+d) mod p (zi mod r) = . . . = F(i+(m−1)d)mod p (zi mod r) = z(i+1) mod r;
Fi mod p

(
z(i+d) mod r

)
= F(i+d) mod p

(
z(i+d) mod r

)
= . . . = F(i+(m−1)d)mod p

(
z(i+d) mod r

)
= z(i+d+1) mod r;

...
Fi mod p

(
z(i+(ℓ−1)d) mod r

)
= F(i+d) mod p

(
z(i+(ℓ−1)d) mod r

)
= . . . = F(i+(m−1)d)mod p

(
z(i+(ℓ−1)d) mod r

)
=

z(i+(ℓ−1)d+1) mod r.

Let K denote either Rq or Cq and let us write the parameter family of maps Fi(z) as Fi(α, z),
i ∈ Z+, where α ∈ K is a parameter vector and z ∈ X. The following definition is used in the
sequel.

Definition 7 Fi : K× X → X, i ∈ Z+, is one to one with respect to the parameter vector α if for
α , α̂ one has F(α, z) , F(α̂, z), ∀z ∈ X (with exception of the fixed points).

As an example, the nonautonomous Ricker competition model given by(
xn+1

yn+1

)
=

(
xneKn−xn−anyn

yneLn−yn−bn xn

)
, n ∈ Z+,

where Kn > 0 and Ln > 0 are the carrying capacities of species x and y, respectively, and an > 0
and bn > 0 are the competition parameters of species y and x, respectively, is one to one with
respect to the carrying capacities parameter vector (fixing the competition parameters). For
instance, from the following identity(

xeK0−x−ay

yeL0−y−bx

)
=

(
xeK1−x−ay

yeL1−y−bx

)
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we conclude that K0 = K1 and L0 = L1. If the carrying capacities are fixed and the competition
parameters vary, then the model still is one to one with respect to the competition parameter
vector.

As a consequence of Definition 7 the map is one to one with respect to the parameter vector
if it is a one parameter vector family of maps. This observation motivates the following result.

Theorem 8 Suppose that F(α, z), α ∈ K, z ∈ X, n ∈ Z+ is a one parameter vector family of
maps one to one in α and write the nonautonomous difference equations as

zn+1 = Fn(αn, zn), (1.6)

in which Fn = Fn mod p, n ∈ Z+. If the p−periodic difference equation (1.6) with minimal period
p has a nontrivial periodic cycle of minimal period r, then r = tp, t ∈ Z+.

Proof. Suppose that the Eq. (1.6) has a periodic cycle

Cr = {z0, z1, . . . , zr−1}

of period r , tp, t ∈ Z+. Let d = gcd(r, p), s = lcm[r, p], m = p
d , and ℓ = s

p . Then d < p. By
Lemma 6, we have that

F0 (α0, z0) = Fd (αd, z0) = . . . = F(m−1)d
(
α(m−1)d, z0

)
= z1;

F0 (α0, zd) = Fd (αd, zd) = . . . = F(m−1)d
(
α(m−1)d, zd

)
= zd+1;

...
F0

(
α0, z(ℓ−1)d

)
= Fd

(
αd, z(ℓ−1)d

)
= . . . = F(m−1)d

(
α(m−1)d, z(ℓ−1)d

)
= z(ℓ−1)d+1.

Since the maps are one to one in the parameter vector, they do not intersect, unless they are
equal. Similarly, one may show that Fi = Fi+d = . . . = Fi+(m−1)d, i ∈ Z+. This implies that Eq.
(1.6) is of minimal period d, a contradiction.

As we remarked earlier if the p−periodic nonautonomous difference equation has a periodic
cycle of minimal period r, then the associated skew-product system π has a periodic cycle of
period s = lcm[r, p] (s−complete cycle). There are p fibers Fi = P−1(Fi). Are the s periodic
points equally distributed on the fibers?

Before giving the definitive answer to this question, let us examine the diagram presented in
Fig. 1.2 in which p = 9, and r = 6.

There are two points on each fiber. The graphs F0, F3, and F6 intersect at the two points
(z0, z1), (z3, z4); the graphs F1, F4, and F7 intersect at the two points (z1, z2), (z4, z5); and the
graphs F2, F5, F8 intersect at the points (z2, z3), (z5, z0).

Note that the number of periodic points on each fiber is 2, which is ℓ = lcm[r,p]
p . The following

crucial lemma proves this observation.

Lemma 9 [28] The orbit of (zi, Fi) in the skew-product system intersects each fiber F j, j =
0, 1, . . . , p − 1, in exactly ℓ = s/p points and each of these points is periodic under the skew-
product π with period s.
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Figure 1.2: A 6−periodic cycle in a 9−periodic system.

1.3 Stability
Let λ1, λ2, . . ., λq be the (real or complex - not necessary different) eigenvalues of the real or
complex matrix Aq×q. The spectral radius of the matrix A is given by

ρ(A) = max{|λi| : 1 ≤ i ≤ q}.

It is well known that the fixed point z∗ of the autonomous equation (1.1) is asymptotically
stable (respectively unstable) if ρ (JF(z∗)) < 1 (respectively ρ (JF(z∗)) > 1), where JF(z∗) is
the Jacobian of F evaluated at z∗.

In particular, when q = 2, i.e., when (x∗, y∗) is a fixed point of the two dimensional au-
tonomous equation (1.1), it is known [26, pp 200] that ρ (JF(x∗, y∗)) < 1 if and only if

|tr (JF(x∗, y∗)) | − 1 < det (JF(x∗, y∗)) < 1, (1.7)

where tr and det denote the trace and the determinant of the matrix, respectively, and JF(x∗, y∗)
is the Jacobian evaluated at the fixed point (x∗, y∗). Using the trace-determinant analysis, in [26]
the author presents a complete stability analysis for 2− dimensional systems.

In Section 1.4 we will present the techniques necessary to determine the stability of the fixed
point z∗ when ρ (JF(z∗)) = 1 for non-linear maps.

On the space X if Cr = {z0, z1, . . . , zr−1} , r > 1, is an r−periodic cycle of Eq. (1.1), then it is
asymptotically stable if

ρ

 0∏
i=s−1

JF(zi mod r)

 < 1, (1.8)

where JF(zi mod r) is the Jacobian evaluated along the periodic orbit Cr.
From linear algebra, recall that ρ(A) ≤ ||A|| for any norm, where A is a q× q real or complex

matrix, but equality does not necessarily hold. Indeed, for a given norm there are matrices A
such that ρ(A) and ||A|| may be arbitrarily far apart. On the other hand, there is a result that
shows that, for a given matrix A we can always find some norm such that ||A|| is arbitrarily close
to ρ(A) (for more details about this point see [59]). In our context it says that for any ϵ > 0 there
is a norm |||· ||| on Rq (or Cq) such that

|||
0∏

i=s−1

JF(zi mod r)||| ≤ ρ
 0∏

i=s−1

JF(zi mod r)

 + ϵ.
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Taking ϵ so small as we want, under condition (1.8), it is possible to find a norm |||· ||| such that

|||
0∏

i=s−1

JF(zi mod r)||| < 1.

Notice that if A1, A2, . . . , An are q× q matrices, then A1A2 . . . An and the cyclic permutations
A j+1 . . . AnA1 . . . A j have the same set of eigenvalues, where 1 ≤ j ≤ n (see [4]). Thus each of
the r matrices of the permuted Jacobian products has the same set of eigenvalues. Consequently,
the order of the products in

∏0
i=r−1 JF(xi, yi) is irrelevant for the spectral radius.

We now study stability of the nonautonomous equation. We start by the basic definitions of
stability.

Definition 10 Let Cr = {z0, z1, . . . , zr−1} be an r−periodic cycle in the p−periodic equation (1.5)
in a metric space (X, d̂), and s = lcm[r, p] be the least common multiple of p and r. Then

1. Cr is stable if given ϵ > 0, there exists δ > 0 such that

d̂(z0, zi mod r) < δ implies d̂(Φi
ns(z0),Φi

ns(zi mod r)) < ϵ,

for all n ∈ Z+, and 0 ≤ i ≤ p − 1. Otherwise, Cr is said unstable.

2. Cr is attracting if there exists η > 0 such that

d̂(z0, zi mod r) < η implies lim
n→∞
Φi

ns (z0) = zi mod r,

for all n ∈ Z+, and 0 ≤ i ≤ p − 1.

3. We say that Cr is asymptotically stable if it is both stable and attracting. If in addition,
η = ∞, Cr is said to be globally asymptotically stable.

Before we present an immediate (basic) consequence of this definition let us recall the chain
rule for vector maps which is well known but not used frequently. It says that the Jacobian
matrix of the composition of maps is the product of the Jacobian matrices of the maps. In our
notation, let us to write z ∈ X as (z1, z2, . . . , zq) and each map Fn ∈ X as (F1

n , F
2
n , . . . , F

q
n) ,

n ∈ Z+. For each 0 ≤ i ≤ p − 1 we write the Jacobian of the composition operator Φi
m as

JΦi
m(z) =

∂(Φ1,i
m ,Φ

2,i
m , . . . ,Φ

q,i
m )

∂(z1, z2, . . . , zq)
=


∂(Φ1,i

m )
∂z1 . . . ∂(Φ1,i

m )
∂zq

...
. . .

...
∂(Φq,i

m )
∂z1 . . . ∂(Φq,i

m )
∂zq

 .
Using the chain rule this last matrix is equivalent to

∂F1
m+i−1

∂Φ1,i
m−1

. . .
∂F1

m+i−1

∂Φ
q,i
m−1

...
. . .

...
∂Fq

m+i−1

∂Φ1,i
m−1

. . .
∂Fq

m+i−1

∂Φ
q,i
m−1

 × . . . ×


∂F1
i+1

∂Φ1,i
1

. . .
∂F1

i+1

∂Φ
q,i
1

...
. . .

...
∂Fq

i+1

∂Φ1,i
1

. . .
∂Fq

i+1

∂Φ
q,i
1

 ×


∂F1
i

∂z1 . . .
∂F1

i
∂zq

...
. . .

...
∂Fq

i
∂z1 . . .

∂Fq
i

∂zq

 ,
or

JFm+i−1

(
Φi

m−1(z)
)
× . . . × JFi+1

(
Φi

1(z)
)
× JFi (z) .

Thus,

JΦi
m(z) =

0∏
j=m−1

JF j+i

(
Φi

j(z)
)
,Φi

0(z) = z.
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Theorem 11 Let X be a metric space induced by the norm |||· ||| , Cr = {z0, z1, . . . , zr−1} be
an r−periodic cycle of the p−periodic equation (1.5), and s = lcm[r, p] be the least common
multiple of p and r. Then Cr is asymptotically stable if |||∏0

i=s−1 JFi mod p(zi mod r)||| < 1.

Proof. From the hypothesis the norm of the Jacobian of the composition operator is upper
bounded by one, i.e., there exists an open sphere S ϵ(zi mod r) with center zi mod r and radius ϵ such
that

|||JΦi
s(z)||| ≤ M < 1,∀z ∈ S ϵ(zi mod r).

Then using the mean value theorem for vector-valued function we have

|||Φi
s(z0) − Φi

s(zi mod r)||| ≤ M||z0 − zi mod r|||,

for 0 ≤ i ≤ p − 1, z0 ∈ S ϵ(zi mod r), or equivalently,

|||Φi
s(z0) − zi mod r||| ≤ M|||z0 − zi mod r|||.

Since M < 1 the last inequality implies that Φi
s(z0) ∈ S ϵ(zi mod r), 0 ≤ i ≤ p − 1. Using the same

argument one obtain
|||Φi

2s(z0) − zi mod r||| ≤ M2|||Z0 − zi mod r|||.
By induction we can prove that

|||Φi
ns(z0) − zi mod r||| ≤ Mn|||z0 − zi mod r|||,∀n ∈ Z+. (1.9)

This implies that lim
n→∞
Φi

ns(z0) = zi mod r, 0 ≤ i ≤ p − 1. Thus Cr is attracting.
To see the stability of Cr note that the following relation holds

zi mod r = Φ
i
ns(zi mod r),∀n ∈ Z+.

Consequently the relation (1.9) is equivalent to

|||Φi
ns(z0) − Φi

ns(zi mod r)||| ≤ Mn|||z0 − zi mod r|||,

0 < M < 1 and 0 ≤ i ≤ p − 1. Taking δ < ϵ, for any ϵ > 0 we obtain

|||Φi
ns(z0) − Φi

ns(zi mod r)||| ≤ Mn|||Z0 − Zi mod r|||
< Mnδ

< Mnϵ < ϵ.

Thus Cr is stable. Consequently, Cr is asymptotically stable.

Remark 12 Notice that if z∗ is a fixed point of the sequence of maps Fi, i ≥ 0, i.e., z∗ is a
fixed point of each individual map, then one can adapt the precedent result and show that z∗ is
asymptotically stable if |||∏n

i=0 JFi(z∗)||| < 1, for all n ≥ 0.

Consider the skew-product system π on X × Y with X a metric space with metric d̂, Y =
{F0, F1, . . . , Fp−1} equipped with the discrete metric d̃, where

d̃(Fi, F j) =
{

0 if i = j
1 if i , j .
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Define a metric dπ on X × Y as

dπ =
(
(z, Fi), (u, F j)

)
= d̂(z, u) + d̃(Fi, F j).

Let π1(z, F) = π((z, F), 1), then πn(z, F) = π((z, F), n). Thus π1 : X × Y → X × Y is a
continuous map which generates an autonomous system on X × Y . Consequently, the stability
definitions of fixed points and periodic cycles follow the standard ones that may be found in
[24, 26].

Now we give a definition of stability for a complete periodic cycle in the skew-product
system.

Definition 13 A complete periodic cycle Ĉs = {(z0, F0), (z1, F1), ..., (z(s−1) mod r, F(s−1) mod p)} is

1. stable if given ϵ > 0, there exits δ > 0, such that

dπ((z0, Fi), (z0, F0)) < δ implies dπ(πns(z0, Fi), πns(z0, F0)) < ϵ,∀n ∈ Z+.

Otherwise, Ĉs is said unstable;

2. attracting if there exists η > 0 such that

dπ((z0, Fi), (z0, F0)) < η implies lim
n→∞

πns (z0, Fi) = (z0, f0);

3. asymptotically stable if it is both stable and attracting. If in addition, η = ∞, Ĉs is said
to be globally asymptotically stable.

Since Fi+ns = Fi for all n, it follows from the above convergence that Fi = Fi mod p. Hence,
stability can occur only on each fiber X × {Fi}, 0 ≤ i ≤ p − 1.

It should be noted that one may reformulate Theorem 11 in the setting of the skew-product
system. However, to do so, one needs to develop the notion of derivative in the space X × Y .

Definition 14 Let πm : X × Y → X × Y defined as πm(z, Fi) = (Φi
m(z), Fi+m). The generalized

derivative of πm is defined as

D(πm(z, Fi)) = JΦi
m(z) =

0∏
j=m−1

JF j+i(Φi
j(z)),

with Φi
0(z) = z. In particular, when X = R we write

D(πm(x, fi)) =
d
dx

(Φi
m(x)) =

(
Φi

m

)′
(x) =

0∏
j=m−1

f ′j+i(Φ
i
j(x)),Φi

0(x) = x.

Theorem 15 A complete periodic cycle Ĉs = {(z0, F0), (z1, F1), ..., (z(s−1) mod r, F(s−1) mod p)} of the
skew-product system π on X × Y is asymptotically stable if |||D(πs(zi mod r, Fi))||| < 1.

Proof. The proof is analogous to the proof of Theorem 11 and it will be omitted.

We now present a crucial result in the settings of periodic discrete dynamical systems.
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Theorem 16 [28] Assume that X is a connected metric space and each Fi ∈ Y is a continuous
map on X, with Fi+p = Fi. Let Cr = {z0, z1, . . . , zr−1} be a periodic cycle of minimal period
r of the p−periodic nonautonomous difference equation (1.5). If Cr is globally asymptotically
stable, then r divides p. Moreover, r = p if the sequence {Fn} is a one-parameter family of maps
F(αn, z) and F is one to one with respect to α.

Obviously, the stability of the periodic cycle can be studied via the spectral radius because
for any matrix A one has ρ (A) ≤ ||A|| for any norm. Thus if

||
0∏

i=s−1

JFi(zi mod r)|| < 1,

then it follows that all the eigenvalues of
∏0

i=s−1 JFi(zi mod r) lie inside the unit disc.
In general, it is not easy and in most of the concrete cases it is an unknown problem, to

determine the product of the Jacobians along the periodic orbit for nonautonomous difference
equation in higher dimension. If it is possible to determine this product, then we can speak
about stability of the cycle when ρ

(∏0
i=s−1 JFi(zi mod r)

)
< 1.

We now consider the particular case when X = R. If Cr = {x0, x1, . . . , xr−1} is an r−periodic
cycle of the one-dimensional nonautonomous p−periodic difference equation (1.5), then Cr is
asymptotically stable if

|
(
Φi

s

)′
(xi mod r)| < 1,

and it is unstable if
|
(
Φi

s

)′
(xi mod r)| > 1,

where s is the least common multiple of r and p. Note that xi mod r is a fixed point of the
composition operator Φi

s.
When the periodic cycle is nonhyperbolic the stability criteria are more involved. These cri-

teria will be summarized in the next two results. The first treats the case when
(
Φi

s

)′
(xi mod r) = 1

while the second treats the case
(
Φi

s

)′
(xi mod r) = −1. Since the proof follows the same tech-

niques as in [26] for one map we will omit the proof here.

Theorem 17 Let Cr = {x0, x1, . . . , xr−1} be an r−periodic cycle of the one-dimensional nonau-
tonomous p−periodic difference equation (1.5) such that

(
Φi

s

)′
(xi mod r) = 1. If

(
Φi

s

)′
(x),

(
Φi

s

)′′
(x)

and
(
Φi

s

)′′′
(x) are continuous at xi mod r, then the following statements hold:

1. if
(
Φi

s

)′′
(xi mod r) , 0, then Cr is unstable;

2. if
(
Φi

s

)′′
(xi mod r) = 0 and

(
Φi

s

)′′′
(xi mod r) > 0, then Cr is unstable;

3. if
(
Φi

s

)′′
(xi mod r) = 0 and

(
Φi

s

)′′′
(xi mod r) < 0, then Cr asymptotically stable.

Before present the second case, we need to introduce the notion of the Schwarzian deriva-
tive.

Definition 18 The Schwarzian derivative, S f , of a C3 function f is defined by

S f (x) =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

.
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Theorem 19 Let Cr = {x0, x1, . . . , xr−1} be an r−periodic cycle of the one-dimensional nonau-
tonomous p−periodic difference equation (1.5) such that

(
Φi

s

)′
(xi mod r) = −1. If

(
Φi

s

)′
(x),(

Φi
s

)′′
(x) and

(
Φi

s

)′′′
(x) are continuous at xi mod r, then the following statements hold:

1. if SΦi
s(xi mod r) < 0, then Cr is asymptotically stable;

2. if SΦi
s(xi mod r) > 0, then Cr is unstable.

In [22] the authors present a complete classification of nonhyperbolic fixed points for one-
dimensional autonomous maps. This classification is still valid for the r−periodic cycle Cr, i.e.,
when xi mod r is a fixed point of the one-dimensional map Φi

s. Hence, replacing the map f by Φi
s

and x∗ by xi mod r in Fig. 1.20 in [26, page 33] one has a complete classification of nonhyperbolic
periodic points for one-dimensional periodic systems.

1.4 Invariant manifold
In this section we present the appropriate tools that allow us, to compute analytically, the center
manifold and the stable and unstable manifold for any nonlinear map near the fixed point. It
should mention that this section is based on our article [48].

Let F : Rk → Rk be a map such that F ∈ C2 and F(0) = 0. Then one may write F as a
perturbation of a linear map L,

F(X) = LX + R(X), (1.10)

where L is a k × k matrix defined by L = D(F(0)), R(0) = 0 and DR(0) = 0, where D denotes
the Jacobian matrix. Now we will introduce special subspaces of Rk, called invariant manifold
[77], that will play a central role in our study of stability and bifurcation.

An invariant manifold is a manifold embedded in its phase space with the property that it
is invariant under the dynamical system generated by F. A subspace M of Rk is an invariant
manifold if whenever X ∈ M, then Fn(X) ∈ M, for all n ∈ Z+. For the linear map L, one may
split its spectrum σ(L) into three sets σs, σu, and σc, for which λ ∈ σs if |λ| < 1, λ ∈ σu if
|λ| > 1, and λ ∈ σc if |λ| = 1.

Corresponding to these sets, we have three invariant manifold (linear subspaces) E s, Eu,
and Ec which are the generalized eigenspaces corresponding to σs, σu, and σc, respectively. It
should be noted that some of these subspaces may be trivial.

The main question here is how to extend this linear theory to nonlinear maps. Corresponding
to the linear subspaces E s, Eu, and Ec, we will have the invariant manifold the stable manifold
W s, the unstable manifold Wu, and the center manifold Wc.

The center manifold theory [9, 10, 40, 52, 76, 77] is interesting only if Wu = {0}. For in
this case, the dynamics on the center manifold Wc determines the dynamics of the system. The
other interesting case is when Wc = {0} and we have a saddle.

Let E s ⊂ Rs, Eu ⊂ Ru, and Ec ⊂ Rt, with s + u + t = k. Then one may formally define the
above mentioned invariant manifold as follows:

W s(0) = {x ∈ Rk|Fn(x)→ 0, n→ ∞},

and
Wu(0) = {x ∈ Rk|∃{qn}∞n=0, q0 = x, and F(qk+1) = qk, qn → 0, n→ ∞}.
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It is noteworthy to mention that the center manifold is not unique, while the stable and
unstable manifold are unique.

The next result summarizes the basic invariant manifold theory

Theorem 20 (Invariant manifold theorem) [39, 52] Suppose that F ∈ C2. Then there exist
C2 stable W s and unstable Wu manifold tangent to E s and Eu, respectively, at X = 0 and C1

center manifold Wc tangent to Ec at X = 0. Moreover, the manifold Wc, W s and Wu are all
invariant.

Before embark in the main aim of this section, notice that the techniques that we are going
to develop in the next subsections can be applied to nonautonomous periodic systems in higher
dimension. To do that is enough to replace the map F by the composition operator Φi

s, where
s is the least common multiple of p and r, with p the minimum period of the system and r the
minimum period of the cycle.

In working with concrete maps, as we remarked earlier, is not easy to find explicitly the
product of the Jacobians along the periodic orbit.

1.4.1 Center manifold
Let us first focus on the case when σu = ∅. Hence the absolute value of the eigenvalues of L
are less or equal to one. By a suitable change of variables, one may represent the map F as the
following system of difference equations{

xn+1 = Axn + f (xn, yn)
yn+1 = Byn + g(xn, yn) . (1.11)

First we assume that all eigenvalues of At×t are on the unit circle and all the eigenvalues of Bs×s

are inside the unit circle, with t + s = k. Moreover,

f (0, 0) = 0, g(0, 0) = 0, D f (0, 0) = 0 and Dg(0, 0) = 0.

Since Wc is tangent to Ec = {(x, y) ∈ Rt × Rs|y = 0}, it may be represented locally as the
graph of a function h : Rt → Rt such that

Wc = {(x, y) ∈ Rt × Rs|y = h(x), h(0) = 0,Dh(0) = 0, |x| < δ},

for a sufficiently small δ.
Furthermore, the dynamics restricted to Wc is given locally by the equation

xn+1 = Axn + f (xn, h(xn)), x ∈ Rt. (1.12)

The main feature of Eq. (1.12) is that its dynamics determine the dynamics of Eq. (1.11).
So if x∗ = 0 is a stable, asymptotically stable, or unstable fixed point of Eq. (1.12), then the
fixed point (x∗, y∗) = (0, 0) of Eq. (1.11) possesses the corresponding property.

To find the map y = h(x), we substitute for y in Eq. (1.11) and obtain{
xn+1 = Axn + f (xn, h(xn))
yn+1 = h(xn+1) = h(Axn + f (xn, h(xn))) . (1.13)
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Ec

Es
W s

W c

HiL

Es

W s

W c
Ec

HiiL

Figure 1.3: Stable and center manifold. In (i) we have σ(A) = σc and σ(B) = σs while in (ii) we have σ(A) = σs

and σ(B) = σc.

But

yn+1 = Byn + g(xn, yn)
= Bh(xn) + g(xn, h(xn)). (1.14)

Equating (1.13) and (1.14) yields the center manifold equation

h[Axn + f (xn, h(xn))] = Bh(xn) + g(xn, h(xn)). (1.15)

Analogously if σ(A) = σs and σ(B) = σc, one may define the center manifold Wc, and
obtain the equation

yn+1 = Byn + g(h(yn), yn),

where x = h(y).

1.4.2 An upper (lower) triangular System
In working with concrete maps, it is beneficial in certain cases to deal with the system without
diagonalization.

Let us now consider the case when L is a block upper triangular matrix(
xn+1

yn+1

)
=

(
A C
0 B

) (
xn

yn

)
+

(
f (xn, yn)
g(xn, yn)

)
. (1.16)

There are two cases to consider:

1. Assume that σ(A) = σs, σ(B) = σc, and σu = ∅.
The matrix L can be block diagonalizable. Hence there exists, a nonsingular matrix P of
the form

P =
[

P1 P3

0 P2

]
,

such that [
A C
0 B

]
= P

[
A 0
0 B

]
P−1.
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Let (
x
y

)
= P

(
u
v

)
. (1.17)

Then x = P1u + P3v, and y = P2v. Thus one has(
un+1

vn+1

)
=

(
A 0
0 B

) (
un

vn

)
+ P−1

(
f (P1u + P3v, P2v)
g(P1u + P3v, P2v)

)
. (1.18)

Applying the center manifold theorem to Eq. (1.18) yields a map u = h̃(v) with h̃(0) = 0 =
h̃′(0). Moreover, the dynamics of Eq. (1.18) is completely determined by the dynamics
of the equation

vn+1 = Bvn + P̃2g(P1h̃(vn) + P3vn, P2vn),

where P̃1 and P̃3 are elements of the matrix

P−1 =

[
P̃1 P̃3

0 P̃2

]
.

We now have the relation

u = P̃1x − P̃2P3P̃2y = h̃(P̃2y).

Hence x = h(y), where h is given by

h(y) = P3P̃2y + P̃−1
1 h̃2(P̃2y).

Notice that Dh(0) = P3P̃2I, where I is the identity matrix.

2. Assume that σ(A) = σc, σ(B) = σs, and σu = ∅. We start from Eq. (1.18) and apply the
center manifold theorem to obtain a map v = h̃(u) with h̃(0) = 0 = h̃′(0). The dynamics
of Eq. (1.18) is completely determined by the dynamics of the equation

un+1 = Aun + P̃1 f (P1un + P3h̃(u), P2h̃(u)) + P̃3g(P1un + P3h̃(u), P2h̃(u)), (1.19)

where P̃1, P̃2, and P̃3 are entries of the matrix

P−1 =

(
P̃1 P̃3

0 P̃2

)
.

From (1.17) we have u = P̃1x − P̃1P3P̃2y and v = P̃2y. Then v = h̃(u) and thus

P̃2y = h̃(P̃1x − P̃1P3P̃2y).

Let Q(x, y) = P̃2y− h̃(P̃1x− P̃1P3P̃2y). Then Q(0, 0) = 0, DQ(0, 0) is of rank t. Hence by
the implicit function theorem [65] there exits an open neighborhood Ω ⊂ Rk of 0 and a
unique function h ∈ C1(Ω) such that h(0) = 0 = Dh(0) and Q(x, h(x)) = 0, for all x ∈ Ω.

Hence the curve y = h(x) is the implicit solution of Eq. (1.19) and is the equation of the
center manifold. To find the map h we use the center manifold equation

h[Ax +Ch(x) + f (x, h(x))] = Bh(x) + g(x, h(x)).

A final remark is in order. If we let y = h(x) in (1.19) we obtain

h(x) = P2h̃(P̃1x − P̃1P3P̃2h(x)).

Note that Dh(0) = Dh̃(0) = 0.



1.4. INVARIANT MANIFOLD 21

Es

Eu
Wu

W s
y = j1HxL

x = j2HyL

Figure 1.4: Stable and unstable manifold.

1.4.3 Stable and Unstable manifold
Suppose now that the map F is hyperbolic, that is σc = ∅. Then by Theorem 20, there are two
unique invariant manifold W s and Wu, both tangent to E s and Eu at X = 0, which are graphs of
the maps

φ1 : E1 → E2 and φ2 : E2 → E1,

such that

φ1(0) = φ2(0) = 0 and D(φ1(0)) = D(φ2(0)) = 0.

Letting yn = φ1(xn) yields

yn+1 = φ1(xn+1) = φ1(Axn +Cφ1(xn) + f (xn, φ1(xn))).

But
yn+1 = Bφ1(xn) + g(xn, φ1(xn)).

Equating these two equations yields

φ1(Axn +Cφ1(xn) + f (xn, φ1(x))) = Bφ1(xn) + g(xn, φ1(xn)), (1.20)

where we can take, without loss of generality, φ1(x) = α1x2 + β1x3 + O(|x|4).
Similarly, letting xn = φ2(yn) yields

xn+1 = φ2(yn+1) = φ2(Byn + g(φ2(yn), yn)),

where we can take, without loss of generality, φ2(x) = α2x + β2x2 + O(|x|4).
But

xn+1 = Aφ2(yn) +Cyn + f (φ2(yn), yn),

and hence
φ2(Byn + g(φ2(yn), yn)) = Aφ2(yn) +Cyn + f (φ2(yn), yn). (1.21)

Using Eq. (1.20) and Eq. (1.21), one can find the stable manifold

W s = {(x, y) ∈ Rt × Rs|y = φ1(x)},
and the unstable manifold

Wu = {(x, y) ∈ Rt × Rs|x = φ2(y)}.
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Bifurcation ∂ f
∂x

∂ f
∂µ

∂2 f
∂x2

∂2 f
∂µ∂x

∂3 f
∂x3 S f

Saddle-node 1 , 0 , 0
Transcritical 1 0 , 0 , 0

Pitchfork 1 0 0 , 0 , 0
Period-doubling -1 , 0 , 0

Table 1.1: Types of bifurcation of nonhyperbolic fixed points in one-dimensional autonomous maps

1.5 Bifurcation in one-dimensional systems

The bifurcation theory for one-dimensional maps is well known and it may be found in any
book of discrete dynamical systems. (See for instance [16, 26, 64, 37, 77]). Our aim here
is to present a brief extension of this theory to nonautonomous periodic systems in which the
sequence of maps arise from a one parameter family of maps.

It is noteworthy to mention that the techniques that we are going to follow are known for
maps f (x, µ) with one variable x and one parameter µ. A good tutorial (in the sense of the
language of difference equations) may be found in [60].

One can speak about bifurcation when a small change in the parameter (the bifurcation
parameter) of a system causes a sudden qualitative change in its behavior.

• A saddle node bifurcation occurs if, near the bifurcation point (x∗, µ∗), the model pos-
sesses a unique curve of fixed points in the (µ, x) plane which passes through the bifur-
cation point and lies on one side of the line µ = µ∗. A saddle-node bifurcation has the
normal form xn+1 = xn ± µ ± x2

n.

• A transcritical bifurcation occurs if, near the bifurcation point (x∗, µ∗), the model pos-
sesses two curves of fixed points in the (µ, x) plane both of which pass through the bifur-
cation point and lies on both sides of the line µ = µ∗. An exchange of stability takes place
at the bifurcation point. A transcritical bifurcation has the normal form xn+1 = xn±µxn±x2

n.

• A pitchfork bifurcation occurs if, near the bifurcation point (x∗, µ∗), the model possesses
two curves of fixed points in the (µ, x) plane both of which pass through the bifurcation
point and one of which lies on both sides of the line µ = µ∗. A pitchfork bifurcation has
the normal form xn+1 = xn±µxn−ax3

n, where a > 0 is supercritical and a < 0 is subcritical.

• A period doubling bifurcation occurs if, near the bifurcation point (x∗, µ∗), the model
possesses a single curve of fixed points in the (µ, x) plane, while the second iterate f 2

undergoes a pitchfork bifurcation at the bifurcation point.

In Table 1.1 we summarize the bifurcation conditions for a parameter family of unidimen-
sional maps f (x, µ) in which (x∗, µ∗) is a nonhyperbolic fixed point.

1.5.1 Degeneracy

Before studying the bifurcation of periodic systems we present the following result which will
be needed in the sequel.
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Lemma 21 Consider the set of maps F = { f0, f1, . . . , fp−1} and let Cr = {x0, x1, . . . , xr−1} be an
r−periodic cycle of the one-dimensional p−periodic difference equation

xn+1 = fn(xn), fn+p = fp.

