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Abstract 

 

This thesis presents a JML-based strategy that incorporates formal specifications into the 

software development process of object-oriented programs. The strategy evolves functional 

requirements into a “semi-formal” requirements form, and then expressing them as JML 

formal specifications. The strategy is implemented as a formal-specification pseudo-phase that 

runs in parallel with the other phase of software development. What makes our strategy 

different from other software development strategies used in literature is the particular use of 

JML specifications we make all along the way from requirements to validation-and-verification. 



ii 

 

 

Keywords  

Software Development 

Software Correctness 

Formal Methods 

Design by Contract 

Java Modelling Language (JML) 

JML-based Strategy 

Informal Functional Requirements 

Semi-Formal Functional Requirements 

Invariants 

Formal Specifications 

Abstract Variables 

Java 

 



iii 

 

 

Acknowledgments 

 

First of all, I would like to thank Professor Néstor Cataño, my thesis advisor, without 

whose guidance I would surely have been lost. I’m grateful for his patience, support and 

specially his enthusiasm on this work. I’m also grateful for the documents he provided to me 

and his knowledge, as well as his advice on formal methods and the Java Modelling Language. 

I would like also to thank Ricardo Rodrigues, my master's mate, for his collaboration on 

this thesis and being by my side while we worked together. His work helped to validate the 

work proposed in this thesis, and in some aspects had a strong influence in its precise 

definition. Our two thesis works complement each other. I’m grateful for his support in those 

hard times we had while working. 

Finally, I give many thanks to my family and friends who gave me support and strength by 

being on my side each day. Words are not enough to express all my gratitude. 



iv 

 

 

Contents 

 

1. Introduction .......................................................................................................................... 1 

2. Preliminaries.......................................................................................................................... 2 

2.1. Software Correctness .................................................................................................... 2 

2.1.1. Design by Contract ................................................................................................ 3 

2.2. Formal Methods in the Software Development Process ............................................ 10 

3. The Java Modelling Language (JML).................................................................................... 13 

3.1. The JML Specifications ................................................................................................ 13 

3.1.1. JML Expressions................................................................................................... 14 

3.2. Abstract Variables ....................................................................................................... 16 

3.2.1. JML Abstract Data Types ..................................................................................... 17 

3.3. The JML Common Tools .............................................................................................. 18 

4. Related Work....................................................................................................................... 18 

4.1. Formal Methods Strategies for Software Development Processes ............................ 18 

4.2. SOFL............................................................................................................................. 19 

4.3. ConGu.......................................................................................................................... 21 

5. The JML-based Strategy for Software Development of Java Programs.............................. 22 

5.1. Requirements Analysis ................................................................................................ 24 

5.2. From Informal Functional Requirements to Semi-Formal Specifications ................... 25 

5.2.1. Semi-Formal Functional Requirements............................................................... 26 

5.2.2. Class Invariants.................................................................................................... 27 

5.2.3. System Invariants ................................................................................................ 27 

5.3. Design.......................................................................................................................... 28 

5.4. Implementation........................................................................................................... 29 

5.4.1. Writing JML Abstract Variables ........................................................................... 30 

5.4.2. Writing JML Class Invariants................................................................................ 31 

5.4.3. Writing JML Method Functional Specifications................................................... 32 

5.4.4. Coding the applications....................................................................................... 33 

5.5. Validation and Verification.......................................................................................... 33 

6. A Running Example.............................................................................................................. 34 

6.1. Introduction of an Application to be Formally Developed..............Erro! Marcador não 

definido. 



v 

 

6.1.1. The HealthCard Application .................................... Erro! Marcador não definido. 

6.1.2. HealthCard Formal Development ....................................................................... 35 

6.1.3. HealthCard System Architecture......................................................................... 36 

6.2. Smart cards and Java Card .......................................................................................... 38 

6.2.1. Elements of a Java Card Application ................................................................... 38 

6.2.2. Accessing the Smart Card (Communication in Java Card)................................... 40 

6.2.3. Java Card Remote Method Invocation (JCRMI)................................................... 41 

6.3. JML-based Formal Development of the HealthCard................................................... 43 

6.3.1. Getting the Informal Requirements .................................................................... 43 

6.3.2. Getting the Semi-Formal Functional Requirements ........................................... 44 

6.3.3. Getting the Class and System Invariants ............................................................. 45 

6.3.4. Design and Implementation................................................................................ 45 

6.3.5. JML Formal Specification Pseudo-Phase ............................................................. 46 

7. Conclusion ........................................................................................................................... 47 

Bibliography ................................................................................................................................ 51 

List of Figures .............................................................................................................................. 54 

List of Code.................................................................................................................................. 54 

List of Tables................................................................................................................................ 54 

 



vi 

 

 



1 

 

1. Introduction 

Although software engineering methods provide a disciplined approach to software 

development, it is still quite common to find flawed software systems. An approach to tackle 

the problem of constructing correct programs is through the use of mathematical formalisms 

and mathematically based tools as part of software engineering practices. Formal 

specifications allow the capture of requirements unambiguously as part of a software 

engineering methodology. A formal specification can be used to generate a collection of 

documents describing the expected behaviour of a system. This documentation can be used to 

resolve any differences regarding the expected behaviour of the system between members of 

the quality assurance team, the programmers and the client. An interesting effort towards the 

development and use of tools based on a common specification language is JML (short for Java 

Modelling Language), which is the standard language for formally specifying the behaviour of 

Java classes. The JML is a tool that provides support to B. Meyer’s design by contract 

principles. (Leavens G. , 2008) (Leavens & Cheon, 2006) (Meyer, 1997) JML makes possible to 

use run-time and static checkers for checking program correctness.  

In this thesis we propose a software development strategy in the style of Bertrand Meyer’s 

design-by-contract principles, which makes use of JML specifications for writing contracts (see 

Section 3). JML (Leavens) is used as the formal specification language for writing specifications 

to support the correct implementation of Java programs. Our strategy consists in evolving 

informal functional software requirements (written in English) into formal specifications, 

through an intermediate stage in which semi-formal requirements are written, i.e., 

requirements written in English but in a more mathematical style. The informal functional 

requirements are suggested by the client (or stakeholders). Often these requirements are 

ambiguous, inconsistent and incomplete, due to the use of natural language. Our strategy 

involves the transformation of informal functional requirements into semi-formal 

requirements so as to provide functional requirements a structure. Having semi-formal 

functional requirements is halfway to obtain formal specifications. Hence, the client is not only 

capable of following and supporting the software development process, but also the obtained 

formal specifications can be used by the software development team to solve differences. For 

the transformation process between informal functional requirements and formal 

specifications, we propose to write the informal functional requirements as semi-formal 

functional requirements of the form if <event/condition> then <restriction/rule>, or as 

semiformal class and system invariants respectively specifications imposing system/class 

properties restrictions in small and large scale. Later, these semi-formal requirements are to 

be ported into JML method specifications, and JML class invariants respectively. These JML 

specifications are written within the Java implementation of the application. Some of the 

benefits of using JML specifications in software development process are inherent 

documentation aspect of JML specifications, and the existence of tools that make the 

specifications executable or allow making runtime assertion checks of the JML specifications 

against their respective implementation code. With JML as a tool for code documentation, one 

can apply the principles of design by contract while programming the client 

applications/classes that will request services on the supplier side (JML specified classes and 

methods). That is, by having the supplier applications specified with JML, one has to respect 

the conditions when coding a call for a supplier method. This code programming style helps 

the reduction of redundant code, like unnecessary data validations. By using JML specifications 

on the supplier side, one specifies the conditions of a method and invariants, so there is no 

need for validating code of the passing arguments or another conditions validation because it 
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becomes the responsibility of the client applications to make validations. Therefore, we can 

have a lightweight supplier application/class.  

The structure of this document is as it follows. First, in Section 2, we describe the 

preliminaries of this work, i.e., we describe the background of software correctness, design by 

contract and the usage of formal methods in software development processes. In Section 3, 

we give an overview of JML, presenting some specification expressions and the notion of 

abstract variables. Further, in Section 4 we present some related work, including types of 

strategies for incorporating formal specifications into the software development process. In 

Section 5, we present our proposed strategy of incorporating formal methods into software 

development processes, including a description for each phase of the development process. 

Section 6 shows an example of development of a Smart Card application using our strategy. 

The application was originally written by Ricardo Rodrigues as part of his Master thesis work 

(Rodrigues, 2009) 

 

 

2. Preliminaries 

In this section we present topics on the software correctness and formal methods in 

software development processes. The topics described here provide the minimal background 

that is needed to understand the matter of the thesis. The introduction of a strategy for 

incorporating formal specifications into the software development process is the key aspect of 

in this thesis. Section 2.1 presents software correctness, including the Design by Contract 

design methodology, which is the basis of the strategy, and next we focus on the use of formal 

methods in the development process.  

2.1. Software Correctness 

To determine if a software program is correct, first we must specify what the software is 

intended to do. We can’t check correctness of a software program in isolation, but only with 

respect to some specification. Even an incorrect program can perform some processing 

correctly, although it could be a different processing to the one the developers (or clients) 

have in mind. Obtaining the requirement specifications is vital as first step in the process of 

developing a correct software system. (Priestley) To help us assess the correctness of a 

software program we can express these requirement specifications through the use of 

assertions. To prove the correctness of a software program’s routine body or instruction, these 

assertions must be checked against it. This proof can be explained here by a correctness 

formula (also called Hoare triples) as an expression of the form denoting the following 

property (Meyer, 1997) Notice that this formula is a mathematical notation, not a 

programming construct. It serves only to explain how we can prove the software correctness 

of a program’s routine: 

{P} A {Q} 

• Where, A is some operation (for example, an instruction or a routine body); and 

• P  is an assertion called precondition; and 

• Q is an assertion called postcondition. 

 

The formula shown above denotes that A as an operation which requires P to assure Q, 

where this must hold to A be correct. The general meaning of a total correctness formula is: - 
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“Any execution of A, starting in a state where P holds, will terminate in a state where Q holds.” 

(Meyer, 1997) 

As an example, let’s use a mathematical expression. Considering x as an integer value, the 

arithmetic operation x := x + 2, the precondition {x >= 5} and the postcondition {x >= 6}, we 

have the correctness expression: 

{x >= 5} x := x + 2  {x >= 6} 

 

Assuming a correct implementation of the integer arithmetic operation, the above 

expression holds: – if x >= 5 is true when calling the instruction x := x + 2, then x>= 6 will be 

true afterwards. And of course, if the precondition were false, then the integer arithmetic 

operation couldn’t assure nothing, i.e., the postcondition would be neither true nor false. 

However, now assuming an incorrect implementation of the above correctly specified 

expression (i.e. assuming that the instruction violates its specification), if the precondition is 

true and the postcondition is false, then we could conclude that the integer arithmetic 

operation was wrongly implemented according to what is specified, i.e., the tester would know 

that something was wrong with the implementation against the specifications. These 

preconditions and postconditions can be strengthen or weaken. 

• Stronger preconditions are better: If we have a strong precondition, that means 

that the routine must handle a limited set of cases, making easier the routine’s 

job. However, a weaker precondition makes the routine’s job harder, as it has to 

consider several cases not specified by the precondition. A false precondition is 

the strongest possible assertion, since it’s never satisfied by any state.  By this, 

any request to execute the routine will be incorrect, as the fault is of the client 

(i.e., obviously he will never satisfy the preconditions). Whatever the routine’s 

result, it may be useless, but it will be always correct, as it is consistent with the 

specifications. (Meyer, 1997) However, the least restrictive precondition is the 

weakest precondition. 

 

• Weaker postconditions are better: In postconditions, the situation is reversed. 

A strong postcondition means that a harder job by the routine must be made to 

assure all the postconditions. By this, the routine’s result has to respect a bigger 

set of conditions. However, the weaker a postcondition is the better for the 

routine’s job, which means that its result will be satisfied by more states. 

Asserting a postcondition as true is the weakest possible assertion, because it is 

satisfied by all states. (Meyer, 1997)  

 

The design by contract is a software correctness methodology that has its roots in Hoare 

logic.  Like the Hoare triples formula: {P} A {Q} , the design by contract has the concept of 

preconditions {P} and postconditions {Q} to document the change in state caused by a piece 

of a program A. These pre- and postconditions are used to strengthen the conditions of a 

contract between a caller and a supplied routine. (Meyer, 1997) Further, in Section 3, it is 

presented the Java Modelling Language (JML) which is a design by contract tool. In JML, the 

Hoare logic is applied through the use of requires (precondition - {P}) and ensures 

(postcondition - {Q}) expressions that specifies some Java method’s body behaviour (A). 