Then
∂Φs

∂x
(x0) =

∂Φi
s

∂x
(xi mod r) , for any i = 0, 1, 2, . . . ,

where s is the least common multiple of p and r.

Proof. If i = 0 then there is nothing to prove. Using the chain rule it follows

∂Φs

∂x
(x0) =

∂ fs−1

∂x
(Φs−1 (x0)) × ∂ fs−2

∂x
(Φs−2 (x0)) × . . . × ∂ f0

∂x
(Φ0 (x0))

=
∂ fs−1

∂x
(xs−1 mod r) ×

∂ fs−2

∂x
(xs−2 mod r) × . . . ×

∂ f1

∂x
(x1 mod r) ×

∂ f0

∂x
(x0)

=

s−1∏
j=0

∂ f j

∂x

(
x j mod r

)
.

Since x0 = xs mod r and f0 = fs one has

∂Φs

∂x
(x0) =

∂ f0

∂x
(x0) ×

s−1∏
j=1

∂ f j

∂x

(
x j mod r

)
=

∂ fs

∂x
(xs mod r) ×

s−1∏
j=1

∂ f j

∂x

(
x j mod r

)
=

s∏
j=1

∂ f j

∂x

(
x j mod r

)
=

∂Φ1
s

∂x
(x1 mod r) .

Similarly, x1 mod r = x1+s mod r and f1 = f1+s. Hence

∂Φs

∂x
(x0) =

s+1∏
j=2

∂ f j

∂x

(
x j mod r

)
=
∂Φ2

s

∂x
(x2 mod r) .

Continuing this process, for any i = 0, 1, 2, . . . one has

∂Φs

∂x
(x0) =

∂Φ1
s

∂x
(x1 mod r) = . . . =

∂Φi
s

∂x
(xi mod r) .

Hence, by the above observation, for the degeneracy conditions in the variable, it is enough
to work with the derivative ∂Φs

∂x (x0).
Recall that we have three possible situations: r < p, r = p or r > p. In any case xi mod r is a

fixed point of the composition operator Φi
s, where s is the least common multiple of r and p.

In [27] we presented a result for higher degeneracy conditions in the variable when there
exits an eigenvalue 1. This result is based on the fact that xi mod p is a fixed point of the compo-
sition operator Φi

p. In other words, when the maps are one to one in the parameter. Hence, by
Theorem 8 the minimal period of the cycle is r = tp, t = 1, 2, . . .. A simple extension gives the
same result using the composition operator Φi

s and the cycle Cr = {x0, x1, . . . , xr−1}.
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Lemma 22 [27] Consider the set of maps F = { f0, f1, . . . , fp−1} and let Cr = {x0, x1, . . . , xr−1}
be an r−periodic cycle of the one-dimensional p−periodic difference equation

xn+1 = fn(xn), fn+p = fp.

Assume that the maps have a sufficient number of derivatives satisfying the conditions:

1. The first bifurcation condition holds

∂Φs

∂x

∣∣∣∣∣
x=x0

=

s−1∏
j=0

d f j

dx

(
x j mod r

)
= 1.

2. Higher degeneracy conditions hold for Φs

m ≥ 2 :
∂nΦs

∂xn
(x)

∣∣∣∣∣
x=xi mod r

= 0, 2 ≤ n ≤ m.

Then the composition operator Φi
s satisfies

∂nΦi
s

∂xn
(x)

∣∣∣∣∣∣
x=xi mod r

= 0, i = 0, 1, 2, . . . and 2 ≤ n ≤ m.

From now own, in this section, we assume that the sequence of maps fi in the set F =
{ f0, f1, . . . , fp−1} arises from a one parameter family of maps, i.e, each map is defined as fi(x) =
f (x, µi) where fi : R × R → R. Moreover, we assume that the sequence of parameters is
p−periodic, i.e, µi = µi mod p. Under this assumption the one-dimensional difference equation

xn+1 = fn(xn), (1.22)

is p−periodic because one has fn = fn+p for all n ∈ Z+.

Lemma 23 Let Cr = {x0, x1, . . . , xr−1} be an r−periodic cycle of equation (1.22) and assume
that the sequence of maps fi inF has a sufficient number of derivatives satisfying the conditions:

1.
∂Φs

∂x
(x)

∣∣∣∣∣
x=x0

=

s−1∏
j=0

d f j

dx

(
x j mod r

)
= 1.

2.
∂Φs

∂µ0
(x)

∣∣∣∣∣
x=x0

= 0.

Then
∂Φi

s

∂µ0
(x)

∣∣∣∣∣∣
x=xi mod r

= 0, i = 0, 1, 2, . . . .
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Proof. Let s be the lest common multiple of p and r. By lemma 9 the orbit of Cr, in the
skew-product system, intersects each fiber F j, j = 0, 1, . . . , p − 1, in exactly ℓ = s/p points.
Hence

f0 = fp = f2p = . . . = f(ℓ−1)p,

f1 = fp+1 = f2p+1 = . . . = f(ℓ−1)p+1,

. . .

fp−1 = f2p−1 = f3p−1 = . . . = fℓp−1.

Note that ℓp − 1 = s − 1.
Using the chain rule it follows

∂Φs

∂µ0
(x)

∣∣∣∣∣
x=x0

=
∂ fp−1

∂x

(
xℓp−1 mod r

)
× . . . × ∂ f1

∂x

(
x(ℓ−1)p+1 mod r

)
× ∂ f0

∂µ0

(
x(ℓ−1)p mod r

)
×

∂ fp−1

∂x

(
x(ℓ−1)p−1 mod r

)
× . . . × ∂ f1

∂x

(
x(ℓ−2)p+1 mod r

)
× ∂ f0

∂µ0

(
x(ℓ−2)p mod r

)
×

...
∂ fp−1

∂x

(
xp−1 mod r

)
× . . . × ∂ f1

∂x
(x1 mod r) ×

∂ f0

∂µ0
(x0) .

Hence

∂Φs

∂µ0
(x)

∣∣∣∣∣
x=x0

=

 ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

))
×

ℓ−1∏
i=0

(
∂ f0

∂µ0

(
xip mod r

))
.

But f0 = fp and x0 = xs mod r = xℓp mod r. Consequently,

ℓ−1∏
i=0

(
∂ fp

∂µ0

(
x(i+1)p mod r

))
×

ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))

× . . . ×
ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

))
=

∂Φ1
s

∂µ0
(x)

∣∣∣∣∣∣
x=x1 mod r

.

Now we can see that f1 = fp+1 and x1 mod r = xℓp+1 mod r. Then

ℓ−1∏
i=0

(
∂ fp+1

∂x

(
x(i+1)p+1 mod r

)) ℓ−1∏
i=0

(
∂ fp

∂µ0

(
xip+s mod r

))
×

ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

))
=

∂Φ2
s

∂µ0
(x)

∣∣∣∣∣∣
x=x2 mod r

.

Continuing this process, one can see that

∂Φs

∂µ0
(x)

∣∣∣∣∣
x=x0

=
∂Φi

s

∂µ0
(x)

∣∣∣∣∣∣
x=xi mod r

,
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for any i = 0, 1, 2, . . .
Since

∂Φs

∂x
(x)

∣∣∣∣∣
x=x0

=

 ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

))
×

ℓ−1∏
i=0

(
∂ f0

∂x

(
xip mod r

))
= 1,

it follows that  ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

)) , 0. (1.23)

Consequently, by the fact that ∂Φs
∂µ0

(x)
∣∣∣∣
x=x0
= 0 it follows that

ℓ−1∏
i=0

(
∂ f0

∂µ0

(
xip mod r

))
= 0. (1.24)

Thus ∂Φi
s

∂µ0
(x)

∣∣∣∣
x=xi mod r

= 0, i = 0, 1, 2, . . ..

Remark 24 1. Notice that the following relation holds true

∂Φs

∂µ0
(x)

∣∣∣∣∣
x=x0

=
∂Φi

s

∂µ0
(x)

∣∣∣∣∣∣
x=xi mod r

,

for any i = 0, 1, 2, . . ., without any condition in the derivatives.

2. It is obvious that other degeneracy conditions on the parameters µ1, . . . , µp−1 are similar.

Lemma 25 Let Cr = {x0, x1, . . . , xr−1} be an r−periodic cycle of equation xn+1 = fn (xn) , fn+p =

fn, with fi = f (x, µi) and assume that the sequence of maps fi in F has a sufficient number of
derivatives satisfying the conditions:

1.
∂Φs

∂x
(x)

∣∣∣∣∣
x=x0

=

s−1∏
j=0

d f j

dx

(
x j mod r

)
= 1.

2.
∂nΦs

∂µn
0

(x)

∣∣∣∣∣∣
x=x0

= 0, for any n ≥ 2.

Then
∂nΦi

s

∂µn
0

(x)

∣∣∣∣∣∣
x=xi mod r

= 0, for all i = 0, 1, 2, . . . .
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Proof. Since

∂Φs

∂µ0
(x)

∣∣∣∣∣
x=x0

=

 ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

))
×

ℓ−1∏
i=0

(
∂ f0

∂µ0

(
xip mod r

))
,

it follows that

∂2Φs

∂µ2
0

(x)

∣∣∣∣∣∣
x=x0

=
∂

∂µ0

 ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

))
×

ℓ−1∏
i=0

(
∂ f0

∂µ0

(
xip mod r

))
+ ℓ−1∏

i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

)) ×
∂

∂µ0

 ℓ−1∏
i=0

(
∂ f0

∂µ0

(
xip mod r

)) .
By (1.23) and (1.24) we have that

∂2Φs

∂µ2
0

(x)

∣∣∣∣∣∣
x=x0

= 0 i f f
∂

∂µ0

 ℓ−1∏
i=0

(
∂ f0

∂µ0

(
xip mod r

)) = 0.

But f0 = fp and x0 = xs mod r = xℓp mod r, and thus we have that ∂2Φ1
s

∂µ2
0

(x)
∣∣∣∣
x=x0

is given by

∂

∂µ0

 ℓ−1∏
i=0

(
∂ fp

∂µ0

(
x(i+1)p mod r

))
×

ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

)) =
∂

∂µ0

 ℓ−1∏
i=0

(
∂ fp

∂µ0

(
x(i+1)p mod r

)) × ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

))
+

ℓ−1∏
i=0

(
∂ fp

∂µ0

(
x(i+1)p mod r

))
× ∂

∂µ0

 ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

)) .
Hence

∂2Φ1
s

∂µ2
0

(x)

∣∣∣∣∣∣
x=x0

= 0 ×
 ℓ−1∏

i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

)) +
+0 ×

 ∂

∂µ0

 ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

))
= 0.

Continuing this process, one can see that

∂2Φs

∂2µ0
(x)

∣∣∣∣∣∣
x=x0

=
∂2Φi

s

∂2µ0
(x)

∣∣∣∣∣∣
x=xi mod r

= 0,
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for any i = 0, 1, 2, . . .
Now ∂3Φs

∂µ3
0

(x)
∣∣∣∣
x=x0

is given by

∂2

∂µ2
0

 ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

)) × ℓ−1∏
i=0

(
∂ f0

∂µ0

(
xip mod r

))

+
∂

∂µ0

 ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

)) × ∂

∂µ0

 ℓ−1∏
i=0

(
∂ f0

∂µ0

(
xip mod r

))
+

∂

∂µ0

 ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

)) × ∂

∂µ0

 ℓ−1∏
i=0

(
∂ f0

∂µ0

(
xip mod r

))
+

ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

)) ∂2

∂µ2
0

 ℓ−1∏
i=0

(
∂ f0

∂µ0

(
xip mod r

)) .
Hence

∂3Φs

∂µ3
0

(x)

∣∣∣∣∣∣
x=x0

= 0 i f f
∂2

∂µ2
0

 ℓ−1∏
i=0

(
∂ f0

∂µ0

(
xip mod r

)) = 0.

Again f0 = fp and x0 = xs mod r = xℓp mod r. Consequently, ∂3Φ1
s

∂µ3
0

(x)
∣∣∣∣
x=x0

is now

∂2

∂µ2
0

 ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

)) × ℓ−1∏
i=0

(
∂ fp

∂µ0

(
x(i+1)p mod r

))

+
∂

∂µ0

 ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

)) × ∂

∂µ0

 ℓ−1∏
i=0

(
∂ fp

∂µ0

(
x(i+1)p mod r

))
+

∂

∂µ0

 ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

)) × ∂

∂µ0

 ℓ−1∏
i=0

(
∂ fp

∂µ0

(
x(i+1)p mod r

))
+

ℓ−1∏
i=0

(
∂ fp−1

∂x

(
x(i+1)p−1 mod r

))
× . . . ×

ℓ−1∏
i=0

(
∂ f1

∂x

(
xip+1 mod r

)) ∂2

∂µ2
0

 ℓ−1∏
i=0

(
∂ fp

∂µ0

(
x(i+1)p mod r

)) .
Hence

∂3Φ1
s

∂µ3
0

(x)

∣∣∣∣∣∣
x=x0

= 0.

Similarly, for any i = 0, 1, 2, ... one has

∂3Φs

∂3µ0
(x)

∣∣∣∣∣∣
x=x0

=
∂3Φi

s

∂3µ0
(x)

∣∣∣∣∣∣
x=xi mod r

= 0.

By induction we show that

∂nΦs

∂µn
0

(x)

∣∣∣∣∣∣
x=x0

= 0 i f f
∂n

∂µn
0

 ℓ−1∏
i=0

(
∂ f0

∂µ0

(
xip mod r

)) = 0.

Using the same argument as before, one can see that for any i = 0, 1, 2, ... one has

∂nΦs

∂nµ0
(x)

∣∣∣∣∣
x=x0

=
∂nΦi

s

∂nµ0
(x)

∣∣∣∣∣∣
x=xi mod r

= 0.
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1.5.2 Saddle-node
Note that the composition operator Φs is defined from R × Rp to R. Since x0 is a fixed point of
Φs(x, µ0, µ1, ..., µp−1) we can work with the autonomous difference equation

yn+1 = Φs(yn, µ0, µ1, ..., µp−1),

which contains one variable and p parameters.
Assume thatΦs(y, µ0, µ1, ..., µp−1) has a nonhyperbolic fixed point at (x0, µ) = (x0, µ0, µ1, ..., µp−1),

i.e., Φs(x0, µ) = x0, such that
∂Φs

∂y
(x0, µ) = 1.

Shifting this equilibrium point to the origin (0, 0) =
−→
0 ∈ Rp+1 it follows that the nonhyper-

bolicity conditions will be

Φs(
−→
0 ) = 0 and

∂Φs

∂y
(
−→
0 ) = 1. (1.25)

The Taylor series of Φs(y,−→µ ) is given by

Φs(y,−→µ ) = Φs(
−→
0 ) +

p−1∑
i=0

∂Φs

∂µi
(
−→
0 )µi +

∂Φs

∂y
(
−→
0 )y +

p−1∑
i=0

∂2Φs

∂µi∂y
(
−→
0 )µiy +

1
2
∂2Φs

∂y2 (
−→
0 )y2 + O(y3, µ2

i ).

Using (1.25) it follows

Φs(y,−→µ ) = y +
p−1∑
i=0

∂Φs

∂µi
(
−→
0 )µi +

p−1∑
i=0

∂2Φs

∂µi∂y
(
−→
0 )µiy +

1
2
∂2Φs

∂y2 (
−→
0 )y2 + O(y3, µ2

i ).

In the difference equations notation

yn+1 = yn +

p−1∑
i=0

∂Φs

∂µi
(
−→
0 )µi +

p−1∑
i=0

∂2Φs

∂µi∂y
(
−→
0 )µiyn +

1
2
∂2Φs

∂y2 (
−→
0 )y2

n + O(y3, µ2
i ).

(The higher terms will be omitted).
Introducing a new variable v = y − δ, where δ is a parameter, it follows that vn = yn − δ and

thus

vn+1 = vn +

p−1∑
i=0

∂Φs

∂µi
(
−→
0 )µi +

p−1∑
i=0

∂2Φs

∂µi∂y
(
−→
0 )µi (δ + vn) +

1
2
∂2Φs

∂y2 (
−→
0 ) (δ + vn)2

= vn +

p−1∑
i=0

∂Φs

∂µi
(
−→
0 )µi +

p−1∑
i=0

∂2Φs

∂µi∂y
(
−→
0 )µiδ +

1
2
∂2Φs

∂y2 (
−→
0 )δ2 + p−1∑

i=0

∂2Φs

∂µi∂y
(
−→
0 )µi +

∂2Φs

∂y2 (
−→
0 )δ

 vn +
1
2
∂2Φs

∂y2 (
−→
0 )v2

n.

To remove the linear terms
∑p−1

i=0
∂2Φs
∂µi∂y (
−→
0 )µi +

∂2Φs
∂y2 (
−→
0 )δ we require that

δ = −
∑p−1

i=0
∂2Φs
∂µi∂y(
−→
0 )µi

∂2Φs
∂y2 (
−→
0 )

.
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Obviously we need to assume that ∂2Φs
∂y2 (
−→
0 ) , 0. Using this value of δ, our map becomes

vn+1 = vn +

p−1∑
i=0

∂Φs

∂µi
(
−→
0 )µi −

1
2

(∑p−1
i=0

∂2Φs
∂y∂µi

(
−→
0 )µi

)2

∂2Φs
∂y2 (
−→
0 )

+
1
2
∂2Φs

∂y2 (
−→
0 )v2

n.

Now we introduce a new parameter β such that
β =

∑p−1
i=0

∂Φs
∂µi

(
−→
0 )µi − 1

2

(∑p−1
i=0

∂2Φs
∂µi∂y (

−→
0 )µi

)2

∂2Φs
∂y2 (
−→
0 )

if
∏p−1

i=0
∂Φs
∂µi

(
−→
0 ) > 0

β = −
∑p−1

i=0
∂Φs
∂µi

(
−→
0 )µi − 1

2

(∑p−1
i=0

∂2Φs
∂µi∂y (

−→
0 )µi

)2

∂2Φs
∂y2 (
−→
0 )

 if
∏p−1

i=0
∂Φs
∂µi

(
−→
0 ) < 0

.

This assumption yields

∂Φs

∂µ0
(
−→
0 ) , 0,

∂Φs

∂µ1
(
−→
0 ) , 0, ...,

∂Φs

∂µp−1
(
−→
0 ) , 0. (1.26)

Hence, the new map is now

vn+1 = vn ± β +
1
2
∂2Φs

∂y2 (
−→
0 )v2

n.

Making the changes of variable z = 1
2

∣∣∣∣∂2Φs
∂y2 (
−→
0 )

∣∣∣∣ v, our equation becomes

zn+1 =
1
2

∣∣∣∣∣∣∂2Φs

∂y2 (
−→
0 )

∣∣∣∣∣∣ vn+1 = zn ± β
1
2

∣∣∣∣∣∣∂2Φs

∂y2 (
−→
0 )

∣∣∣∣∣∣ +
1
2
∂2Φs
∂y2 (
−→
0 )

1
2

∣∣∣∣∂2Φs
∂y2 (
−→
0 )

∣∣∣∣η2
n

= zn ± σ ± z2
n, (1.27)

where σ = β 1
2

∣∣∣∣∂2Φs
∂y2 (
−→
0 )

∣∣∣∣. Eq. (1.27) is the normal form of the saddle-node bifurcation.
Conclusion:
If the difference equation yn+1 = Φs(yn, µ0, µ1, ..., µp−1) has a fixed point at

−→
0 ∈ Rp+1 such

that

∂Φs

∂y
(
−→
0 ) = 1,

∂Φs

∂µ0
(
−→
0 ) , 0,

∂Φs

∂µ1
(
−→
0 ) , 0, ...,

∂Φs

∂µp−1
(
−→
0 ) , 0 ,

and
∂2Φs

∂y2 (
−→
0 ) , 0,

then in a small neighborhood of the fixed point
−→
0 the map Φs is locally equivalent to one of the

following normal forms
zn+1 = zn ± σ ± z2

n,

and the saddle-node bifurcation takes place.
Notice that the sign before z2 is the same as the sign of ∂2Φs

∂y2 (
−→
0 ).
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Example 26 Let us consider the nonautonomous one-dimensional Ricker difference equation
given by

xn+1 = xneλn−xn , n ∈ Z+, (1.28)

where λn = λn mod p. Write Eq. (1.28) as xn+1 = Rn(xn) where Rn(x) = xeλn−x and let p = 2 be its
minimal period.

Since each map Rn = Rn mod 2, n ∈ Z+ is one to one with the respect to parameter λn =

λn mod 2 > 0, it follows by Theorem 8 that the only possible cycles for Eq. (1.28) are cycles with
minimal period r, r = 2t, t = 1, 2, . . .. Let C2 = {x0, x1} be a nontrivial 2−periodic cycle of Eq.
(1.28), i.e. x0 = R1 ◦ R0(x0). Simplifying this equation one obtains

λ0 + λ1 − x0 = x1 = x0eλ0−x0 . (1.29)

Since the derivative along the periodic cycle C2 is given by

(1 − x0)(1 − x1),

one has a bifurcation when (1 − x0)(1 − x1) = 1, or equivalently

(1 − λ0 − λ1 + x0)(1 − x0) = 1. (1.30)

Eq. (1.30) has the solutions

x0 = xsn
± =

1
2

(
λ0 + λ1 ±

√
(λ0 + λ1) (λ0 + λ1 − 4)

)
, λ0 + λ1 > 4.

Notice that the map is given by

Φ2(x) = R1 ◦ R0(x) = xeλ0+λ1−x(1+eλ0−x).

At the fixed point x0 of Φ2 one has ∂
∂x (Φ2(x)) |x=x0 = 1, ∂

∂λ1
(Φ2(x)) |x=x0 = 1 , 0, and

∂

∂λ0
(Φ2(x)) |x=x0 = 1 − λ0 − λ1 + x0 < 0,

for all λ0 > 0 and λ1 > 0 such that λ0 + λ1 > 4. So ∂
∂λ0

(Φ2(x)) |x=x0 , 0.
Substituting the value of the bifurcation solutions in (1.29) yields two equations of the form

λ0 + λ1 − y = y × eλ0−y, (1.31)

where y is given by xsn
+ or xsn

− .
The implicit function theorem guarantees the existence of solutions of the two equations

given in (1.31). The exact solutions of these equations are represented implicitly, in the param-
eter space λ0 and λ1 in Fig. 1.5 (grey curves). The stability region of C2 is given by A1 ∪ A2.

Hence, from the implicit solutions, it is enough to consider the values of the parameters in
the interval (2, 3) when the derivative equals 1. Since

∂2

∂x2
(Φ2(x)) |x=x0 = −1 − eλ0−x0 + (3 − x0)(λ0 + λ1 − x0) +

(1 − x0)(1 − λ0 − λ1 + x0)(−1 − eλ0−x0 + λ0 + λ1 − x0),

it follows that ∂2

∂x2 (Φ2(x)) |x=xsn
+
< 0 for all λ0, λ1 ∈ (2, 3) × (2, 3) and ∂2

∂x2 (Φ2(x)) |x=xsn
− > 0

for all λ0, λ1 ∈ (2, 3) × (2, 3). Consequently, on these bifurcation curves occurs saddle-node
bifurcation.
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Figure 1.5: The bifurcation curves of a 2−periodic cycle, in the parameter space, of the 2−periodic Ricker equation.

1.5.3 Transcritical
Assume that the map Φs(y, µ0, µ1, ..., µp−1) has a nonhyperbolic fixed point at

−→
0 ∈ Rp+1 (after

shifting the fixed point (x0, µ0, µ1, ..., µp−1) to the origin) such that

Φs(
−→
0 ) = 0 and

∂Φs

∂y
(
−→
0 ) = 1, (1.32)

and
∂Φs

∂µ0
(
−→
0 ) = 0,

∂Φs

∂µ1
(
−→
0 ) = 0, ...,

∂Φs

∂µp−1
(
−→
0 ) = 0. (1.33)

Let us write the vector parameter
(
µ0, µ1, ..., µp−1

)
as −→µ and write the equation as

yn+1 = Φs

(
yn,
−→µ

)
. (1.34)

Using (1.32) and (1.33), the Taylor series of (1.34) is given by

Φs

(
y,−→µ

)
= y +

p−1∑
i=0

∂2Φs

∂µi∂y
(
−→
0 )µiy +

1
2
∂2Φs

∂y2 (
−→
0 )y2 + O(x3, µ2

i ),

Introducing a new parameter β such that
β =

p−1∑
i=0

∂2Φs
∂µi∂y(
−→
0 )µi if

p−1∏
i=0

∂2Φs
∂µi∂y(
−→
0 ) > 0

β = −
p−1∑
i=0

∂2Φs
∂µi∂y (
−→
0 )µi if

p−1∏
i=0

∂2Φs
∂µi∂y (
−→
0 ) < 0

,

and rescaling we obtain
vn+1 = (1 ± β) vn ± v2

n,

where 1
2

∣∣∣∣∂2Φs
∂y2 (
−→
0 )

∣∣∣∣ y = v. The non-degeneracy conditions for normalization are

∂2Φs

∂y2 (
−→
0 ) , 0,

∂2Φs

∂µ0∂y
(
−→
0 ) , 0,

∂2Φs

∂µ1∂y
(
−→
0 ) , 0, ...,

∂2Φs

∂µp−1∂y
(
−→
0 ) , 0.
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Conclusion:

Let
−→
0 ∈ Rp+1 be a nonhyperbolic fixed point of the difference equation

yn+1 = Φs

(
yn,
−→µ

)
such that Φs(

−→
0 ) = 0, ∂Φs

∂y (
−→
0 ) = 1, and

∂Φs

∂µ0
(
−→
0 ) = 0,

∂Φs

∂µ1
(
−→
0 ) = 0, ...,

∂Φs

∂µp−1
(
−→
0 ) = 0.

If
∂2Φs

∂µ0∂y
(
−→
0 ) , 0,

∂2Φs

∂µ1∂y
(
−→
0 ) , 0, ...,

∂2Φs

∂µp−1∂y
(
−→
0 ) , 0,

∂2Φs

∂y2 (
−→
0 ) , 0,

then in a neighborhood of the fixed point
−→
0 the map Φs

(
y,−→µ

)
is locally equivalent to one of the

following normal forms
vn+1 = (1 ± β) vn ± v2

n,

and the transcritical bifurcation takes place.

• Notice that the sign before v2 is the same as the sign of ∂2Φs
∂y2 (
−→
0 ).

Example 27 Consider the difference equation

xn+1 = xn(an − xn)(an+1 − x2
n(an − xn)),

with an > 0 for all n = 0, 1, 2, . . .. Let an = an mod 2, for all n = 0, 1, 2, . . .. This leads to a
2−periodic difference equation. The composition operator Φ is given by

Φ(x) = x(a0 − x)(a1 − x2(a0 − x)).

Consider the zero fixed point of Φ. (We do not shift the parameter vector since the derivatives
equals). This fixed point is asymptotically stable when a0a1 < 1. Let a0a1 = 1. Hence one
has ∂Φ

∂x (0, a0, a1) = 1. Moreover, ∂Φ
∂a0

(0, a0, a1) = ∂Φ
∂a1

(0, a0, a1) = 0, ∂2Φ
∂x2 (0, a0, a1) = −2a1 < 0,

∂2Φ
∂a0∂x (0, a0, a1) = a1 > 0, and ∂2Φ

∂a1∂x (0, a0, a1) = a0 > 0. Hence the require conditions for
the transcritical bifurcation are satisfied. Thus at the curve a0a1 = 1 in the parameter space
(a0, a1) an exchange of stability takes place.

1.5.4 Pitchfork
Consider that the map yn+1 = Φs

(
yn,
−→µ

)
has a nonhyperbolic fixed point at

−→
0 ∈ Rp+1 (after

shifting the fixed point (x0, µ0, µ1, ..., µp−1) to the origin) such that

Φs(
−→
0 ) = 0 and

∂Φs

∂y
(
−→
0 ) = 1, (1.35)

and
∂Φ

∂µ0
(
−→
0 ) =

∂Φ

∂µ1
(
−→
O) = ... =

∂Φ

∂µp−1
(
−→
0 ) =

∂2Φ

∂y2 = 0. (1.36)
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Hence, the Taylor series is given by

Φ
(
y,−→µ

)
= y +

p−1∑
i=0

∂2Φs

∂µi∂y
(
−→
0 )µiy +

1
6
∂3Φs

∂y3 (
−→
0 )y3.

Let β be a new parameter such that
β =

p−1∑
i=0

∂2Φs
∂µi∂y(
−→
0 )µi if

p−1∏
i=0

∂2Φs
∂µi∂y > 0

β = −
p−1∑
i=0

∂2Φs
∂µi∂y (
−→
0 )µiif

p−1∏
i=0

∂2Φs
∂µi∂y < 0

.

Hence, the equation now becomes

yn+1 = yn ± βyn +
1
6
∂3Φs

∂y3 (
−→
0 )y3

n, (1.37)

and by the change of variable v =

√
1
6

∣∣∣∣∂3Φs
∂y3 (
−→
0 )

∣∣∣∣y we obtain

vn+1 = vn ± βvn ± v3
n.

Conclusion
Consider that the map yn+1 = Φs

(
yn,
−→µ

)
has a nonhyperbolic fixed point at

−→
0 such that

Φs(
−→
0 ) = 0 and

∂Φs

∂y
(
−→
0 ) = 1,

and
∂Φ

∂µ0
(
−→
0 ) =

∂Φ

∂µ1
(
−→
O) = ... =

∂Φ

∂µp−1
(
−→
0 ) =

∂2Φ

∂y2 (
−→
0 ) = 0.

If
∂2Φs

∂µ0∂y
(
−→
0 ) , 0 ,

∂2Φs

∂µ1∂y
(
−→
0 ) , 0, ...,

∂2Φs

∂µp−1∂y
(
−→
0 ) , 0

and
∂3Φs

∂y3 (
−→
0 ) , 0,

then in a neighborhood of the fixed point
−→
0 this equation is equivalent to one of the following

normal forms
vn+1 = vn ± βvn ± v3

n,

and the pitchfork bifurcation takes place.

• Notice that if ∂3Φs
∂y3 (
−→
0 ) < 0 then the pitchfork is supercritical and if ∂3Φs

∂y3 (
−→
0 ) > 0 the

pitchfork is subcritical.
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Figure 1.6: The bifurcation surface where occurs the pitchfork bifurcation of the zero fixed point of the equation
xn+1 = fn(xn) where fn(x) = µnx − x3, µn > 0 and fn = fn+3 for all n = 0, 1, 2, . . .

Example 28 Consider the difference equation xn+1 = fn(xn) where fn(x) = µnx − x3, µn > 0
for all n = 0, 1, 2, . . .. Let µn = µn mod 3. This leads to a 3−periodic difference equation since
fn = fn+3, for all n = 0, 1, 2, . . .. The composition operator is given by

Φ3(x) = f2 ◦ f1 ◦ f0(x).

Consider the zero fixed point of Φ3. Direct computations show that

∂Φ3

∂µ0
(0, µ0, µ1, µ2) =

∂Φ3

∂µ1
(0, µ0, µ1, µ2) =

∂Φ3

∂µ2
(0, µ0, µ1, µ2) =

∂2Φ3

∂x2 (0, µ0, µ1, µ2) = 0.

The fixed point zero is asymptotically stable when µ0µ1µ2 < 1 since

∂Φ3

∂x
(0, µ0, µ1, µ2) = µ0µ1µ2.

When µ0µ1µ2 = 1 it takes place a bifurcation. Computations show that when µ0µ1µ2 = 1 one
has, ∂2Φ3

∂µ0∂x (0, µ0, µ1, µ2) = µ1µ2 > 0, ∂2Φ3
∂µ1∂x (0, µ0, µ1, µ2) = µ0µ2 > 0 and ∂2Φ3

∂µ2∂x (0, µ0, µ1, µ2) =
µ0µ1 > 0. Moreover,

∂3Φ3

∂x3 (0, µ0, µ1, µ2) = −6(µ3
0µ

3
1 + µ

3
0µ2 + µ1µ2) , 0.

Hence, at µ0µ1µ2 = 1 the pitchfork bifurcation takes place. (Notice that it is a supercritical bi-
furcation). In Figure 1.6 is presented in the parameter space (µ0, µ1, µ2) the bifurcation surface.