2.1.1. Design by Contract 

The essence of the design by contract methodology is that a contract exists between a 

routine class (supplier of certain services) and its callers (clients of those services). Some 
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documents refer the routine classes (serving some services to others) as suppliers, server or 

server side, while callers can be referred as clients or client side. The design by contract makes 

the Hoare logic (see beginning of the Section 2.1), a vital component in a program 

development strengthening the notion of contract. Like in the Hoare logic, in design by 

contract we may specify the routine task’s contract with two associated assertions: - 

precondition and a postcondition. The precondition defines the properties that must hold 

whenever the routine is called and the postcondition defines the expected return properties. 

These two assertions are a way to define a contract between the routine and its callers. 

(Meyer, 1997) The design by contract, as a tool for a software development process can lead 

to the construction of more reliable object-oriented systems, provides a mechanism through 

assertions for checking the conformance of the code against its specification. (Meyer, 1997) 

Before discussing further the design by contract we’ll show below an example of pseudo-

specification of a contract. Let’s supposed we have a Medicines class for managing a list of 

medicines. In the following Code 1 we are presented with a Medicines operation specified with 

pseudo-specification that demonstrates how assertions are used in practice for describing a 

contract for a routine (Eiffel Software). Here, preconditions and postconditions are 

represented respectively by require and ensure keywords. (Meyer, 1997) In JML, these two 

keywords are actually requires and ensures, with “s”. 

 

class MEDICINES create 

    make 

feature 

    quantity: INTEGER 

    name_length: INTEGER is 20 

... 

    addMedicine (medicine: STRING) is 

            -- Adds a medicine into the list of medicines. 

       require 

            medicine.length <= name_length 

 do 

  insert(medicine) 

       ensure 

            quantity = old(quantity) + 1 

end 

… 

end -- class MEDICINES 

 

 

Code 1. Example of a Medicines class specified with pseudo-specification 

In the example above, the precondition states that a client who calls the addMedicine 

routine must assure that the medicine’s name length must be lesser or equal to the constant 

value of name_length which is 20. The postcondition states that the post-state of the method 

must verify that the quantity is updated and higher by 1 than the old medicine quantity. Note 

that when we say “client”, it refers to a routine that calls another, that is, the contract 

between a client and a supplier is made by a communication of software-software. (Meyer, 

1997) In a contract, both clients and suppliers have obligations and benefits.  
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2.1.1.1. Obligations and Benefits 

The precondition is related to the client in a way that it defines the conditions under which 

is legitimate for the client to call a method, i.e., it’s an obligation for the client and a benefit for 

that supplier (server). The postcondition is related to the class, which defines the conditions 

that must be ensured by the class routine on return, i.e., it’s a benefit for the client and an 

obligation for the supplier. That is, from the previous statements we can say that the benefits 

are, for the client, the guarantee that he will get what he expects after the call, and for the 

supplier, the guarantee that certain assumptions will be satisfied when the routine is called, 

while the obligations are, for the client, to satisfy the requirements as defined by the 

precondition, and for the supplier, to produce results as defined in the postcondition. (Meyer, 

1997) The following example taken from (Tucker & Noonan, 2001) shows how design by 

contract plays out for a factorial computation in respect for client/suppliers’ benefits and 

obligations. 

 
Table 1. A design by contract example (Tucker & Noonan, 2001) 

 Obligations Benefits 

Client 
(Satisfy precondition :) 

Pass  

(From postcondition :) 

Receive  computed 

Supplier 
(Satisfy postcondition :) 

Compute  

(From precondition :) 

Can assume that  

 

 

When an assertion fails, we can assign blame to the party that did not fulfil its 

responsibilities: if the precondition is violated then the supplier won’t be benefited and the 

client is to blame, and if the postcondition is violated then the client won’t be benefited and 

the routine implementation is to blame. (Meyer, 1997) In any of these cases, part of the 

contract won’t be fulfilled.  

 

Following these obligations and benefits’ convention a developer can simplify its 

programming style while developing an application. Having specified preconditions that clients 

must respect when calling a routine, the developers may assume when writing the routine’s 

body that the preconditions are satisfied, i.e., the developer do not need to validate them in 

the routine’s body. It helps to clear redundancy in the code as under no circumstances shall 

the body of a routine ever test for the routine’s precondition. This is called the principle of 

non-redundancy. (Meyer, 1997) By this principle, we add the responsibility of validating the 

preconditions to the client, reducing the code on the supplier side (server side). For instances, 

in the previous Table 1, the routine computing the factorial has a precondition that specifies n 

as a positive value or equal to zero, so in its body we haven’t to validate if n is respecting that 

condition.  

2.1.1.2. Clearing redundancy 

By following the non-redundancy principle we are clearing out the redundancy in our code. 

One of the main advantages of clearing redundancy is that it reduces considerably the quantity 

of lines of code when programming, and thus its complexity. Having been specified as 

preconditions, the constraints that must be respected for calling a routine, we may assume 

that those constraints are satisfied when writing the routine body, and also we do not need to 

test them in the body. (Meyer, 1997) So if a factorial computation meant to produce a positive 

integer as result, is of the form seen in Code 2: 
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fact(n: INTEGER): INTEGER is 

   Factorial of n 

 require 

   
do … end 

 

Code 2. Pre-condition example for a factorial computation (Tucker & Noonan, 2001) (1997) 

We may write the “do … end” algorithm for computing the factorial without concerning 

whether  is negative or not. This concern is taken care by the precondition which becomes 

the clients’ responsibility. (Meyer, 1997) If the “do” clause was on the form as seen in Code 3: 

 

if  then 

“Handle this erroneous case!” 

else 

“Proceed with normal factorial computation” 

end 

 

Code 3. A redundant test () 

Then the test “ ” is not just unnecessary but unacceptable, because it violates the 

non-redundancy principle. This is a characteristic of the defensive programming in which it 

states that to obtain reliable software one should design every component of a system to 

protect itself as much as possible. The defensive programming technique is advocated by many 

software engineering books, but this technique causes redundancy in the code when following 

the design by contract methodology. The more redundant checks added to a software 

application, more complexity to the software will be added. This may cause problems to obtain 

reliability
1
 and may imply a performance penalty. (Meyer, 1997) By applying the principle of 

non-redundancy, we are light weighting the supplier operations. In case of an application 

developed in Java Card, to be supported by smart cards, this may be a benefit for memory 

saving on the card side, due its limited small capacity (see Section 6.2 for a description on 

smart cards and Java Card). When an external client makes a remote call on the card, it is 

assumed that the preconditions of remote methods in the card side are valid. These 

preconditions validations are made in the client side, so there is no need of validations in the 

card side. 

The notion of a contract in design by contract can be extended down to the 

method/procedure level besides the concepts of preconditions and postconditions. A contract 

can also be strengthened by concepts like invariants, inheritance and exceptions. 

2.1.1.3. Invariants 

Besides having preconditions and postconditions, we can have invariants to express global 

properties of routine’s contracts between suppliers and clients. Preconditions and 

postconditions only describe properties of single routines. There is a necessity of expressing 

global properties of instances of a class, which must be preserved by all routines. We may 

                                                           
1
 Reliability is the ability of a system or component to perform its required functions under stated 

conditions for a specified period of time. 
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consider an invariant as being an extension for both preconditions and postconditions of every 

class’s routines. (Meyer, 1997)  For instance, let A be a certain body of a routine (the set of 

instructions in its do clause), P is precondition, Q its postcondition and INV the routine’s class 

invariant. The correctness requirement on A may be expressed by using the notation 

introduced earlier in this section as:  

{INV and P} A {INV and Q} 

The expression above means that:  – “any execution of A, started in any state in which INV 

and P both hold, will terminate in a state in which both INV and Q hold”. (Meyer, 1997) Here 

adding the invariant makes both the precondition and the postcondition stronger or equal, i.e., 

the invariant could either reinforce the conditions or could have no effect on them (redundant 

conditions). So when implementing the routine’s body A, the invariant INV makes the job 

easier in addition to the precondition P due to the assumption that the initial state satisfies 

INV, further restricting the set of cases that must be handled by the precondition specification. 

However, in addition to the postcondition Q which A must ensure, the routine’s body must 

also ensure that the final state satisfies INV, making the implementation harder. Considering 

again the earlier Medicines class example and its pseudo-specifications shown in the beginning 

of Section 2.1.1, we demonstrate in Code 4 how we could specify a class invariant. (Eiffel 

Software) 

 

 

class MEDICINES create 

    make 

feature 

    quantity: INTEGER 

    name_length: INTEGER is 20 

    total_medicines: INTEGER is 250 

... 

    addMedicine (medicine: STRING) is 

            -- Adds a medicine into the list of medicines. 

       requires 

            medicine.length <= name_length 

 do 

  insert(medicine) 

       ensures 

            quantity = old(quantity) + 1 

       end 

… 

invariant 

        quantity <=  total_medicines 

end -- class MEDICINES 

 

 

Code 4. Example of a Medicines class implementation with an invariant 

In this example, at Code 4, we can see that a total of medicines variable now exists. It’s an 

integer value of 250. In the example we specified that the quantity must always be lesser than 

or equal to the total of medicines. We specified this as an invariant, therefore all routines of 

the class must preserve it. Before having a specified invariant one could assume that the 

quantity could be any value upper than 250 on any routine of the class, i.e., it didn’t exist a 
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limit to the quantity of medicines. The invariant represents a general consistency constraint 

obligatory for all routines of the class. (Eiffel Software) So to preserve this property defined by 

the invariant, one has to implement the routine’s body in a way to not violate what is stated in 

the invariant clause, in this example, the routine addMedicine must also ensure that the 

variable of quantity must not exceed the value defined by total_medicines.  

So far we used invariants to express global properties of a single class, denominated by 

class invariants, but there is another concept within the invariants known as system invariants 

which describes instance properties that must be preserved by all routines from more than 

one class. For instances, let X and Y be two different classes. An invariant INV would be a 

system invariant if instances from both X and Y are affected by INV. A system invariant is 

basically described like a class invariant and it is specified in a class that has references to X 

and Y objects.  

Besides the earlier Medicines class, let’s supposed that we have an Appointments class to 

manage appointments information. In the following example shown in Code 5, X and Y are 

exemplified respectively by the classes Medicines and Appointments, where Medicines is a 

class that manages Medicine objects and Appointments is a class that manages Appointment 

objects. The defined invariant is a system invariant because it affects instances of these two 

different classes. The invariant basically states that for every Medicine object instances 

obtained through the Medicines instance, their prescription date attribute (i.e., 

meds.getDate(i)) must be higher or equal to the respective Appointment’s date (i.e., 

apps.getDate(k)), obtained through the Appointments instance. This compares the date of the 

medicine’s prescription renewal with the date when the medicine was prescribed for the first 

time. That is, for all Medicine and Appointment instances if a Medicine instance has an 

appointmentID attribute equal to another Appointment instance ID attribute, then that 

Medicine’s date must have a higher or equal value to the that appointment’s date. This 

invariant restricts the value of a medicine’s date making it dependable of the respective 

appointment’s date. 

 

class SERVICES create 

    make 

feature 

    meds: MEDICINES 

    apps: APPOINTMENTS 

... 

invariant 

   forall( int i; i < meds.getMedicines().length && i >= 0; 

               forall( int k; k < apps.getAppointments().length && k >= 0; 

                             meds.getAppointmentID(i) == apps.getID(k) 

                             ==> 

                             meds.getDate(i) >= apps.getDate(k)  )) 

 

end -- class SERVICES 

 

Code 5. Example of a Services class referencing Medicines and Appointments classes with a system invariant 

Another concept that extends the notion to contracts, at a lower level, within the design by 

contract is the inheritance.  The preconditions, postconditions and even invariants can be also 

inherited. 
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2.1.1.4. Inheritance 

The concept of inheritance allied with the notion of contracts from design by contract 

brings us to a new level, as contracts can also be inherited by subclasses in terms of object-

oriented programming. A routine’s precondition and postcondition are inherited by their 

redefinitions in sub-classes as well as super-class invariants. This is actually the case in JML 

specifications (see Section 3) which can also be inherited. Although inheritance is one of the 

pillars of the object oriented paradigm flexibility, many programmers have the difficulty in use 

it correctly. (Júnior, Figuereido, & Guerrero, 2005) Through the inheritance mechanism one 

can create new classes from those already existent, and the behaviour from their routines 

doesn’t necessarily have to be maintained by their sub-classes. It is possible to redefine the 

routines with a partial behaviour or even a complete distinct one. However, from these 

possibilities and the use of design by contract methods one could redefine a routine that 

produces an incompatible effect to the described routine’s behaviour specification (contract) 

in the super-class. (Júnior, Figuereido, & Guerrero, 2005) This incompatible redefinition is a 

problem connected with the bad use of the inheritance, which design by contract helps to 

avoid in a way that we can redefine those routines as longs as they respect the established 

original contract defined in the respective inherited routines from the super-classes. (Júnior, 

Figuereido, & Guerrero, 2005) 

For instance, let X and X1 be two classes where X1 is a sub-class of X, and Y any class 

communicating with an instance of type X. Due to polymorphism, Y can actually be dealing 

with an instance of X1. The developer of Y knows that he must respect the defined contract in 

X, but he doesn’t know of the existence of other classes inheriting X. So, Y could discover only 

in runtime that he is communicating with X1, and the contract of a certain inherited routine of 

X1 could be different from the contract specified in the super-class X. That is, Y could be calling 

for a routine under a certain contract, while in reality is communicating with another 

completely different. In fact there are two things that could make a class deteriorate its super-

class contract specification (Júnior, Figuereido, & Guerrero, 2005): 

1. A sub-class could make its precondition to be more restrictive than the one from the 

super-class, causing the risk of any calls previously considered correct by the client class 

Y’s perspective (in a way that they satisfied the original conditions imposed to the 

client) to become violating the contract’s rules. 

 

2. A sub-class could be making its postconditions to be more permissive, returning a result 

less satisfactory than the promised to Y.  

Under the previous situation the client class Y could get “deceived” by a call that makes 

something unexpected. From this problem, we conclude that every contract specifications 

must be compatible with the original contract specifications, but nevertheless sub-classes have 

the right to improve them, i.e., by making its methods’ postconditions stronger or making its 

methods’ preconditions weaker. Besides the inheritance rules applied to preconditions and 

postconditions, also the inheritance mechanism has effect upon the invariants, in a way that 

these are passed to their inheritors. For instance, an invariant from X also would be inherited 

by X1, and this is the case in JML where invariant specifications written in Java interfaces are 

inherited by the concrete Java classes implementing the interfaces. 

The result of the inheritance concept, in which every instance of a class is also an instance 

of every ascendant class, is also logically valid for the contract specifications defined in the 

super-classes to be applied to their sub-classes. That is, a set of invariants of a certain class is 

the sum of all invariants from the ascendant hierarchy of inheritance. (Júnior, Figuereido, & 

Guerrero, 2005) 
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 Another concept extending the notion of a contract is the treatment of exceptions 

within a contract between a client and a supplier. 

2.3.1.5. Exceptions 

As a routine in design by contract is seen like an implementation of a certain specification 

rather than just a piece of code, and as it is possible for that implementation to fail with 

respect to the specifications in runtime, then one can extend the notion of a contract to the 

exception handling. Besides errors in implementations, exceptions in a routine’s behaviour can 

happen due to unpredictable events like hardware malfunctions or another external event. So, 

in these situations it becomes useful to use exceptional specifications attached to contract 

specifications to describe exceptional behaviours when some strategy for fulfil a contract 

doesn’t succeed. By this definition and the notion of preconditions and postconditions from a 

contract, it is possible to establish the following rule: - A routine must not launch an exception 

when its preconditions is not fulfilled, as it doesn’t denote a failure within the routine but it 

does for the routine’s caller. When the routine fulfils its postconditions it must not launch an 

exception. – This is known as the principle of exception. (Júnior, Figuereido, & Guerrero, 2005) 

As for the global properties from a class, routines and constructors must preserve and 

respect the invariants in both normal and abrupt terminations, that is, invariants are included 

in both normal and exceptional postconditions. (Júnior, Figuereido, & Guerrero, 2005)  

2.2. Formal Methods in the Software Development Process 

A formal software specification is a specification expressed in a language that has its 

semantics and syntax mathematically or logically defined. Based on the definition of 

Sommerville (Sommerville, 2000), the formal methods are a way of employing software 

correctness in software development processes. The need for a formal specification in a 

software development process means that we cannot solely rely in natural language to 

develop a system. The natural language is ambiguous and can lead to inconsistent and 

incomplete specifications. Formal specifications make possible the capture of software 

requirements unambiguously as part of a software engineering methodology. By using formal 

specifications, one might invest more effort in the early phases of software development cycle, 

especially in the requirement analysis phase. Nonetheless, the use of formal specifications 

reduces requirements errors as it forces a detailed analysis of them, and also helps to detect 

and resolve incompleteness and inconsistencies. Hence, the amount of rework due to 

requirements problems is reduced, and thus also the cost related to the implementation and 

validation phases. However, according to Sommerville (Sommerville, 2000), in the software 

engineering, the formal methods are not widely used as software development techniques, 

although their promise to increase the systems quality by supporting their correctly 

development according to the client’s real needs. Eventually other software engineering 

techniques have surpassed the need for formal methods for various reasons that extend from 

the complexity and the incapability of formal methods in dealing with large-scale systems, to 

frequent changes in requirements and designs in practice. (Liu, Takahashi, Hayashi, & 

Nakayama, 2009) Sommerville (Sommerville, 2000) suggests that formal specification 

techniques have not been broadly used in industrial software development environments, 

because: 

  

I. There is a lack of methodologies and tools to support the use of formal methods in 

software development. Barely minimal guidelines are provided on how to elicit and 

structure the requirements into formal notation. Lack of guidance makes it hard to 

developers use formal methods by themselves and from the lack of tools developers 
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have difficulties of applying formal methods into their development cycles, especially to 

develop, analyze and process large-scale specifications using formal specification 

languages. The production of well-defined guiding lines and supporting tools are 

needed. 

 

II. The use of formal methods requires the knowledge of discrete mathematics and 

symbolic logic. Most of the developers (i.e., software engineers, programmers, and 

designers) have not been trained in techniques required to develop formal software 

specifications. Techniques have been tested by Japanese researchers over the last 

fifteen years in formal methods education programs for undergraduate and graduate 

students at universities as well as practitioners at companies. (Liu, Takahashi, Hayashi, 

& Nakayama, 2009) 

 

III. The formal specifications are an inappropriate tool for communications with the end 

user at the later stages of requirements specification. More than the software 

developers, most end users who provide the requirements and approve their 

specifications are neither familiar nor comfortable with the formal specification 

languages. According to Sommerville (Sommerville, 2000), Hall suggests that one can 

paraphrase in natural language the formal specifications or use animated illustrations, 

that is, presenting the formal specifications in a form that can be understood by the 

client. 

 

IV. The use of formal specifications at initial stages may hold back the creative side of 

developers, that is, having a poorly structured problem, the formal representations 

from it may restrain the developers from exploring alternatives. Formal specifications 

may not be an ideal tool for exploring and discovering the problem’s structure. The 

problem may have to be studied and understood before being formalized. 

 

V. The use of formal specifications for development of user interfaces is hard. With the 

current techniques is practically impossible for specifying interactive components of 

user interfaces. Also, some other system components are hard to specify like parallel 

processing systems, such interrupt driven-systems. 

 

VI. Most of software development managers are normally conservative and reluctant in 

using techniques whose benefits are not yet well-known. The recompense by using 

formal methods is not immediate and it is hard to quantify. Nevertheless, Sommerville 

(Sommerville, 2000) concludes that when a conventional software development 

process (i.e., without using formal methods) is used, validation costs are more than 

50% of the whole development costs, and implementation and design costs are the 

double of the specification cost. With the use of formal methods, the specification, 

implementation and design costs are almost equal and validation costs are considerably 

reduced to less than the development costs. 

Knowing these difficulties in the wide acceptance of formal methods in software 

development, one has the challenge to integrate formal methods to the system development 

effort, especially in large-scale development projects. For this, viable strategies for supporting 

the integration of formal method techniques into the software development process are 

paramount important; without existing strategies it may be difficult to integrate formal 

methods into the real-world development project. Our JML-based strategy (described in 

Section 5) is a strong attempt to tackle some of the difficulties of making formal methods 

popular among the developers in the software industry. In the following, we describe how our 

strategy overcomes some of these difficulties. 
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To address the “lack of methodologies and tools to support the use of formal methods in 

software development” difficulty (see point I. – Section 2.2), our strategy provides guidelines 

for iteratively transforming informal functional requirements (given by the stakeholders) into 

formal specifications. By using this specification transformation process we can formally 

develop software applications. In our strategy, the specifications go along three stages: the 

informal, the semi-formal, and the formal ones. The informal specifications are given by the 

stakeholders, and in a middle stage are then structured into the semi-formal ones (see Section 

5.2 for details about the semi-formal specifications creation). The semi-formal specifications 

are still written in natural language like the informal specifications, but mathematically and 

logically structured. They serve as an intermediate step for writing formal specifications. The 

formal specifications are written in JML, and they are produced from the semi-formal 

specifications. From the JML specifications, the Java programs are developed accordingly. Also, 

as the JML uses Java syntax, it is a formal specification language easy to be used by any 

developer with the minimal knowledge about the Java language. There are tools for supporting 

the validation of Java implementations against their respective JML specifications. The most 

popular tools in the field are the JML Common Tools (see Section 3.3). Our JML-based strategy 

provides not only guidance for incorporating formal specifications, but also it benefits from the 

existence of a variety of supporting tools and the usage of a specification language easy to 

understand by any Java developer.  

To address the difficulty of “formal specifications as an inappropriate tool for 

communicating with the end user” (see point III. – Section 2.2), our strategy uses semi-formal 

specifications as a means of communication between formal specifications and end users. That 

is, as the semi-formal specifications are closer to formal specifications than the informal ones, 

yet written in a structured natural language, it becomes easy to communicate with the end 

user about the system specifications through the semi-formal specifications. Our strategy 

recommends structuring the semi-formal specifications in a way like the JML specifications, 

while being written in natural language. For example, the semi-formal specification if 

<event/condition> then <restriction/rule> can be mapped directly to a JML specification 

requires <precondition> ensures <postcondition>, and vice-versa. The following example 

presents this relation between semi-formal and formal specification stages: 

• Semi-formal specification for event addName: 

    IF length of name LESS OR EQUAL TO 50 THEN stored_name EQUALS name. 

• Formal specification (JML) for event addName: 

... 

requires name.length() <= 50; 

... 

ensures stored_name == name; 

...   

 

Where IF ���� requires and THEN ���� ensures. In our strategy, the semi-formal IF statement is 

similar to the requires statement from JML, and the THEN is similar to the ensures from JML.  

As the semi-formal specification, written in natural, can be easily understood by an end user, 

then we can communicate with them the formal specifications. We conclude that our JML-

based strategy provides a first solution for the communication of formal specifications to the 

end-users. 

To address the difficulty of “the use of formal specifications at initial stages may hold back 

the creative side of developers” (see point IV. – Section 2.2), our strategy does not make use 
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of formal specification at the initial stages of a software development process. At the initial 

stage of the software development our strategy recommends producing domain concepts to 

understand the problem. After having domain concepts, one can start writing use cases, and 

then designing informal functional requirements describing the rules. These (unstructured) 

informal specifications are then ported into semi-formal specifications. These semi-formal 

specifications are still in natural language and the developers can still discuss them with the 

stakeholders while giving them enough space for their creative sides. The semi-formal 

specifications can easily be ported into formal specifications just before starting implementing 

the system. To provide support to the creative side in later stages of the development, our 

strategy recommends designing the system using Java interfaces with JML specifications, 

giving the implementation a higher level of abstraction. During implementation, one can 

implement the concrete classes (and their methods) in various ways provided that they 

respect what is specified in the implemented Java interfaces or abstract classes. Furthermore, 

the JML specifications make use of abstract variables declared as JML abstract types. These 

JML abstract variables can abstract a complex data structure, allowing programmers to 

implement those complex data structures as they desire while in concordance with the formal 

specifications (see Section 3.2 for further details about abstract variables and JML abstract 

data types). 

For addressing the difficulty of “the use of formal specifications for development of user 

interfaces is hard” (see point V. – Section 2.2), our strategy makes use of the B. Meyer’s 

Design by Contract principles. As our strategy complies with the design by contract principles, 

we can formally describe the behaviour of components with JML and then when implementing 

a client routine we must respect the contract conditions when programming a call on a 

specified supplier routine. The use of JML supports a style of programming by contract. By 

following our strategy we can end up with components that have formal specifications to 

describe contracts for their methods (JML method functional specifications) or even classes 

(JML invariants). For instance, these components can be user interface components, and as 

they use JML specifications, one can implement a system around them by respecting the 

specifications. That is, all the calls made for the specified components must have to respect 

their contracts. By employing our JML-based strategy it is possible to develop user interfaces 

like any other Java program, as it is possible to describe components behaviours. 