1.5.5 Period-doubling
Let us assume that the map yn+1 = Φs(yn, µ0, µ1, ..., µp−1) has a nonhyperbolic fixed point such
that

Φs(x0, µ0, µ1, ..., µp−1) = x0 and
∂Φs

∂y
(x0, µ0, µ1, ..., µp−1) = −1.
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By shifting this equilibrium point to the origin
−→
0 ∈ Rp+1, it follows that the nonhyperbolicity

conditions becomes
Φs(
−→
0 ) = 0 and

∂Φs

∂y
(
−→
0 ) = −1. (1.38)

Because the slope of Φs is −1 the fixed point
−→
0 must exist for all (µ0, µ1, ..., µp−1) close to

(0, 0, ..., 0). In fact, by the relation

Φs(y, µ0, µ1, ..., µp−1) = y,

it follows that

Φs(
−→
0 ) +

∂Φs

∂y
(
−→
0 )y +

p−1∑
i=0

∂Φs

∂µi
(
−→
0 )µi = y, (1.39)

and consequently

y =
1
2

p−1∑
i=0

∂Φs

∂µi
(
−→
0 )µi.

This implies that we have a line of fixed points y = Y(µ0, µ1, ..., µp−1). Notice that we cannot use

this technique close to the other nonhyperbolic fixed point where ∂Φs
∂y (
−→
0 ) = 1, because in that

situation the variable y vanishes in Eq. (1.39) and we will not find any solution.
By the change of variables z = y − Y we find a new map

zn+1 = Ψ(zn,
−→µ ), (1.40)

which has fixed points at z = 0 for all µ0, µ1, ..., µp−1, i.e., Ψ(0, µ0, µ1, ..., µp−1) = 0.
Therefore we now assume, without loss of generality, that we have a map zn+1 = Ψ(zn,

−→µ )
with the following properties

Ψ(0,−→µ ) = 0 and
∂Ψ

∂z
(
−→
0 ) = −1. (1.41)

The Taylor expansion of Ψ is given by

Ψ(z,−→µ ) = Ψ(0,−→µ ) +
∂Ψ

∂z
(0,−→µ )z +

∂2Ψ

∂z2 (0,−→µ )
z2

2
+
∂3Ψ

∂z3 (0,−→µ )
z3

3!
+ ...

≈ A1(−→µ )z + A2(−→µ )z2 + A3(−→µ )z3, (1.42)

where

A1(−→µ ) =
∂Ψ

∂z
(0,−→µ ), A2(−→µ ) =

1
2
∂2Ψ

∂z2 (0,−→µ ) and A3(−→µ ) =
1
6
∂3Ψ

∂z3 (0,−→µ ).

Because it is convenient to remove the quadratic terms we use the quadratic change of
variable

z = u + αu2. (1.43)

The inverse change of variables is given by

u =
−1 ±

√
1 + 4αz

2α
. (1.44)
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Notice that the graph of (1.43) is a parabola in the (u, z)−plane open upwards with two roots
u = 0 and u = −α. Hence we chose to work with the right branch of this parabola, because
it passers on the point z = 0 and u = 0. Therefore it maps our equilibrium point z = 0 to the
point u = 0. This branch corresponds to the sign + in (1.44) and therefore the inverse change of
variables is

u =
−1 +

√
1 + 4αz

2α
. (1.45)

Since
√

1 + 4αz = 1 + 2αz − 2α2z2 + 4α3z3 + ..., it follows that

u ≈ z − αz2 + 2α2z3. (1.46)

So, in the difference equation notation we have

un+1 = zn+1 − αz2
n+1 + 2α2z3.

Using (1.42) and removing the terms up to the third order yields

un+1 = A1zn + (A2 − αA2
1)z2

n + (A3 − 2αA1A2 + 2α2A3
1)z3

n.

By (1.43) it follows that z2 ≈ u2 + 2αµ3 and z3 ≈ µ3. Hence

un+1 = A1un + (αA1 + A2 − αA2
1)u2

n + (2αA2 − 2α2A2
1 + A3 − 2αA1A2 + 2α2A3

1)u3
n.

Now we can remove the quadratic term and it follows that

α =
A2(−→µ )

A2
1(−→µ ) − A1(−→µ )

.

At the point −→µ = −→0 we know that A1(
−→
0 ) = −1 and thus α = A2(

−→
0 )/2. Consequently, at the

origin the coefficient of u3 is now

A = A3 + A2
2 =

1
6
∂3Ψ

∂z3 (
−→
0 ) +

1
4

(
∂2Ψ

∂z2 (
−→
0 )

)2

.

Hence, the new map is now
un+1 = A1un + Au3

n,

and by the change of variables v =
√
|A|u we have

vn+1 = A1vn ± v3
n. (1.47)

The second iterate map is given by

vn+2 = A1(A1vn ± v3
n) ± (A1vn ± v3

n)3.

Removing the terms up to the third order we have

vn+2 = A2
1vn ± (A1 + A3

1)v3
n.
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The Taylor expansion of A1(−→µ ) around the point
−→
0 is

A1

(−→µ )
= A1(

−→
0 ) +

p−1∑
i=0

∂A1

∂µi
(
−→
0 )µi.

Because A1(−→µ ) = ∂Ψ
∂z (0,−→µ ) it follows that ∂A1

∂µi
(−→µ ) = ∂2Ψ

∂µi∂z (0,−→µ ) , i = 0, 1, ..., p − 1. Hence

A1

(−→µ )
= −1 +

p−1∑
i=0

∂2Ψ

∂µi∂z
(
−→
0 )µi.

Let A1

(−→µ )
= −1 ± β where

β =
p−1∑
i=0

∂2Ψ
∂µi∂z(
−→
0 )µi if

∏p−1
i=0

∂2Ψ
∂µi∂z(
−→
0 ) > 0

β = −
p−1∑
i=0

∂2Ψ
∂µi∂z (
−→
0 )µi if

∏p−1
i=0

∂2Ψ
∂µi∂z (
−→
0 ) < 0

.

Notice that under this assumption one has necessarily

∂2Ψ

∂µ0∂z
(
−→
0 ) , 0,

∂2Ψ

∂µ1∂z
(
−→
0 ) , 0, ...,

∂2Ψ

∂µp−1∂z
(
−→
0 ) , 0.

The single map is now
vn+1 = (−1 ± β)vn ± v3

n. (1.48)

The fixed point v = 0 of the map representing vn+1 = (−1 + β)vn ± v3
n is stable if β > 0 and

unstable if β < 0. Analogously, the fixed point v = 0 of the map vn+1 = (−1 − β)vn ± v3
n is stable

if β < 0 and unstable if β > 0.
The second iterate map is given by

vn+2 = (−1 ± β)2vn ± ((−1 ± β) + (−1 ± β)3)v3
n. (1.49)

Before simplify this map, we notice that, our main goal here is to study the dynamics of Eq.
(1.49) near the origin. Hence, we can rewrite the map (1.49) as

vn+1 = (−1 ± β)2vn ± ((−1 ± β) + (−1 ± β)3)v3
n, (1.50)

because this transformation just shift in one step the sequence of point vn near the fixed point,
but does not change their values, and thus its dynamics is preserved.

Consider the change of variables h =
√∣∣∣(−1 ± β) + (−1 ± β)3

∣∣∣v. Substituting in (1.50) and
simplifying we have

hn+1 = hn ± γhn ± h3
n,

where γ = 2β + β2 and −γ = −2β + β2. This is precisely the normal form of the pitchfork
bifurcation. In fact, if G(v, β) is a map representing (1.50) then at the fixed point (v, β) = (0, 0)
one has

∂G
∂v

(0, 0) = ((−1 ± β)2) ± 3((−1 ± β) + (−1 ± β)3)v2
∣∣∣
(v,β)=(0,0)

= 1,

∂G
∂β

(0, 0) = ±2(−1 ± β)v ± (±1 ± 3(−1 ± β)2)v3
∣∣∣
(v,β)=(0,0)

= 0,
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∂2G
∂β∂v

(0, 0) = ±2(−1) ± 3(±1 ± 3(−1)) , 0,

and
∂2G
∂v2 (0, 0) = 0,

∂3G
∂v3 (0, 0) = ∓12 , 0.

Conclusion:
If the map zn+1 = Ψ(zn, µ0, µ1, ..., µp−1) has a nonhyperbolic fixed point at

−→
0 ∈ Rp+1 such

that
Ψ(0,−→µ ) = 0 for all (µ0, µ1, ..., µp−1) close to (0, 0, ..., 0), and

∂Ψ

∂z
(
−→
0 ) = −1.

If
∂2Ψ

∂µ0∂z
(
−→
0 ) , 0,

∂2Ψ

∂µ1∂z
(
−→
0 ) , 0, ...,

∂2Ψ

∂µp−1∂z
(
−→
0 ) , 0 (1.51)

and
1
6
∂3Ψ

∂z3 (
−→
0 ) +

1
4

(
∂2Ψ

∂z2 (
−→
0 )

)2

, 0,

then in a neighborhood of the fixed point the map is locally equivalent to one of the following
normal forms

hn+1 = hn ± γhn ± h3
n,

and the period-doubling bifurcation takes place at
−→
0 .

Since ∂Ψ
∂y (
−→
0 ) = −1, condition 1

6
∂3Ψ
∂z3 (
−→
0 ) + 1

4

(
∂2Ψ
∂z2 (
−→
0 )

)2
, 0 is equivalent to SΨ(

−→
0 ) , 0. (The

Schwarzian derivative).
Notice that the condition (1.51) must be computed only after shifting the fixed point to the

origin. So, in general we cannot apply directly this test for the initial composition operator
Φs. In order to apply it without any restrictions, we need first to transform our map to the
form (1.40). This is needed because this transformation introduces a new variable z which is

a function of µ0, µ1, ..., µp−1. Therefore the derivatives
p−1∑
i=0

∂Ψ
∂µi
µi may be changed. For instance

consider the map g(y, µ0, µ1) = y− (µ0 + µ1)+ (µ0 + µ1)2. So
1∑

i=0

∂g
∂µi
µi = −(µ0 + µ1)+ 2(µ0 + µ1)2.

By the change of variables z = y − (µ0 + µ1) it follows that G(z, µ0, µ1) = z+ (µ0 + µ1)2 and

therefore
1∑

i=0

∂G
∂µi
µi = 2(µ0 + µ1)2.

Example 29 Consider the one-dimensional Ricker map given in (1.28). The period-doubling
bifurcation equation is given by (1 − x0)(1 − x1) = −1, or equivalently

(1 − λ0 − λ1 + x0)(1 − x0) = −1. (1.52)

Eq. (1.52) has the solutions

x0± = xpd
± =

1
2

(
λ0 + λ1 ±

√
(λ0 + λ1) (λ0 + λ1 − 4) + 8

)
.

After shifting the fixed point (x0, λ0, λ1) to the origin one obtains the equation

yn+1 = (yn + x0)eµ0+λ0+µ1+λ1−(yn+x0)(1+eµ0+λ0−(yn+x0)) − x0.
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Bifurcation ∂Φs
∂x

∂Φs
∂µi

,
i = 0, 1, . . . , p − 1

∂2Φs
∂x2

∂2Φ
∂µi∂x ,

i = 0, 1, . . . , p − 1

∂3Φs
∂x3 SΦs

Saddle-node 1 , 0 , 0
Transcritical 1 0 , 0 , 0

Pitchfork 1 0 0 , 0 , 0
Period-doubling -1 , 0 , 0

Table 1.2: Bifurcation conditions for nonhyperbolic periodic points in nonautonomous one-dimensional maps.

By the change of variable zn = yn − Y, where Y = 1
2 (−µ1 + (1 − x1)x0µ0), yields the equation

zn+1 = Ψ(zn), where

Ψ(z) = (z + Y + x0)eµ0+λ0+µ1+λ1−(z+Y+x0)(1+eµ0+λ0−(z+Y+x0)) − Y − x0.

Hence
∂Ψ

∂z
(0, 0, 0) = (1 − x0)(1 − x1) = (1 − x0)(1 − λ0 − λ1 + x0) = −1,

∂2Ψ

∂µ0∂z
(0, 0, 0) = 4x2

0(−1 + x1)2 − x3
0(−1 + x1)2 + 2

(
1 − 4x1 + x2

1

)
− 2x0

(
2 − 7x1 + 3x2

1

)
,

and
∂2Ψ

∂µ1∂z
(0, 0, 0) =

2 − 4x0 + x2
0 − (4 − 8x0 + 3x2

0)x1 + (x0 − 1)x2
1

2
.

Since x1 = λ0 + λ1 − x0 we conclude (via numerical simulations) that ∂2Ψ
∂µ0∂z(0, 0, 0) > 0 when

x0 = xpd
0+

and ∂2Ψ
∂µ0∂z (0, 0, 0) < 0 when x0 = xpd

0−
, and ∂2Ψ

∂µ1∂z (0, 0, 0) < 0 in both situation x0 = xpd
0−

and x0 = xpd
0+

. Hence
∂2Ψ

∂µ0∂z
(0, 0, 0) , 0 and

∂2Ψ

∂µ1∂z
(0, 0, 0) , 0.

Similar techniques allow us to show that 1
6
∂3Ψ
∂z3 (0, 0, 0) + 1

4

(
∂2Ψ
∂z2 (0, 0, 0)

)2
> 0 in both situation

x0 = xpd
0−

and x0 = xpd
0+

.
Substituting the value of the bifurcation solutions in (1.29) yields two equations of the form

λ0 + λ1 − y = y × eλ0−y, (1.53)

where y is given by xpd
+ or xpd

− .
Once again we invoke the implicit function theorem in order to guarantee the existence of

solutions of Eq. (1.53). In Fig. 1.5 is represented implicitly, in the parameter space λ0 and
λ1 these exact solutions (black curves). If the parameters λ0 and λ1 are on the black curves,
then it take place the period-doubling bifurcation. Note that the period-doubling bifurcation
curves intersect the axes at the points (2.53039, 0) and (0, 2.53039) and they intersect them self
at the point (2.52647, 2.52647) = (k2, k2). (The first numbers of the sequence ki, i = 1, 2, . . . are
present in subsection 2.1.4). Moreover, if λ0 = λ1, i.e., if the parameters are on the diagonal
line, the equation loses it periodicity (in other words, the map is autonomous). Furthermore,
the coordinates of the points P0 and P1 are (λ̃, 1) and (1, λ̃), λ̃ ≈ 2.28447, respectively.

Before finalize this section we present in Table 1.2 a resume of the bifurcations conditions
in one-dimensional nonautonomous systems.



Chapter 2

Competition models

“Competition is a contest between individuals, groups, nations, animals, etc. for territory, a
niche, or a location of resources. It arises whenever two or more parties strive for a goal which
cannot be shared. Competition occurs naturally between living organisms which co-exist in the
same environment. Competition can have both beneficial and detrimental effects”1.

There are two types of competition: (i) interspecific competition or (ii) intraspecific com-
petition.

(i) “Interspecific competition, in ecology, is a form of competition in which individuals of
different species compete for the same resource in an ecosystem (i.e., food or living
space). As an example, if a tree species in a dense forest grows taller than surrounding
tree species, it is able to absorb more of the incoming sunlight. However, less sunlight is
then available for the trees that are shaded by the taller tree”.

In summing, interspecific competition may occur when individuals of two separate species
share a limiting resource in the same area. If the resource cannot support both populations,
then lowered fecundity, growth, or survival may result in at least one species. Conse-
quently, interspecific competition has the potential to alter populations, communities
and the evolution of interacting species.

(ii) “Intraspecific competition is a particular form of competition in which members of the
same species compete for the same resource in an ecosystem (e.g. food, light, nutri-
ents, space). For example, two trees of the same species growing close together will
compete for light, water and nutrients in the same soil. Getting less resources, they will
perform more poorly than if they grew by themselves (for example lowered growth rates
and fewer seed output). Trees have therefore adapted to grow taller or develop larger
root systems through natural selection”. Notice that intraspecific competition affects di-
rectly the carrying capacity of a population (maximum population level supported by
the environment).

One of the fundamental tenets of ecology is the Competitive Exclusion Principle. “Ac-
cording to this principle too much interspecific competition between two species results in the
exclusion of one species” (Cushing et al., [18]). In other words, “the competitive exclusion
principle states that two species that use the same resource in the same way in the same space

1A relevant part of this introduction is based in the online free Encyclopedia “Wikipedia”, namely the biological
concepts and the examples.

41
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and time cannot coexist and must diverge from each other over time in order for the two species
to coexist. One species will often exhibit an advantage in resource use. This superior competi-
tor will out-compete the other with more efficient use of the limiting resource. As a result, the
inferior competitor will suffer a decline in population over time. It will be excluded from the
area and replaced by the superior competitor”.

Our main objective in Section 2.1 is to study a Ricker competition model of two species. We
give a complete analysis of stability and bifurcation and determine the center manifold as well
as stable and unstable manifold. It is shown that the autonomous Ricker competition model
exhibits subcritical bifurcation, bubbles, period-doubling bifurcation, but no Neimark-Sacker
bifurcations. We exhibit the region in the parameter space where the competition exclusion
principle applies. We should mention that the results present in this section are accepted for
publication [48].

In the next section we study the nonautonomous Ricker competition model. The main con-
tribution here is the proof of existence of the positive solution of the composition map. We also
study the stability of the trivial and exclusion cycles and a global result is present for the posi-
tive cycle when the carrying capacities of the model are restricted to the unit interval. Finally,
we extend to two-dimensional systems the concept of attenuance and resonance and study it to
our model.

In Section 2.3 we study a new model called logistic competition model. This model is based
in the well known one-dimensional logistic model. Finally, in Section 2.4 we study both the
autonomous and the nonautonomous Leslie-Gower competition model.

2.1 An autonomous Ricker competition model
The classical Ricker competition model is given by{

un+1 = un exp(K − c11un − c12vn)
vn+1 = vn exp(L − c21un − c22vn) ,

where the parameters K and L are assumed to be positive real numbers and ci j ∈ (0, 1), 1 ≤
i, j ≤ 2.

Letting c11un = xn and c22vn = yn we get the system{
xn+1 = xn exp(K − xn − ayn)
yn+1 = yn exp(L − y − bxn) , (2.1)

where a = c12/c22 and b = c21/c11. Thus a, b > 0. In the language of population dynamics the
parameters K and L are known as the carrying capacities of species x and y, respectively, while
the parameters a and b are the competition parameters. Eq. (2.1) may represented by the map

F(x, y) = (xeK−x−ay, yeL−y−bx).

Eq. (2.1) has three fixed points, one extinction fixed point (0, 0), and two exclusion fixed
points on the axes (K, 0) and (0, L). A possible fourth positive coexistence fixed point (x∗, y∗)
may be present.

Let us write the map F = ( f , g). Then the isoclines are defined as f (x, y) = x and g(x, y) = y.
These are the lines ay + x = K denoted by s1 and y + bx = L denoted by s2 (see Fig. 2.1 A,B).
Moreover, the map F takes a point (x, y) ∈ R2

+ lying above (below) s1 to a point with a smaller
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Figure 2.1: The stability of the exclusion fixed point and the validity of the competition exclusion principle. (A) If
0 < K ≤ 2 and L < bK, then (K, 0) is locally asymptotically stable and species y goes extinct. (B) If 0 < L ≤ 2 and
L > K/a, then (0, L) is locally asymptotically stable and species x goes extinct.

(larger) x−coordinate. Similarly, the map F takes a point (x, y) ∈ R2
+ lying above (below) s2 to

a point with smaller (larger) y−coordinate.
Note that on the isocline s1, the population x has no growth, that is xn+1 = xn and on the

isocline s2 the population y has no growth, that is yn+1 = yn.
If the two isoclines s1 and s2 intersect in the positive quadrant, we will have the positive

fixed point

(x∗, y∗) =
(

K − aL
1 − ab

,
L − bK
1 − ab

)
.

There are two cases to consider here: (i) ab < 1 and (ii) ab > 1 (see Fig. 2.2 A,B). The case
ab = 1 will be discarded since in this case the two isoclines are parallel and no coexistence
fixed point is present.

The Jacobian of Eq. (2.1) is given by

JF(x, y) =
[

(1 − x)eK−x−ay −axeK−x−ay

−byeL−y−bx (1 − y)eL−y−bx

]
.

The Jacobians evaluated at the fixed points are

J0 = JF(0, 0) =
[

eK 0
0 eL

]
,

JK = JF(K, 0) =
[

1 − K −aK
0 eL−bK

]
,

JL = JF(0, L) =
[

eK−aL 0
−bL 1 − L

]
,

and

J∗ = JF(x∗, y∗) =
[

1 − x∗ −ax∗

−by∗ 1 − y∗

]
.



44 CHAPTER 2. COMPETITION MODELS

HAL

L�bK

L

K�a

s2

s1

Hx*,y*L

x

y

HBL

KL�b

K�a

L

s1

s2

Hx*,y*L

x

y

Figure 2.2: Isoclines: (A) The coexistence fixed point of Eq. (2.1) exists if bK < L < K/a and ab < 1. (B) The
coexistence fixed point of Eq. (2.1) exists if K

a < L < bK and ab > 1. In this scenario this equilibrium is a saddle.

Before present the stability of these fixed points we should mention that H. Smith in [73]
have been used monotonicity to prove the global stability of the fixed points of the system{

un+1 = un exp(r(1 − un − Bvn))
vn+1 = vn exp(s(1 −Cun − vn)) , (2.2)

when r, s ≤ 1 for which the invariant set is [0, r−1] × [0, s−1]. Notice that by the changes of
variables ru = x and sv = y, system (2.2) is equivalent to{

xn+1 = xn exp(r − xn − Br
s yn)

yn+1 = yn exp(s − yn − Cs
r xn) .

Consequently, K = r, L = s, a = Br
s and b = Cs

r . Hence, the global results in [73] cover our
local analysis when we take the carrying capacities in the unit interval.

In the sequel we study the stability of these fixed points.

2.1.1 Stability of the extinction and exclusion equilibria
The eigenvalues of J0 are eK > 1 and eL > 1 since K, L > 0. Thus (0, 0) is unstable for all
K, L > 0.

The eigenvalues of JK are 1 − K and eL−bK . Thus ρ (JK) < 12 if and only if 0 < K < 2 and
L < bK. Thus (K, 0) is asymptotically stable if 0 < K < 2 and L < bK. In the parameter space
we call this region R1 (see Fig. 2.4). Below we will prove that when K = 2 this exclusion fixed
point is stable and when L = bK it is unstable. Thus one may define the region R1 as

R1 = {(K, L) ∈ R2 : 0 < K ≤ 2 ∧ L < bK}.

Note that from the inequality K > L/b we obtain K/a > L/ab and consequently L < L/ab <
K/a. In Fig. 2.1 (i) we represent the orientation of the isoclines in the phase-space diagram.

2ρ denotes the spectral radius
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Similarly, (0, L) is asymptotically stable if 0 < L ≤ 2 and L > K/a. The region of stability of
(0, L) in the parameter space K − L is denoted by Q1 (see Fig. 2.4) and is given by

Q1 = {(K, L) ∈ R2 : 0 < L ≤ 2 ∧ L > K/a}.

Note that from the inequality K/a < L it follows that K < K/ab < L/b. In Fig. 2.1 (ii) we show
the orientation of the isoclines in the phase-space diagram.

We now study the stability of the fixed point (K, 0) when |ρ (JK) | = 1. This occurs in two
cases, the first is when K = 2 and L < bK, in which the eigenvalues are λ1 = −1 and λ2 < 1.
The second case is when 0 < K < 2 and L = bK, in which |λ1| < 1 and λ2 = 1. (The case when
K = 2 and L = bK at which λ1 = −1 and λ2 = 1 will not be investigated now due the extension
of this work but will be approach in the future). To investigate these cases, we need to use the
center manifold theory developed in Section 1.4.

Making the changes of variable u = x − K and v = y in Eq. (2.1) we shift the fixed point
(K, 0) to (0, 0). Then the new system is given by{

un+1 = (un + K)e−un−avn − K
vn+1 = vneL−vn−b(un+K) . (2.3)

Let us now consider the first case, i.e. K = 2 and L < bK. The Jacobian at (0, 0) is now
given by

J̃0 =

[
−1 −2a
0 −eL−2b

]
.

Consequently, one may write Eq. (2.3) as[
un+1

vn+1

]
=

[
−1 −2a
0 −eL−2b

] [
un

vn

]
+

[
f̃ (un, vn)
g̃(un, vn)

]
, (2.4)

where
f̃ (u, v) = (u + 2)e−u−av − 2 + u + 2av,

and
g̃(u, v) = veL−v−b(u+2) + eL−2bv.

Let v = h(u) with h(u) = αu2 + βu3 + O(|u4|), α, β ∈ R. The map h must satisfy the center
manifold equation

h(−u − 2ah(u) + f̃ (u, h(u))) + eL−2bh(u) − g̃(u, h(u)) = 0.

By Taylor’s series this equation is equivalent to(
α − e−2b+Lα

)
u2 +

(
be−2b+Lα + 4aα2 − β − e−2b+Lβ

)
u3 + O[u]4 = 0.

Solving the system {
α − e−2b+Lα = 0
be−2b+Lα + 4aα2 − β − e−2b+Lβ = 0

yields the unique solution α = 0 and β = 0. Hence h(u) = 0. Consequently, on the center
manifold v = 0, the new map f̂ is given by

f̂ (u) = −u − 2ah(u) + f̃ (u, h(u)) = −2 + e−u(2 + u).
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The Schwarzian derivative of this map at u = 0 is -1. Hence, by Theorem 19 (p = 1 and r = 1)
the exclusion fixed point (2, 0) is asymptotically stable.

We now consider the second case, i.e, 0 < K < 2 and L = bK. After computing the new
Jacobian at (0, 0), Eq. (2.3) may be written as[

un+1

vn+1

]
=

[
1 − K −aK

0 1

] [
un

vn

]
+

[ ˜̃f (un, vn)
˜̃g(un, vn)

]
, (2.5)

where
˜̃f (u, v) = (u + K)e−u−av − (1 − K)u + (av − 1)K,

and
˜̃g(u, v) = ve−v−bu − v.

After some computations the center manifold is given by

h(v) = −av − (1 − ab) av2

K
+

(
a(−1 + ab)(4 + a(2 + b(−6 + K)) − K)

2K2

)
v3. (2.6)

So the new map on the center manifold is now

̂̂f (v) = ve−v−bh(v). (2.7)

Hence, one has
(̂

f̂ (v)
)′

v=0
= 1 and

(̂
f̂ (v)

)′′
v=0
= 2(−1+ ab). Therefore, by Theorem 17 (p = 1 and

r = 1) the exclusion fixed point on the center manifold u = h(v) is unstable. More precisely, it
is a semi-stable fixed point from the right since 2(−1 + ab) < 0 (see [26, page 31]).

We now summarize these remarks in the following result.

Theorem 30 For the autonomous Ricker equation (2.1), the following statements hold true:

1. (0, 0) is unstable.

2. (K, 0) is locally asymptotically stable if 0 < K ≤ 2 and L < bK,

3. (0, L) is locally asymptotically stable if 0 < L ≤ 2 and L > K/a.

Before the end of this subsection we note that the competition exclusion principle in Biology
is valid for both species. In Fig. 2.1 we presented the two possible scenarios. In Fig. 2.1(i)
species y goes extinct while in Fig. 2.1(ii) species x goes extinct.

2.1.2 Stability of the coexistence fixed point: The case ab < 1

Recall that (x∗, y∗) =
(

K−aL
1−ab ,

L−bK
1−ab

)
is a coexistence fixed point if

bK < L < K/a and ab < 1. (2.8)

In this situation the line segments s1 and s2 intersect as it is shown in Fig. 2.2A. In order to find
the stability region of (x∗, y∗) we need to find the region where

|tr(J∗)| − 1 < det(J∗) < 1.
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(Fore more details about this point see [26, page 200]). This is equivalent to

det(J∗) < 1 ∧ det(J∗) > tr(J∗) − 1 ∧ det(J∗) > −tr(J∗) − 1.

If at least one of these inequalities is reversed, then (x∗, y∗) is unstable. Now

det(J∗) =
ab − 1 + (1 − a)L + (1 − b)K − (aL − K)(bK − L)

ab − 1
,

and
tr(J∗) =

2(ab − 1) + (1 − a)L + (1 − b)K
ab − 1

.

Consequently, det(J∗) < 1 iff

(aL − K)(bK − L) < (1 − a)L + (1 − b)K, (2.9)

det(J∗) > tr(J∗) − 1 iff
(aL − K)(bK − L) > 0, (2.10)

and finally det(J∗) > −tr(J∗) − 1 iff

(aL − K)(bK − L) > 4(ab − 1) + 2(1 − a)L + 2(1 − b)K. (2.11)

Notice that the inequality (2.10) is automatically satisfied when (2.8) holds.
Thus, (x∗, y∗) is locally asymptotically stable if for any fixed a > 0 and b > 0 with ab < 1

the following inequalities hold{
(aL − K)(bK − L) < (1 − a)L + (1 − b)K
(aL − K)(bK − L) > 4(ab − 1) + 2(1 − a)L + 2(1 − b)K . (2.12)

The solution of this system gives us the region identified by the letter S 1 in the (K, L)−plane
(see Fig. 2.4). The region S 1 is bounded by the lines L = K/a and L = bK and the curve γ1

(Points on this curve may be include as it is shown bellow).
Now we show that γ1 is part of the left branch of the hyperbola defined by the equation

(aL − K)(bK − L) = 4(ab − 1) + 2(1 − a)L + 2(1 − b)K.

A simple calculation shows that the inequality (2.9) is equivalent to

bK2 + (1 − b)K − (1 + ab)KL + (1 − a)L + aL2 > 0, (2.13)

and the inequality (2.11) is equivalent to

bK2 + 2(1 − b)K − (1 + ab)KL + 2(1 − a)L + aL2 + 4(ab − 1) < 0. (2.14)

Before finding the region where these three inequalities are satisfied we give some notes
about the following two equations

bK2 + (1 − b)K − (1 + ab)KL + (1 − a)L + aL2 = 0, (2.15)

and
bK2 + 2(1 − b)K − (1 + ab)KL + 2(1 − a)L + aL2 + 4(ab − 1) = 0. (2.16)
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Figure 2.3: The relative position of the hyperbolas det(J∗) = 1 and det(J∗) = −tr(J∗) − 1 and the lines L = bK
and L = K/a when a = b = 1/2. The black curves are the implicit solutions of det(J∗) = 1 while the grey curves
are the implicit solutions of det(J∗) = −tr(J∗) − 1. The stability region S 1 is enclosed by the two lies and the left
branch of hyperbola det(J∗) = −tr(J∗) − 1.

It is easy to show that these two second-degree equations are hyperbolas in the (K, L)−plane
provided that the constants satisfy the determinant condition

D =

∣∣∣∣∣∣ b − 1+ab
2

− 1+ab
2 a

∣∣∣∣∣∣ = −1
4

(1 − ab)2 < 0.

The center (Kc, Lc) of (2.15) is given by
(

1+a
1−ab ,

1+b
1−ab

)
and the center (K̄c, L̄c) of (2.16) is given

by (2Kc, 2Lc). The angle of the principal axis of each hyperbola and the positive K−axis equals

tan(2ϕ) = −1 + ab
b − a

.

In case of strong symmetry, for example when a = b = 0.5, both hyperbolas have the same
principal axis, L = 1+b

1+a K and the vertices of (2.15) are V1 = (0, 0) and V2 = (2Kc, 2Lc) and the
vertices of (2.16) are V̄1 = (2Kc(1−

√
ab), 2Lc(1−

√
ab)) and V̄2 = (2Kc(1+

√
ab), 2Lc(1+

√
ab)).

It is clear that V1 < V̄1 < V2 < V̄2 since

0 < 2Kc(1 −
√

ab) < 2Kc < 2Kc(1 +
√

ab),

and
0 < 2Lc(1 −

√
ab) < 2Lc < 2Lc(1 +

√
ab).

Knowing these properties and using the implicit function theorem we present in Fig. 2.3, in the
(K, L)−plane, the solutions of (2.15) and (2.16) when a = b = 1/2.

In case of strong asymmetry, i.e., when either a > 1 or b > 1 such that ab < 1 the relative
position between these two hyperbolas and the lines is much more involved. However, the origin
is always a point of the implicit solutions of Eq. (2.15) (not necessary a vertex). Furthermore,
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Figure 2.4: The stability regions in the parameter space of the solution of the Ricker competition equation (2.1)
when a > 0 and b > 0 such that ab < 1. The plot on the left is when the competition parameters are a = b = 0.5
while the plot on the right is obtained when the competition parameters are a = 0.2 and b = 2.

the left branch of the solutions of Eq. (2.15) intersects the two lines at the origin and it can enter
in the first quadrant. However, it does not intersects these two lines in the interior of the first
quadrant.

Now we are going to find the region where the inequalities (2.13) and (2.14) hold. If we
pick up a point between each branch of the hyperbola either the sign is positive or negative. A
good candidate for this test is the center of each hyperbola. We conclude that on (Kc, Lc) the
value of the first member of (2.13) is 1 > 0. Since K > 0 and L > 0, the inequality (2.13) is
verified whenever the values of the carrying capacities K and L are between the positive axes
and the right branch of the hyperbola given by (2.15).

Similarly, on (K̄c, L̄c) the first member of (2.14) is 4ab > 0. Hence, the inequality (2.14)
is verified whenever the carrying capacities K and L are between the positive axes and the left
branch of the hyperbola (2.16) or in the interior of the right branch of the hyperbola (2.16).

From (2.8) it follows that the inequality (2.10) is verified. This corresponds to the points in
the (K, L)−plane between the lines L = K/a and L = bK. The stability region S 1 is intersection
of these three regions. (This follows from the two precedent observations and by the relation
(2.8)).

In the sequel, we will show that when K and L are on γ1 the coexistence fixed point is
asymptotically stable. This happens when |ρ(J∗)| = 1, i.e., λ1 = −1 and λ2 < 1. Note that on the
curve γ1 one has

L =
2(a − 1) + (1 + ab)K

2a
±√

(2(a − 1) + (1 + ab)K)2 + 4a(4(1 − ab) + 2(b − 1)K − bK2)
2a

. (2.17)

Making the change of variables un = xn− x∗ and vn = yn−y∗ in Eq. (2.1) we shift the positive
fixed point to the origin. Eq. (2.1) is now equivalent to[

un+1

vn+1

]
=

[
J11 J12

J21 J22

] [
un

vn

]
+

[
f̃ (un, vn)
g̃(un, vn)

]
. (2.18)
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where
f̃ (u, v) = (u + x∗)eK−(u+x∗)−a(v+y∗) − x∗ − J11u − J12v,

g̃(u, v) = (v + y∗)eL−(v+y∗)−b(u+x∗) − y∗ − J21u − J22v,

and the Jacobian at (0, 0) is given by[
J11 J12

J21 J22

]
=

[ −1+K−a(−b+L)
−1+ab − a(−K+aL)

−1+ab
− b(bK−L)
−1+ab

−1+ab−bK+L
−1+ab

]
.

Now we need to diagonalize this matrix. Let us write the diagonal matrix as[
J11 J12

J21 J22

]
=

[
S 11 S 12

1 1

] [
λ1 0
0 λ2

] [
S̃ 11 S̃ 12

S̃ 21 S̃ 22

]
,

where
S 11 =

−(1 + b)K + (1 + a)L + ▽
2b(bK − L)

, S 12 =
−(1 + b)K + (1 + a)L − ▽

2b(bK − L)
,

λ1 =
2(ab − 1) + (1 − b)K + (1 − a)L − ▽

2(ab − 1)
, λ2 =

2(ab − 1) + (1 − b)K + (1 − a)L + ▽
2(ab − 1)

,

S̃ 11 =
b(bK − L)
▽

, S̃ 12 =
(1 + b)K − (1 + a)L + ▽

2▽
,

S̃ 21 =
b(−bK + L)

▽
, S̃ 22 =

−(1 + b)K + (1 + a)L + ▽
2▽

,

with

▽ =
√(

1 + 2b + (1 − 4a)b2) K2 + 2
(
a(b − 1) − b − 1 + 2a2b2) KL +

(
1 + 2a + a2(1 − 4b)

)
L2.

Using again a new change of variables u = S 11z + S 12w and v = z + w, yields the following
system [

zn+1

wn+1

]
=

[
λ1 0
0 λ2

] [
zn

wn

]
+

[ ˜̃f (zn,wn)
˜̃g(zn,wn)

]
, (2.19)

where [ ˜̃f (zn,wn)
˜̃g(zn,wn)

]
=

[
S̃ 11 S̃ 12

S̃ 21 S̃ 22

] [
f̃ (un, vn)
g̃(un, vn)

]
.

Let z = h(w), where h(w) = αw2 + βw3 + O(w4). The function h must satisfy the following
equation

h(λ2w + ˜̃g(h(w),w)) − λ1h(w) − ˜̃f (h(w),w) = 0. (2.20)

After simplifying this equation, we write the Taylor expansion and then we find the values of
the constant α and β. Since the computations here are cumbersome we did not find the exact
values of α and β. However, we are able to find it numerically. Notice that, the maximum value
of the carrying capacity K is given by biggest value on the left branch of hyperbola given by
(2.16), namely

Kmax =
2(1 + a − a

√
b)

1 − ab
.

Notice that depending of the choice of a and b, Kmax can be a very large number namely when
ab ≈ 1.
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Figure 2.5: Part of the values of the Schwarzian derivative of the new map on the center manifold for the co-
existence fixed point. In this simulation we used values of the carrying capacity K in the interval (0, 3] and the
competition parameters are in the interval (0, 2] such that ab < 1.

We reduce our analysis when the competition parameters belong to the interval (0, 2]. Tak-
ing randomly the values of a and b in the interval (0, 2] such that ab < 1 and using the value
of carrying capacity L given in (2.17), we vary the carrying capacity K in the interval (0, 3] and
find numerically the values of α and β. After we compute the value of the Schwarzian derivative
of the map

H(w) = −w + ˜̃g(h(w),w).

From our simulations we conclude that the Schwarzian derivative S H(0) < 0 as it is shown in
Fig. 2.5. Note that this simulations can be done for a larger values of a and b.

By numerical calculations, we conclude that on the curve γ1 the coexistence fixed point of
Eq. (2.1) must be asymptotically stable. Similar conclusions may be made if we consider the
center manifold w = h(z).

We now summarize these conclusions in the following result.

Theorem 31 Suppose that ab < 1 and let Ŝ = Int(S 1) ∪ γ1, where Int(S 1) denotes the interior
of S 1. Then the coexistence fixed point

(x∗, y∗) =
(
aL − K
ab − 1

,
bK − L
ab − 1

)
of the Ricker equation (2.1) is locally asymptotically stable if

4(ab − 1) + 2(1 − a)L + 2(1 − b)K ≤ (aL − K)(bK − L) < (1 − a)L + (1 − b)K.

Equivalently, the coexistence fixed point is locally asymptotically stable if (K, L) ∈ Ŝ .

2.1.3 The stable and unstable manifold

In this section we study (via numerical computations) a celebrated scenario in classic competi-
tion theory, the saddle exclusion case (or equivalently, a stable and unstable manifold).

A general two-dimensional map has a stable and an unstable manifold when the following
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conditions, in the Trace-Determinant plane, are satisfied{
det(J∗) < tr(J∗) − 1
det(J∗) > −tr(J∗) − 1 ∨

{
det(J∗) > tr(J∗) − 1
det(J∗) < −tr(J∗) − 1 ∨

det(J∗) < (tr(J∗))2

4
det(J∗) > 1
det(J∗) > −tr(J∗) − 1

∨


det(J∗) < (tr(J∗))2

4
det(J∗) > tr(J∗) − 1
det(J∗) > 1

. (2.21)

For more details about these conditions see [26, page 205]. Hence we have two scenarios to
consider: (i) ab > 1 in which the winner depends on initial conditions and (ii) ab < 1 where we
have the presence of both locally asymptotically stable cycles and unstable fixed points.

Case (i): ab > 1

In the model (2.1) the saddle scenario occurs when one has a coexistence equilibrium such that

aL > K and bK > L, (2.22)

which implies that
ab > 1. (2.23)

We now determine, in the parameter space, the region where the relation (2.21) is satisfied.
Simplifying the relation det(J∗) > tr(J∗) − 1 we get

(aL − K)(bK − L) < 0,

which is impossible by (2.22). Hence there are two systems in (2.21) that lead to an empty
region. Analogously, det(J∗) < tr(J∗) − 1 is the region in the (K, L)−plane between the two
lines L = K/a and L = bK, i.e., the assumption (2.22). Notice that by (2.23) one has b > 1/a,
and consequently bK > K/a.

The inequality det(J∗) > −tr(J∗) − 1 leads to

2(1 − a)L + 2(1 − b)K − (aL − K)(bK − L) + 4(ab − 1) > 0.

Notice that by (2.16) the second degree equation

2(1 − a)L + 2(1 − b)K − (aL − K)(bK − L) + 4(ab − 1) = 0 (2.24)

represents an hyperbola in (K, L)−plane (for more details about this hyperbola consult the prece-
dent subsection). Hence the system{

det(J∗) < tr(J∗) − 1
det(J∗) > −tr(J∗) − 1 (2.25)

is satisfied whenever K and L are between the lines L = K/a and L = bK and the right branch
of the hyperbola defined by (2.24).

The relation det(J∗) > 1 is equivalent to

(1 − a)L + (1 − b)K − (aL − K)(bK − L) > 0.
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This is the region in the first quadrant outside the right branch of hyperbola defined implicitly
by

(1 − a)L + (1 − b)K − (aL − K)(bK − L) = 0 (2.26)

which passes in the origin.
The inequality det(J∗) < (tr(J∗))2

4 leads to the following relation

(4a2b − (a + 1)2)L2 + 2(1 + a + b − ab − 2(ab)2)KL + (4ab2 − (b + 1)2)K2 < 0. (2.27)

Notice that the second degree equation

(4a2b − (a + 1)2)L2 + 2(1 + a + b − ab − 2(ab)2)KL + (4ab2 − (b + 1)2)K2 = 0,

represents a conic, in the (K, L)−plane, known as a pair of imaginary lines intersecting in a real
point (see for instance [8]), provided that the test condition are∣∣∣∣∣∣∣∣

 4ab2 − (b + 1)2 1 + a + b − ab − 2(ab)2 0
1 + a + b − ab − 2(ab)2 4a2b − (a + 1)2 0

0 0 0


∣∣∣∣∣∣∣∣ = 0

and ∣∣∣∣∣∣
(

4ab2 − (b + 1)2 1 + a + b − ab − 2(ab)2

1 + a + b − ab − 2(ab)2 4a2b − (a + 1)2

)∣∣∣∣∣∣ = −4ab(−1 + ab)3 < 0.

This point is precisely the origin because the equations of these two lines are L = m±K where

m± =
1 + a + b − ab − 2a2b2 ± 2

√
ab(−1 + ab)3(

(1 + a)2 − 4a2b
) .

Hence, the system 
det(J∗) < (tr(J∗))2

4
det(J∗) > 1
det(J∗) > −tr(J∗) − 1

(2.28)

represents the region in the (K, L)−plane outside both hyperbolas defined by (2.24) and (2.26)
and between the two lines L = m±K.

Using numerical computations it is possible to show that when a > 1 and b > 1 (which
implies ab > 1) we have

m+ > b > 1/a > m−.

So assuming this restriction on the competition parameters and under the hypothesis (2.22), the
system (2.28) has no solution. Consequently, if a > 1 and b > 1 the relation (2.21) is equivalent
to the system (2.25). Hence, the saddle region is enclosed by the two lines L = K/a and L = bK
and the right branch of hyperbola defined by (2.24). In Fig. 2.6 is depicted in the parameter
space (K, L) this region when a = 2 and b = 1.5.

Notice that if we assume that either a < 1 or b < 1 such that ab > 1, then the saddle region
is more involved, namely it contains the solution of both systems (2.25) and (2.28).

Now let us take a > 1 and b > 1 such that (K, L) ∈ Z. Following the same techniques as in
section (2.1.2) we find that, locally, the stable manifold of the coexistence fixed point is given
by

W s = {(z,w) ∈ R2 : w = α1z2 + β1z3, α1, β1 ∈ R},
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Figure 2.6: The saddle region Z, in the parameter space K and L, when a = 2 and b = 3/2.

and the unstable manifold is

Wu = {(z,w) ∈ R2 : z = β2w2, β2 ∈ R}.

We omit the values of α1, β1 and β2 since they are cumbersome and very long. In the original
coordinates the values of z and w are given by

z =
S 22(x − x∗) − S 12(y − y∗)

S 11S 22 − S 21S 12
and w =

S 11(y − y∗) − S 21(x − x∗)
S 11S 22 − S 21S 12

,

where S i j are the entries of the matrix S determined in the previous subsection.

Case (ii): ab < 1

By (2.8) it follows that det(J∗) < tr(J∗)− 1 is impossible. Hence the first system in (2.21) leads
to an empty region. In the previous subsection we determine the inequality

det(J∗) <
(tr(J∗))2

4
,

which leads to the relation (2.27). We claim that when ab < 1 the first member of (2.27) is
negative. In order to show that, let us assume temporally that L = mK for some m > 0. Hence,
the relation given in (2.27) is equivalent to K2u(m) < 0, where

u(m) = (4a2b − (a + 1)2)m2 + 2(1 + a + b − ab − 2(ab)2)m + 4ab2 − (b + 1)2.

Solving the equation u(m) = 0 one has the following two values

m =
(1 + a + b − ab − 2(ab)2) ± 2

√
ab(1 − ab)3i

(1 + a)2 + 4a2b
, i =

√
−1.
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Figure 2.7: The saddle region Z, in the parameter space K and L, when a = b = 0.5.

Now we show that the coefficient of m2 is a negative number. So

4a2b − (a + 1)2 = 4aab − (a + 1)2 < 4a − (a + 1)1 = −(a − 1)2 < 0

(since ab < 1). Hence, the function u is a negative parabola. Consequently, the relation (2.27)
is satisfied.

Because det(J∗) > tr(J∗) − 1 is automatically verified and by the fact that det(J∗) < (tr(J∗))2

4
is always true, it follows that the system

det(J∗) < (tr(J∗))2

4
det(J∗) > tr(J∗) − 1
det(J∗) > 1

leads to the same region in the parameter space that
det(J∗) < (tr(J∗))2

4
det(J∗) > −tr(J∗) − 1
det(J∗) > 1

.

Therefore, the relation (2.21) gives us{
det(J∗) > tr(J∗) − 1
det(J∗) < −tr(J∗) − 1 ∨

{
det(J∗) > −tr(J∗) − 1
det(J∗) > 1 .

This leads to the region Z identified in Fig. 2.7. Note that Z = ∪i≥2S i (in the Section 2.1.4 we
will give more details about the regions S i, i ≥ 2).

Before the end of this subsection we remark that the computation of the saddle and unstable
manifold follows the same guidelines as above.
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The exclusion fixed points

We now determine the region, in the parameter space, where the exclusion fixed point (K, 0) of
Eq. (2.1) has stable and unstable manifold. This set is given by

ZK = {(K, L) ∈ R2 : K > 2 ∧ L < bK}.

Let (K, L) ∈ ZK . Then similar techniques as before lead us to find locally the stable manifold

W s
K = {(x, y) ∈ R2 : y = 0}

and the unstable manifold
Wu

K = {(x, y) ∈ R2 : x = K}
of the exclusion fixed point (K, 0).

Similarly, in the set

ZL = {(K, L) ∈ R2 : K > 0 ∧ L > 2 ∧ L > K/a}

the exclusion fixed point (0, L) has the stable manifold (locally)

W s
L = {(x, y) ∈ R2 : x = 0}

and the unstable manifold (locally)

Wu
L = {(x, y) ∈ R2 : y = L}.

2.1.4 Bifurcation scenarios
In the absence of species “y” the dynamics of species “x” is governed by the one-dimensional
Ricker equation

xn+1 = xneK−xn , n ∈ Z+. (2.29)

Eq. (2.29) has a globally asymptotically stable fixed point when 0 < K ≤ 2 and its basin of
attraction is the positive real line (see appendix A where we present an alternative proof of the
enveloping method [12, 13, 14, 15, 47]).

At K = k1 = 2 a period-doubling bifurcation occurs. At the bifurcation point k1 = 2,
an asymptotically stable 2−periodic cycle {x0, x1} is born. The two points x0, x1 satisfy the
equations x1 = x0eK−x0 and x0 = x1eK−x1 . By the linearization principle the stability of this
2−periodic cycle can be seen from the product of the derivatives of the map given in (2.29)
evaluated at x0 and x1. This product is less than one in absolute value, i.e.,

∏1
i=0 |1 − xi| < 1 if

k1 < K < k2, where k2 ≈ 2.5265. At K = k2, a new period-doubling bifurcation occurs. Then
there exists a k3 greater than but near k2 such that a new 4−periodic cycle is asymptotically
stable if k2 < K < k3. This period-doubling scenario continues. So there are two bifurcation
points k j and k j+1 for a specific integer j such that the r−periodic cycle {x0, . . . , xr−1}, where
r = 2 j, satisfy the relation

r−1∏
i=0

|1 − xi| < 1. (2.30)

The r−periodic cycle {x0, . . . , xr−1} yields an exclusion r−periodic cycle
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Figure 2.8: The occurrence of the three main types of bifurcation for two-dimensional systems.

Cx
r = {(x0, 0) , (x1, 0) , . . . , (xr−1, 0)} (2.31)

of the competition Ricker model (2.1).
The Jacobian of Cx

r evaluated along the periodic orbit is given by the following 2× 2 matrix

0∏
r−1

JF(xi, 0) =
( ∏r−1

i=0 (1 − xi) J12

0 erL−b
∑r−1

i=0 xi

)
.

Its eigenvalues are λ1 =
∏r−1

i=0 (1 − xi) and λ2 = erL−b
∑r−1

i=0 xi = er(L−bK). Using the hypothesis
L < bK yields |λ2| = λ2 < 1 and from (2.30) it follows |λ1| < 1. Thus Cx

r is asymptotically
stable.

Note that if L = 0 one has λ2 < 1. This implies that the sequence of parameters {k j} on the
K−axis follows the one-dimensional case. That is k1 = 2, k2 ≈ 2.52647, k3 ≈ 2.6562, etc. We
think that this sequence deserves further study in order to know if there exists universality.

We now summarize the above discussion

Theorem 32 Let 0 < L < bK. Then the periodic cycle Cx
r , defined in (2.31), of Eq. (2.1) is

locally asymptotically stable.

Bifurcation occurs when the eigenvalues cross the unit circle. One can obtain a new param-
eter family of maps where the fixed point (x∗, y∗) is transformed into the fixed point (0, 0). Let
J = JF(0, 0), T = tr (J), and D = det (J). Fig. 2.8 illustrates the three possible bifurcations
using the trace-determinant analysis on the T − D plane. The stability region is enclosed in
the triangle with sides are D = 1, D = T − 1, and D = −T − 1. Neimark-Sacker bifurca-
tion, period-doubling bifurcation, and either saddle-node bifurcation, transcritical bifurcation
or pitchfork bifurcation occur, respectively, when crossing these lines from the stability region.
For bifurcation in two-dimensional systems see for instance [26]. For details on bifurcation in
higher dimension see for example [77].

Now we are in a position to provide a deeper explanation of Fig. 2.4. Note that the coexis-
tence fixed point (x∗, y∗) is asymptotically stable if (K, L) ∈ Ŝ . When L = bK, the Jacobian of
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Figure 2.9: The presence of subcritical bifurcation in the autonomous Ricker type competition model (2.1)

Eq. (2.1) has an eigenvalue equal to one. For the map ̂̂f defined in (2.7) one has

∂
̂̂f
∂x

(0) = 1,
∂
̂̂f
∂K

(0) = 0 and
∂2̂̂f
∂x2 (0) , 0.

Hence a transcritical bifurcation occurs when L = bK, where the coexistence fixed point is
(x∗, y∗) = (K, 0), the exclusion fixed point on the x−axis. When (K, L) crosses the line L = bK
to region R1, the branch of equilibria (x∗, y∗) transcritically bifurcates with the branch of exclu-
sion equilibria (K, 0), while (x∗, y∗) moves from the first quadrant into the fourth (or second)
quadrant, where it becomes ecologically irrelevant. Moreover, stability exchanges from one
branch to the other. Similarly, if L = K/a, the coexistence fixed point undergoes a transcritical
bifurcation.

Eq. (2.1) has a period-doubling bifurcation when we have equality in the relation (2.11).
This is represented by the curve γ1 in Fig. 2.4. Consequently, as K and L passes the curve γ1 the
coexistence fixed point undergoes a period-doubling bifurcation into a coexistence 2−periodic
cycle. Thus in region S 2 Eq. (2.1) has one unstable fixed point and one asymptotically stable
coexistence 2−periodic cycle.

When K and L passes the line L = bK from region S 2 to region R2, the coexistence
2−periodic cycle bifurcates (transcritical). This new 2−periodic cycle is in fact an exclusion cy-
cle on the x−axis. If, however, we move K and L from R2 to S 2, then the exclusion 2−periodic
cycle undergoes a transcritical bifurcation into a coexistence 2−periodic cycle. Another period-
doubling bifurcation appears in the exclusion fixed point if the parameters K and L move from
region R1 to region R2. Thus if the parameters K and L are in region R2, Eq. (2.1) possesses an
asymptotically stable exclusion 2−periodic cycle on the x−axis. Similar analysis can be taken
if the parameters are in region Q2.

The coexistence 2−periodic cycle undergoes a period-doubling bifurcation when the param-
eters pass the curve γ2. Thus in region S 3, this coexistence 2−periodic cycle becomes unstable
and a new asymptotically stable 4−periodic cycle is born. This new cycle undergoes a transcrit-
ical bifurcation to an asymptotically stable exclusion 4−periodic cycle on the x−axis whenever
the parameters moves from region S 3 to region R3. We also have a period-doubling bifurcation
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in the exclusion 2−periodic cycle if we change the parameters from region R2 to region R3. Thus
in region R3, Eq. (2.1) has an asymptotically stable exclusion 4−periodic cycle. The same hap-
pens in the y−axis if the parameters change from region S 3 to region Q3. This period-doubling
bifurcation route to chaos is reminiscent of the dynamics exhibited by the one-dimensional
Ricker-map.

A different scenario appears if the relation between L and K obey the rule L = α1K + α2,
α2 > 0 and −ε < α1 < ε, for a small ε > 0. We call this scenario the “bubble scenario”. This
occurs if one passes from zone S i+1 to the stability region S i and enter again in the stability
region S i+1. In this scenario, if we draw the bifurcation diagram in the (K, x)−plane we find
bubbles. In Fig. 2.9 we present two scenarios. In cases A and B we vary K and fix L = 2.1,
and let a = b = 1/2. This results in the presence of one bubble in plot A. This phenomenon
happens because for values of K . 1.05, Eq. (2.1) has one attracting 2−periodic cycle on the
y−axis (see plot B) . Thus xn = 0 and yn oscillates between 1.32152 and 2.87848 as n goes
to infinity. At K ≈ 1.05, the exclusion cycle on the y−axis bifurcates (transcritical) and the
fixed point 0 bifurcates (period-doubling). This implies that the coexistence 2−periodic cycle
in the x−axis is born. Here we see the bubble in plot A and a 2−periodic cycle in plot B. For
values 1.45 . K . 1.78, Eq. (2.1) has a coexistence fixed point. This observation implies
that at K ≈ 1.45 the 2−periodic cycle in turn will undergo a bifurcation and return to a stable
equilibrium3. At K ≈ 1.78 a new period-doubling bifurcation occurs, and then the coexistence
fixed point bifurcates into a coexistence 2−periodic cycle. This is clearly shown in plot A
and plot B. In cases C and D we fix L = 2.6. For values of K ≈ 1.3 the equation has an
exclusion 4−periodic cycle on the y−axis. As K increases we enter in the zone where we have a
coexistence 4−periodic cycle. Here we see two bubbles in plot C and a coexistence 4−periodic
cycle in plot D. Both cases lead to a 2−periodic cycle.

The Neimark-Sacker bifurcation starts when

det(JF(x∗, y∗)) = 1 and −2 < tr(JF(x∗, y∗)) < 2,

i.e, when

(1 − a)L + (1 − b)K = (aL − K)(bK − L), (2.32)

and

0 < (1 − a)L + (1 − b)K < 4(1 − ab). (2.33)

Inequalities (2.33) are satisfied whenever K and L belongs to the region limited by the positive
axes and the line (1−a)L = −(1−b)K+4(1−ab). One can show that this line does not intersect
the hyperbola given by (2.32). On the other hand the vertices (0, 0) and

(
2 1+a

1−ab , 2
1+b

1−ab

)
of the

hyperbola given by (2.32) are outside this triangle. Hence Eq. (2.1) has no Neimark-Sacker
bifurcation.

3Actually this phenomenon is not a reverse period doubling bifurcation. It is a subcritical bifurcation. For more
details about this phenomenon in population models see [16]
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2.2 Nonautonomous Ricker competition model

2.2.1 Existence of a positive solution
In this subsection we prove the existence of a solution of the periodic nonautonomous difference
equation (

xn+1

yn+1

)
=

(
xneKn−xn−anyn

yneLn−yn−bn xn

)
, n ∈ Z+, (2.34)

where Kn > 0 and Ln > 0 are the carrying capacities of species x and y, respectively, and an > 0
and bn > 0 are the competition parameters of species y and x, respectively. Our analysis here
will be in the case when anbn < 1, for all n = 0, 1, 2, . . . in which the system (2.34) has a possible
stable coexistence cycle. The saddle scenario, i.e., the case when anbn > 1 will be omitted.

Let us write Fn(x, y) = ( fn(x, y), gn(x, y)) where

fn(x, y) = xekn−x−any and gn(x, y) = yeLn−y−bn x.

Eq. (2.34) is p−periodic whenever Fn = Fn mod p, ∀n ∈ Z+, with p the minimal period. This
scenario occurs when at least one of the sequence of parameters is periodic, i.e., Kn = Kn mod p,
Ln = Ln mod p, an = an mod p or/and bn = bn mod p. (There exist 15 different situations for which
Eq. (2.34) is p−periodic.)

We initiate our investigation proving the existence of periodic solutions of Eq. (2.34) when
the parameters are p−periodic. To do so we utilize Brouwer’s fixed point theorem stated below.

Theorem 33 (Brouwer’s fixed point theorem [57] ) Every continuous map from a convex com-
pact subset A of a Euclidean space to itself has a fixed point.

Remark 34 For infinite dimensional spaces, Theorem 33 is known as Schauder’s fixed point
theorem

Theorem 35 Let (Kn, Ln) ∈ Ŝ 1,n = int(S 1,n) ∪ γ1,n such that Kn = Kn mod p, Ln = Ln mod p,
an = an mod p, bn = bn mod p, and anbn < 1, for all n ∈ Z+. Then the p−periodic Ricker competition
equation (2.34) has a p−periodic cycle in region [0, eKmax−1]×[0, eLmax−1], where Kmax = max{Kn}
and Lmax = max{Ln}.

Proof. Consider the map Fn(x, y) = ( fn(x, y), gn(x, y)). Then under the hypothesis of the theorem
one has Fn+p = Fn, for all n ∈ Z+. Note that the maps fn(x, y) and gn(x, y) attains their maxima
at (1, 0) and (0, 1), respectively. Moreover, the maximum of fn is eKn−1 and the maximum of gn

is eLn−1.
Let us define the natural order “≼” by (x1, y1) ≼ (x2, y2) if x2 − x1 ≥ 0 and y2 − y1 ≥ 0. By

the above remark, it follows that

Fn(x, y) ≼ (eKn−1, eLn−1), for all x ≥ 0 and y ≥ 0.

Let Kmax = max{Kn} and Lmax = max{Ln} and define the set A as

A = [0, eKmax−1] × [0, eLmax−1].

Then A is compact and convex. Moreover A is invariant under the map Φp, i.e.,

Φp(A) = Fp−1 ◦ . . . ◦ F1 ◦ F0(A) ⊂ A.
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Figure 2.10: Four different scenarios in which an individual Ricker competition map Fi has a maximum value on
the axes. The values of the competition parameters are fixed such that ab < 1. In these curves a = b = 1/2.

Hence, by Theorem 33 the map Φp has a fixed point (x, y) in A, which is a p−periodic point of
the periodic Ricker model (2.34).

The above theorem seems to be nice but we find some difficulties. This observation is based
in the fact that the set A contains the trivial fixed point (the origin), the exclusion cycles (one in
each axis), and a possible positive cycle (coexistence cycle). Hence, we have four candidates
for the fixed point of the composition operator Φp in the compact and convex region A.

The question that we are going to address is: Is it possible to avoid the trivial and the
exclusion cycles? Equivalently, are we able to find a region where Φp has a coexistence cycle?

In order to answer this question, it is necessary to find a smaller compact, convex and in-
variant region such that points in a convenient neighborhood of the axes are excluded. To find a
convex, compact and invariant subset A of a Euclidean space we are going to use normal space
theory, namely the idea that each pair of disjoint closed sets can be separated by open sets,
in the sense that they have disjoint open neighborhoods [71, page 132].

Let Fi(x, y) = ( fi(x, y), gi(x, y)), i = 0, 1, 2, . . . be one of the sequences of maps. Then we
have four different scenarios for which the map Fi has the maximum value on the axes as it is
shown in Fig. 2.10.

1. eKi−1 < Li/bi and eLi−1 < Ki/ai;

2. eKi−1 > Li/bi and eLi−1 > Ki/ai;

3. eKi−1 > Li/bi and eLi−1 < Ki/ai;

4. eKi−1 < Li/bi and eLi−1 > Ki/ai.

Note that the small region R, near the origin, is part of the region defined by the item 2.
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Figure 2.11: The position of the isoclines and the sets Γ1, Γ2, Γ3 and Γ4, in the first quadrant, for each one of the
four situations in which the map Fi has the maximum value on the axes. I - eKi−1 < Li/bi and eLi−1 < Ki/ai; II -
eKi−1 > Li/bi and eLi−1 > Ki/ai; III - eKi−1 > Li/bi and eLi−1 < Ki/ai; and IV - eKi−1 < Li/bi and eLi−1 > Ki/ai.

The isoclines of etch map Fi are given by the equations

y = −x/ai + Ki/ai and y = −bix + Li.

(For more details about this point see section 2.1). Note that the intersection of these two lines
gives the positive fixed point (x∗i , y

∗
i ), where

x∗i =
Ki − aiLi

1 − aibi
and y∗i =

Li − biKi

1 − aibi
.

Now, for each one of the precedent scenarios, define the sets Γ1, Γ2, Γ3 and Γ4 (see Fig. 2.11).
We now divide our investigation by cases:

Case 1: Let us first focus our attention when eKi−1 < Li/bi and eLi−1 < Ki/ai. Then we have
three situations:

(i) Consider the sets Γ4 and the axes. Note that if (x, y) belongs to Γ4, then fi(x, y) < x and
gi(x, y) < y. Let

δi,1 = min{d( fi(x, y), y − axis), d(gi(x, y), x − axis) : (x, y) ∈ Γ4}.

(ii) Consider Γ2 and the y−axis. If (x, y) ∈ Γ2 then fi(x, y) < x. Define the number

δi,2 = d(( fi(x, y), y − axis)) such that (x, y) ∈ Γ2.
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(iii) Consider Γ3 and the x−axis. If (x, y) ∈ Γ3 then gi(x, y) < y. Define the number

δi,3 = d((gi(x, y), x − axis)) such that (x, y) ∈ Γ3.

Finally, let δi = min{δi,1, δi,2, δi,3} and define the set Ai,1 as

Ai,1 =
{
(x, y) ∈ R+2 : (0 ≤ x ≤ eKi−1 ∧ 0 ≤ y < δi)∨

(0 ≤ y ≤ eLi−1 ∧ 0 ≤ x < δi)
}
.

Consider the set
Ai = [0, eKi−1] × [0, eLi−1] \ Ai,1.

Then Ai is compact and convex. Moreover Fi(Ai) ⊂ Ai.
For the periodic equation (2.34), generated by the map Φp = Fp−1 ◦ . . .◦F0, we consider the

values δ = min{δi}, Kmax = max{Ki}, Lmax = max{Li} and the sets

B1 =
{
(x, y) ∈ R+2 : (0 ≤ x ≤ eKmax−1 ∧ 0 ≤ y < δ)∨

(0 ≤ y ≤ eLmax−1 ∧ 0 ≤ x < δ)
}

and
B = [0, eKmax−1] × [0, eLmax−1] \ B1. (2.37)

Consequently, B is compact, convex and invariant under the action of the composition operator
Φp. Hence, by the Brouwer’s fixed point theorem, the map Φp has a positive fixed point (x, y)
in B, which is a p−periodic coexistence cycle of the periodic Ricker model (2.34).

We now summarize these ideas in the following lemma.

Lemma 36 Let Kn > 0, Ln > 0, an > 0 and bn > 0 such that Kn = Kn mod p, Ln = Ln mod p,
an = an mod p, bn = bn mod p, and anbn < 1, for all n ∈ Z+. Suppose that for each individual map
Fi one has eKi−1 < Li/bi and eLi−1 < Ki/ai, i = 0, 1, 2, . . .. Then, the nonautonomous p−periodic
Ricker equation (2.34) has a coexistence p−periodic cycle in the convex and compact set B,
where B is the set defined in (2.37).

Case 2A: Now let us focus our attention in the case when eKi−1 > Li/bi, eLi−1 > Ki/ai,
Ki ≤ 1, and Li ≤ 1. (In general, this restriction on the carrying capacities leads to region R in
Fig. 2.10.) It follows that

0 < Ki < Li/bi < eKi−1 ≤ 1 and 0 < Li < Ki/ai < eLi−1 ≤ 1.