 

3. The Java Modelling Language (JML) 

 
JML is a specification language for Java, which as a tool provides support for B. Meyer’s 

design by contract principles (Meyer, 1992). JML was started by Gary Leavens and his team at 

Iowa State University, but is now an academic community effort with many people involved 

through the development of tools providing support for the language (The ESC/Java 2 Tool; 

The Jack Tool; The Krakatoa Tool; van den Berg & Jacobs, 2001). All the concepts discussed in 

the Design by Contract section (see Section 2.1.1), that is, the notion of contracts along with its 

preconditions and postconditions; and the concepts of invariants, inheritance and exceptions, 

also apply to JML.  

3.1. The JML Specifications 

JML specifications use Java syntax, and are embedded in Java code between special marked 

comments /*@ ... */  or after //@ . A simple JML specification for a Java class consists of 

pre- and postconditions added to its methods, and class invariants restricting the possible 

states of class instances. Specifications for method pre- and postconditions are embedded as 
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comments immediately before method declarations. JML predicates are first-order logic 

predicates formed of side-effect free Java boolean expressions and several specification-only 

JML constructs. Because of this side-effect restriction, Java operators like ++ and --  are not 

allowed in JML specifications. 

  

JML provides notations for forward and backward logical implications, ==> and <==, for 

non-equivalence <=!=> , and for logical or  and logical and , ||  and &&. 

  

The JML notations for the standard universal and existential quantifiers are (\forall T 
x; E)  and (\exists T x; E) , where T x; declares a variable x of type T, and E is the 

expression that must hold for every (some) value of type T. The expressions (\forallT x; 
P; Q)  and (\exists T x; P; Q)  are equivalent to (\forall T x; P ==> Q)  

and (\exists T x; P && Q) , respectively. 

  

The JML numerical quantifier (\num_of T x; P; Q)  returns the number of variables x 

of type T that make both predicates P and Q true; (\max T x; P; E)  returns the 

maximum value of the expression E where its variables satisfy the range P; (\sum T x; P; 
E)  returns the sum of possible values of E where its variables satisfy the range P. 

  

JML provides specifications for several mathematical types such assets, sequences, 

functions and relations. As JML is a tool to employ design by contract methods, there is some 

mechanisms used to support contracts like the specification of method’s preconditions and 

postconditions through the use of respectively the keywords requires  and ensures ; the 

specification of invariants by using the JML keyword invariant ;  the specification of 

exceptional behaviours to describe how to deal with unexpected behaviours; and also the JML 

specifications are inherited by sub-classes, i.e., sub-class objects must satisfy super-class 

invariants, and subclass methods must obey the specifications of all super-class methods that 

they override.  In the following, we briefly review JML specification constructs. A brief 

description of some JML expressions used in specification can be seen in Section 3.1.1, but the 

reader is invited to consult (Leavens G. , 2008) for a full introduction to JML. 

3.1.1. JML Expressions 

 

In this section we present some of the common JML expressions and a simple example 

based on the pop() method of a Stack class.  

Table 2. Some JML expressions 

requires P Specifies a method pre-condition P, which must be true 

when the method is called. Predicate P is a valid JML 

predicate.  

ensures Q Specifies a normal method post-condition Q. It says that if 

the method terminates in a normal state, i.e. without 

throwing an exception, then the predicate Q will hold in that 

state. Predicate Q is a valid JML predicate.  

signals (E e) R  
 

Specifies an exceptional method post-condition R. It says 

that if the method throws an exception e of type E, a 

subtype of java.lang.Exception , then the JML 

predicate R must hold. Predicate R is a valid JML predicate. 

JML allows the use of the alternative clause exsures  for 

signals.  

normal_behavior  Specifies that if the method precondition holds in the pre-
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 state of the method, then it will always terminate in a 

normal state, and the normal post-condition will hold in this 

state.  

exceptional_behavior  
 

Specifies that if the method pre-condition holds in the pre-

state of the method, then it will always terminate in an 

exceptional state, throwing a java.lang.Exception , 

and the corresponding exceptional post-condition will hold 

in this state.  

assignable L  
 

Specifies that the method may only modify location L. Any 

other location not listed in L may therefore not be modified. 

This must be true for both normal and exceptional post-

conditions. Two special assignable specifications exist, 

assignable \nothing , which specifies that the 

method modifies no location, and assignable 
\everything , which specifies that the method may 

modify any location. JML allows the use of the alternative 

clauses modifies and modifiable for assignable.  

\old(e)  
 

Refers to the value of the expression e in the pre-state of a 

method. This specification can only be used in normal or 

exceptional method post-condition specifications.  

\fresh(e)  
 

Says that e is not null and was not allocated in the pre-state 

of the method.  

\result  
 

Represents the value returned by a method. It can only be 

used in a normal or an exceptional method post-condition. 

invariant I  
 

Declares a class invariant I. In JML, class invariants must be 

established by the class constructors, and must hold after 

any public method is called. Invariants can temporally be 

broken inside methods, but must be re-established before 

returning from them.  

 

The following example shows how a JML specification can be used to specify the method 

pop().  

 
public interface Stack { 
//@  public model instance JMLObjectSequence stack;  
 
/*@  public normal_behavior 
@   requires !stack.isEmpty(); 
@   assignable size, stack; 
@   ensures stack.equals(\old(stack.trailer())); 
@   also 
@  public exceptional_behavior 
@   requires stack.isEmpty(); 
@   assignable \nothing; 
@   signals(java.lang.Exception e) true; 
@*/ 
public void pop( ) throws java.lang.Exception; 
} 
 

Code 6. Example of how JML can be used to specify a method 
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In the example shown in Code 6, we can see that method pop() has been given a normal 

and an exceptional behaviour formal specification. For the normal behaviour, the precondition 

is defined by the requires  clause, which states that the stack must not be empty. Then the 

assignable  clause specifies that the size and stack instances may suffer a change, that is, 

only the locations named through the assignable clause, and locations in the data groups 

associated with these locations, can be assigned to during the execution of the method. A JML 

assignable clause can be used in a method contract to specify which parts of the system state 

may change as the result of the method execution. The postcondition in the normal behaviour 

is defined by the ensures  clause, which states that the stack will be equal to a portion of the 

old stack after the execution of pop(). The exceptional behaviour if the stack is empty when 

attempting to call pop() an exception will be thrown. The assignable  clause in this case is 

\nothing  because nothing is changed within pop() and the signals clause specifies a 

condition that will be true when an exception of type java.lang.Exception is thrown.  

3.2. Abstract Variables 
 

To have a higher level of abstraction in specifications, JML provides support for abstract 

variables. These are variables that exist at the level of the specification, but not in the 

implementation. Declarations of abstract variables have the same format as declarations of 

normal variables, but are preceded by the keyword model . As we can’t declare concrete 

variables in interfaces, the abstract variables can be used in interfaces and abstract Java 

classes to describe abstractly the distinct data types used in the application. The abstract 

variables can be used to support the writing of correct code for concrete classes that 

implement the interfaces and the abstract Java classes. In the following Code 7 example we 

demonstrate a declaration of an abstract variable named dosage_model in interface Medicine. 

The abstract variable dosage_model represents the dosage quantity of a medicine. 

 
public interface Medicine { 
... 
//@ public model instance double dosage_model;  
... 
} 
 

Code 7. Example of how JML can declare an abstract variable 

Abstract variables can be related to concrete variables (or other abstract variables) by a 

represents  clause. A represents clause specifies how the value of an abstract variable can 

be calculated from the values of the concrete variables (variables at the implementation level). 

In the following Code 8 example it’s demonstrated how we can relate an abstract variable with 

a concrete expression involving a concrete variable.  

 

 
public class Medicine_Impl implements Medicine {  
... 
public byte[] dosage ; //@ in dosage_model;  
/*@ public represents  
  @  dosage_model <- dosage[0] + dosage[1]*0.1; 
  @*/ 
... 
} 
 

Code 8. Example of how JML abstract variables can be represented by concrete values 
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In the above example, the abstract variable dosage_model  is related with the expression 

“dosage[0] + dosage[1]*0.1 “, which maps the values in the byte array dosage into 

the double value calculated as the sum of the all the values in the array. For specifications 

purpose we can treat the dosage of a medicine like a double value, but in reality it can be 

implemented as an array of primitive bytes. In this case, the use of abstract variables gives a 

level of abstraction that allows us to implement a medicine’s dosage information in different 

ways as long as it respects the specifications.  

Abstract variable specifications for interfaces and for abstract classes do not need to be 

written down again in implementing classes and sub-classes, since JML specifications are 

inherited by sub-classes and by implementing classes. This ensures behavioural sub-typing. 

That is, a sub-class object can always be used where a super-class object is expected. 

Therefore, a sub-class satisfies super-class invariants, and sub-class methods obey the 

specifications of super-class methods. 

For abstracting complex data structures, i.e., modelling complex data structures into 

specifications, there are model data types provided by the JML, also known as JML abstract 

data types. 

3.2.1. JML Abstract Data Types 

The Java Modelling Language (JML) also provides abstract data types from the package 

org.jmlspecs.models  to abstract complex data structures. Based on the description of 

Leavens (Iowa State University, 2002), this package is a collection of types with immutable 

objects. An object is immutable if it has no time-varying state. The types of the immutable 

objects in this package are all pure, meaning that none of their specified methods have any 

user-visible side-effects (although a few inherited from Object do have side effects). Their 

pure  methods are designed for use in JML specifications. When using such methods we have 

to do something with the result returned by the method, as in functional programming. The 

original object's state is never changed by a pure method. For example, to insert an element e, 

into a set s, one might execute s.insert(e), but this does not change the object s in any way, 

instead, it returns a set that contains all the old elements of s as well as e. At first we shouldn't 

worry about the time and space used to make such set, because specifications are not mainly 

designed to be executed. However, there are justifiable reasons to worry about the efficiency 

of executing specifications for testing and debugging purposes.  

In the following list are described some abstract data types that can be used while declaring 

abstract variables in JML specifications. The reader is invited to consult (Iowa State University, 

2002) for a complete description of JML model data types. 

 

JMLObjectSequence – This class defines immutable sequences of objects, including a 

series of pure methods for sequence manipulation. For example, insertFront() , 
insertBack() , itemAt(int i) . This type can be used to declare abstract variables 

to model complex data structures containing objects. 

JMLValueSequence – This class defines immutable sequences of values, and also 

including a series of pure methods for value sequence manipulation. This type can be used 

to declare abstract variables to model complex data structures containing values, such as 

characters of a String or Integer values of an array. 

JMLEqualsSequence – This class is similar to JMLObjectSequence  but has an 

“.equals ” method to compare elements. 



18 

 

JMLType – There are classes which implements JMLType  to reflect Java types like 

JMLByte  to reflect Byte , JMLChar  to reflect characters, JMLFloat  to reflect float  

type, etc. 

By using these data types in the specifications, one can abstract the way programmers can 

represent data structures. For example, an abstract variable of the type 

JMLObjectSequence  abstracts a complex data structure to hold object instances, which 

besides simplifying the JML specifications it also gives the freedom, through their 

representation, of implementing concrete data structures in various ways (object arrays, 

stacks, queues, etc.) as long as the specifications are respected.  

3.3. The JML Common Tools 

The JML common tools (Leavens G. T., 2008) is the most basic suite of tools providing 

support to run-time assertion checking of JML-specified Java programs. The suite includes jml, 

jmlc, jmlunit and jmlrac. The jml tool checks the JML specifications for syntax errors. The jmlc 

tool compiles JML-specified Java programs into a Java byte-code that includes instructions for 

checking JML specifications at run-time. The jmlunit tool generates JUnit  unit tests code from 

JML specifications and uses JML specifications processed by jmlc to determine whether the 

code being tested is correct or not. Test drivers are run by using the jmlrac tool, a modified 

version of the Java command that refers to appropriate runtime assertion checking libraries.  

 

The JML common tools make it possible the automation of regression testing from the 

precise and correct JML characterization of a software system. The quality and the coverage of 

the testing carried out by JML depend on the quality of the JML specifications. The runtime 

assertion checking with JML is sound, i.e., no false reports are generated. The checking is 

however incomplete, e.g., users can write informal descriptions in JML specifications. The 

completeness of the checking performed by JML depends on the quality of the specifications 

and the test data provided. These JML Common Tools are available at (Leavens G. ). 