The map fi(x, y) attains its maximum at (1, 0). We observe that fi(x, y) is increasing if 0 < x < 1
(when we fix y). Hence fi(x, y) will have a maximum value whenever x is a right end point of an
interval bounded by 1. Note that fi(Ki, y) = Kie−aiy < Ki. Let xm,i ∈ (0,Ki). Since xm,i < Ki and
fi is increasing it follows that fi(xm,i, y) < fi(Ki, y) < Ki. On the other hand if xM,i ∈ (Ki, Li/bi)
it follows that fi(xM,i, y) = xM,ieKi−xM,ie−aiy < xM,i because Ki < xM,i.

Similarly, one can show that gi(x, Li) < Li, gi(x, ym,i) < Li for any ym,i ∈ (0, Li), and
gi(x, yM,i) < yM,i for any yM,i ∈ (Li,Ki/ai). Consequently, the set [0, xM,i] × [0, yM,i] is invari-
ant under the map Fi.

Now, in the region [0, xM,i] × [0, yM,i] we construct the sets Γ1, Γ̃2, Γ̃3 and Γ̃4, as it is shown
in Fig. 2.12. The dynamics in this new region is similar to the case 1. That is, we follow the
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Figure 2.12: The sets and the isoclines when the maximum of the map Fi is less than one

same techniques of Lemma 36 and we show that there exist numbers δ, xM = max{xM,i}, and
yM = max{yM,i}, and the sets

B1 =
{
(x, y) ∈ R+2 : (0 ≤ x ≤ xM ∧ 0 ≤ y < δ)∨

(0 ≤ y ≤ yM ∧ 0 ≤ x < δ)}

and
B = [0, xM] × [0, yM] \ B1, (2.39)

such that B is invariant under the action of the composition operator Φp.
Case 3A: Another case follows when eKi−1 > Li/bi, eLi−1 < Ki/ai, and K ≤ 1. In this

case we consider mixed techniques as before. More precisely, in the y component we follow
the technique presented in case 1 since eLi−1 < Ki/ai, and in the x component we follow the
technique present in case 2A since 1 ≥ eKi−1 > Li/bi . Henceforth, on the region [0, xM] ×
[0, eLi−1] we apply a similar technique as in Lemma 36 and find the sets

B1 =
{
(x, y) ∈ R+2 : (0 ≤ x ≤ xM ∧ 0 ≤ y < δ)∨

(0 ≤ y ≤ eLmax−1 ∧ 0 ≤ x < δ)
}

and
B = [0, xM] × [0, eLmax−1] \ B1.

Case 4A: Similarly to the case 3A one can find the sets B1 and B when eKi−1 < Li/bi,
eLi−1 > Ki/ai, and L ≤ 1.

Case 3B: Now we consider the case when eKi−1 > Li/bi, eLi−1 < Ki/ai, and K > 1. Define
Γ4 = Γ4:1 ∪ Γ4:2 where

Γ4:2 = {(x, y) ∈ R2
+ : Li/bi ≤ x ≤ eKi−1 ∧ 0 < y < eLi−1}.
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Let (x, y) ∈ Γ4:2. Since Li/bi > 1, for any x in the interval [Li/bi, eKi−1] the map fi(x, y) is
decreasing (when we fix y). Thus, the following relation yields

fi(x, y) < fi

(
Li

bi
, y

)
=

Li

bi
eKi−

Li
bi e−aiy <

Li

bi
eKi−

Li
bi .

But Li
bi

eKi−
Li
bi < Li

bi
because Ki <

Li
bi

. Consequently

fi (Γ4:2) ⊂ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4:1.

On the region [0, Li/bi)×[0, eLi−1] we argue as before, namely we apply again a similar technique
of Lemma 36 and find the sets

B1 =
{
(x, y) ∈ R+2 : (0 ≤ x ≤ L/b ∧ 0 ≤ y < δ)∨

(0 ≤ y ≤ eLmax−1 ∧ 0 ≤ x < δ)
}

and
B = [0, L/b] × [0, eLmax−1] \ B1,

where L/b = max{Li/bi}.
Case 4B: When eKi−1 < Li/bi, eLi−1 > Ki/ai and L > 1 we define the set Γ4 = Γ4:1 ∪ Γ4:2

where
Γ4:2 = {(x, y) ∈ R2

+ : Ki/ai ≤ y ≤ eLi−1 ∧ 0 < x < eKi−1},
and show that gi (Γ4:2) ⊂ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4:1. Henceforth, on the region [0, eKi−1] × [0,Ki/ai) we
argue as before and find the sets

B1 =
{
(x, y) ∈ R+2 : (0 ≤ x ≤ eKmax−1 ∧ 0 ≤ y < δ)∨

(0 ≤ y ≤ K/a ∧ 0 ≤ x < δ)}

and
B = [0, eKmax−1] × [0,K/a] \ B1,

where K/a = max Ki/ai.
Case 2B: Another case happens when eKi−1 > Li/bi, eLi−1 > Ki/ai, K > 1 and L > 1. In this

case we define the set Γ4 as
Γ4 = Γ4:1 ∪ Γ4:2 ∪ Γ4:3 ∪ Γ4:4,

where

Γ4:2 = {(x, y) ∈ R2
+ : 0 < x < Li/bi ∧ Ki/ai < y < eLi−1},

Γ4:3 = {(x, y) ∈ R2
+ : Li/bi ≤ x < eKi−1 ∧ 0 < y < Ki/ai}

and
Γ4:4 = {(x, y) ∈ R2

+ : Li/bi ≤ x < eKi−1 ∧ Ki/ai ≤ y < eLi−1}.
Following the same ideas as before, one can show that

fi(Γ4:3) ⊂ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4:1,

gi(Γ4:2) ⊂ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4:1,

fi(Γ4:4) ⊂ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4:1,
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and
gi(Γ4:4) ⊂ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4:1.

Hence, we consider the set [0, Li/bi) × [0,Ki/ai) and arguing as before we find

B1 =
{
(x, y) ∈ R+2 : (0 ≤ x ≤ L/b ∧ 0 ≤ y < δ)∨

(0 ≤ y ≤ K/a ∧ 0 ≤ x < δ)}

and
B = [0, L/b] × [0,K/a] \ B1,

where K/a = max Ki/ai and L/b = max{Li/bi}.
Cases 2C and 2D: Two cases are remaining. The first is eKi−1 > Li/bi, eLi−1 > Ki/ai, K ≤ 1

and L > 1 and the second eKi−1 > Li/bi, eLi−1 > Ki/ai, K > 1 and L ≤ 1. In both cases we apply
the precedent technique in each component and find the invariant set B.

Finally, we summarize these ideas in the following result.

Theorem 37 Let (Kn, Ln) ∈ Ŝ 1,n = int(S 1,n) ∪ γ1,n such that Kn = Kn mod p, Ln = Ln mod p,
an = an mod p, bn = bn mod p and anbn < 1, for all n ∈ Z+. Then the p−periodic Ricker competi-
tion equation (2.34) has a p−periodic coexistence cycle (positive solution) in the compact and
convex region B.

2.2.2 The dynamics of the cycle
In this section we present some properties of the p−periodic cycle of the model (2.34) when the
competition parameters a and b are fixed, i.e., when the individual maps Fi are one-to-one with
respect to the parameter vector (K, L).

Let Cp = {(x0, y0), (x1, y1), . . . , (xp−1, yp−1}) be a p−periodic cycle of equation (2.34). Then
we have

Φp(x0, y0) = (x0, y0),

or equivalently (
x0, y0

)
=

(
x0e

∑p−1
i=0 Ki−

∑p−1
i=0 xi−a

∑p−1
i=0 yi , y0e

∑p−1
i=0 Li−

∑p−1
i=0 yi−b

∑p−1
i=0 xi

)
.

This is equivalent to 
∑p−1

i=0 xi + a
∑p−1

i=0 yi =
∑p−1

i=0 Ki

b
∑p−1

i=0 xi +
∑p−1

i=0 yi =
∑p−1

i=0 Li

. (2.44)

Solving this system yields 
∑p−1

i=0 xi =
1

1−ab

(∑p−1
i=0 Ki − a

∑p−1
i=0 Li

)
∑p−1

i=0 yi =
1

1−ab

(∑p−1
i=0 Li − b

∑p−1
i=0 Ki

) . (2.45)

Dividing both sides of each equation by 1/p one has the following
av(x) = 1

1−ab (av(K) − aav(L))

av(y) = 1
1−ab(av(L) − bav(K))

, (2.46)
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where av(·) is the average of the sequence of points. Thus av(x) and av(y) belong to the first
quadrant whenever

av(K) > a av(L) and av(L) > b av(K).

Consider now an individual map Fi(x, y) = (xeKi−x−ay, yeLi−y−bx), 0 ≤ i ≤ p − 1.

• In Section 2.1 it is shown that the autonomous difference equation generated by the map
Fi(x, y) has a coexistence solution (fixed point or cycle), in the first quadrant, whenever

bKi < Li < Ki/a, 0 ≤ i ≤ p − 1, (2.47)

and ab < 1. Notice that if we take the sum in the relation given in (2.47) yields

b av(K) < av(L) < av(K)/a, (2.48)

which is the required condition to have a coexistence cycle of Φp in the first quadrant.

• From Section 2.1 the autonomous difference equation generated by the map Fi(x, y) has
an exclusion solution on the x−axis (fixed point or cycle) whenever 0 < Li < bKi, 0 ≤ i ≤
p − 1 and ab < 1. Adding these relations we have 0 < av(L) < b av(K). In this case Φp

has an exclusion cycle on the x−axis.

• Similarly, if 0 < Ki/a < Li, 0 ≤ i ≤ p − 1 then Fi has an exclusion solution on the y−axis
(fixed point or cycle). Taking the sum we have 0 < av(K)/a < av(L) and consequently,
Φp has an exclusion cycle on the y−axis.

Now assume that the relation (2.48) is satisfied and ab < 1. Under these conditions all the
members of the periodic orbit belong to the first quadrant as we can see in the following.

The relation Φp(x0, y0) = (x0, y0) is equivalent to Fp−1(xp−1, yp−1) = (x0, y0), i.e.,

xp−1eKp−1−xp−1−ayp−1 = x0 and yp−1eLp−1−yp−1−bxp−1 = y0.

Adding xp−1 in both sides of the first equation and yp−1 in both sides of the second equation we
get

xp−1(1 + eup−1) = xp−1 + x0 and yp−1(1 + evp−1) = yp−1 + y0,

where up−1 = Kp−1 − xp−1 − ayp−1 and vp−1 = Lp−1 − yp−1 − bxp−1.
Similarly, we have

xp−2(1 + eup−2(1 + eup−1)) = xp−1 + xp−2 + x0

and
yp−2(1 + evp−2(1 + evp−1)) = yp−1 + yp−2 + y0,

where up−2 = Kp−2 − xp−2 − ayp−2 and vp−2 = Lp−2 − yp−2 − bxp−2. Generalizing this process
we get

x1(1 + eu1(. . . (1 + eup−1) . . . )) =
p−1∑
i=0

xi

and

y1(1 + ev1(. . . (1 + evp−1) . . . )) =
p−1∑
i=0

yi.

It follows that x1 and y1 are positive numbers since
∑r−1

i=0 xi > 0 and
∑r−1

i=0 yi > 0. Consequently,
from the dynamics of the system xi > 0 and yi > 0, ∀i ∈ {0, . . . , r − 1}.
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2.2.3 Stability
In this section we study the stability of the solutions of Eq. (2.34) under certain restrictions on
the parameters. Before to do that, we give some notes about the Jacobian of the composition
operator Φp.

Generally speaking, the Jacobian matrix of the composition operator Φp is the product of
the Jacobian matrices of the individual maps Fi, i = 0, 1, 2, . . ..

Note that if A1, A2, . . . , An are q × q matrices, then A1A2 . . . An and the cyclic permutations
A j+1 . . . AnA1 . . . A j have the same set of eigenvalues [4], where 1 ≤ j ≤ n. Thus each of the r
matrices of the permuted Jacobian products has the same set of eigenvalues.

Consequently, if Cp = {(x0, y0), (x1, y1), . . . , (xp−1, yp−1}) is a p−periodic cycle of Eq. (2.34),
then the order of the products in

∏0
i=p−1 JFi(xi, yi) is irrelevant for the spectral radius, where JFi

is the Jacobian of the map Fi and it is given by

JFi(x, y) =
[

(1 − x)eKi−x−aiy −aixeKi−x−aiy

−biyeLi−y−bi x (1 − y)eLi−y−bi x

]
.

Trivial and exclusion cycles

Now let us study the stability of the trivial and the exclusion cycles of equation (2.34). It is easy
to see that (0, 0) is a fixed point of Eq. (2.34) since it is a fixed point of each individual map Fi,
i = 0, 1, 2, . . .. Henceforth, the Jacobian at (0, 0) is given by

J0 =

0∏
i=p−1

JFi(0, 0) =
0∏

i=p−1

[
eKi 0
0 eLi

]
=

 e
∑p−1

i=0 Ki 0
0 e

∑p−1
i=0 Li

 .
The eigenvalues of J0 are e

∑p−1
i=0 Ki and e

∑p−1
i=0 Li . Since

∑p−1
i=0 Ki > 0 and

∑p−1
i=0 Li > 0, it follows

that (0, 0) is always unstable for all Ki > 0 and Li > 0, i = 0, 1, 2, . . ..
In the absence of species “y” the dynamics of species “x” is governed by the nonautonomous

one-dimensional Ricker equation

xn+1 = xneKn−xn , n ∈ Z+, (2.49)

where Kn = Kn mod p. In [66] the author proved that Eq. (2.49) has a globally asymptotically
stable p−periodic cycle

{x0, x1, . . . , xp−1}
whenever 0 < Ki < 2, i = 0, 1, 2 . . .. In other words,

p−1∏
i=0

|1 − xi| < 1. (2.50)

Moreover, neither attenuance nor resonance occurs4, i.e,

p−1∑
i=0

Ki =

p−1∑
i=0

xi. (2.51)

4A p−periodic system is called attenuant (resonant) if the average of the stable periodic orbit is less (greater)
than the average of the fixed points of each individual map.
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The p−periodic cycle {x0, . . . , xp−1} yields an exclusion p−periodic cycle

Cx
p =

{
(x0, 0) , (x1, 0) , . . . , (xp−1, 0)

}
(2.52)

of the competition Ricker model (2.34).
Notice that, in the parameter space, the map Fi(x, y), 0 ≤ i ≤ p − 1 has an exclusion fixed

point on the x−axis whenever the carrying capacities are in the region

R = {(Ki, Li)R+2 : 0 < Li < bminKi ∧ Ki < 2}, (2.53)

such that aibi < 1, i = 0, 1, 2, . . .. Henceforth, we assume that, for each map Fi the vector
parameter (Ki, Li) ∈ R, which implies that 0 < av(L) < bav(K).

The Jacobian of Φp, evaluated along the periodic cycle Cx
p, is given by the following trian-

gular matrix

JCx
p =

0∏
i=p−1

JFi(xi, 0) =
 e

∑p−1
i=0 Ki−

∑p−1
i=0 xi

∏p−1
i=0 (1 − xi) J12

0 e
∑p−1

i=0 Li−
∑p−1

i=0 bi xi

 .
The eigenvalues of JCx

p are λ1 =
∏p−1

i=0 (1 − xi) and λ2 = e
∑p−1

i=0 Li−
∑p−1

i=0 biKi . Clearly, 0 < λ2 < 1,
since

∑p−1
i=0 Li <

∑p−1
i=0 biKi. By (2.50) and (2.51) it follows that |λ1| < 1. Consequently, Cx

p is
asymptotically stable.

We now summarize this conclusion in the following result.

Theorem 38 Let Kn = Kn mod p, Ln = Ln mod p, an = an mod p, and bn = bn mod p, ∀n ∈ Z+ such
that (Ki, Li) ∈ R, 0 ≤ i ≤ p − 1 and aibi < 1, 0 ≤ i ≤ p − 1. Then Cx

p defined in (2.52) is an
asymptotically stable p−periodic exclusion cycle of Eq. (2.34).

Using the same reasonings we get

Theorem 39 Let Kn = Kn mod p, Ln = Ln mod p, an = an mod p, and bn = bn mod p, ∀n ∈ Z+ such that
(Ki, Li) ∈ Qi, 0 ≤ i ≤ p − 1, where

Qi = {(Ki, Li)R+2 : Ki/ai < Li ∧ Ki > 0},

and aibi < 1, 0 ≤ i ≤ p − 1. Then Eq. (2.34) has an asymptotically stable p−periodic exclusion
cycle on the y−axis.

Coexistence cycle

For each i = 0, 1, 2, . . . suppose that the sequence of competition parameters satisfy the relation
aibi < 1. Rewrite the stability region Ŝ i of each individual map Fi as

Ŝ i = Int(S 1,i) ∪ γ1,i,

where Int(S 1,i) denotes the interior of the stability region S 1,i of each individual map. Or equiv-
alently

Ŝ i = {(Ki, Li)R2
+ : 4(aibi−1)+2(1−ai)Li+2(1−bi)Ki ≤ (aiLi−Ki)(biKi−Li) < (1−ai)Li+(1−bi)Ki.}

Now define the set
Λi = {(Ki, Li) ∈ Ŝ i : Ki ≤ 1 ∧ Li ≤ 1}.
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In [73] Smith proved that the map Fi generates a discrete monotone dynamical system if the
carrying capacities are in Λi. Moreover, Fi has a globally asymptotically stable fixed point.

Let (Ki, Li) ∈ Λi, i = 0, 1, 2, . . . , p − 1. Since the composition of monotone maps is mono-
tone it follows that the composition operator Φp is monotone. Moreover, in the compact and
convex set B defined in the previous subsection, the mapΦp has a globally asymptotically stable
coexistence fixed point which is a globally asymptotically stable p−periodic coexistence cycle
of the map (2.34).

We now summarize the above remarks.

Theorem 40 Let (Ki, Li) ∈ Λi, i = 0, 1, 2, . . . , p − 1 and assume the periodicity of the sequence
of parameters. Then, the p−periodic nonautonomous difference equation (2.34) has a globally
asymptotically stable p−periodic coexistence cycle in the convex and compact set B.

2.2.4 A bifurcation scenario from computational simulations

As remarked earlier, in the absence of species “y” the dynamics of species “x” is governed by
the nonautonomous one-dimensional Ricker equation

xn+1 = xneλn−xn , n ∈ Z+, (2.54)

where λn = λn mod p. Write Eq. (2.54) as xn+1 = Rn(xn) where Rn(x) = xeλn−x.
In [66] the author proved that Eq. (2.54) has a globally asymptotically stable p−periodic

cycle
{x0, x1, . . . , xp−1}

whenever 0 < λi < 2, i = 0, 1, 2 . . .. In other words,

p−1∏
i=0

|1 − xi| < 1.

However, the author did not study the existence of bifurcation of Cp. In other words what
happens when

p−1∏
i=0

(1 − xi) = 1 or
p−1∏
i=0

(1 − xi) = −1?

Since each map Rn = Rn mod p, n ∈ Z+ is one to one with respect to the parameter λn =

λn mod p > 0, it follows by Theorem 8 that the only possible cycles for Eq. (2.54) are cycles with
minimal period r, r = pt, t = 1, 2, . . ..

Let Cp =
{
x0, x1, ..., xp−1

}
be a nontrivial p−periodic cycle of the p−periodic equation (2.54),

i.e. a fixed point of the map Φp(x). (The existence is assured by the Brouwer’s fixed point
theorem). Thus one has x0 = Φp(x0). Simplifying this equation one obtains

λ0 + λ1 + . . . λp−1 − x0 − x1 − . . . − xp−2 = xp−1, (2.55)

or equivalently

xp−1 = λp−1 +

p−2∑
i=0

(λi − Φi(x0)) . (2.56)
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A period-doubling bifurcation occurs when ∂
∂t

(
Φp(t)

)
|t=x0 = −1. This leads to the equation∏p−1

i=0 (1 − xi) = −1, or equivalently1 − λp−1 −
p−2∑
i=0

(λi − Φi(x0))

 p−2∏
i=0

(1 − Φi(x0)) = −1. (2.57)

In general, is not possible to find analytically (except when p = 2) the solutions of Eq.
(2.57). However one can see that all the solutions of Eq. (2.57) are of the form

x0 = ψ(λ0, . . . , λp−1),

where ψ is a function such that ψ : Rp → R. We call these solutions the period-doubling
bifurcation solutions.

Let ψ = ψ(λ0, . . . , λp−1) such that ψ(λ0, . . . , λp−1) ∈ R+. Substituting ψ in Eq. (2.56) yields
the equation

p−1∑
i=0

λi =

p−1∑
i=0

Φi(ψ). (2.58)

One can find implicitly, in the parameter space, all the solutions of Eq. (2.58). This process will
give us a bifurcation surface in the parameter space (K0, . . . ,Kp−1). Note that the other case of
bifurcation ( ∂

∂t

(
Φp(t)

)
|t=x0 = 1) can be investigated in a similar way.

Remember that in Section 1.5 we computed explicitly the period-doubling bifurcation curves
and the saddle-node bifurcation curves when p = 2.

The derivative along the 2−periodic cycle C2 is given by

Φ′2(x0) = (1 − x1)(1 − x0) = (1 − λ0 − λ1 + x0)(1 − x0).

Hence, C2 is asymptotically stable if

|(1 − λ0 − λ1 + x0)(1 − x0)| < 1.

These two inequalities are equivalent to the following system of inequalities{
x2

0 − (λ0 + λ1)x0 + λ0 + λ1 > 0
x2

0 − (λ0 + λ1)x0 + λ0 + λ1 − 2 < 0
. (2.59)

The solution of the system given in (2.59) is given by the following cases:

1. λ0 + λ1 > 4. Under this assumption it follows that

0 < xpd
− < xsn

− < xsn
+ < xpd

+ .

Note that xpd
− > 0 if λ0 + λ1 > 2. Thus, the system (2.59) can be solved whenever

x0 ∈]xpd
− , xsn

− [∪]xsn
+ , x

pd
+ [.

Since x1 = λ0 + λ1 − x0 it follows that

x1 ∈]λ0 + λ1 − xpd
+ , λ0 + λ1 − xsn

+ [∪]λ0 + λ1 − xsn
− , λ0 + λ1 − xpd

− [.

We can show with direct computations that xpd
− = λ0 + λ1 − xpd

+ , xsn
− = λ0 + λ1 − xsn

+ ,
xsn
+ = λ0 + λ1 − xsn

− , and xpd
+ = λ0 + λ1 − xpd

− . Hence C2 is asymptotically stable if

x0, x1 ∈]xpd
− , x

sn
− [∪]xsn

+ , xpd
+ [.
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Figure 2.13: The progress of the Schwarzian derivative of the two-periodic one-dimensional Ricker map Φ2 at (x0)
when the parameters λ0 and λ1 are on the period doubling bifurcation curves.

2. λ0 + λ1 = 4. It follows that xsn
− = xsn

+ = 2. Hence C2 is asymptotically stable if

x0, x1 ∈]2 −
√

2, 2 +
√

2[\{2}.

3. λ0 + λ1 < 4. It follows that xsn
− and xsn

+ are complex numbers and the inequality

x2
0 − (λ0 + λ1)x0 + λ0 + λ1 > 0

is verified. We now subdivide this case depending on xpd
− being greater, equal or less than

0.

(a) If 2 < λ0 + λ1 < 4, then C2 is asymptotically stable whenever x0, x1 ∈]xpd
− , x

pd
+ [.

(b) If λ0 + λ1 = 2, then C2 is asymptotically stable whenever x0, x1 ∈]0, 2[.

(c) If 0 < λ0+λ1 < 2 it follows that xpd
− < 0 and 0 < xpd

+ < 2. Hence C2 is asymptotically
stable if x0, x1 ∈]0, xpd

+ [.

We now study the stability of C2 when the parameters are on the curves where occur the
bifurcations, i.e, if x0 and x1 are the end points of the intervals shown before.

A preliminary analysis on the parameter space (example 29) shows that for the period dou-
bling bifurcation curves the values of the parameters are less than 3. Hence is enough to study
the values of SΦ2(xpd

+ ) and SΦ2(xpd
− ) in the region D =]0, 3[×]0, 3[. Since the analytical com-

putations is very cumbersome we use numerical simulations. We find that the maximum of
SΦ2(xpd

− ) on D is ≈ −3.95264 and the maximum of SΦ2(xpd
+ ) on D is ≈ −0.537015. In Fig.

2.13 are presented the values of the Schwarzian derivative on D in both situations. Hence, by
Theorem 19 the 2−cycle C2 is asymptotically stable when the parameters λ0 and λ1 are on the
period-doubling bifurcation curves.

We now study the stability of C2 when the parameters are on the saddle-node bifurcation
curves. The saddle-node bifurcation exists if λ0 + λ1 ≥ 4. From the implicit solutions one can
see that λ0 + λ1 = 4 iff λ0 = λ1 = 2. Under this scenario xsn

− = xsn
+ = 2, Φ′′2 (2) = 0 and

Φ′′′2 (2) = −2 < 0. Hence by Theorem 17 C2 is asymptotically stable.
Now consider that λ0 + λ1 > 4 such that λ0 > 2 and λ1 > 2. As it is shown in Example 26

Φ′′2 (xsn
− ) > 0 and Φ′′2 (xsn

+ ) < 0 for all λ0, λ1 ∈ (2, 3) × (2, 3). Hence Φ′′2 (x0) , 0. Consequently,
the periodic cycle C2 is unstable when λ0 and λ1 are on the saddle-node bifurcation curves.

We now summarize these ideas in the following result.

Proposition 41 Let p = 2 be the period of Eq. (2.54) and C2 = {x0, x1} be a non trivial
2−periodic cycle of the 2−periodic equation (2.54). Then
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Figure 2.14: The bifurcation scenario in the parameter space of the map Φ2 = R1 ◦ R0.

1. If λ0 + λ1 > 4 then C2 is asymptotically stable whenever

x0, x1 ∈ [xpd
− , x

sn
− [∪]xsn

+ , xpd
+ ].

2. If λ0 + λ1 = 4 then C2 is asymptotically stable whenever

x0, x1 ∈ [2 −
√

2, 2 +
√

2].

3. If 2 < λ0 + λ1 < 4 then C2 is asymptotically stable whenever x0, x1 ∈ [xpd
− , x

pd
+ ].

4. If 0 < λ0 + λ1 ≤ 2 then C2 is asymptotically stable whenever x0, x1 ∈ (0, xpd
+ ).

In Fig. 2.14 is presented the bifurcation scenario of C2 in the parameter space (λ0, λ1). As
mentioned earlier in region A1, Eq. (2.54) has an asymptotically stable 2−periodic cycle. The
period-doubling bifurcation curves are represented by pd1. Hence, as λ0 and λ1 passes these
two curves undergoes a period-doubling bifurcation. The 2−periodic cycle become unstable
and a new asymptotically stable 4−periodic cycle is born. This new 4−periodic cycle is always
asymptotically stable whenever the parameters are in the region B1 ∪ B2. This 4−periodic cycle
losses it stability whenever the parameters passes the curves pd2. On these curves undergoes a
period-doubling bifurcation. Consequently, the 4−periodic cycle becomes unstable and a new
asymptotically stable 8−periodic cycle is created. The stability region of the 8−periodic cycle is
given by ∪4

i=1Ci. Again, this cycle losses it stability whenever the parameters passes the curves
pd3 in which a period-doubling bifurcation occurs. This period-doubling scenario continuous
route to chaos.

If the parameters are in region A2, then Eq. (2.54) has three 2−periodic cycles. Two of them
are asymptotically stable and the third is unstable. When the parameters λ0 and λ1 leave this
region, we enter in a zone where Eq. (2.54) has a coexistence of multiple attractors.

In region B3 ∪ B4, Eq. (2.54) has two asymptotically stable 4−periodic cycles and one
unstable 4−periodic cycle. When the parameters leave this region we enter again in a region
where one has a coexistence of multiple attractors.
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Figure 2.15: The bifurcation scenario of the 2−periodic Ricker competition equation in the parameter space
(K0,K1) when the carrying capacity L and the competition parameters a and b are fixed.

We now discus a bifurcation scenario, via computational manipulations, when Eq. (2.34) is
2−periodic.

As first scenario we suppose that Kn = Kn mod 2, Ln = L, an = a and bn = b, ∀n ∈ Z+.
This leads to a 2−periodic equation. Let C2 = {(x0, y0), (x1, y1)} be a 2−periodic solution of Eq.
(2.34), i.e., Φ2(x0, y0) = (x0, y0). Using computer simulations we plot in the parameter space
(K0,K1) the region where C2 is asymptotically stable (see Fig. 2.15, black color).

By the relation (2.48) C2 is a coexistence cycle whenever b av(K) < av(L) < av(K)/a, i.e.,
b(K0 + K1) < 2L < (K0 + K1)/2. Define the sets

Q = {(K0,K1) ∈ R2
+ : K1 < −K0 + 2aL},

R = {(K0,K1) ∈ R2
+ : K1 > −K0 + 2L/b},

S = {(K0,K1) ∈ R2
+ : −K0 + 2aL < K1 < −K0 + 2L/b}.

If (K0,K1) ∈ Q, then one has a stable solution on the y−axis, if (K0,K1) ∈ R, then we have
stable solutions on the x−axis and finally, if (K0,K1) ∈ S , then C2 is a stable coexistence cycle.
Crossing the lines K1 = −K0 +2aL and K1 = −K0 +2aL/b, the system undergoes a saddle-node
bifurcation. The exclusion cycle becomes unstable and a new asymptotically stable coexistence
cycle is born.

A period-doubling bifurcation occurs whenever the parameters K0 and K1 move from the
black region to the dark grey region. Thus the 2−periodic cycle C2 becomes unstable and a new
asymptotically stable 4−periodic cycle is born. Again a new period-doubling bifurcation occurs
when the parameters change from the dark grey region to the light grey region.

Now we turn our attention to the parameter space (K0, L0) when the parameters K1, L1, a
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Figure 2.16: The bifurcation scenario of Eq. (2.34) in the parameters space (K0, L0) when K1 = 1/2, L1 = 1/10,
and a = b = 1/2.

and b are fixed. First assume that K1 = 1/2, L1 = 1/10, and a = b = 1/2. Define the sets

Q = {(K0, L0) ∈ R2
+ : L0 > 2K0 + .9},

R = {(K0, L0) ∈ R2
+ : L0 < .5K0 + .15},

S = {(K0, L0) ∈ R2
+ : .5K0 + .15 < L0 < 2K0 + .9}.

In Fig. 2.16 is presented the dynamics of the 2−periodic cycle. In region Q, Eq. (2.34) has
an exclusion cycle on the y−axis. If (K0, L0) ∈ S then Eq. (2.34) has a coexistence cycle
in the interior of the first quadrant. Finally, if the parameters K0 and L0 are in region R, Eq.
(2.34) has an exclusion cycle on the x−axis. The black region is the region where one has an
asymptotically stable 2−periodic cycle. Eq. (2.34) undergoes a period-doubling bifurcation
when the parameters K0 and L0 moves from the black region to the grey region. Hence, on
grey region Eq. (2.34) has an asymptotically stable 4−periodic cycle. Again, a period-doubling
bifurcation occurs when the parameters moves from the grey region to the light-grey region.
This scenario of bifurcation continues.

In Fig. 2.17 we present another examples of the dynamics of Eq. (2.34). Notice that one
can define the sets Q, P and S as follows

Q = {(K0, L0) ∈ R2
+ : L0 >

K0

a
+

(K1

a
− L1

)
},

R = {(K0, L0) ∈ R2
+ : L0 < bK0 + (bK1 − L1)},

S = {(K0, L0) ∈ R2
+ : bK0 + (bK1 − L1) < L0 <

K0

a
+

(K1

a
− L1

)
}.

The dynamics of the cycle is similar as the precedent example.
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Figure 2.17: Some examples of the bifurcation scenario of Eq. (2.34) in the parameter space (K0, L0).

2.2.5 Attenuance and resonance
In this section we extend the notions of attenuance and resonance to two-dimensional systems.
(For more details about this concept in one-dimensional nonautonomous models we refer [17,
28, 29, 31, 42, 41, 66, 75]).

Let F : R2
+ → R2

+ be a parameter family of maps such that

Fn(x, y) = ( fn(x, y), gn(x, y)) , n ∈ Z+.

We now make the following assumptions:

1. The point (Kn, 0) is a fixed point of the map on the x−axis. In population dynamics this
fixed point is known as an exclusion equilibrium and Kn the carrying capacity of the map
fn,

2. The point (0, Ln) is an exclusion equilibrium of the map on the y−axis. Ln is the carrying
capacity of the map gi,

3. The point
(
x∗n, y

∗
n
)

is the positive fixed point of the map Fn(x, y). In population dynamics
this fixed point is known as a coexistence equilibrium.