 

 

4. Related Work 

In this section we start by presenting the various proposed types of strategies for 

incorporating formal specifications into software development processes. Further, we present 

the SOFL language that is used for constructing formal specifications and for the software 

development process, and then we present a framework named ConGu that is aimed at 

providing support to the checking of formal specifications and Java code, that is, the 

verification & validation phase.  

4.1. Formal Methods Strategies for Software Development 

Processes 

The way people formalize informal software requirements (i.e., the client’s requirements to 

a system to be developed) can be categorized into several strategy types. Some of the 

proposed strategies suggest going directly from informal specifications (i.e. high level, natural 

language) to formal specifications (i.e., low level, more mathematical language) making the 

software development’s specification activity being in the formal domain from the beginning. 

For example, according to Kemmerer (Kemmerer, 1990) through his “Integrated” approach 

which defines that formal methods is completely integrated into the development cycle, we 

use critical requirements written in English and stated in precise mathematical terms to 
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describe the system’s behaviour without giving too much implementation details, so later they 

can be incrementally detailed until the system can be coded according to them. Also Jones 

(Fraser, Kumar, & Vaishnavi, 1994) uses a similar process by suggesting that proof obligations 

of VDM decomposition rules can stimulate design steps. Others like Miriyala and Harandi, and 

Wing (Fraser, Kumar, & Vaishnavi, 1994), have proposed strategies where high-level formal 

specifications of the system can be derived directly from a precise English statement of critical 

requirements. A strategy that goes directly from informal specifications to a formal 

specification without any transitional step is known by using a direct formalization process. 

However there is another type of formalization strategy used to introduce formal methods 

into software development processes. Rather than using a direct formalization process, one 

can define intermediate steps that help to move from the informal the initial natural language 

to formal specifications. Through this kind of strategy, we resort to one or more semi-formal 

specifications which provide us with evolutionary steps between the informal natural language 

specification and the formal specifications. This type of strategy, which starts from informal 

specifications and moves to formal ones through intermediate specifications, is known as 

transitional formalization process. (Fraser, Kumar, & Vaishnavi, 1994) We can say that the 

transitional formalization of the specifications can be divided into three degrees: informal, 

semi-formal and formal.  At the informal stage, the specifications are incomplete sets of rules 

to constraint the system to be developed, usually written in natural language or presented as 

unstructured pictures that can lead to ambiguous meanings and introduce inconsistencies in 

the system or its incompleteness. At the semi-formal state, the informal specifications are 

evolved so as to become closer to the formal ones. Although the semi-formal specifications 

still use natural language, they are presented with a defined syntax and written in a 

mathematical form or illustrated in a diagrammatic technique that defines precise rules. 

Through this technique we are clearing out possible inconsistencies and also detecting possible 

incomplete specifications. The semi-formal specifications are viewed as helpers to achieve 

formal specifications from the informal ones. At the formal state, the specifications become 

closer to code. These formal specifications have a rigorous defined syntax and semantics and 

can be used to automatically test the code against the specifications (the informal ones 

evolved into formal specifications) given by the clients. (Fraser, Kumar, & Vaishnavi, 1994) An 

example of a strategy using a transitional formalization process is the strategy proposed by 

Kemmerer (Kemmerer, 1990) through the “Parallel” approach. His proposed formalization 

process approach involves the use of standard development methods (to develop semi-formal 

requirements) as intermediate steps from which formal specifications are derived. 

The strategy proposed in this thesis work is based on a transitional formalization process 

that integrates formal specifications into the software development process. The strategy is 

similar to Kemmerer’s “Parallel” approach in that we also define an intermediate step that 

introduces semi-formal specifications before writing JML formal specifications. This 

transitional process runs in parallel with the development process itself. 

4.2. SOFL 

The SOFL (Structured Object-based Formal Language) is a language proposed by Liu, 

Offutt, Ho-Stuart, Sun and Ohba in 1997 (Liu, Offutt, Ho-Stuart, Sun, & Ohba, 1997) to address 

the problems of lack of formal methods wide acceptance by the industry, namely, the need for 

integration of formal methods into the software development processes, the requirement of 

significant abstraction and mathematical skills, and the lack of tools to support the entire 

formal software development process. Developing a software system using SOFL consists in 

three separate activities: the requirements specification, the design, and the implementation. 
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The SOFL provides a specification language, a method, and a systematic process for the 

development of software systems.  

SOFL = Specification Language + Method + Software Process Model 

As a specification language, the SOFL integrates Data Flow Diagrams, Petri Nets, and 

VDM-SL. Data Flow Diagrams provide notation for expressing the overall architecture of a 

system; Petri Nets are used to provide an operational semantics for the Data Flow Diagrams; 

and VDM-SL with certain syntactical reason and extension is used for specifying the behaviour 

of processes occurring in the related formalized Data Flow Diagrams. 

As a method, the SOFL consists on a three-step approach, i.e., informal, semi-formal, and 

formal specifications, for the development of system specifications in a structured way 

(including requirements, and abstract design specifications) and transformation from a 

structured abstract design into a more detailed object-oriented design and then 

implementation of the system. Additionally, the SOFL also offers means for verifying and 

validating specifications and programs. When using the SOFL methodology, engineers 

construct the initial condition Data Flow Diagrams and specification modules, and then they 

use decomposition, evolution, and transformation to construct an object-based design from 

the structured requirements specifications, at the end they finally transform the design to 

implementation. (Liu, Offutt, Ho-Stuart, Sun, & Ohba, 1997) 

SOFL also provides a software process model that supports a systematic way to develop 

software systems. The SOFL’s software process model includes three main features:  

1. The informal and semi-formal specifications are used for capturing and 

documenting user functional requirements, while the formal specification is 

used for abstract design. 

2. The importance of the development’s evolution of informal, semi-formal, and 

formal abstract design specifications, and refinement for the development of 

detailed design and implementation. 

3. The use of rigorous reviews and tests to verify and validate specifications and 

program applications. 

In SOFL, the process of constructing formal specifications occurs in the three-step, 

informal, semi-formal and formal specifications, much like in our proposed JML-base strategy. 

First, the informal specifications are written and then in the semi-formal specification stage 

these informal specifications must be organized as sets of inter-related modules conforming to 

the SOFL syntax. The involved data resources are represented as variables and given the 

appropriate data types. After having variables, pre and postconditions are written in SOFL 

syntax for specifying processes, or Data Flow Diagrams can be used for the same effect, 

however the latter option may not be complete for specifying a process. (Liu, Offutt, Ho-

Stuart, Sun, & Ohba, 1997) 

What distinguishes our strategy from SOFL is that it has a specification syntax more 

abstract for specifying systems in any OO programming language, and it allows the use of 

hierarchal diagrams to specify the requirements. In our JML-based strategy we use only textual 

specifications from the beginning to the end of the specification construction and these textual 

specifications go through an evolution from the informal requirements to JML formal 

specifications, where the client is still capable of following them to the semi-formal stage. That 

is, in our semi-formal stage we still use natural language but in a structured and more 

mathematical manner which is yet understandable by the client, creating a bridge between the 

informal functional requirements and JML formal specifications. Also, the JML syntax uses Java 
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syntax, so it is more adequate to specify Java programs than by SOFL, which is more abstract. 

Another difference is that SOFL can’t be integrated with the implementation code like JML and 

Java programs. As the JML has the particularity of being a specification language for the Java 

programming language, it can be integrated with the Java code itself (i.e., the specifications 

can be written in the same Java code files) and it can be used for testing the code and 

documenting it at the same time.  

People may use either of our strategy or SOFL to develop a Java system. 

Nonetheless, our strategy is more cost-effective and straight-forward for a Java 

programmer because JML uses Java syntax. 

4.3. ConGu 

The ConGu (Contract Guided System Development) is a project that has the purpose of 

providing a framework for creating property-driven algebraic specifications to fully test Java 

implementations. The ConGu project adopted a property-driven algebraic approach to 

specifications rather than the model-based approach to Design-by-Contract like those 

proposed for JML, Z, Larch and AsmL. (Vasconcelos, Nunes, & Lopes, 2008) The basic idea of an 

algebraic specification is to specify data types independently of any representation or 

programming language. An algebraic specification is constituted by a set of sorts, a set of 

constants and operations symbols, and a set of conditional equations or short equations. Each 

sort represents a domain of a data structure and each operation symbol represents an 

operation. More precisely, an operation symbol declaration consists on an operation name, a 

list of argument sorts and a range sort or a result sort. Operation symbols can be combined to 

write a specification. Having names for domains of data structures, and declarations for 

operations, the only thing needed to write a specification is the description of what the 

operations should do, which is what serves the last constituent part of an algebraic 

specification, the set of conditional equations (or short equations), which provides the needed 

descriptions. (Classen, Ehrig, & Wolz, 1993, p. 8) 

The main components of ConGu are specifications, modules, and refinements. The 

specifications used are property-driven algebraic as they define sort and operations on those 

sorts. The ConGu supports partial specifications whose operations can be interpreted by 

partial functions with conditional axioms. Each specification defines a single sort that may be 

defined involving an operation or other sorts like parameters or results of operations. Another 

component of ConGu is the notion of modules. The notion of module is used for denoting a set 

of specifications to self-contained them. In order to check the specifications against the Java 

classes, for violation of axioms or domain restrictions, the specifications logic and Java classes 

must be bridged, and this is where the ConGu refinement component enters. In ConGu, the 

refinement mappings have to be defined indicating which sort is implemented by which class, 

and which operation is implemented by which method. In the refinement mappings activity, 

the knowledge about concrete representations on the classes isn’t required. (Vasconcelos, 

Nunes, & Lopes, 2008) 

The Congu can be used to support a formal development process, but not the entire 

process. Unlike our proposed JML-based strategy and SOFL, the ConGu as a framework does 

not support the process of constructing formal specifications from the informal. The ConGu is 

focused on the validation & verification phase of software development processes. The main 

aspect of the ConGu approach is to ease the problem of testing implementations against the 

respective property-driven algebraic specifications to the run-time monitoring of contract 

annotated classes, supported today by several run-time assertion- checking tools. 

(Vasconcelos, Nunes, & Lopes, 2008) The ConGu has tool available as a plug-in for the Eclipse 
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IDE. This tool allows users to test Java classes against a module of specifications to check for 

runtime axiom violations. The tool reads algebraic specifications and a mapping relating 

specifications and Java entities, and produces a number of classes that are used to test the 

original implementation against the given specifications, in a way that is transparent to the 

user. By using this ConGu technique all specification properties are checked against 

implementations because monitorable JML contracts are generated to cover them all. 

(Vasconcelos, Nunes, & Lopes, 2008) 

 

5. The JML-based Strategy for Software Development of Java 

Programs 

This section describes our strategy to incorporate formal specifications into the software 

development of Java programs. We have developed a strategy for evolving informal functional 

requirements into formal specifications. This strategy can be employed as part of existing 

object-oriented software development methodologies. In particular, the strategy suits 

Bertrand Meyer's design-by-contract principles (Meyer, 1992), which lie on the core of the JML 

language and JML-based formal methods tools. Hence, software developers must define 

precise interface specifications for underlying software components, based upon data type’s 

theory and the conceptual metaphor of software contract. The strategy is part of an 

engineering integrated effort whereby software development is conducted in parallel with a 

formal specification pseudo-phase (see Figure 1) Therefore, JML specifications are evolved 

from informal requirements and written in parallel with the development of the application 

itself. In Figure 1, the presented software development process consists in four phases, 

namely, analysis, design, implementation, and validation-and-verification. In the same spirit of 

the methodology introduced by Meyer (Meyer, 1997)(see Chapter 11), we do not restrict any 

phase of the software development cycle to occur before or after any other phase, so the 

arrows 1 to 5 in Figure 1 convey information on usage rather than on precedence in time.  

 

 

Figure 1. The Software Development Process 
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During the analysis phase - described in Section 5.1 - requirements are gathered, and two 

documents are produced, namely, the use cases document and the “informal” functional 

requirements document (i.e., functional requirements written in plain English). As informal 

functional requirements are expressed in a natural language, ambiguities and inconsistencies 

can be introduced during the analysis phase. Hence, during the formal specification pseudo-

phase, the informal functional requirements document is first evolved into a “semi-formal” 

requirements document (see Figure 1 – arrow 1), and then ported into (formal) JML 

specifications (see Figure 1 – arrow 4). The process of passing the informal functional 

requirements into semi-formal requirements is described in Section 5.2. The semi-formal 

requirements document is composed of three documents. The semi-formal functional 

requirements document (later ported into JML method specifications), the class invariant 

document, and the system invariant document (these two are later ported into JML class 

invariant specifications). Having formal specifications expressed in JML makes it possible to use 

JML-based formal methods tools to check for inconsistencies. Evolving the informal functional 

requirements document into the semi-formal one involves expressing informal requirements 

into an “if <event/condition> then <restriction/rule>” form (see Section 5.2.1 for more 

details about semi-formal functional requirements) and class/system invariants are created by 

expressing the respective informal functional requirements into a restriction/rule written in 

natural language but more formalized, and normally without making references to conditions, 

for example, expressions without “if… then…” indication an obligation, rule or restriction like 

“...mustn’t…”, “…must…” (For more details on the class and system invariants, see 

respectively Sections 5.2.2 and 5.2.3). The process of going from the informal functional 

requirements to semi-formal specifications is described in Section 5.2. 

During the design phase - described in Section 5.3 - the requirements gathered from the 

analysis are used to define the structure of the system (see Figure 1 – arrow 2). This structure 

is later used to write classes, their attributes, their methods, and the relations among them 

(see Figure 1 – arrow 3). These classes are later formally specified with the JML specifications, 

yield during the formal specification pseudo-phase. 

During the implementation phase - described in Section 5.4 - we start by writing Java 

interfaces and Java abstract classes (from the model structure designed in the design phase, 

see Figure 1 – arrow 3). From the semi-formal requirements document, JML functional 

specifications are furnished to the (abstract) methods in these interfaces and classes in Java, 

and JML class invariants are provided to model global properties of the system. Additionally, 

JML abstract variable specifications (see Section 3.2 for a description of abstract variables) 

serve to describe the distinct abstract data types used in the application and how they are 

manipulated through class inheritance, i.e., abstract variable specifications are used to 

represent concrete data structures. JML specifications provide support to the writing of correct 

code for concrete classes implementing the interfaces and the abstract Java classes, but 

besides that, JML specifications also provide support to a business contract programming style 

of programming, in accordance with Bertrand Meyer's design by contract principles (see 

Section 2.1.1 for Design by Contract details).  

Finally, during the validation-and-verification phase - described in Section 5.5 - the 

implementation is checked against the specifications (see Figure 1 – arrow 5). This phase can 

occur iteratively with the implementation phase, with the purpose of developing correctly the 

application while checking if it is in concordance with its specifications. We employ the JML 

common tools to do this checking (see Section 3.3). As the methodology is iterative, it is 

possible to go back to a previous phase and make amendments to JML specifications or code. 

Notice that inconsistencies can be detected before an implementation for the system is 
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written. For instance, Java interfaces and Java abstract classes are checked against JML 

specifications, obtained from the formal specification pseudo-phase, before writing an 

implementation for those classes and interfaces. 

In summary, the proposed strategy is based on JML to incorporate formal specifications 

into software development processes to support the production of system applications in a 

way that reflects the client's needs, i.e., correct systems. By employing a specification 

formalization strategy, informal requirements are evolved from natural language to JML 

specifications, which provide a high level of formality. The purpose of achieving this high level 

of formality is to provide support to development of correct systems. JML specifications 

further serve a complementary purpose, as they also play the role of a precise documentation 

of the application. For instance, the JML specification of an abstract class precisely describes 

what the implementation (perhaps written by an external programmer) must be. In software 

development projects, JML facilitates the communication between developers in a way that it 

unambiguously describes the expected behaviour of classes, methods, and data structures. 

In the following sections we present each development phase with the employment of the 

strategy to incorporate formal specifications along the process. A running example of the 

strategy employment for the development of an application is described in Section 6. 

5.1. Requirements Analysis 

In this Section we describe the first phase of the software development known as the 

requirements analysis phase. At this phase we get, in an informal way, all the rules and 

requirements that are expected for the purpose and functionality of the final system (i.e., the 

product of our development).  Also, this phase is the very first step to build the formal 

specification. All the informal requirements obtained will serve as a base to formulate the JML 

formal specifications in the formal specification pseudo-phase that follows in parallel the 

development process.  

The first thing to do in the requirements analysis is to extract information from the client 

and comprehend the concepts of the domain where the system to be developed will work and 

its purpose. These concepts are things related to the domain where the system will be applied. 

For example, in case of the HealthCard the concepts could be like “appointments”, “patient”, 

“doctor”, “health problem”, “diagnostic” and “medicine”. These concepts give us an insight 

about the environment where the system will work, providing us the basis to communicate 

with the client and formulate with him the possible use cases in a next stage. One must notice 

that these concepts eventually will become data entities to be managed by the system; 

moreover these domain concepts may be later represented as JML abstract variables while 

formally specifying the system, as the abstract variables normally represent data to be 

managed in a concrete implementation (see Section 3.2 for information on abstract variables).  

The next thing to do, after getting some background about the problem’s domain, is to 

write the use cases. Like the domain concepts, the use cases are formulated conjointly with 

the stakeholders (i.e., client, specialized people, etc), through brainstorming or by reading 

documentation about the domain. These use cases are to be reflected into future methods 

and functionalities of the system to be developed. The use cases may include some additional 

textual information like scenarios or activity diagrams. These additional documents give some 

extra details about the use cases by describing their usage, while clearing some existing 

ambiguity. For example, a scenario for the use case “Scheduling an appointment” could give 

some extra information about the data that should be passed to schedule an appointment, like 

for instance a date, a local, or a doctor’s name. The use cases are formulated as a mean of 

communication between stakeholders and developers to give an idea of what functionalities 
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and usage the future system will have within its domain. Afterwards, in the Design phase, 

these use cases are used to originate a major part of the system’s classes and their methods. 

For example, for the use case “Scheduling an appointment” the method addAppointment(...) 

will emerge in the Design phase. The additional information of the use case can state the entry 

parameters of the method addAppoiment, like for example addAppointment(date, hour, local, 

doctor, type). 

Having formulated domain concepts and use cases are a halfway to start developing a 

system. As the objective with this proposed strategy is to formally develop a correct 

application, then rules of operational behaviour must exist to create formal specifications for 

methods or classes, describing their proprieties and behaviours. These rules basically describe 

use cases behaviours and limitations. So, the last thing to do in this phase is the description of 

informal functional requirements, which dictates those needed rules (i.e., to be ported into 

formal specifications). These requirements are rules (i.e., specifications) written in an informal 

way that the future system must hold and respect for its purpose, functionality and usability. 

For example, an informal functional requirement for the HealthCard could be like this: - “To 

schedule an appointment, it must be inserted a date, an hour, a local, a doctor or type of 

appointment”.  Later, these requirements with the combination of the use cases will be used 

to design the structure model of the system, and also are to be used to formulate semi-formal 

requirements, system invariants and class invariants, which will become the JML formal 

specification for supporting the correct development of the system.  

It is important to remember that developers are free to return to this phase when on later 

stages, as this software development phases are iterative. The requirements phase is 

exemplified in the running example in Section 6.3.1. 

5.2. From Informal Functional Requirements to Semi-Formal 

Specifications 

This step occurs during the first stage of the formal specifications pseudo-phase, where 

from the informal functional requirements it can be identified and extracted the semi-formal 

requirements, and the system and class invariants. These three documents will serve as a base 

to write down the JML formal specifications of the Java implementation code.  

The semi-formal requirements are written in natural language but expressed in a more 

mathematical and logical form, suitable to be used into JML specifications. In a later stage of 

the formal specifications pseudo-phase, these semi-formal requirements are expressed as JML 

methods preconditions and postconditions.  

At this step, the system and class invariants are identified and written in a semi-formal way. 

These invariants come from requirements that tend to restrict properties or to impose some 

general limits of the system. Eventually these kind of informal requirements are to become 

JML class invariants. The system invariants express global properties of the system classes’ 

instances which must be preserved by all routines, and class invariants express the same thing, 

but for the respective class only. Although, in JML there isn’t a direct way of expressing system 

invariants, these will be identified as system invariants from the informal functional 

requirements but later they will be expressed simply as JML class invariants.  

Basically, at the end of this step it is required to have three documents. One document with 

semi-formal requirements which will support method’s preconditions and postconditions and 

two documents with a list of informal requirements classified as class invariants and system 

invariants. 
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5.2.1. Semi-Formal Functional Requirements 

Some of the informal functional requirements are evolved into a more mathematical form. 

Yet expressed in natural language, this new form brings requirements closer to JML method 

specifications. However, the process of evolving informal functional requirements into this 

new form is not linear, and it requires some expertise and ingenuity. For almost of the informal 

functional requirements that describe some system’s functionality (i.e., method or operation) 

executed under certain conditions, the general form of a semi-formal functional requirement 

is “if <event/condition> then <restriction/rule>”, in which the guard is an event or a 

condition that triggers a rule that restricts (changes) the current state of the system. This rule 

can be regarded as the body of a method in a class, and the condition as the pre-condition 

under which this rule may be triggered. This new form is closer to JML specification, and the 

principles advocated by the design-by-contract. For example, considering an informal 

functional requirement like “To schedule an appointment, it must be inserted a date, an hour, 

a local, a doctor or type of appointment”, one can clearly associate it with a system’s 

operation. In this case the operation is the one obtained from the use case of adding an 

appointment where certain data must be passed when scheduling an appointment. The semi-

formal taken from this informal function requirement for the event of adding an appointment 

would be something like this:  

IF <date NOT EQUALS null AND hour NOT EQUALS null AND local NOT EQUALS null AND 

(doctor NOT EQUALS null OR type NOT EQUALS null)>  

THEN <date EQUALS date_model AND hour EQUALS hour_model AND local EQUALS 

local_model AND (doctor EQUALS doctor_model OR type EQUALS type_model)> 

The above expression form is a suggestion on how a semi-formal functional requirement 

could be written. The semi-formal functional requirement expression can be written in any 

form desired, as long as it is mathematically and logically structured as the above example. It is 

highly recommended that the semi-formal specifications are written in a form understandable 

by the clients (i.e., stakeholders) and at the same time structured in a manner that it can be 

easily mapped into a JML specification. As can be seen, the previous expression is still written 

in natural language but in a structured form. The expression indicates the conditions under 

which the operation of adding an appointment must hold. The first statement, the IF 

statement, indicates the preconditions for adding an appointment that must be respected, and 

the second statement, the THEN statement, dictates the postconditions that must hold after 

executing an operation of adding an appointment. One must notice the “***_model” fields 

written in the second statement. It is here that we begin to think about the abstract variables. 

The fields given in the first statement are entry parameters of an operation, and the model 

fields given in the second statement are abstract variables that represent concrete data from a 

certain class. The second statement tells us that the given parameters should be stored, i.e., at 

the end of the operation, each concrete data represented by the abstract variables must be 

equal to their respective given entry parameters. 

Notice that not all the informal functional requirements can be expressed in semi-formal 

functional requirements of this form. Some of them can even be expressed as class or system 

invariants (see Section 2.1.1.3 for a description of class and system invariants) restricting 

system properties in small and larger scales.  
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5.2.2. Class Invariants 

Some of the informal functional requirements are identified as being class invariants. They 

are those functional requirements that describe small limitations or boundaries, i.e., 

limitations of properties that eventually will restrict or describe a certain class. In a first stage 

of the formal specifications pseudo-phase we turn the identified class invariants into a semi-

formalized form of the correspondent informal functional requirement. Later, these class 

invariants are to be ported into JML class invariants (see Section 5.4.2). For instance, from an 

informal functional requirement such as “It must not be possible to overlap schedules in the 

same date and hour” we can assume that it imposes a restriction on appointments, so it 

represents an invariant. In this case the informal functional requirement involves only 

appointments, so it becomes a class invariant. In this semi-formal phase, the invariants are 

written in a restrictive form involving natural expressions like “...it must...” or “...it mustn’t...”, 

but one can recur to logic forms for writing the semi-formal invariant such by using the 

expressions of “For all...”, “Exists...”, etc. As long as it restricts some global property of a class 

we can write it as a class invariant. So, the class invariant for the previously given informal 

functional requirement could be written like this:  

FOR ALL objects a1 AND a2 of type appointment: IF a1 NOT EQUAL a2 THEN (date(a1) NOT 

EQUAL date(a2)  AND hour(a1) NOT EQUAL hour(a2)) 

Again, the above expression form is only a suggestion on how a semi-formalized class 

invariant could be written. Because of the ambiguous essence of natural language, the way 

people identify invariant properties from informal functional requirements is not a 

deterministic process. Hence, there is no universal rule that fully describes this process. 