Let Cr =
{(

x0, y0
)
,
(
x1, y1

)
, . . . ,

(
xr−1, yr−1

)}
be an asymptotically stable r−periodic cycle of

the p−periodic nonautonomous difference equation

(xn+1, yn+1) = Fn (xn, yn) , (2.60)

where Fn = Fn mod p, ∀n ∈ Z+. In population dynamics Cr is known as a coexistence cycle.
In the sequel, we will use the following notation to facilitate the new definition of attenuance

and resonance

av(x) =
1
r

r−1∑
i=0

xi, av(y) =
1
r

r−1∑
i=0

yi, av(x∗) =
1
p

p−1∑
i=0

x∗i , and av(y∗) =
1
p

p−1∑
i=0

y∗i .

Definition 42 Eq. (2.60) is said to be
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1. Attenuant - Attenuant relative to Cr if av(x) < av(x∗) and av(y) < av(y∗),

2. Attenuant - Resonant relative to Cr if av(x) < av(x∗) and av(y) > av(y∗),

3. Resonant - Attenuant relative to Cr if av(x) > av(x∗) and av(y) < av(y∗),

4. Resonant - Resonant relative to Cr if av(x) > av(x∗) and av(y) > av(y∗).

If this is true for all the attracting periodic orbits, then we remove the phrase “relative to Cr”.

Now suppose that Eq. (2.34) is p−periodic such that the competition parameters a and b
are fixed. The coexistence fixed point for each individual map Fi, 0 ≤ i ≤ p − 1 is given by
x∗i =

aLi−Ki
ab−1 and y∗i =

bKi−Li
ab−1 . Then

av(x∗) =
1
p

p−1∑
i=0

x∗i =
1

p(ab − 1)

p−1∑
i=0

(aLi − Ki) =
1

ab − 1
(a av(L) − av(K)) .

Using the relation (2.46) it follows av(x∗) = av(x). Similarly, one has av(y∗) = av(y). Thus
neither attenuance nor resonance prevails. Notice that a similar result for the one-dimensional
Ricker map was obtained in [66].

To this end we have been studying the properties of a periodic cycle when the carrying
capacities are periodic and the competition parameters are fixed. Now we are going to study
the attenuance and resonance for the other situations in which Eq. (2.34) has a periodic orbit.
When p > 2 the dynamics of the equation involves horrendous computations. So we focus our
attention on the attenuance and resonance when p = 2.

Let Kn, Ln and an be 2−periodic sequences such that (Kn, Ln) ∈ S 1,n, ∀n ∈ Z+ and assume
that the parameter b is fixed. This produces an asymptotically stable coexistence 2−periodic
cycle of Eq. (2.34). Let C2 = {(x0, y0), (x1, y1)} be this periodic cycle. After simple computations
one can show that

x0 + x1 = K0 + K1 − a0y0 − a1y1 and y0 + y1 = L0 + L1 − b(x0 + x1). (2.61)

Substituting the value of y0 in the first equation of (2.61) yields

K0 + K1 − a0(L0 + L1) + (a0 − a1)y1 = (1 − ba0)(x0 + x1),

or equivalently

x∗0 + x∗1 +
K1 − a0L1

1 − ba0
− K1 − a1L1

1 − ba1
+

a0 − a1

1 − ba0
y1 = x0 + x1, (2.62)

where x∗i =
Ki−aiLi
1−bai

, i = 0, 1. Similarly, one obtain

x∗0 + x∗1 +
K0 − a1L0

1 − ba1
− K0 − a0L0

1 − ba0
+

a1 − a0

1 − ba1
y0 = x0 + x1. (2.63)

Adding Eq. (2.62) and Eq. (2.63) we get

av(x∗) + ϵx = av(x), (2.64)
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where av(x∗) = x∗0+x∗1
2 , av(x) = x0+x1

2 , and

ϵx =
K1 − K0 + a0(L0 − L1) + (a0 − a1)y1

4(1 − ba0)
+

K0 − K1 + a1(L1 − L0) + (a1 − a0)y0

4(1 − ba1)
.

Using similar computations we can show that

av(y∗) + ϵy = av(y), (2.65)

where av(y∗) = y∗0+y∗1
2 , y∗i =

Li−bKi
1−bai

, i = 0, 1, av(y) = y0+y1
2 , and

ϵy =
L0 − bK0 − (1 − ba0)y0

2(1 − ba1)
+

L1 − bK1 − (1 − ba1)y1

2(1 − ba0)
.

Therefore one may conclude the following:

• if ϵx = ϵy = 0, then neither attenuance nor resonance is present;

• if ϵx > 0 and ϵy > 0, then Eq. (2.34) is resonance - resonance relative to C2;

• if ϵx > 0 and ϵy < 0, then Eq. (2.34) is resonance - attenuance relative to C2;

• if ϵx < 0 and ϵy > 0, then Eq. (2.34) is attenuance - resonance relative to C2;

• if ϵx < 0 and ϵy < 0, then Eq. (2.34) is attenuance - attenuance relative to C2.

Before the end of this subsection we note that similar conclusions can be taken in other
situations for which Eq. (2.34) has an asymptotically stable 2−periodic cycle. For example,
fixing a and varying b or fixing the carrying capacities and varying the competition parameters,
etc.

Thus in the case of periodicity of the competition parameters attenuance and resonance are
present in the periodic solution of the nonautonomous equation given in (2.34).

2.3 Logistic competition model
In [35] we introduced a two-dimensional model called logistic competition model. The dy-
namics of this new model is similar to the autonomous Ricker competition model given in
section 2.1. Hence, in this section we present the necessary steps to develop the model and the
principal results without details.

We developed a competition model based on sound biological assumptions of intraspecific
and interspecific competitions.

In developing this model, it is assumed that, without interspecific competition, each species
is modeled by the logistic map. The logistic map is used to model species with non overlapping
generations under the assumption that the fitness function decreases when the population den-
sity (size) increases. Let zn be the density of species z at time period n. Then the fitness function
is defined as

u(z) =
zn+1

zn
.
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Figure 2.18: The fitness function.

When the population is sufficiently small (close to zero), the intraspecific competition (compe-
tition among individuals of species z) is negligible and consequently,

u(z) =
zn+1

zn
= R,

where R > 1 is a constant, commonly called, the intrinsic growth rate of the population. When
the population grows, the fitness function decreases due to significant intraspecific competition
and reaches the value 1 when the population density reaches the carrying capacity K.

Fig. 2.18 depicts a typical fitness function. Assuming that the decrease in the fitness function
is linear, then the model is obtained by finding the equation of the line connecting the points
(0,R) and (K, 1). The equation of this line is given by

zn+1

zn
= −R − 1

K
zn + R,

where R > 1. Using the change of variables, xn =
R−1
RK zn we obtain the celebrated logistic

difference equation
xn+1 = Rxn(1 − xn).

Introducing a new species y to compete with species x, interspecific competition (com-
petition between two different species) would negatively affect the growth of species x and
vice-versa. We propose the following new competition model xn+1 =

axn(1−xn)
1+cyn

yn+1 =
byn(1−yn)

1+dxn

, (2.66)

where a, b > 0 and c, d ∈ (0, 1). The map associated with Eq. (2.66) is given by

F(x, y) =
(
ax(1 − x)

1 + cy
,

by(1 − y)
1 + dx

)
.

To insure that the range of this map lies in the first quadrant, we make the following two as-
sumptions:

1. x and y are in [0, 1],
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2. a and b are in (0, 4]5.

These two assumptions guarantee that nonnegative points are mapped to nonnegative points
and specifically the map F maps [0, 1] × [0, 1] into [0, 1] × [0, 1]. To show this we note that the
maximum of the x−component of the image of the point (x, y) is a/4 and occurs at x = 1/2 and
y = 0 and the maximum of the y−component of the image of the point (x, y) is b/4 and occurs
at x = 0 and y = 1/2.

In model (2.66) the parameters a and b are the intrinsic growth rates of species x and y,
respectively, and the parameters c and d are the competition parameters of species y and x,
respectively.

The map F has one extinction fixed point (0, 0), two exclusion fixed points ( a−1
a , 0), (0, b−1

b ),
and one coexistence fixed point

(x∗, y∗) =
(
−cb + ab − b + c

ab − cd
,
−da + ab − a + d

ab − cd

)
.

In the next result we give sufficient conditions for the stability of the extinction fixed point.

Lemma 43 Let (xn, yn) denote the solution of the Logistic competition model (2.66) with an
initial condition (x0, y0) ∈ (0, 1) × (0, 1). If a ∈ (0, 1] then lim

n→∞
xn = 0. If b ∈ (0, 1] then

lim
n→∞

yn = 0. Moreover, if a, b ∈ (0, 1], then lim
n→∞

(xn, yn) = (0, 0).

Proof. The inequality xn+1 ≤ axn, ∀n ∈ Z+ holds since

0 ≤ xn+1 =
axn(1 − xn)

1 + cyn
≤ axn − ax2

n ≤ axn.

Let a ∈ (0, 1). Then by induction we show that xn ≤ x0an for all n ∈ Z+. Thus lim
n→∞

xn = 0.
When a = 1 one has xn+1 < xn, ∀n ∈ Z+. Thus xn is a decreasing sequence of numbers that

is bounded above by 1 and bounded bellow by 0 which implies the convergence of xn as n goes
to infinity. Let L be this limit. Then 0 ≤ L ≤ xn < 1, ∀n ∈ Z+. Note that from xn+1 ≤ xn(1 − xn),
∀n ∈ Z+ it follows that

xn ≤ x0

n−1∏
i=0

(1 − xi),∀n ≥ 1.

By the fact that 1 − xi ≤ 1 − xi+1, i ∈ Z+, by induction we show that

n−1∏
i=0

(1 − xi) ≤ (1 − xn−1)n,∀n ≥ 1.

Using this last relation we obtain

xn ≤
x0

1 − xn

n∏
i=0

(1 − xi) ≤
x0

1 − xn
(1 − xn)n+1 = (1 − xn)n.

But the relation L ≤ xn < 1 implies that 0 < 1 − xn ≤ 1 − L, ∀n ∈ Z+ and consequently one has

xn ≤ (1 − xn)n ≤ (1 − L)n −→
n→∞

0.

5In fact this restriction on the values of a and b may be slightly relaxed as it is shown in the stability regions of
the coexistence fixed point
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Figure 2.19: The phase-space diagram for the exclusion fixed point ( a−1
a , 0) of the logistic competition model. A

- The exclusion fixed point is asymptotically stable: a = 2.5, b = 1.01, c = 0.3, d = 0.1. B - The exclusion fixed
point is a saddle: a = 2, b = 1.1, c = 0.3, d = 0.1. C - The exclusion fixed point is asymptotically stable: a = 3,
b = 1.01, c = 0.3, d = 0.1, where the center manifold is stable on the x−axis. D - The exclusion fixed point is a
saddle: a = 2.5, b = 1.06, c = 0.3, d = 0.1 where the center manifold is unstable on the x−axis and in the interior
of the first quadrant.

A similar argument proves the assertion when b ∈ (0, 1].
Hence, If a ≤ 1 and b ≤ 1, then by Lemma 43 the extinction fixed point (0, 0) is globally

asymptotically stable. Clearly, when a > 1 or b > 1, the fixed point (0, 0) becomes unstable.
For the fixed points ( a−1

a , 0) and (0, b−1
b ), we have the following result:

Theorem 44 [35] The following statements holds true:

1. The fixed point ( a−1
a , 0) of Eq. (2.66) is locally asymptotically stable if 1 < a ≤ 3 and

1 < b < 1 + d(a−1)
a and is unstable if 1 < a < 3 and b = 1 + d(a−1)

a ,

2. The fixed point (0, b−1
b ) of Eq. (2.66) is locally asymptotically stable if 1 < b ≤ 3 and

1 < a < 1 + c(b−1)
b and is unstable if 1 < b < 3 and a = 1 + c(b−1)

b .

In Figures 2.19 and 2.20 we present the phase-space diagram for the exclusion fixed point
( a−1

a , 0). In Fig. 2.19A both eigenvalues are inside the unit circle, i.e., 1 < a < 3 and 1 < b <

1 + d
(

a−1
a

)
and the stable manifold is on the x−axis. In Fig. 2.19B we can see the unstable and

stable manifold when 1 < a < 3 and b > 1 + d
(

a−1
a

)
, i.e., the first eigenvalue is inside the unit

circle and the second is outside the unit circle. In Fig. 2.19C the stable center manifold is on the
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Figure 2.20: The existence of an exclusion asymptotically stable 2−periodic cycle on the x−axis of the logistic
competition model when one eigenvalue is outside the unit circle and the second eigenvalue is inside the unit circle. 
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Figure 2.21: The stability of the exclusion fixed points and the validity of the exclusion principle in the logistic
competition model. A - If 1 < a ≤ 3 and b < 1 + d

(
a−1

a

)
(or b−1

d < a−1
a ), then ( a−1

a , 0) is asymptotically stable and
species y goes extinct. B - If 1 < b ≤ 3 and b > c

1+c−a (or b−1
b > a−1

c ), then (0, b−1
b ) is asymptotically stable and

species x goes extinct.

x−axis when a = 3 and 1 < b < 1+d
(

a−1
a

)
. In this case the first eigenvalue is −1 and the second

eigenvalue is inside the unit circle. Fig. 2.19D we see the unstable center manifold when the
first eigenvalue is inside the unit circle and the second is on the unit circle. This happens when
1 < a < 3 and b = 1 + d

(
a−1

a

)
.

When a > 3 and 1 < b < 1+ d
(

a−1
a

)
the exclusion fixed point (a−1

a , 0) becomes unstable and
2−periodic orbit is created (Fig. 2.20).

We note that the exclusion principle in Biology is valid for both species. In Fig. 2.21 is
presented the two possible scenarios. In Fig. 2.21A species y goes extinct while in Fig. 2.21B
species x goes extinct.

For the coexistence fixed point we make the assumption that

b > 1 +
d(a − 1)

a
and a > 1 +

c(b − 1)
b

. (2.67)

Relation (2.67) insures that the positive fixed point (x∗, y∗) of the logistic competition model lies
in the positive first quadrant.
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Theorem 45 [35] The coexistence fixed point (x∗, y∗) of the Logistic competition equation
(2.66) is locally asymptotically stable if the following conditions hold:

−c(b − c + bc)d2 + a3b2(2 − b + 2d) + a(b − c + bc)d(3b + c + cd)
ab(−(1 + c)d + a(1 + d))(−b(1 + c) + c(1 + d))

+
a2b

(
2b2(1 + c) + 3c(1 + d) − b(3 + 5d + c(5 + 4d))

)
ab(−(1 + c)d + a(1 + d))(−b(1 + c) + c(1 + d))

< 0, (2.68)

and

−c(b − c + bc)d2 + a3b2(3 − b + 3d) − ad
(
−b2

(
9 + 14c + 5c2

)
+ c2(1 + d)

)
ab(−(1 + c)d + a(1 + d))(−b(1 + c) + c(1 + d))

−

adbc (8 + 4c + 4d + 3cd)
ab(−(1 + c)d + a(1 + d))(−b(1 + c) + c(1 + d))

+

a2b
(
3b2(1 + c) + c

(
9 + 14d + 5d2

)
− 3b(3 + 4d + 4c(1 + d))

)
ab(−(1 + c)d + a(1 + d))(−b(1 + c) + c(1 + d))

> 0. (2.69)

Note that inequality (21) in [35], i.e.

(b(−1 + a − c) + c)(a(−1 + b − d) + d)(ab − cd)
ab(−(1 + c)d + a(1 + d))(−b(1 + c) + c(1 + d))

< 0, (2.70)

holds true under condition (2.67). This observation has not been stated in [35].
Equivalently, the positive fixed point (x∗, y∗) of Eq. (2.66) is asymptotically stable if (a, b) ∈

Int(S 1), where S 1 is the region depicted in Fig. 2.22. Note that the curves τ1 and τ2 in Fig. 2.22
are define as

τ1 = {(a, b) ∈ R2
+ : b = 1 + d(a−1)

a } and τ2 = {(a, b) ∈ R2
+ : a = 1 + c(b−1)

b }.

In Fig. 2.23 we present the phase-space diagram when this coexistence fixed point is asymp-
totically stable.

2.4 Leslie-Gower model

2.4.1 The dynamics of the autonomous model
The Leslie-Gower competition model used by Park and Leslie in their studies [44] is given by
the modified autonomous difference equation(

xn+1

yn+1

)
=

 aKxn
K+(a−1)xn+cyn

bLyn
L+(b−1)yn+dxn

 , n ∈ Z+, (2.71)

where xn and yn are the population size of species x and y, respectively, at time n, K > 0
and L > 0 are the carrying capacities of species x and y, respectively, a > 0 and b > 0 are
the intrinsic growth rate of species x and y, respectively, and c, d ∈ (0, 1) are the competition
coefficients.

Before to study the local stability of the fixed pints of the system (2.71) we give some notes
about the dynamics of (2.71) when a ∈ (0, 1) and b ∈ (0, 1). Since in this case a − 1 and b − 1
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Figure 2.22: The stability regions and the bifurcation scenario of the logistic competition model in the parameter
space a − b.

are negative numbers we need to consider a special initial conditions in order to unsure that
xn > 0 and yn > 0, for all n = 0, 1, 2, . . .. This observation is motived by the fact we have some
difficulties in population dynamics assuming that a > 0 and b > 0. For instance if we consider
that a = 0.1, K = 0.5 and c = 0.2, there exists a large region in the plane such that the function
f (x, y) = aKx

K+(a−1)x+cy is negative.
Let (x0, y0) be a point in the interior of the first quadrant such that when a ∈ (0, 1) we have

y0 > −
K
c
+

1 − a
c

x0 (2.72)

and when b ∈ (0, 1) we have

y0 <
L

1 − b
+

d
1 − b

x0. (2.73)

Notice that when a ≥ 1 and b ≥ 1 we have xn > 0 and yn > 0, n = 0, 1, 2 . . . for any positive
initial conditions.

We consider three cases.

1. Suppose that the condition (2.72) holds and assume that b ≥ 1 (which implies that yn > 0
for all n = 0, 1, 2, . . .). By the fact that 0 < K it follows that

(a − 1)x0 + cy0 < K + (a − 1)x0 + cy0.

Consequently

0 <
(a − 1)x0 + cy0

K + (a − 1)x0 + cy0
< 1. (2.74)
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Figure 2.23: Phase-space diagram for the coexistence fixed point of the logistic competition model.

Hence
0 <

K
K + (a − 1)x0 + cy0

= 1 − (a − 1)x0 + cy0

K + (a − 1)x0 + cy0
< 1. (2.75)

Thus 0 < x1 < ax0. Since y1 > 0 it follows that (x1, y1) is a point that belongs to the region
defined by (2.72) and thus it satisfy the relation y1 > −K

c +
1−a

c x1. Analogously we show
that 0 < x2 < ax1. Continuing this process, by induction we prove that 0 < xn < anx0.
Thus one has xn < anx0 → 0 as n goes to infinity.

2. Suppose that the condition (2.73) holds and assume that a ≥ 1 (which implies that xn > 0
for all n = 0, 1, 2, . . .). Following the same reasoning as the item 1. we can show that
yn < bny0 → 0 as n goes to infinity.

3. Suppose that the conditions (2.72) and (2.73) hold. Hence there exists (x0, y0) such that

−K
c
+

1 − a
c

x0 < y0 <
L

1 − b
+

d
1 − b

x0. (2.76)

By a similar argument we can show that 0 < x1 < ax0 and 0 < y1 < by0. Hence (x1, y1)
is a point that belongs to the region defined by the relation (2.76). Thus the following
relation yields

−K
c
+

1 − a
c

x1 < y1 <
L

1 − b
+

d
1 − b

x1.

Consequently, by induction we can establish that xn < anx0 and yn < bny0. Therefore we
have (xn, yn)→ (0, 0) as n goes to infinity.

If a = 1, then xn+1 =
Kxn

K+cyn
. But K

K+cyn
< 1, ∀n ∈ Z+. Let M = max{ K

K+cyn
, n ∈ Z+}. Then

xn+1 < Mxn, ∀n ∈ Z+ and therefore xn < Mnx0 for any positive initial condition x0. This implies
that xn → 0 as n goes to∞. Analogously, when b = 1 one can show that yn → 0 as n goes to∞.

He now summarize these ideas in the following lemma.
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Lemma 46 Let (xn, yn) denotes the solution of the Leslie-Gower competition model (2.71). If
a ∈ (0, 1] such that the condition (2.72) holds, then population x will go to extinct. If b ∈ (0, 1]
such that the condition (2.73) holds, then population y is going to extinction.

In the absence of species y, the dynamics of species x is governed by the difference equation

xn+1 =
aKxn

K + (a − 1)xn
, n ∈ Z+,

which is the well known Beverton-Holt model for one species. Thus one can consider the model
(2.71) as an extension of the Beverton-Holt equation.

In order to avoid the extinction of both species at the same time and the trouble region in
the first octant we assume that

a > 1 and b > 1.

Let F(x, y) = ( f (x, y), g(x, y)) where

f (x, y) =
aKx

K + (a − 1)x + cy
and g(x, y) =

bLy
L + (b − 1)y + dx

.

The map F takes (0,∞)× (0,∞) into itself. The same happens for the coordinate axes [0,+∞)×
{0} and {0} × [0,+∞).

The origin is a trivial fixed point of the map F while the two points (K, 0) and (0, L) are two
exclusion equilibria of the Leslie-Gower model (2.71) on the axes. The only other fixed point
of F is

(x∗, y∗) =
(
(a − 1)(b − 1)K − c(b − 1)L

(a − 1)(b − 1) − dc
,

(a − 1)(b − 1)L − d(a − 1)K
(a − 1)(b − 1) − dc

)
.

This is the coexistence equilibrium.
The Jacobian of the map representing Eq. (2.71) is given by the following matrix

JF(x, y) =

 aK(K+cy)
(K+(a−1)x+cy)2 − acKx

(K+(a−1)x+cy)2

− bdLy
(L+(b−1)y+dx)2

bL(L+dx)
(L+(b−1)y+dx)2

 . (2.77)

The Jacobians evaluated at the fixed points are

J0 =

(
a 0
0 b

)
, JK =

( 1
a − c

a
0 bL

dK+L

)
, JL =

( aK
K+cL 0
− d

b
1
b

)
,

and

J∗ =
 (a−1)(b−1)(K+cL)−acdK

ak((a−1)(b−1)−cd)
c(b−1)(cL−(a−1)K)
ak((a−1)(b−1)−cd)

d(a−1)(dK−(b−1)L)
bL((a−1)(b−1)−cd)

(a−1)(b−1)(L+dK)−bcdL
bL((a−1)(b−1)−cd)

 .
The eigenvalues of J0 are a > 1 and b > 1. Hence the fixed point (0, 0) is always unstable.
Let us now consider the exclusion fixed point (K, 0). The eigenvalues of JK are 1/a and

bL/(dK + L). Since 1/a < 1 we have the following.

i. If (b − 1)L > dK then (K, 0) is unstable.

ii. If (b − 1)L < dK then (K, 0) is locally asymptotically stable.
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iii. If (b − 1)L = dK then tr(JK) = 1 + det(JK) and consequently one eigenvalue is 1 and
the other is less than 1 in absolute value. We use the equivalent of the Liapunov’s second
method to two-dimensional difference equations see [26, section 4.9] or [25, section 4.5].
Notice that 1 < b = 1 + dK

L . Shifting the fixed point (K, 0) to the origin we get the system un+1 =
K(un−cvn)

aK+(a−1)un+cvn

vn+1 =
L(dK+L)vn

L(L+dK)+dLun+dKvn

. (2.78)

Hence it follows that

un+1 <
Kun

aK + (a − 1)un + cvn
=

un

a + (a−1)un+cvn
K

,

and by the fact that a > 1 we obtain

un+1 <
un

a
< un.

Similarly
vn+1 =

vn

1 + dLun+dKvn
dKL+L2

< vn.

Clearly, the function V(un, vn) = un + vn is continuous and

∆V(un, vn) =
un

a + (a−1)un+cvn
K

+
vn

1 + dLun+dKvn
dKL+L2

− vn − un − vn ≤ 0.

Thus V is a Liapunov function. Consequently, by Theorem 4.6 in [26, page 209], (0, 0) is
asymptotically stable and consequently, the fixed point (K, 0) of (2.71) is locally asymp-
totically stable.

Hence we have the following result

Theorem 47 Let K > 0, L > 0, a > 1, b > 1, c ∈ (0, 1) and d ∈ (0, 1). The exclusion fixed
point (K, 0) of the Leslie-Gower competition model (2.71) is locally asymptotically stable if
(b − 1)L ≤ dK and it is unstable if (b − 1)L > dK.

Analogously,

Theorem 48 Let K > 0, L > 0, a > 1, b > 1, c ∈ (0, 1) and d ∈ (0, 1). The exclusion
fixed point (0, L) of the Leslie-Gower competition model (2.71) is locally asymptotically stable
if (a − 1)K ≤ cL and it is unstable if (a − 1)K > cL.

We now turn our attention to the positive fixed point (x∗, y∗) which is the solution of the
system {

(a − 1)x∗ + cy∗ = (a − 1)K
dx∗ + (b − 1)y∗ = (b − 1)L . (2.79)

From [46] it follows
a − 1

d
>

(a − 1)K
(b − 1)L

>
c

b − 1
,

or equivalently

(a − 1)(b − 1)L − (a − 1)dK > 0 and (a − 1)(b − 1)K − (b − 1)cL > 0. (2.80)
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Simplifying these two inequalities we get

(b − 1)L > dK and (a − 1)K > cL. (2.81)

Consequently, the following relation yields

(a − 1)(b − 1) > cd. (2.82)

The stability region of the coexistence fixed point is given by the following conditions:

1. det(JF(x∗, y∗)) < 1;

2. det(JF(x∗, y∗)) > tr(JF(x∗, y∗)) − 1;

3. det(JF(x∗, y∗)) > −tr(JF(x∗, y∗)) − 1.

The inequality given in 1. is equivalent to

(a − 1)(b − 1)(dK(K + cL) + L((1 − ab)K + cL))
abKL((a − 1)(b − 1) − dc)

< 0.

From the relation (2.82) this inequality holds if and only if

dK(K + cL) + L((1 − ab)K + cL) < 0. (2.83)

Using the relation (2.81) one has dK < (b − 1)L and (1 − a)K < −cL. Thus,

dK(K + cL) + L((1 − ab)K + cL) < L((b − 1)(K + cL) + K + cL − abK)
= L(Kb(1 − a) + bcL)
< L(−bcL + bcL) = 0.

Consequently, under the relations (2.81) and (2.82) we have det(JF(x∗, y∗)) < 1.
The condition of item 2 is equivalent to

− (a − 1)(b − 1)(dK + (1 − b)L)((a − 1)K − cL)
abKL((a − 1)(b − 1) − dc)

> 0,

which is analogous to prove that (dK + (1 − b)L)((a − 1)K − cL) < 0. Using (2.80) this last
inequality holds for all values of the parameters. Thus one has det(JF(x∗, y∗)) > tr(JF(x∗, y∗))−
1 whenever (b − 1)L > dK and (a − 1)K > cL.

The condition of item 3 is equivalent to

(a − 1)(b2 − 1)L((a + 1)K + cL) + dK((a2 − 1)(b − 1)K − (−1 + a + b + 3ab)cL)
abKL((a − 1)(b − 1) − dc)

> 0.

Using the relation (b − 1)L > dK it follows

(a − 1)(b2 − 1)L((a + 1)K + cL) > dK(a − 1)(b + 1)((a + 1)K + cL)
> dK(a − 1)(b − 1)((a + 1)K + cL)
= dK((a2 − 1)(b − 1)K + (a − 1)(b − 1)cL).
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Figure 2.24: If the carrying capacities K and L are in region S, then the coexistence fixed point of the autonomous
Leslie-Gower model is globally asymptotically stable. If the parameters are in region R and Q, then the exclusion
fixed point is globally asymptotically stable.

But (a − 1)(b − 1) > −(−1 + a + b + 3ab) and thus

(a − 1)(b2 − 1)L((a + 1)K + cL) > dK((a2 − 1)(b − 1)K − (−1 + a + b + 3ab)cL),

which implies that det(JF(x∗, y∗)) > −tr(JF(x∗, y∗)) − 1 is verified for all values of the parame-
ters whenever (b − 1)L > dK and (a − 1)K > cL.

Consequently, the inequalities |tr(JF(x∗, y∗))| − 1 < det(JF(x∗, y∗)) < 1 are automatically
verified under the hypothesis (2.81). In Fig. 2.24 we represent in the (K, L)−plane the region
where the relation (2.81) is satisfied. The two lines γ1 and γ2 represent, respectively, (b− 1)L =
dK and cL = (a− 1)K and the regions identified by the letters P, Q, and S are defined as follows

S = {(K, L) ∈ R2
+ : (b − 1)L > dK and cL < (a − 1)K},

R = {(K, L) ∈ R2
+ : (b − 1)L < dK and L > 0},

Q = {(K, L) ∈ R2
+ : K > 0 and cL > (a − 1)K}.

If K and L belong to the region S then (x∗, y∗) is locally asymptotically stable. We now summa-
rize these ideas.

Theorem 49 Let K > 0, L > 0, a > 1, b > 1, c ∈ (0, 1) and d ∈ (0, 1). Then the coexistence
fixed point (x∗, y∗) of the Leslie-Gower competition model (2.71) is locally asymptotically stable
if

(b − 1)L > dK and (a − 1)K > cL.

In [46] the authors proved that the map F generate a discrete monotone system on R2
+ in

the sense of “competitive ordering”, i.e., a mapping T = (T1, T2) : R2
+ → R2

+ is said to be
competitive if and only if

x1 ≥ x2 and y1 ≤ y2,

implies
T1(x1, y1) ≥ T1(x2, y2) and T2(x1, y1) ≤ T2(x2, y2).

For general theory of monotone maps see [72]. From now on we use this definition of mono-
tonicity in this section. Thus the monotonicity of the map F is sufficient to prove the conver-
gence of the solutions of the corresponding difference equation (2.71).
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Making the change of variables x = Ku
a−1 and y = Lv

b−1 one can show that Eq. (2.71) is
equivalent to (

un+1

vn+1

)
=

( aun
1+un+Cvn

bvn
1+vn+Dun

)
, n ∈ Z+, (2.84)

where C = cL
K(b−1) > 0 and D = dK

L(a−1) > 0. By the fact that for any positive U and V one has

au
1 + u +Cv

< a
u

1 + u
< a and

bv
1 + v + Du

< b
v

1 + v
< b,

it follows that all the iterations of the map

G(x, y) =
(

au
1 + u +Cv

,
bv

1 + v + Du

)
, (u, v) ∈ R2

+,

are bounded above. Then Gn(x, y) monotonically converges to a limit point in R2
+. This means

that the map G is dissipative6 in R2
+. Moreover, in [18] it is shown that the map G : R2

+ → S �
[0, a) × [0, b) is invertible and bicontinuous.

Thus it follows that the map F is dissipative in R2
+. Then the limit set of F is compact and

contains only the fixed point of F in R2
+, i.e., all the solutions of Eq. (2.71) in R2

+ converge to an
equilibrium as n→ +∞.

If the carrying capacities belong to the region S (Fig. 2.24) then all the iterations are attracted
by the positive fixed point. In this region this fixed point of Eq. (2.71) is globally asymptotically
stable (Theorem 4 in [46]). If K and L belong R (Fig. 2.24) all the iterations for any positive
initial point (x0, y0) converge to (K, 0). Here (K, 0) is a globally asymptotically stable fixed point
of Eq. (2.71) (Theorem 4 in [46]). If K and L are on the line γ1 then (K, 0) is asymptotically
stable. Similar conclusions can be taken for the fixed point (0, L).

We now summarize the above discussion in the following theorem.

Theorem 50 Let a > 1, b > 1 and 0 < c, d < 1. Then Eq. (2.71) has a

1. globally asymptotically stable coexistence fixed point if K, L ∈ S;

2. globally asymptotically stable exclusion fixed point on the x−axis if K, L ∈ R;

3. globally asymptotically stable exclusion fixed point on the y−axis if K, L ∈ Q.