Nonetheless, we give below some hints to identify invariants. Looking at the informal 

functional requirement example given, we identified as a class invariant because it describes 

there mustn’t ever be appointments with the same date and hour, so this is obviously a 

limitation of the appointments properties. In the above expression the attributes hour and 

date of an appointment object are referred as hour(***) and date(***). 

5.2.3. System Invariants 

Some of the other informal functional requirements are identified as being system 

invariants. They are those functional requirements that describe restrictions involving more 

than one distinguishable class, i.e., involving instance properties of more than one class. Also, 

as we carried out for the class invariants, in a first stage of the formal specifications pseudo-

phase we turn the identified system invariants into a semi-formalized form of the respective 

informal functional requirement. Later, these system invariants are to be ported into JML class 

invariants (see Section 5.4.2). Considering an informal functional requirement like “The 

prescription date of a medicine must be bigger than or equal to the date of the appointment in 

which the medicine was prescribed”, one can clearly see, by analysing it, that the informal 

functional requirement is describes a restriction involving more than one class, i.e., 

appointments and medicines. The informal functional requirement is identified as a system 

invariant because it suggests that a global access to medicines and appointments in the card 

must exist, i.e., it involves two distinguishable classes. So, the system invariant for the 

previously given informal functional requirement could be written like this:   

FOR ALL object m of type medicine AND FOR ALL object a of type appointment: 

appointment(m) EQUALS a AND date(m) MORE OR EQUAL TO date(a) 

Once more, the above expression form is only a suggestion on how a semi-formalized 

system invariant could be written. 



28 

 

 

5.3. Design 

In this section we describe the design phase, which follows the requirement analysis. At this 

phase, the use cases and the informal requirements from the requirement’s phase are used as 

a base to design the structure model of the future application to be implemented. With the 

help from the previously defined use cases (including their textual specification) and informal 

functional requirements, we can have an idea of what modules and their respective 

functionalities (i.e. parts of the system and their responsibilities) that are needed to design the 

system application structure. First, a modularization of the requirements is made, i.e., by 

grouping informal requirements into specific parts of the system. The goal of grouping 

requirements is to be able to organize the system’s structure so it can be more reusable and 

maintainable, and consequently making the JML specifications simple and reusable. For 

instances, taking the HealthCard development as an example (see Section Erro! A origem da 

referência não foi encontrada.) its structure is divided into Personal Data, Allergies, Vaccines, 

Appointments, Diagnostics, Treatments and Medicines. Each one of those modules have their 

respective responsibilities towards the management and storage of personal patient’s 

information, patient’s allergies information, patient’s vaccines information, scheduled 

appointments and the respective diagnostics, treatments and medicines prescribed by a 

doctor. When implementing the system, those modules are basically the Java packages 

containing the respective Java interfaces and classes. 

We suggest of making class diagrams to model the structure of the system. For each 

identified module, classes are designed and their methods are added to the model. The classes 

and their methods are written mainly based on the use cases. At the end, this class diagrams 

represent the structure of the system to be developed. So, by describing classes, interfaces 

and their method signatures, one can associate the semi-formal specifications to the structure 

model. The semi-formal specifications can be used to describe the behaviour of the methods 

and restrictions within the classes. Later, these semi-formal specifications are evolved into JML 

specifications and they will describe the behaviour of the implemented methods.  

Basically, the relation between the class diagrams (or another model structure), obtained in 

this phase, with the formalization of the specifications is that here we can begin to associate 

the semi-formal specifications with the future classes and methods to be developed. The 

developers can have an idea where to write the JML specifications. For example, which semi-

formal specifications will be associated with the method addAppointment(***) still written in 

the structure model. Figure 2 illustrates an example of associating semi-formal specifications 

with the structure model’s methods. In case of a class invariant or system invariant, they are 

associated with the classes. 
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Figure 2. Semi-formal relations with the Structure Model 

Important design recommendation: We strongly recommend designing the system by the 

interfaces. Designing the system by the interfaces means that for every class that probably will 

have specifications written, it is beneficial if the Java classes are implementing Java interfaces 

or abstract classes. For the sake of abstraction, the JML specifications are to be written in 

those Java interfaces, describing the methods that will be implemented in the respective 

concrete classes. Having a system designed by the interfaces we are making it reusable and 

maintainable and consequently the JML specifications will also be reusable and maintainable. 

That is, later we can implement the classes as we pleased as long as we respect the JML 

specifications written on the Java interfaces. 

 

5.4. Implementation 

In this section we describe the implementation phase, which follows the design. At this 

phase we implement the system structure with the support of the structure models previously 

defined and we complete this implementation through the support of JML specifications. From 

the semi-formal requirements and invariants attained in the first step of the formal 

specifications pseudo-phase we get JML specifications to specify how to implement the 

operations’ procedures and their limitations. Through the class diagrams, the Java interfaces 

and its implementation skeleton classes
2
 can be generated. Having those Java interfaces and 

classes still without implementations inside the methods,  and taking a look to the method 

signatures at the interfaces, we associate with them each semi-formal requirement defined 

from the informal functional requirements (see example in Figure 2 - Section 5.3), and also 

each invariant is associated to the respective interface. Those JML specifications are written 

mostly at the remote Java interfaces and later one can develop the method implementations 

in the respective concrete classes in many ways as long as the specifications in the interfaces 

                                                           
2
 Skeleton classes are classes without implementation on its methods, only the signatures (i.e., method 

headers) and variable declaration exist. These classes are future implementation classes, i.e., they 

contain incomplete methods, without its procedures inside. 



30 

 

are respected. The process of implementing the system begins with the JML specifications 

writing. This is the final step of the formal specifications pseudo-phase, where semi-formal 

specifications are ported into formal specifications, i.e., the JML specifications. First we should 

write the JML abstract variables and next the JML class invariants and JML method functional 

specifications. Having the Java interfaces described with JML specifications we can start 

implementing the concrete classes according with the written specifications. Besides 

supporting a correct implementation of the system, the JML specifications also serve as the 

system documentation integrated with the code itself, a support for testing the code against 

the specifications and a support for employing a programming respecting the principles of B. 

Meyer’s Design by Contract.  

5.4.1. Writing JML Abstract Variables 

The JML abstract variables, also known as model variables, are model specifications 

declared and used only at the JML specifications level. As it is recommended to write the JML 

specifications in Java interfaces of the classes due to reusability purpose, one cannot declare 

concrete attributes. In Java interfaces one can declare constant values but not non-static 

variables, so the use of abstract variables brings the advantage of representing concrete 

variables at the specification level. Having abstract variables at the specifications instead of 

concrete variables gives the developers the possibility of modifying those concrete variables 

without modifying the entire specifications of a class, and the many possibilities of 

implementing them as they want as long as the JML specifications aren’t violated. For 

example, one could change a concrete variable’s name but the specifications would stay 

correct if the abstract variable still represents that modified concrete variable, or one could 

even modify how an abstract variable represents concrete properties but still maintaining the 

old specifications. In a concrete class we can change the concrete variable being represented 

by using represents  and still maintain without changes the specifications at the interfaces.  

As seen in the requirement analysis phase, the abstract variables first originated from 

some domain concepts attained at the initial steps. They represent concrete data that will be 

managed by the classes. Also, when writing the semi-formal specifications, it is possible to 

identify the relevant abstract variables to be used in the JML specifications. Normally, these 

abstract variables are identified from data entities written in the semi-formal specifications, 

for instance, the date of an appointment, or the medicine’s designation.  

Declaration of Abstract Variables 

The first step after making the skeleton Java classes and interfaces should be the abstract 

variable declaration. These abstract variables will be used in the various JML method 

functional specifications and class invariants. Abstract variables are declared in JML 

specifications by using the keyword model  or ghost  for ghost variables (which can’t be 

represented and only exist in JML specifications) followed by the keyword instance . 

Abstract variables are declared in a similar way as concrete variables. Abstract variables can be 

declared as Java standard types, custom types or JML abstract data types. For example, an 

abstract variable of a Java standard type can be of the type byte, short, int, or any other Java 

type; an abstract variable of a custom type can be of the type Appointment, Allergy  (both as 

example from the HealthCard) or another custom class object; and an abstract variable can be 

of a JML abstract data type like JMLValueSequence, JMLObjectSequence, or another type, from 

the JML’s org.jmlspecs.models package, that represents a complex data structure (Iowa State 

University, 2002). For details about JML abstract data types, see Section 3.2.1. An abstract 

variable declaration is like this: 

//@ public model instance short xpto_model; 
 



31 

 

This abstract variable xpto_model  can represent another abstract variables, concrete 

variables, values or even expressions. 

Linking Abstract Variables with Concrete Variables 

The abstract variables can represent other abstract variables or concrete data related to a 

certain class or classes (except for ghost variables). These abstract variables are used to model 

class attributes or complex data structures in an abstract way, and only exist at the 

specifications level, being linked with real variables or expressions by using a mechanism of 

representation through the JML represents  clause (see Section 3.2). A representation of 

abstract variables occurs in the concrete classes like this: 

private /*@ spec_public @*/ short xpto; //@ in xpto_model;  
/*@ public represents 
  @  xpto_model <- age; 
  @*/ 

Abstract variables are inherited, so they can be used in the concrete classes implementing 

the Java interfaces with the JML specifications written. 

5.4.2. Writing JML Class Invariants 

From the class and system invariants semi-formalized in the initial stages of the formal 

specifications pseudo-phase, we get the JML class invariants. Both class invariants and system 

invariants are to be ported into JML invariants. Apparently there’s no difference between the 

two kinds of invariants when specifying them in JML, because we do it in the same way. 

However, system invariants are turned into JML invariants that involve instances from more 

than one distinguishable class and class invariants becomes JML invariants that don’t involve 

instances for more than one class. By “one class” we assume, for example, that a certain Java 

interface X and its implementation class X1  are one class, that is, basically we consider them 

as one class because X1 inherits all the properties do X. 

From Semi-Formalized Class Invariants 

Considering an Appointment class from the HealthCard, from a semi-formalized class 

invariant attained in the first stage of the formal specifications pseudo-phase (see Section 

5.2.2) like this: - “FOR ALL objects a of type appointment: date_model NOT EQUALS null AND 

hour_model NOT EQUALS null AND local_model NOT EQUALS null” - we can write the following 

JML class invariant in the Appointment Java interface: 

/*@ public invariant date_model != null  
  @         && hour_model != null 
  @       && local_model!= null; 
  @*/  

 

Where in any state of an object Appointment, its attributes of date, hour and local must 

never have the value null.  This JML invariant is written in the Appointment interface and all 

methods and constructor must respect all it visible state. Each time an Appointment object 

instance is created, it is required to declare and instantiate the concrete variables represented 

by the abstract variables written in the invariant (i.e., date_model � date, hour_model � 

hout and local_model � local).   

 

From Semi-Formalized System Invariants 

Being a system invariant an invariant that involves two distinguished classes, then JML 

specification written for a system invariant must be written in a class that makes reference do 
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those two classes. For example if we have two distinguishable classes, X and Y, and we have a 

system invariant making reference to X and Y, then the invariant formalization must be written 

in a class XY that makes reference to X and Y. The class XY has a global access to X and Y so it 

makes sense having the invariant written there to restrict properties in which X and Y are 

involved. 