2.4.2 The dynamics of the nonautonomous model
Now we are going to study the nonautonomous Leslie-Gower competition model given by the
following difference equation(

xn+1

yn+1

)
=

 anKn xn
Kn+(an−1)xn+cnyn

bnLnyn
Ln+(bn−1)yn+dn xn

 , n ∈ Z+, (2.85)

where the sequence of parameters are p−periodic, i.e

(Kn, Ln, an, bn, cn, dn) = (Kn mod p, Ln mod p, an mod p, bn mod p, cn mod p, dn mod p),

6If all the solutions of a difference equation are bounded above, then we say the corresponding map is dissipa-
tive.
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for all n = 0, 1, 2, . . .. Let

Fn(x, y) =
(

anKnx
Kn + (an − 1)x + cny

,
bnLny

Ln + (bn − 1)y + dnx

)
, n ∈ Z+.

Since the sequence of the parameters is p−periodic one has Fn = Fn mod p, for all n ∈ Z+. Each
one of the members of the set

F = {F0, F1, . . . , Fp−1}
is monotone. Since the composition of monotone maps is monotone, it follows that the compo-
sition operator

Φi
p = Fp+i−1 ◦ . . . ◦ Fi+1 ◦ Fi, i ∈ {0, . . . , p − 1}

is monotone.
Since for each i ∈ {0, . . . , p − 1} one has

aiKix
Ki + (ai − 1)x + ciy

<
aiKi

ai − 1
and

biLiy
Li + (bi − 1)y + dix

<
biLi

bi − 1
,

it follows that all the members ofF are dissipative maps. Using again the composition argument
it follows that Φi

p is dissipative. Thus for Eq. (2.85) one has the following result.

Theorem 51 Suppose that all the parameters of Eq. (2.85) are p−periodic such that Kn > 0,
Ln > 0, an > 1, bn > 1, cn ∈ (0, 1) and dn ∈ (0, 1), ∀n ∈ Z+ and let i = 0, 1, 2, . . . , p − 1. Then
the p−periodic nonautonomous difference equation (2.85) has a globally asymptotically stable
p−periodic cycle. Moreover, it is

1. a coexistence cycle if Ki, Li ∈ Si, where

Si = {(Ki, Li) ∈ R2
+ : (bi − 1)Li > diKi and ciLi < (ai − 1)Ki};

2. an exclusion cycle on the x−axis if Ki, Li ∈ Ri, where

Ri = {(K, L) ∈ R2
+ : (b − 1)L < dK and L > 0};

3. an exclusion cycle on the y−axis if Ki, Li ∈ Qi, where

Qi = {(Ki, Li) ∈ R2
+ : Ki > 0 and ciLi > (ai − 1)Ki}.

Proof. Since the map Φi
p, i ∈ {0, . . . , p − 1} is monotone and dissipative, then the difference

equation
(xn+1, yn+1) = Φi

p(xn, yn), n ∈ Z+, (2.86)

has a globally asymptotically stable fixed point. Let (xi, yi) be this fixed point. Then the fixed
point (xi, yi) of the autonomous equation (2.86) is a periodic point, with period p, of the nonau-
tonomous p−periodic difference equation (2.85).

Now suppose that the carrying capacities (Ki, Li) ∈ S i. Hence (xi, yi) is a coexistence fixed
point which generates a coexistence p−periodic cycle of Eq. (2.85) if Ki, Li ∈ S i.

If the carrying capacities (Ki, Li) ∈ Ri, then (xi, yi) is an exclusion fixed point on the x−axis
that it generates an exclusion p−periodic cycle of Eq. (2.85) on the x−axis. Similarly if
(Ki, Li) ∈ Qi, (xi, yi) is an exclusion fixed point on the y−axis that generates an exclusion cycle
of Eq. (2.85) on the y−axis.
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2.4.3 Attenuance and the resonance
In this section we give some notes about the attenuance and the resonance of equation (2.85).
First we turn our attention to the following example.

Example 52 Let K0 = 1.8, K1 = 2, K2 = 3, K3 = 4, L0 = 2, L1 = 3, L2 = 1.5, L3 = 5,
a0 = . . . = a3 = 2, b0 = . . . = b3 = 3, c0 = . . . = c3 = 0.5, and d0 = . . . = d3 = 0.5. With
these values of the parameters Eq. (2.85) is 4−periodic. This leads to the following globally
asymptotically stable 4−periodic cycle

C4 =

{(
x0

y0

)
, . . . ,

(
x3

y3

)}
=

{(
1.36197
1.5461

)
,

(
1.776

2.64345

)
,

(
1.30542
1.94017

)
,

(
1.2213
2.31799

)}
.

For these values of the parameters the positive fixed point of the individual maps F0, F1, F2,
and F3 are

i 0 1 2 3
x∗i 0.914286 0.571429 2.57143 1.71429
y∗i 1.77143 2.85714 0.857143 4.57143

Thus av(x) ≈ 1.41617, av(y) ≈ 2.111928, av(x∗) ≈ 1.44285, and av(y∗) ≈ 2.51425. Conse-
quently, C4 is A/A (see the definition in section 2.2.5).

Several examples like this one suggest that when the carrying capacities of each individual
map belong to the stability region Si such that the competition parameters and the intrinsic
growth rates are fixed then if

Cr =

{(
x0

y0

)
,

(
x1

y1

)
, . . . ,

(
xp−1

yp−1

)}
is a globally asymptotically stable coexistence cycle of Eq. (2.71), then the following relations
must be true

av(x) <
(a − 1)(b − 1)av(K) − c(b − 1)av(L)

(a − 1)(b − 1) − dc
= av(x∗)

and
av(y) <

(a − 1)(b − 1)av(L) − d(a − 1)av(K)
(a − 1)(b − 1) − dc

= av(y∗),

i.e., the coexistence cycle Cr must be attenuant/attenuant.
Notice that this conjecture is analogous to the one-dimensional case, the famous Cushing-

Henson conjecture [17]. Cushing and Henson conjectured that a nonautonomous p−periodic
Beverton-Holt equation

xn+1 =
µKnxn

Kn + (µ − 1)xn
, n ∈ Z+, (2.87)

with periodically varying carrying capacity must be attenuant. This means that if

Cp =
{
x0, x1, ..., xp−1

}
is its p−periodic cycle, and Ki, 0 ≤ i ≤ p − 1 are the carrying capacities, then

1
p

p−1∑
i=0

xi <
1
p

p−1∑
i=0

Ki. (2.88)
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Since the periodic cycle Cp is globally asymptotically stable on (0,∞), it follows that for
any initial population density x0, the time average of the population density xn is eventually less
than the average of the carrying capacities, i.e.,

lim
n→∞

1
n

n−1∑
i=0

xi <
1
p

p−1∑
i=0

Ki. (2.89)

Relation (2.89) gives a justification for the use of the word “attenuance” to describe the
phenomenon in which a periodically fluctuation carrying capacity of the Beverton-Holt equation
has a deleterious effect on the population. This conjecture was first proved by Elaydi and Sacker
in [28, 29, 31] and independently by Kon [42], Kocic [41] and Stevo [75].

Kocic [41], however gave the most elegant proof for the presence of attenuance. Utilizing
effectively the Jensen’s inequality, he was able to give a more general result.

If the growth rates and the competition parameters of Eq. (2.85) are periodic then the phe-
nomenon is drastically different. For instance, consider that the following parameters generate
the equation given in (2.85).

i Ki Li ai bi ci di

0 1 2 3 3 0.5 0.5
1 6/17 12/17 4 4 0.6 0.5
2 2 3.9 2 2 0.5 0.5
3 4/11 8/11 5 5 0.6 0.5

With these parameters we have a 4−periodic difference equation. In the following table are
presented the values of the 4−periodic cycle and the respective positive fixed point for each
individual map.

i xi yi x∗i y∗i
0 0.26274 0.766905 8/15 28/15
1 0.412911 1.25544 0.219067 0.669371
2 0.248592 0.757648 1/15 58/15
3 0.378458 1.23583 0.259409 0.694847

sum 1.302701 4.015823 1.078476 7.0975513

In this situation we have av(x) > av(x∗) and av(y) < av(y∗), i.e, the cycle is R/A.
If, however, we permute the values of the carrying capacities in i = 0 and i = 2 and keep the

rest of the parameters we obtain the following values.

i xi yi x∗i y∗i
0 0.321055 0.717422 28/15 8/15
1 0.641935 0.829271 0.219067 0.669371
2 0.326427 0.666201 58/15 1/15
3 0.558419 0.941821 0.259409 0.694847

sum 1.847836 3.154715 6.21181 1.964218

Under this scenario we have A/R since av(x) < av(x∗) and av(y) > av(y∗). This is precisely the
opposite of the previous case.
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This is an expected scenario because in the case of the periodic Beverton-Holt equation
(2.87) in which both parameters µn and Kn are periodic of common period p, Eq. (2.87) may be
attenuant or resonant. In fact, when p = 2, Elaydi and Sacker [29] showed that

x = K + σ
K0 − K1

2
− ∆(µ0 − 1)(µ1 − 1)

2(µ0µ1 − 1)
(K0 − K1)2 (2.90)

where
x =

x0 + x1

2
and K =

K0 + K1

2
,

σ =
µ1 − µ0

µ0µ1 − 1
, 0 ≤ |σ| < 1,

and

∆ =
µ0(µ2

1 − 1)K0 + µ1(µ2
0 − 1)K1

µ0(µ1 − 1)2K2
0 + (µ0 − 1)(µ1 − 1)(µ0µ1 + 1)K0K1 + µ1(µ0 − 1)2K2

1

> 0.

It follows that attenuance is present if either (µ1 − µ0)(K0 − K1) < 0 (out of phase) or the
algebraic sum of the last two terms in Eq. (2.90) is negative. On the other hand, resonance is
present if the algebraic sum of the last two terms in Eq. (2.90) is positive.

Notice that if µ0 = µ1 = µ with p = 2, then we have

1
p

p−1∑
i=0

xi =
1
p

p−1∑
i=0

Ki −
µ(K0 + K1)(K1 − K0)2

2
[
µK2

0 + (µ2 + 1)K0K1 + µK2
1

] ,
which gives an exact expression for the difference in the averages.



Chapter 3

The Allee effect

In the last decade, there has been a renewed interest in a biological phenomenon called the
Allee effect. A biology book [11], published recently, which is solely dedicated to the study of
this phenomenon and hundreds of papers dealing with the Allee effect were cited in this book.
Surprisingly, the literature on mathematical modelling of the Allee effect is lagging behind.
Some of the relevant work may be found in Yakubu [78, 79], Jang [38, 74], Li, Song, and Wang
[45], Elaydi and Sacker [67], Allen, Fagan, Hognas, and Fagerholm [3], Schreiber [69], Dennis
[23], Cushing [19, 20], Anazawa [7], Eskola and Parvinen [32], Fowler and Ruxton [33] and
Henson [36]

But what is the Allee effect? The Allee effect is a phenomenon in population dynamics
attributed to the biologist Wander Claude Allee [1, 2]. Allee proposed that the per capita
birth rate declines at low density or population sizes. In the languages of dynamical systems
or difference equations, a map representing the Allee effect must have tree fixed points, an
asymptotically stable zero fixed point, a small unstable fixed point, called the threshold point,
and a bigger positive fixed point, called the carrying capacity, that is asymptotically stable at
least for smaller values of the parameters.

Our main interest in this chapter is to study nonautonomous periodic difference equations/discrete
dynamical systems in which the maps of the system are “Allee maps”. Such systems model pop-
ulation with fluctuating habitat and they are commonly called periodically forced systems.

In [50] we develop the theory in population dynamics. A new class of maps called unimodal
Allee maps is introduced. The properties and stability of the three fixed points are studied in
the setting of nonautonomous periodic dynamical systems or difference equations. Finally the
bifurcation of periodic systems/difference equations when the system consists of two unimodal
Allee maps is investigated.

In [49, 51, 58] we formulate a mathematical models based on Marx theory of economics.
The profit rate r is considered as a function of both the exploitation rate e and the organic
composition of the capital k . This model possesses the Allee effect, in which the profit rate
declines to zero if it falls below a certain threshold. It is represented by the difference equation
rn+1 = fa(rn), which is a family of unimodal maps depending on the parameter a, where a
measures the relative growth of the exploitation rate when the profit rate is zero. Moreover,
the model predicts a period-doubling bifurcation scenario as the parameter a increases. Finally,
we allow the parameter a to fluctuate periodically, which leads to a periodic nonautonomous
difference equations.

95
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3.1 Population dynamics

3.1.1 Preliminaries
We start this subsection by the definition of unimodal Allee map.

Definition 53 Let I = [0, b] ⊂ R+. A continuous function f : I → I is called an Allee map if
the following conditions hold:

• f (0) = 0;

• there are positive points A f and K f such that f (x) < x for x ∈
(
0, A f

) ∪ (
K f , b

)
and

f (x) > x for x ∈
(
A f ,K f

)
.

If, in addition, the map is unimodal, then it is called an unimodal Allee map. Explicitly, we
require the following:

• f (b) = 0 when b is finite or lim
x→+∞

f (x) = 0 otherwise;

• there exists a unique critical point C f of f , where f (x) is strictly increasing on [0,C f )
and strictly decreasing on (C f , b) (or (C f ,+∞) when b = +∞).

Fig. 3.1 depicts a prototype of unimodal Allee maps.
From Definition 53, it follows that A f and K f are positive fixed points. We call the smaller

positive fixed point the threshold point A f of the map f , and the greater positive fixed point K f

the carrying capacity of the map f . It is easy to verify that x∗ = 0 is an attracting fixed point
and

[0, A f ) ∪
(∼
A f , b

)
⊂ B f (0) ,

where B f (0) is the basin of attraction of zero and
∼
A f = f −1(A f ), i.e. f

(∼
A f

)
= A f , with

∼
A f > K f .

Note that the threshold point A f is always repelling while the carrying capacity K f may be (or
not) stable.

We now define a unimodal Allee map f by using two maps, a left map fl and a right map fr.
Thus we have

f (x) =
{

fl (x) if 0 ≤ x ≤ A f

fr (x) if A f < x ≤ b . (3.1)

It follows that f (0) = fl(0) = fr(b) = 0 (or lim
x→∞

fr (x) = 0). Since f is continuous in R+, it

follows that f
(
A f

)
= fl

(
A f

)
= fr

(
A f

)
= A f and f

(
K f

)
= fr

(
K f

)
= K f .

To facilitate our study we introduce two zones, the threshold zone and the carrying capacity
zone.

Definition 54 1. The square that contains the origin and the points
(
A f , 0

)
,
(
0, A f

)
and(

A f , A f

)
will be called the threshold zone.

2. The rectangle that contains the points
(
A f , A f

)
,
(
A f , f

(
C f

))
,
(∼
A f , A f

)
and

(∼
A f , f

(
C f

))
will be called the carrying capacity zone.
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Figure 3.1: An instance of one unimodal Allee map f .

Let F = { f , g} be a periodic system formed by two unimodal Allee maps such that

f (x) > g (x) for all x on (0, b).

Hence, if f and g are two maps in F , then we have

0 < A f < Ag < Kg < K f .

Henceforth we assume that the right end point b of I is fixed for all the unimodal Allee maps.
The composition map f ◦ g may be written as follows

f ◦ g =
{

f (gl (x)) if 0 ≤ x ≤ Ag

f (gr (x)) if Ag < x ≤ b . (3.2)

The first branch of (3.2) may be written as

f (gl(x)) =
{

fl (gl (x)) if 0 ≤ g1 (x) ≤ A f ∧ 0 ≤ x ≤ Ag

fr (gl (x)) if A f ≤ g1 (x) < b ∧ 0 ≤ x ≤ Ag
.

Hence

f (gl(x)) =
{

fl (gl (x)) if 0 ≤ x ≤ A−f
fr (gl (x)) if A−f < x ≤ Ag

, (3.3)

where A−f represents the left preimage of A f under the map g, i.e., g
(
A−f

)
= A f , or equivalently

fl

(
gl

(
A−f

))
= fr

(
gl

(
A−f

))
= f

(
A f

)
= A f .

The second branch of (3.2) may be written as

f (gr(X)) =
{

fr (gr (x)) if Ag < x < A+f
fl (gr (x)) if A+f ≤ x ≤ b , (3.4)

where A+f represents the right preimage of A f under the map g, i.e., g
(
A+f

)
= A f , or equivalently

fr

(
gr

(
A+f

))
= fl

(
gr

(
A+f

))
= f

(
A f

)
= A f .
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From (3.3) and (3.4) we obtain

f ◦ g =


fl (gl (x)) if 0 ≤ x ≤ A−f
fr (gl (x)) if A−i < x ≤ Ag

fr (gr (x)) if Ag < x < A+f
fl (gl (x)) if A+f ≤ x ≤ b

. (3.5)

Similarly

g ◦ f =


gl ( fl (x)) if 0 ≤ x ≤ A f

gl ( fr (x)) if A f < x < A−g
gr ( fr (x)) if A−g ≤ x ≤ A+g
gl ( fr (x)) if A+g < x ≤ b

, (3.6)

where A−g and A+g represents the left and the right preimages of Ag under the map f , respectively,
that is, f

(
A−g

)
= f

(
A+g

)
= Ag. In other words we have

gl

(
fr

(
A−g

))
= gr

(
fr

(
A−g

))
= g

(
Ag

)
= Ag,

and

gr

(
fr

(
A+g

))
= gl

(
fr

(
A+g

))
= g

(
Ag

)
= Ag.

Fig. 3.2 summarizes the above remarks.

Lemma 55 Let f , g ∈ W. If C f > Ag, where C f is the unique critical point of f and Ag is the
threshold point of g, then f and g, both, are homeomorphisms on

[
0, Ag

]
.

3.1.2 Threshold points of the composition map
In this subsection we prove the existence of the fixed points, called threshold points, of the
composition map. In addition we establish an order relation between these fixed points.

From here until the end of this subsection we assume that A f and Ag are the threshold
points of the unimodal Allee maps f and g, respectively. We also assume that A−f and A−g are,
respectively, the first preimage of A f by the map g and the first preimage of Ag by the map f .

Theorem 56 Let f and g be two unimodal Allee maps such that f (x) > g (x) for all x on (0, b).
Then both f ◦ g and g ◦ f , have threshold points, that we denote by A f g and Ag f , respectively.
Moreover A−f < A f g < Ag and A f < Ag f < A−g .

Proof. Assume that f and g satisfy the hypothesis of the theorem. First let us prove the existence
of A f g and Ag f . We know that gl

(
A f

)
< A f and f is increasing on

[
0, A f

]
. This implies that

fl

(
gl

(
A f

))
< fl

(
A f

)
= A f . On the other hand fr

(
gl

(
Ag

))
= fr

(
Ag

)
> gl

(
Ag

)
= Ag. Hence

the function f ◦ g (x) − x changes sign on (A f , Ag). Then there exits x ∈ (A f , Ag) such that
f ◦ g (x) = x, i.e. A f < A f g < Ag. In the same way we prove that A f < Ag f < Ag.

To proof that A f g ∈ (A−f , Ag) first we will proof that A f g <
[
A f , A−f

]
. Let x ∈

[
A f , A−f

]
. We

know that f ◦ g
(
A f

)
< A f and f ◦ g

(
A−f

)
= A f < A−f . If x ∈ (A f , A−f ) we have that gl (x) < A f

and so fl (gl (x)) < A f < x. Therefore A f g <
[
A f , A−f

]
.



3.1. POPULATION DYNAMICS 99

I

Ag

f gfëg

Af Af
-

Af

Ag

II

f

fëg

g

Af
+

A
�

f

III

Ag

f

g

gëf

Af Ag
-

Af

Ag

IV

f

gëf

g

Ag
+

A
�

g

Figure 3.2: Parts I and II depicts the left and the right preimages of A f under g while parts III and IV depicts the
left and the right preimages of Ag under the map f .

Now let x ∈ (A−f , Ag). By one side we have f ◦ g
(
Ag

)
= f

(
Ag

)
> Ag > x and on the other

side f ◦ g
(
A−f

)
= A f < x, consequently, there exits y ∈ (A−f , Ag) such that f ◦ g (y) = y, that is,

A f g ∈ (A−f , Ag). Following the same reasoning we prove A f < Ag f < A−g .

Next we establish an order relation between these two threshold points of f ◦ g and g ◦ f ,
respectively.

Theorem 57 Let f and g be two unimodal Allee maps such that f (x) > g (x) for all x on
(0, b). Suppose that in the threshold region, i.e., on J =

[
0, Ag

]
, these two maps are convex, f is

increasing and f ′ (x) > g′ (x), ∀x ∈ J. Suppose also that

f ′
(
Ag

)
+ g′

(
Ag

)
≤ f ′

(
A f

)
g′

(
Ag

)
. (3.7)

Then A−g ≤ A−f . Moreover Ag f < A f g.

Proof. By hypothesis we have Ag − A f = ε > 0 and ∀x ∈ J =
[
0, Ag

]
, f (x) − g (x) = δ (x) > 0

such that δ (x) is increasing. We need to prove that the first preimage of A f and Ag, both, satisfy
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the relation A−g ≤ A−f or f −1
(
Ag

)
≤ g−1

(
A f

)
, that is equivalent to proof that

Ag ≤ f ◦ g−1
(
A f

)
. (3.8)

By the Taylor’s series we know that

g−1
(
A f

)
= g−1

(
Ag − ε

)
= g−1

(
Ag

)
− g−1′

(
Ag

)
ε + O

(
ε2

)
= Ag −

ε

g′
(
Ag

) + O
(
ε2

)
.

Substituting the previous relation in (3.8) we get

Ag ≤ f

Ag −
ε

g′
(
Ag

) + O
(
ε2

) .
Again by Taylor’s series we have that

Ag = f
(
Ag

)
−

f ′
(
Ag

)
g′

(
Ag

)ε + O
(
ε2

)
,

that is
f ′

(
Ag

)
g′

(
Ag

)ε ≤ f
(
Ag

)
− Ag + O

(
ε2

)
.

Once that f
(
Ag

)
− Ag = f

(
Ag

)
− g

(
Ag

)
= δ we get

f ′
(
Ag

)
g′

(
Ag

)ε ≤ δ + O
(
ε2

)
≈ δ. (3.9)

So relation (3.8) is equivalent to relation (3.9).

the map f is convex and therefore f ′
(
A f

)
<

f(Ag)− f(A f )
Ag−A f

= f ′ (M) < f ′
(
Ag

)
, where M ∈]

A f , Ag

[
. So f ′ (M) = f(Ag)−Ag+Ag−A f

ε
, and therefore f ′ (M) = δ+ε

ε
. By hypothesis we have

f ′
(
Ag

)
+ g′

(
Ag

)
≤ f ′

(
A f

)
g′

(
Ag

)
, that is equivalent to

f ′
(
Ag

)
g′

(
Ag

) + 1 ≤ f ′
(
A f

)
.

But f ′
(
A f

)
< f ′ (M) and so

f ′
(
Ag

)
g′

(
Ag

) + 1 ≤ f ′ (M) =
δ + ε

ε
.
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Multiplying by ε both of the members of the last relation we get

f ′
(
Ag

)
g′

(
Ag

)ε ≤ δ,
which is equivalent to relation (3.9), and so this part of the theorem is proved.

From Theorem 56 and by the fact that A−g ≤ A−f it follows Ag f < A f g.

Hypothesis (3.7) requires that f and g stay sufficiently far apart to avoid the collapse of the
interval where belong the threshold points of f ◦ g and g ◦ f .

3.1.3 The carrying capacity of the composition map
In this subsection we study the existence, the location and the properties of the carrying capacity
of the composition map.

Note that if f and g are two unimodal Allee maps such that f (x) > g (x) for all x on (0, b),
then the critical points of f ◦ g are the solutions of the equation f ′ (g(x)) g′(x) = 0. This implies
that Cg is a critical point of both g and f ◦ g. The equation f ′ (g(x)) = 0 has a solution if and
only if the equation g(x) = C f has a solution. Thus either g−1(C f ) = ∅ or g−1(C f ) consists of
two points one on the left side of Cg and the other on the right side of Cg. Let us represent these
points by C−f g (resp. C+f g), the critical point of the composition map f ◦ g on the left (resp. on
the right) side of Cg.

So if C−f g and C+f g exists then the composition map f ◦ g has four intervals of monotonicity
(otherwise f ◦ g has two intervals of monotonicity). Explicitly, f ◦ g is strictly increasing on[
0,C−f g

]∪ [
Cg,C+f g

]
and is strictly decreasing on

[
C−f g,Cg

]∪ [
C+f g, b

]
. The same analysis can be

made for the map g ◦ f .
Note that the threshold point of the composition map f ◦ g (resp. g ◦ f ) belongs always to

the first interval where the composition map is increasing.
Recall from the previous subsections that K f and Kg are the carrying capacities of f and g,

respectively, and A+f (resp. A+g ) the right positive preimage of A f (resp. Ag) under the map g
(resp. f ).

Theorem 58 Let f and g be two unimodal Allee maps such that f (x) > g (x) for all x on (0, b).
Then both f ◦g and g◦ f , have carrying capacities, that we denote by K f g and Kg f , respectively.
Moreover Kg < K f g < A+f and A−g < Kg f < A+g .

Proof. It is clear that 0 < A f < Ag < Kg < K f , A+f > K f and A−g < Ag < Kg < A+g .

We can see that f ◦ g
(
Kg

)
= f

(
Kg

)
> g

(
Kg

)
= Kg and f ◦ g

(
A+f

)
= f

(
A f

)
= A f < A+f .

Therefore the map f ◦ g (x) − x changes sign on (Kg, A+f ). Hence there exists x ∈ (Kg, A+f ) such
that f ◦ g (x) = x.

Note that C+f g < A+f . To see this fact suppose by contradiction that C+f g ≥ A+f or equivalently
g−1(C f ) ≥ g−1(A f ). We know that C+f g, A

+
f > Cg and g is decreasing on (Cg, b). Consequently,

applying g in both sides of the last inequality we get C f ≤ A f that is impossible. Similarly we
prove C+g f < A+g .

Since C+f g < A+f the carrying capacity of f ◦ g, K f g, is the greater root of f ◦ g (x) = x on

(Kg, A+f ). We also can see that g ◦ f
(
A+g

)
= g

(
Ag

)
< A+g and g ◦ f

(
A−g

)
= Ag > A−g . So the

map g ◦ f (x) − x changes sign on (A−g , A
+
g ) and therefore there exists Kg f ∈ (A−g , A

+
g ) such that

g ◦ f
(
Kg f

)
= Kg f since C+g f < A+g .
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Remark 59 Let f and g be two unimodal Allee maps such that f (x) > g (x) for all x on (0, b).
If f ◦g

(
Cg

)
> Cg (resp. g◦ f

(
C f

)
> C f ) then the map f ◦g (resp. g◦ f ) has exactly two positive

fixed points, the threshold point and the carrying capacity.

Corollary 60 Let f and g be two unimodal Allee maps such that f (x) > g (x) for all x on (0, b).
If Cg,C f > K f then f ◦ g (x) > g ◦ f (x), ∀x ∈

[
Kg,K f

]
. Moreover, Kg < Kg f < K f g < K f .

Proof. If Cg,C f > K f we have that f and g are increasing on
[
Kg,K f

]
. The composition of

increasing maps is an increasing map. The interval
[
Kg,K f

]
is invariant under composition

because f ◦ g
(
Kg

)
> Kg, f ◦ g

(
K f

)
< K f and g ◦ f

(
K f

)
< K f , g ◦ f

(
Kg

)
> Kg. So the map

f ◦ g(x) − x (resp. g ◦ f (x) − x) changes sign on
[
Kg,K f

]
. We know that f

(
Kg

)
> Kg and

therefore g ◦ f
(
Kg

)
< f

(
Kg

)
= f ◦ g

(
Kg

)
(g (x) < x, ∀x > Kg). On other hand we know that

g
(
K f

)
< K f so f ◦ g

(
K f

)
> g

(
K f

)
= g ◦ f

(
K f

)
( f (x) > x, ∀x ∈

]
A f ,K f

[
). Consequently,

f ◦ g (x) > g ◦ f (x), ∀x ∈
[
Kg,K f

]
. Once that f ◦ g(Cg) < Cg (resp. g ◦ f (C f ) < C f ) from

Remark 59 it follows that K f g (resp. Kg f ) is the unique fixed point of f ◦ g (resp. g ◦ f ) on[
Kg,K f

]
. The order relation between K f g and Kg f is an immediate consequence of the order

relation between the composition maps.

It is possible, in certain cases, to establish an order relation between the two carrying ca-
pacities K f g and Kg f of the composition maps f ◦ g and g ◦ f . In particular we are interested
in this order when the fixed points are between the carrying capacities of the individual maps.
The next result provides this information.

Theorem 61 Let f and g be two unimodal Allee maps such that f (x) > g (x) for all x on (0, b).
Suppose that C f < K f , Cg < Kg, f ◦ g

(
K f

)
< K f , f ◦ g

(
C+f g

)
< C+f g, g ◦ f

(
Kg

)
> Kg and

g ◦ f
(
C+g f

)
> C+g f . Let y ∈ J =

[
kg, k f

]
and suppose that g (y) > K−f , ∀y ∈ J, where K−f is the

left preimage of K f by the map f . Then g ◦ f (y) < f ◦ g (y), ∀y ∈ J. Moreover, Kg < Kg f <
K f g < K f .

Proof. Let K−f be the left preimage of K f by the map f , i.e., f
(
K−f

)
= K f . Then A f < K−f < K f .

Note that g is decreasing on J =
[
kg, k f

]
, g (y) < y, ∀y ∈ J and f (y) > y, ∀y ∈ J.

From the hypothesis we have g (y) > K−f and therefore f ◦ g (y) > K f , ∀y ∈ J. On the
other hand f (y) > K f > y > Kg, and then g ◦ f (y) < f (y) < Kg, ∀y ∈ J. Consequently,
g ◦ f (y) < f ◦ g (y), ∀y ∈ J.

From the hypothesis and by Remark 59 the theorem is established.

3.1.4 Stability and bifurcation
Our aim in this subsection is to study, in the parameter space, the stability region and the bifur-
cation curves of a 2−periodic system formed by unimodal Allee maps. Before do that we make
the following observations.

Let F be a set formed by unimodal Allee maps. Hence x∗ = 0 is a fixed point of each
individual map in F and so Φi(x∗) = x∗, for all i ≥ 1. Since this fixed point is asymptotically
stable for each map we have |Φ′i(0)| < 1, for all i ≥ 1 and thus from Remark 12 x∗ = 0 is an
asymptotically stable fixed point of F .
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Now suppose that F is a periodic set formed by unimodal Allee maps such that fi < fi+1,
∀i ∈ {0, 1, ..., p}. The threshold point AΦp of Φp is unstable since the map Φp(x) is increasing on
[0, AΦp] and Φp(x) < x, ∀x ∈ (0, AΦp).

Hence neither the zero fixed point nor the threshold point can contribute to bifurcations,
since the former is always asymptotically stable and the latter is always unstable. Hence bifur-
cation may only occur at the carrying capacity of F .

Now we are going to study the bifurcation of the system W = { f0, f1}, where fi(x) =
aix2(1 − x), i = 0, 1, x ∈ [0, 1] and ai > 0.

For an individual map fi, the dynamics is interesting but predictable. For ai < 4 we have a
globally asymptotically stable zero fixed point and no other fixed point. A new unstable fixed
point born at ai = 4 after which fi becomes a unimodal map with an Allee effect.

Since 0 is the only fixed point under the systemW, we focus our attention on 2−periodic
cycles {x0, x1} with f0(x0) = x1, and f1(x1) = x0.

To determine the two main types of bifurcation, we solve the equations{
x0 = f1 ( f0 (x0))
f ′1 ( f0 (x0)) f ′0 (x0) = 1 (3.10)

and {
x0 = f1 ( f0 (x0))
f ′1 ( f0 (x0)) f ′0 (x0) = −1 . (3.11)

Eliminating1 the variable x0 in both systems, Eq. (3.10) yields

16777216 + 16384a0a1 − 576000a2
0a1 + 84375a3

0a1 − 576000a0a2
1 + 914a2

0a2
1 −

350a3
0a2

1 + 84375a0a3
1 − 350a2

0a3
1 + 19827a3

0a3
1 − 2916a4

0a3
1 − 2916a3

0a4
1 + 432a4

0a4
1 = 0,

while Eq. 3.11 yields

108 − 120000a0a1 − 2998800a2
0a1 + 453789a3

0a1 − 2998800a0a2
1 − 4598a2

0a2
1 +

2702a3
0a2

1 + 453789a0a3
1 + 2702a2

0a3
1 + 89765a3

0a3
1 − 13500a4

0a3
1 − 13500a3

0a4
1 + 2000a4

0a4
1 = 0.

For each one of these two equations we invoke the implicit function theorem to plot, in the
(a0, a1)−plane, the bifurcation curves (see Fig. 3.3).

The black curves are the solution of the former equation at which saddle-node bifurcation
occurs, while the grey curves are the solution of the latter equation at which period-doubling
bifurcations occurs. In the singular point of the black cusp we have a pitchfork bifurcation. For
more details about this kind of bifurcation in 2−periodic one-dimensional (logistic) systems we
cite a recent work done by E. D’Anniello and H. Oliveira [21].

In the regions identified by letters one can conclude the following.

• If a0, a1 ∈ A then the fixed point x∗ = 0 is globally asymptotically stable.

• If a0, a1 ∈ B\D then there are two 2−periodic cycles, one attracting and one unstable.

• If a0, a1 ∈ D then there are an attracting 2−periodic cycle (from the pitchfork bifurcation)
and two unstable 2−periodic cycles.

1We use the helpful of a computer.
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Figure 3.3: Bifurcations curves for the 2−periodic nonautonomous difference equation with Allee effects xn+1 =

anx2
n(1 − xn), an+2 = an and xn+2 = xn in the (a0, a1)−plane.

• If a0, a1 ∈ (C1 ∪ C2)\(D1 ∪ D2) then there are an attracting 4−periodic cycle (from the
period doubling bifurcation) and two unstable 2−periodic cycles.

• If a0, a1 ∈ D1 ∪ D2 then there are an attracting 2−periodic cycle (from pitchfork bifurca-
tion) and two unstable 2−periodic cycles.

• If a0, a1 ∈ E then there are an attracting 4−periodic cycle (from period doubling bifurca-
tion), and three unstable 2−periodic cycles.

Note that the bifurcation curves for the systemW in Fig. 3.3 are incomplete. If we want to
draw more bifurcation curves in the space of the parameters we must do the same for 4−periodic
cycles, 8−periodic cycles, and so on. Finding the implicit solutions of these new equations in-
volve horrendous computations. The symbolic computations that we used does not produce
answers after certain values of the degree of the polynomial. So, for the systemW, unfortu-
nately we are unable to draw these curves for the 4−periodic cycle.

It should be noted that AlSharawi and Angelos [5] have used similar techniques to investi-
gate the bifurcations of the periodically forced logistic map, and they were able to draw these
curves for the 4−periodic cycles of the 2−periodic system. Moreover, these authors drew the
bifurcation surfaces for the 3−periodic cycle of the 3−periodic system in the three dimensional
space of the parameters.

Finally, we should mention that Grinfeld et al [34] studied the bifurcation in 2−periodic
logistic equations.
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3.2 Economics

3.2.1 Model formulation

Marx defined the “organic composition of capital k” as the ratio of what he called constant
capital to variable capital. It’s important to verify that constant capital is not what we today
call fixed capital, but circulating capital, such as raw materials. Marx’s “variable capital” is
defined as advances to labor, that is, total wage payments, or heuristically, v = wL (where w is
wages and L is labor employed). From the definition we have

k =
c
v
, (3.12)

where c is the constant capital and v is the variable capital.
The profit rate, according to Marx, is defined as

r =
s

v + c
, (3.13)

where r represent the profit, s is the surplus, and v + c are the total advances (constant and
variable). The surplus, s, is the amount of total output produced above total advances, or s =
y− (v + c), where y is the total output. It is important to note that, for Marx, only labor produces
surplus value. Marx called the ratio of surplus to variable capital the “exploitation rate e”, that
is

e =
s
v
, (3.14)

(surplus produced for every dollar/euro spent on labor).
Dividing the numerator and the denominator of (3.13) by v we get the equation

r =
e

1 + k
. (3.15)

To study the profit rate using the discrete dynamical system approach, let rn be the profit
rate at the time unit n. We assume that the exploitation rate and the organic composition of the
capital at time n + 1 depend on the profit rate at time n, that is

en+1 = E (rn) , kn+1 = K (rn) . (3.16)

In this case the profit rate depends also on the profit rate of the previous time unit, that is

rn+1 =
E (rn)

1 + K (rn)
. (3.17)

The specific model that we propose here is based on the following assumptions:

1. We first assume that the economy will not suffer any losses, that is, a negative profit
rate doesn’t occur. In fact, we think that in all of the economic activity there exists a
nonnegative balance (possibly zero) of the profit. On the other hand, the profit rate can’t
be unlimited because that contradicts the fact that the total quantity of “money that exists”
in the planet is finite.
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Figure 3.4: Progress of the exploitation rate.

2. When the profit rate is low, the exploitation rate tends to increase. On the other hand,
when the profit rate is high, the pressure on workers tends to decrease and therefore the
exploitation rate tends to decrease to values near zero. This leads to the equation

Ea (rn) =
arn

1 + r2
n

(3.18)

as a model for the exploitation rate, where a > 0 is constant. Note that the function Ea

has the following properties

Ea (0) = Ea (∞) = 0, E′a (0) = a. (3.19)

Hence a > 0 measures the relative growth of the exploitation rate when the profits are
low.

3. When the profit is low we have a relative amount for investment that decreases as long as
the profit increases. If the economic system has a low profit rate, the tendency will be to
incorporate more capital (invest) and, on the other hand, to decrease the human capital,
through dismissals, which will lead to an increase of the organic composition of the cap-
ital. If the profit rate is very high, the tendency will be to reinvest in the capital: human
capital (technical formation) and constant capital (technological innovation). A model
that describes this reality is given by an incorporation of the capital function depending
on the former profit rate, that is,

Kb,d (rn) =
ern−b

(rn + d)2 , (3.20)

where b, d > 0 are constant. Note that the function Kb,d has the following properties

Kb,d (0) =
1

d2eb > 0,Kb,d (∞) = ∞,K′b,d (0) =
d − 2
d3eb . (3.21)

This means that 1
d2eb gives the initial amount, the organic composition of the capital as

a function of the profit, grows unlimitedly, which isn’t realistic, but it is used to make
the model approachable and d−2

d3eb measures the growth for the organic composition of the
capital when the profits are low.
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Figure 3.5: The progression of the organic composition of the capital in the model (3.20). In the left plot we fix the
parameter b and increase d, while in the right plot we fix d and increase b. In both cases, in general, the behaviour
of the organic composition of the capital is similar. As according b or d increases, for low profits the tendency is
decreases the organic composition of the capital, for high profits, the tendency is increases the organic composition
of the capital.

Using equations (3.18) and (3.20), the model (3.17) for the profit rate becomes

rn+1 =
arn (rn + d)2(

1 + r2
n
) [

(rn + d)2 + ern−b
] . (3.22)

Now we are going to study the effect of varying the parameters b and d on K in equation
(3.20).

When we fix the parameter b and increase d, we observe that the qualitative behavior of the
organic composition of the capital is similar for various values of d. However, the variation of
d leads to a decrease of the organic composition of the capital, when the profit rate is low. This
means that the main impact of the parameter d is on the initial value of the organic composition
of the capital, that is, the initial investment (see the left plot in Fig. 3.5).

On the other hand, when we fix the parameter d and increase b we observe that the graphs
of the corresponding organic composition of the capital in model (3.20) are similar. Moreover,
as the parameter b varies, the organic composition of the capital decreases for low values of
the profits, until it stabilizes during a specific profits period after which it increases as profits
increase. Note that, when the profits are low, this variation of b, leads to a decrease of the initial
amount of the organic composition of the capital (see the right plot in Fig. 3.5).

Hence, for a concrete study we need to choose specific values of b and d. It should be
noted that the essence of our results will not change if one chooses other values of b and d.
Accordingly, we select b = 3 and d = 0.01. Note that, the choice of these two values is
conditioned by the initial amount of the organic composition of the capital.

We rewrite the model (3.22) as

rn+1 =
arn

(
rn +

1
100

)2

(
1 + r2

n
) [(

rn +
1

100

)2
+ ern−3

] = fa (rn) . (3.23)

We observe that the function fa (r) is continuous, for all a > 0 and r ∈ [0,+∞). Moreover,
fa (r) ≥ 0, fa (0) = fa (∞) = 0. The function f ′a (r) is also continuous and has only one root for
all r ≥ 0. Therefore fa (r) attains its maximum at the positive critical point c ≈ 1.10042 and
thus has an upper limit. Furthermore, f ′a (0) = pa, where p ≈ 0.00200453. Thus, the origin is a
locally asymptotically stable fixed point if a < 1

p and unstable if a > 1
p . When a = 1

p we have
f ′′a (0) ≈ 397.202 and consequently the origin is unstable .
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3.2.2 Existence of positive fixed points and their stability
In this subsection we investigate the existence of positive fixed points of the model (3.23) and
their stability, if they exist.

Theorem 62 For the model (3.23), there are two positive fixed points if a > ac where ac ≈
1.64271, a unique positive fixed point if a = ac and no positive fixed points if a < ac.

Proof. To find the positive fixed point of (3.23) we consider the equation

a
(
r + 1

100

)2

(
1 + r2) [(r + 1

100

)2
+ er−3

] = 1, (3.24)

or, equivalently,

ln
(
1 + r2

)
+ ln

(r + 1
100

)2

+ er−3

 − 2 ln
(
r +

1
100

)
= ln a. (3.25)

Let g (r) = ln
(
1 + r2

)
+ ln

((
r + 1

100

)2
+ er−3

)
− 2 ln

(
r + 1

100

)
. We have

g′ (r) =
2r

1 + r2 −
2

r + 1
100

+
2
(
r + 1

100

)
+ er−3(

r + 1
100

)2
+ er−3

. (3.26)

Solving g′ (r) = 0, we have a unique positive critical point rc ≈ 0.478625 of g (r).
Observe that g (r) > 0 for all r ≥ 0. Moreover, for a ≈ 1.64271, we have the following

results:

1. when g (rc) = ln a, Eq. (3.25) has a unique positive solution;

2. if g (rc) < ln a, there exists two positive solution of (3.25);

3. if g (rc) > ln a, Eq. (3.25) has no positive solutions.

Fig. 3.6 exhibits these observations.

Remark 63 If r1 and r2 are two positive fixed points of (3.23) such that r1 < r2, then r1 < rc < r2

and g′ (r1) < g′ (rc) < g′ (r2), with g′ (rc) = 0. When a > ac this kind of maps exhibits the Allee
effect.

To investigate the stability of the positive fixed points for the model (3.23), if they exist, we
observe that

f ′a (r) =
a
(
r + 1

100

)
(
1 + r2) (er−3 +

(
1

100 + r
)2
)

−r
(
r +

1
100

)  er−3 + 2
(

1
100 + r

)(
er−3 +

(
1

100 + r
)2
) + 2r

1 + r2

 + 3r +
1

100

 .
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Figure 3.6: Zero, one and two positive fixed points for the profit rate when a is respectively, less than ac, equal ac

and greater than ac, where ac ≈ 1.64271.

From (3.24) we know that, if r is a positive fixed point, then it satisfies

a
(
r + 1

100

)2

1 + r2 =

(
r +

1
100

)2

+ er−3. (3.27)

So it follows that

f ′a (r) = 1 − r
 2r
1 + r2 −

2
r + 1

100

+
1 + r2

a

 2
r + 1

100

− 1
 + 1

 = 1 − rg′ (r) . (3.28)

Therefore r is locally asymptotic stable if

0 < rg′ (r) < 2 (3.29)

and is unstable if
rg′ (r) < 0 or rg′ (r) > 2. (3.30)

To study the stability of each positive fixed point, if they exist, we consider the following two
cases:

1. Suppose that the model (3.23) has only one positive fixed point r = rc. Then from (3.28)
we have f ′a (rc) = 1. Since f ′′a (rc) ≈ −2.36074 , 0 it follows by Theorem 17 that r = rc

is unstable. More precisely, r = rc is semi-stable from the right side, if the initial value
r0 ∈ ]rc, r3[, where fa (r3) = r1 and r3 > c where c is the critical point of fa determined
in section 3.2.1 and r = rc is unstable if the initial value r0 ∈ ]0, rc[

∪
]r3,∞[ (see Figure

3.7).

2. Let us now assume that there are two positive fixed points for the profit rate r1 and r2

such that r1 < r2. It follows from remark 63 that r1g′ (r1) < 0 and therefore r1 is always
unstable (note that r1 ∈ ]0, rc[). For r2 we know that g′ (r2) > 0, and therefore r2g′ (r2) > 0.
We have two situations:
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Figure 3.7: Stability of the unique positive fixed point. In the first case r = rc is semi-stable on the right side and
unstable on the left side (rc ≈ 0.478625). In the second case r = rc is always unstable.
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Figure 3.8: Stability of the two positive fixed points. In the first case the 1st positive fixed point is unstable and the
2nd positive fixed point is locally asymptotic stable. In the second case the 2nd positive fixed point is unstable (the
1st positive fixed point is not visible because it is small, but it exists).

• 0 < r2g′ (r2) < 2 if and only if r2 ∈ ]rc, rs[, where rs ≈ 3.3976 and consequently r2

is locally asymptotic stable,

• r2g′ (r2) > 2 if and only if r2 ∈ ]rs,+∞[ and therefore r2 is unstable.

In Fig. 3.8 we illustrate these ideas.
The following theorem summarizes the above discussion.

Theorem 64 Consider rc and ac in the same conditions of the proof of Theorem 62. For a = ac

there exists a unique positive unstable fixed point r = rc. For a > ac there exists two positive
fixed points r1 and r2 such that r1 < r2, where r1 is always unstable and r2 is locally asymptotic
stable if r2 ∈ ]rc, rs[, and is unstable if r2 ∈ ]rs,+∞[, where rs ≈ 3.3976.

3.2.3 Chaos in the profit rate
In this subsection we use the notions of Liapunov exponents and topological entropy to establish
the existence of chaos in the profit rate for certain values of the parameter a.



3.2. ECONOMICS 111

When we increase the parameter a, the model (3.23) exhibits a typical period-doubling
bifurcation.

For values 0 < a < 12.5, the model (3.23) has a stable positive equilibrium point. The
profit rate tends to approach the bigger positive equilibrium point. When 12.5 < a < 17.09957,
we have a two-cycle. As the parameter a increases we have more cycles of the profit rate with
period-doubling scenario 4, 8, 16, .... In particular, for a = 21.94, we have a stable period-five
orbit. The stable period-three window happens for values 23.082565 < a < 23.217854.(This
means that we have a triennial repetition of the profit rate.) This depicts the behavior of a typical
unimodal map satisfying the Sharkovsky ordering [70].

A Liapunov exponent is a mathematical indicator of the exponential degree of the velocity
according to which two arbitrary nearby orbits grow further apart as the number of iterations
increases. We can define it as follows.

Definition 65 The Liapunov exponent λ (r0) for a point r0 is given by

λ (r0) = lim
n→+∞

sup
1
n

n−1∑
k=0

ln | f
′

a (rk) |, (3.31)

where rk = f k
a (r0).

In practice, to calculate experimentally the value of the Liapunov exponent we can use the
formula

λ (r0) = lim
n→+∞

1
n

n−1∑
k=0

ln | f
′

a (rk) |, (3.32)

that is equivalent to

λ (r0) = ln lim
n→+∞

n
√
| ( f n

a (r0)
)′ |. (3.33)

If the absolute value of f
′
a (rk) is greater than one, then the Liapunov exponent is positive,

which implies that the system possesses sensitive dependence on initial conditions [26, page
130].

In Fig. 3.9 we can see the progression of the Liapunov exponent of the function fa when
varying a. We observe that if a is less than ≈ 18.245 the system has no sensitive dependence
on initial profit rates. However, when a exceeds ≈ 18.245, the system starts to posses sensitive
dependence on initial profit rates and we enter in the chaotic region.

Another mathematical invariant which detect the existence of chaos is topological entropy.
To introduce this concept we will use kneading theory [54]. For this, which is a typical proce-
dure, we define the growth number s for unimodal maps.

Definition 66 The lap number, l
(
f n
a
)
, is the number of maximal intervals of monotonicity of f n

a
( f n

a is piecewise-monotone). The growth number s is defined as

s ( fa) = lim
n→+∞

(
l
(
f n
a
)) 1

n . (3.34)

When the growth of the laps is small (polynomial with the number of iterates) we do not
have chaos, but when the growth of the lap number is exponential we have chaos. This happens
when the growth number is greater than 1. When the growth number is equal to 1, we can have
(or not) chaos, but this invariant does not give us a precise answer.

To calculate the topological entropy, we define the parity function for the turning point.
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Figure 3.9: The Liapunov exponent λ of the function fa under the parameter a applied to the profit rate.

Definition 67 The parity function for the turning point c is given by

ε (x) =


1 if x < c
0 if x = c
−1 if x > c

. (3.35)

We now give a few classical results in this issue.

Theorem 68 [54]

1. The kneading determinant is a formal power series in t given by

Z (t, a) = 1 +
∞∑

n=1

 n∏
j=1

ε
(
f n
a (c)

)
tn

 . (3.36)

2. In the case of periodic orbits of c, Z (t, a) is a polynomial of degree (n − 1). The inverse
of the smallest root of Z (t, a) in [0, 1] is the growth number of fa, usually denoted by s.

3. The topological entropy ht is given by the relation ht = log2 (s).

Our function has two intervals of monotonicity, that is, fa increases in ]0, c[ and it decreases
in ]c,+∞[. When a = 25 we have that, the first terms of the kneading determinant are

1 − t − t2 − t3 + t4 − t5 + t6 − t7 + t8 − t9 + t10 − t11 + . . . .

The smallest real root of this determinant belonging in the interval [0, 1] is approximately equal
to 0.562781. The topological entropy therefore is given by

ht = log2

(
0.562781−1

)
0.83064.
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Figure 3.10: Progress of the topological entropy ht for the model (3.23). According the growth of the parameter a
the topological entropy ht increases for values near 1.

In Fig. 3.10 we can see the evolution of the topological entropy values for the profit rate.

The fact that the topological entropy increases and is greater than zero (in addition to the
fact that the Liapunov exponent is positive) means that the dynamical system becomes more
complex as the parameter a increases. For values of a > 18.245, the model exhibits chaos,
which may be seen in the bifurcation diagram. One can see clearly in this diagram an aperiodic
band. From the economic point of view this situation would also result in a huge complexity
and instability of the system. This happens when the exploitation rate is very high and the profit
rate is very low.

In this model, trying to compensate for low profits at the expense of high exploitation rate
leads inevitably to instability and chaos, both from the mathematical point of view and from
the common sense point of view (economic chaos). For values of a > 18.245 our model can be
unrealistic in the short term, because in those circumstances, after a high profit, we will have a
low profit. This variation of the profit rate can be explained by some extraordinary factors that
happen in an economy as a whole, like wars, natural catastrophes, pressures of various agents,
etc. If it were possible to introduce an exploitation rate so high that we would be led to this
situation, that would mean that the system would react by presenting a reasonable profit rate
from five to five or three to three units of time (values of a close to 21.94, in the first case, and
23.1 in the second case).

Hence, in order to maintain the stability of the system, the exploitation rate must be kept
below a certain threshold value for which a = 12.5.
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Figure 3.11: The stability region of the 2-periodic cycle for the nonautonomous 2-periodic system in the (a0, a1)-
plane.

3.2.4 Periodic fluctuation in seasons

So far, we have limited our analysis to the autonomous case in which the parameter a is assumed
to be independent of time. This means we have assumed that the exploitation rate E, when the
profit rate is close to zero, is fixed for all seasons.

It is, however, possible to assume that a varies with varying seasons. In this scenario, a
depends on seasons. This will lead to assuming that a = an, n = 0, 1, 2, . . ., and an is periodic of
minimal period p. Under this assumption we have the nonautonomous periodic equation

xn+1 = fn (xn) , n ∈ Z+, (3.37)

where fn+p = fn, ∀n ∈ Z+.
In this subsection we focus our attention on the case when p = 2, that is, we have only two

maps { f0, f1}.
Let us consider an economic system modeled by Eq. (3.23). We assume that the unit of

time between iterations is six months. For instance, the initial condition x0 will be taken in the
1st of January, x1 will be taken in the 1st of July and so on. Model (3.23) may be written as

xn+1 = ag (xn) .

Now, suppose that due to political decisions, i.e., periodic variation of taxes, or the intrinsic
nature of the economic model, the behavior of the economy is different in the first half of the
year from the second half of the year. In this case we will have a periodic model with period 2
where the model changes every six months. This leads to the nonautonomous 2-periodic system

xn+1 = fn (xn) , with f0 = a0g, f1 = a1g, (3.38)
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where f2n+1 = f1 and f2n = f0, n ∈ Z+ and a0 will be used for the first half of the year and a1

for the second half. Since a0 = a1 reduces Eq. (3.38) to the autonomous case, we assume that
a0 , a1. Observe that a0 < a1 and a0 > a1 exhibit the same dynamics.

The 2-periodic solution of the difference equation (3.23) is given by

x0 = f1 ( f0 (x0)) .

This equation is equivalent to
x0 = a1g (a0g (x0)) . (3.39)

Rewriting Eq. (3.39) we have

G (a0, a1, x0) = a1g (a0g (x0)) − x0 = 0. (3.40)

We find numerically the solutions of Eq. (3.40). The existence of these solutions is guar-
anteed by the Implicit Function Theorem. In Fig. 3.11 we represent in the (a0, a1)-plane the
region of stability of the 2−periodic cycle of the nonautonomous system (3.38). The black re-
gion represents the zone of the atractivity of the zero fixed point while the grey region is the
zone in the parameter space where the 2−periodic cycle is asymptotically stable.

Hence, if a0 and a1 are in the black region then model (3.40) exhibits null profit. If however,
these parameters are in the grey region, model (3.40) has stable double variation in the profit.

One of the most interesting problems is to determine whether periodic fluctuations in a
dynamical system produces boom or bust in the profit rate. In other words, we would like to
know the impact of introducing artificial or natural oscillations in the model and whether this
periodical forcing has a deleterious or a booming effect on the system.

We are now going to give precise definitions for boom and bust in the profit rate. Let

Cp =
{
x0, x1, ..., xp−1

}
be a p−periodic cycle of Eq. (3.37) and let Kp =

{
K0,K1, ...,Kp−1

}
be the carrying capacities

(rightmost fixed points) of the individual maps fn, n = 0, 1, 2, . . . , p − 1, respectively. Let

av
(
Cp

)
=

1
p

p−1∑
i=0

xi and av
(
Kp

)
=

1
p

p−1∑
i=0

Ki,

where av (.) denotes the average function.

Definition 69 Eq. (3.37) is said to be

1. bust if av
(
Cp

)
< av

(
Kp

)
;

2. boom if av
(
Cp

)
> av

(
Kp

)
;

3. indolent if av
(
Cp

)
= av

(
Kp

)
.

Notice that if the system is bust, then periodic forcing of a system has a deleterious effect
on the profit rate, while if the system is boom, periodic forcing leads to a booming effect on the
profit rate.
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Figure 3.12: The booming function as a function of the parameter a for different values of the parameter ε.

In our model we must compare the average of the periodic orbit and the average of the
carrying capacities, that is,

av (C2) =
x0 + x1

2
and av (K2) =

K0 + K1

2
.

Since the explicit computation of these averages are prohibitively difficult, we will estimate
them numerically.

Using Mathematica software with working precision 10−15, we computed the fixed points
of f0 = ag, and f1 = (a + ε)g and the fixed points of the two compositions f0 ◦ f1 and f1 ◦ f0.
Surprisingly, both boom and bust occur for values of a, a ∈ [2.0, 3.3] and with b = a+ε. In Fig.
3.12, with different values of ε, we see the graph of the booming function B (a), as a function
of the parameter a

B (a) = av (C2) (a) − av (K2) (a) =
x0 (a) + x1 (a)

2
− K0 (a) + K1 (a)

2
,

The function B (a) is positive when we have boom and negative when we have bust. In our
system both cases occur. The zeros of the booming function are the indolent points.

The presence of both bust and boom in our model has been rarely observed in the literature.
It is one of the main characteristics of our model.

3.2.5 Kondratiev waves in the profit rate
If the time unit is long (a decade, a quarter of century, etc), model (3.23) exhibits economic
cycles that are similar to the Kondratiev waves [43].

According to George Modelski [55], “Kondratiev waves may be defined as a pattern of
regularity characteristic of structural change in the modern world economy in which a cycle is
about 50 years long. It consists of an alternation of periods of high growth with others, start-up
periods of slower growth. The study of this pattern helps to trace the evolution of the global
economy, and aids in politic and economic prediction”.

A Kondratiev wave consists of four distinct phases, dramatic mood changes, which one
determines the actions of individuals involved in the economy. The awareness of these charac-
teristics allows for the anticipation of the change in the economy and the psychological mood
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Figure 3.13: Illustration taken from “http://www.thelongwaveanalyst.ca” that shows the KondratieffWave periods
along with US stocks market, US prices and T-Bond rates.

that will prevail. Some analysts compared these four distinct phases in the Kondratiev waves to
the seasons: spring (inflationary growth, expansion), summer (stagflation, recession), autumn
(deflationary growth, plateau) and winter (depression), that changes each fifty years. In Fig.
3.13 is presented a schema of the four Kondratieff waves in the US.

For example, when a = 1.35 model (3.23) exhibits the same characteristics as those of the
Kondratiev waves (Fig. 3.14). However the Autumn’s situation does not permit us to infer any
conclusions, because we have first a decline in the profit rate and after that an accelerated growth
until the beginning of the winter. This situation is not similar to the Kondratiev waves because
there, after the first decline, is a moderate growth rate and then a slow decline until the winter.
We believe that this situation in our model is caused by the fact that when the exploitation rate
grows, it has a strong influence on the profit rate. That leads to an abrupt variation in the autumn.
But this last scenario, in a half of century, represents at least, two or three years. Therefore the
system (3.23) will adjust itself in the long term.

3.2.6 Discussion

The problem of the decrease of the profit rate with time has been the subject of numerous
discussions in the last 150 years.

In this study, we use the equation that arises from economics theory, to develop a dynamical
system model describing the evolution of the profit rate. This model is a one-dimensional uni-
modal discrete system which provides a relationship between the profit rate at two consecutive
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Figure 3.14: For a = 1.35 model (3.23) can be interpreted as the Kondratiev waves. The progression of the profit
rate can be viewed in four seasons that repeat each five decades.

cycles.
When the system does not react desperately to low profits in the previous cycle, increasing

the exploitation rate in these circumstances forces the system to approach an equilibrium profit
value. This equilibrium value doesn’t vary much, with the variation of the exploitation rate as
a response to a null profit. Such conclusion contradicts Marx hypothesis of the decrease of the
profit rate in time.

When the exploitation rate at null profit exceeds a critical value (in our case a > 12.5),
we have a bifurcation, and the system starts to exhibit a cyclic oscillation between two profit
rate values. As the parameter a increases, we obtain a period-doubling bifurcation cascade.
For certain values of a, the Liapunov exponents, computed numerically (Eq. (3.32)), become
positive, indicating the presence of chaos and unstable orbits. When the exploitation rate with
at null profit rate, is too high, the system starts to exhibit again stable orbits of odd periods
(periods three and five, etc.).

In this economic model we saw that boom in the profit rate is more predominant than bust
in the profit rate. From the economic point of view, this means that the periodic fluctuation of
the exploitation rate when the profit are low has, in general, a booming effect on the profit rate.
Hence, it is generally beneficial for an enterprise micro or macro to vary the exploitation rate.

Finally, if the scale is a decade, it is very interesting to observe that, our unimodal model
permit to adjust the long term cycles in economy.



Chapter 4

Future work

In writing this thesis, we recognized that these are still many open problems and conjectures
that need to be tackled. We list them here, not in chronological order, as part of this thesis to
formalize our future research plans.

• We would like to extend some topological notions such as topological entropies and Ly-
punov exponents to the setting of skew-product discrete dynamical systems. The objec-
tive here is to use this scheme to investigate nonautonomous systems, particularly periodic
difference equations.

• The question of when local stability implies global stability has been addressed success-
fully in one dimension (see P. Cull [12, 13, 14, 15] and E. Liz [47]). It would be interesting
to extend these results to higher-dimensional maps.

• We would like to extend the theory of bifurcation to periodic discrete systems (p-periodic
difference equations). In particular, we will apply these results to study the bifurcation of
p-periodic competition models.

• For larger values of the parameters, the autonomous logistic competition model and the
autonomous Ricker competition model exhibit what looks like strange attractors. We
would like to delve deeper into this phenomenon in future work (see Figures 4.1 and 4.2).

• The question of attenuance and resonance in higher dimensional nonautonomous systems
is still unresolved and only partial results have been obtained. In our future works, we
would like to revisit this question in two-dimensional competition models.

• Systems with Allee effects have been investigated in one-dimensional maps. We plan to
investigate the stability and bifurcation of higher dimensional systems with Allee effects.
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Figure 4.1: The presence of strange attractors in the autonomous Ricker competition model when a = b = 0.5. In
plot on the left K = 3.2 and L = 3.1 while in plot on the right K = 3.2 and L = 3.5.
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Figure 4.2: The presence of strange attractors in the autonomous logistic competition model when a = 4.3 and
b = 3.9. In plot on the left c = 0.6 and d = 0.2 while in plot on the right c = 0.4 and d = 0.5.



Appendix A

Local stability implies global stability of
the one-dimensional autonomous Ricker
map

One of the biological models widely used (see for example [53, 56, 63]) is the autonomous
Ricker map given by

xn+1 = xnep−xn , p > 0, xn > 0, n ∈ Z+. (A.1)

It is well known that 0 < p ≤ 2 is the necessary condition for local stability of the unique
positive fixed point x∗ = p.

Let us write Eq. (A.1) as xn+1 = Rp(xn), n ∈ Z+, where Rp(x) = xep−x. First we assume that
0 < p < 2. Notice that R′p(x) = (1− x)ep−x. Hence the maximum value of Rp(x) occurs at xc = 1
and is equal to ep−1. Moreover, R′p(x) = 1 has the unique solution xw = 1 − Lw(e1−p), where
Lw(x) is the Lambert-W function. Since e1−p ≤ e, 0 < Lw(e1−p) < Lw(e) = 1. This implies that
0 < xw < 1.

The function R′p(x) is decreasing on (0, 2) and increasing on (2,∞). Furthermore, |R′p(2)| =
| − ep−2| < 1 for 0 < p < 2. Moreover, lim

x→∞
R′p(x) = 0. Hence, |R′p(x)| < 1 for all x ∈ (xw,∞).

Since the fixed point x∗ = p is locally stable, there is an open interval (p− δ, p+ δ) in which
|R′p(x)| < 1. It follows that xw < p.

Claim that the interval J = [xw, x̃w] is an invariant set, where x̃w = max{R−1
p (xw)}. To show

this we first notice that Rp(xw) < Rp(1) = ep−1. Next we will show that x̃w > Rp(1). For
0 < p ≤ 1, it is clear that x̃w > 1 > ep−1. Consider now that 1 < p < 2. Let h(p) = Rp(ep−1).
Then h(p) = e2p−1−ep−1

and h′(p) = (2 − ep−1)e2p−1−ep−1
. Moreover, h′(p) > 0 if 1 < p < 1 + ln 2,

h′(p) < 0 if p > 1 + ln 2, and h′(p) = 0 if p = 1 + ln 2. Since h(1) = 1, h(p) > 1 for
p ∈ (1, 1 + ln 2) and reaches it maximum value h(1 + ln 2) = 4e−1, after which it decreases
to the minimum value h(2) = e3−e > 1. Since Rp is decreasing monotonically on (1,∞) and
Rp(ep−1) > 1 > Rp(x̃w) = xw, it follows that ep−1 < x̃w.

Let δ be sufficiently small such that zw = xw + δ < 1 and z̃w = max{R−1
p (zw)} > ep−1. Then

the set [zw, z̃w] is invariant and |R′p(x)| ≤ M < 1, for all x ∈ [zw, z̃w]. Moreover, Rp(zw) < Rp(1) =
ep−1 < z̃w. It follows that the interval [zw, z̃w] is in basin of attraction of the fixed point x∗ = p.
It is clear that, after one iteration, all points in the interval (z̃w,∞) will be in (0, zw). Moreover,
all points in (0, zw) will eventually be in [zw, z̃w] after a sufficient number of iterations. Hence
x∗ = p is globally asymptotically stable on (0,∞) if 0 < p < 2.

When p = 2, R′p(2) = −1, R′′p (2) = 0 and R′′′p (2) = e−1. Hence the schwarzian derivative
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S Rp(2) = −e−1 and thus by Theorem 19, x∗ = 2 is locally asymptotically stable with a basin of
attraction that contains an interval (2 − ϵ, 2 + ϵ) for some small ϵ > 0. The previous argument
will be applied on the set [zw, z̃w]\(2 − ϵ, 2 + ϵ) to show that in this case (p = 2), x∗ = 2 is also
globally asymptotically stable.

We now summarize these ideas:

Theorem 70 In the autonomous Ricker map Rp(x) = xep−x, the fixed point x∗ = p is globally
asymptotically stable on (0,∞) for 0 < p ≤ 2.
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