Let’s consider as example the class X as Appointment class, the class Y as Medicine class and 

the class XY as CardServices class, all from the HealthCard (see Section Erro! A origem da 

referência não foi encontrada. for a description on the structure of the HealthCard). From a 

system invariant attained in the first stage of the formal specifications pseudo-phase (see 

Section 5.2.3) like this: -  “FOR ALL object m of type medicine AND FOR ALL object a of type 

appointment: appointment(m) EQUALS a AND date(m) MORE OR EQUAL TO date(a)” – Where 

an appointment has a date and a certain medicine is prescribed in an appointment, then that 

medicine has a date equal of the respective appointment’s date (when it was prescribed) or 

the medicine has its prescription renovated at later date. The following JML invariant specifies 

this property that must be preserved: 

/*@ public invariant  
@ (\forall int i; i < ((Medicine[])medicines.getDat a()).length     
@      && i >= 0;  

   @  (\forall int k; k < appointments.getData().le ngth  
        @        && k >=0; 

  @              ((Medicine[])medicines.getData())[ i].getAppointmentID()         
  @    != appointments.getData()[k].getID() 

   @      ||  
   @              ((Medicine[])medicines.getData()) [i].date_model  

  @    >= appointments.getData()[k].date_model 
   @  ) 
   @ ); 

      @*/  

 

5.4.3. Writing JML Method Functional Specifications 

The JML method functional specifications are the specifications that describe the method’s 

behaviour. They can describe a method’s normal behaviour, their preconditions, 

postconditions and even its exceptional behaviour. We write these specifications from the 

semi-formal functional requirements attained in the first step of the formal specifications 

pseudo-phase (see Section 5.2.1). Later, when coding the empty methods, one has to respect 

these specifications as they describe the conditions under which the methods will correctly 

function. To start writing the JML method functional specifications we begin by looking at the 

semi-formal functional requirements. For example, let’s consider the example of class 

Appointment of the HealthCard. From the following semi-formal functional requirement for 

the method addAppointment:  

“IF <date NOT EQUALS null AND hour NOT EQUALS null AND local NOT EQUALS null 

AND (doctor NOT EQUALS null OR type NOT EQUALS null)>  

THEN <date EQUALS date_model AND hour EQUALS hour_model AND local EQUALS 

local_model AND (doctor EQUALS doctor_model OR type EQUALS type_model)>” 

We can generate the following JML specification: 

/*@ public normal_behavior 

    @ requires date != null && hour != null && local != null  

    @  && (doctor != null || type != 0); 
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    @ assignable appointments_model; 

    @ ensures (\forall int i; 0 <= i && i < date.length(); date[i] == date_model[i]) 

    @  && (\forall int i; 0 <= i && i < hour.length(); hour[i] == hour_model[i]) 

    @  && (\forall int i; 0 <= i && i < local.length(); local[i] == local_model[i]) 

    @  &&  

    @  ((\forall int i; 0 <= i && i < local.length(); local[i] == local_model[i])  

    @  || 

    @      type == type_model); 

    @ also 

    @ public exceptional_behavior 

    @ requires date == null || hour == null || local == null  

    @  || (doctor == null  && type == 0); 

    @ signals_only UserException; 

    @ signals_redundantly (UserException e)  

    @   appointments_model.equals(\old(appointments_model)); 

    @*/ 

public void addAppointment (byte[] date, byte[] hour, byte[] local, byte[] doctor, byte type) 

throws RemoteException, UserException; 

 

 

Where we can map the semi-formal functional specifications into formal specifications 

like: IF ���� requires and THEN ���� ensures. In our strategy, the semi-formal IF statement is 

similar to the requires statement from JML, and the THEN is similar to the ensures from JML.  

The implementation of addAppointment is made in the concrete class implementing 

Appointments. In the specifications, the normal behaviour describes the preconditions and 

postconditions. These conditions are written by using the JML keywords of requires  and 

ensures . The first part of the previously presented semi-formal functional requirement is 

mapped into the requires  block, and the second part is mapped into the ensures  block. 

Under the exceptional behaviour, we state the conditions of an exceptional execution of the 

method. 

 

5.4.4. Coding the applications 

At this step we already have Java interfaces with JML specifications written within them 

asserting invariants, methods and attributes, and incomplete concrete Java classes (i.e., only 

with method skeletons). In this step, we begin to code the procedures of the empty methods 

from the concrete classes which implements the JML specified Java interfaces.  

We can implement the concrete classes and their methods in various ways, as long as the 

specifications are respected. Let’s not forget that the JML specifications are written from an 

evolutive process that comes directly from the informal requirements. Another purpose of 

formally specifying the Java code with JML, it’s the documentation. Besides serving as a mean 

of correctly implement the code and for supporting its verification and validation against the 

specifications, it can be used, at the same time as a way of documenting the application Java 

code. The JML specifications can be used to document the code like JavaDocs, however we 

can’t use JavaDocs to test the specifications against the code.  

 

5.5. Validation and Verification 

While implementing, it is possible to validate and verify the code against the JML 

specifications. There are tools for supporting validation and verification and the most basic is 
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the JML Common Tools suite [2]. This suite provides support to the run-time and static 

assertion checking of JML specifications (see Section 3.3). Checking an application with this 

suite is an iterative process of checking the implementation with respect to the JML 

specifications, and then evolving either the specification or the implementation (or both) when 

a run-time error is produced. Errors can be detected before a concrete implementation for the 

application is written. For instance, Java interfaces and Java abstract classes are checked 

against JML specifications, obtained from the formal specification pseudo-phase, before 

writing full implementation for those interfaces and abstract classes. At this point, 

programmers can go back to an earlier development phase, e.g., modifying some informal 

functional requirements; thereafter JML specifications are evolved accordingly.  

 

6. A Running Example 

6.1. The HealthCard Application   

In the following, we describe the application we used to validate our software development 

strategy. The application is named HealthCard. It is a smart card application for managing 

medical appointments. The application has been fully implemented by Ricardo Rodrigues, 

following the software development strategy introduced by us, as part of his master thesis 

work (Rodrigues, 2009).  

HealthCard stores people’s medical information. It is named HealthCard because it runs on 

a smart card, a pocket-sized plastic card with embedded integrated circuits that process data 

(see Section 6.2 for further information about smart cards). A typical smart card application 

includes on-card applets (the applets running on the card), a card reader-side, and off-card 

applications (e.g., a computer program communicating with the card applets). HealthCard is 

written in Java Card, a subset of Java used to program card applets. We used the Java Card 

Method Invocation (JCRMI) model for communication between off-card applications and on-

card applets. This model implements a client-server setting with the HealthCard acting as 

server, and off-card applications as clients, communicating via APDU (Application Protocol 

Data Unit) messages. Figure 3 shows the structure of the HealthCard smart card.  

 

 

Figure 3. HealthCard application structure 

A patient can use his HealthCard to furnish accurate medical information to general 

practitioners in medical centres with the appropriate system to read it. The HealthCard 
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manages the patient’s personal details, his historical record of allergies, vaccines, diagnostics, 

treatments and prescribed medicines. The HealthCard is divided in several modules for 

managing the medical information. Each module has a remote interface, and an 

implementation class that serves the appropriate services. All the remote interfaces are 

referenced in a single remote interface named CardServices whereby an external client can 

invoke services. For example, if an external client calls the method getApp() in CardServices, he 

gets a reference to the Appointments remote interface. This reference can then be used to 

invoke appropriate methods implementing services. 

 

6.1.1. HealthCard Formal Development 

HealthCard addresses the problem of providing accurate and concise medical information 

to medical centres and general practitioners. The use of formal methods in the HealthCard 

development process is due to the application’s domain nature, that is, due to the fact that the 

medical domain involves people’s healthcare, people’s lives and overall, medical information 

trustiness. Through the use of formal methods we can achieve a correct smart card 

application, and that means that the application will work as specified, that is, its 

implementation and execution must respect its specifications and it must function as it is really 

intended to function (i.e., must be a reliable system).  When developing a software application 

for sensible domains, such as medical, one must develop it correctly (see Section 2.1 for a 

description about software correctness). Also, besides using JML to specify functionalities 

properties, we can use JML to address the security and privacy problems related with this kind 

of medical software application. JML can be used to formally describe security and privacy 

properties, however supporting a correct security implementation doesn’t mean that the 

system will be secure. Correctness does not necessarily imply security. When addressing these 

kinds of problems with JML specifications, it is still a challenge if we have to deal with all the 

low-level details of Java. That is, some program wide security properties such as 

authentication, confidentiality or integrity are far harder to express in JML. (Warnier, 2006) 

This medical software application is to be held in smart cards. Therefore, a patient can 

carry his medical information on a card and use it when going to any medical centre with the 

appropriate system to read it. A typical smart card includes in-card applications, i.e., the 

applets running on the card. For implementing the in-card applications we use the Java Card 

language (see Section 6.2 for further information on Java Card). This language is a precise 

subset of the Java language used to program applets for devices such smart cards. In Java Card, 

smart cards provide two models for the communication between a host application and a Java 

Card applet. (Ortiz, 2003) The first model is the fundamental message-passing APDU model, 

which basically relies on the trade of messages in the APDU format between the in-card 

applets and the off-card applications. The second model is based on the Java Card Remote 

Method Invocation (JCRMI), in which a Java Card applet is the server and makes accessible 

functions to external client applications.  The smart card technology provides patients with:  

1.) A way to digitalize their information.  

2.) A mechanism to convey their information to others.  

3.) A security mechanism so that their information is not disclosed to non-authorized 

parts. 

Carrying a card with relevant medical information easies the way a patient can tell his 

health problems to medical professionals. In this way, the card acts as a patient data server. In 
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our solution, smart cards are used to carry people medical information. It encompasses 

personal data such as name, age, gender and blood type, as well as medical history about 

allergies, vaccinations, previous health problems and treatment plans. Figure 4 shows how 

medical information is organized within a smart card. Notice that the figure conveys in the 

necessary patient’s information contained in the card rather than the structural description of 

the HealthCard. The information stored can be divided into the patient’s personal data, the 

scheduled appointments and his medical history. Information about the patient’s medical 

history includes allergies, vaccination, health problems and treatment plans associated with 

health problems. The treatment plans are associated with diagnostics, prescriptions and 

medical recommendations. 

 

Figure 4. Proposed information held on a smart card for medical appointment management 

For managing the data held on the card we need at least an in-card applet that provides functions 

to manage it. Since we’ll use smart cards, we propose the use of Java Card for programming those in-

card applets (i.e., the health card application). Java Card is a programming language that has in 

consideration the memory resource limitations of smart cards (Ortiz, 2003) (see Section 6.2). We 

propose the use of Java Modelling Language (JML)
3
 for formally specify the health card application’s 

informal requirements. These JML formal specifications are used to support the correct implementation 

of our application. Also, we propose the use of JML-based tools to check for correctness of the 

implementation.  

 

6.1.2. HealthCard System Architecture 

The architecture of the HealthCard system is illustrated in Figure 5. A patient can use his 

smart card in any medical centre that has our system implemented. 

 

 

                                                           
3
 JML is a formal behavioral interface specification language for Java which includes the essential 

notations used in Design by Contract as a subset. Leavens, G. T., & Cheon, Y. (2006). Design by Contract 

with JML. Iowa State University; University of Texas at El Paso, Dept. of Computer Science. 
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Figure 5. HealthCard System 

Besides including the HealthCard application supported in smart cards, the HealthCard 

system architecture idea consists in more components. However, Ricardo Rodrigues developed 

the card application and a prototype of an external client only. The system architecture in  

Figure 5 consists of at least two card terminals. One is the patient terminal, which includes an 

attached smart card reader. This terminal may be used for appointment scheduling, 

appointment check-ins, visualization and modification of some in-card personal data, and for 

requesting medical prescriptions renewals. The second terminal is the doctor’s terminal, which 

also can include a smart card reader. The doctor may insert medical information into the 

patient’s card by using this terminal. Beyond those two terminals our architecture includes a 

Medical Centre database. This database provides support to the on-the-card patient’s 

information, by storing all known allergies, medicines and vaccines, and other medical 

standard designations. In this way, the card will only need to keep references to those items 

rather than the whole designation (i.e. the names of allergies, vaccines, medicines, etc.). Also, 

that database will provide support to the information about doctor’s available schedules and 

other medical centre information. This medical centre database may be linked to other 

medical centres and one of them may be the central system database. This central system 

would update medical information in all medical centres databases. Finally, there’s a system 

administrator that has the responsibility for operating and keeping the medical centre 

database updated. 

System Components: 

HealthCard (smart card) contains personal and medical information about the card 

owner (patient) and his scheduled appointments, i.e., contains the HealthCard 

application that was developed to validate the proposed strategy.  

Card reader will serve as terminals for reading/writing the smart cards and linking 

points to client machines (Patient Terminal and Doctor’s computer).  
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Patient Terminal for appointment scheduling, checking-in and some other basic card 

operations made by the patient.  

Doctor will have a terminal for accessing patient medical data contained on the card.  

Medical Centre Database will contain doctor’s schedules, medical centre information, 

patient appointments, and lists of known allergies, health problems and vaccines. 

System Administrator will be responsible for maintaining the medical centre database.  

Central System Database will update all the medical centres systems. 

 

 

6.2. Smart cards and Java Card 

The HealthCard application involves the technologies of smart cards and Java Card. The 

HealthCard is implemented in Java Card and it is to be supported in smart cards. A smart card 

is a plastic card that contains an embedded integrated circuit (IC) and basically resembles a 

credit card. Most smart cards have both microprocessors and memory, for secure processing 

and storage. Smart cards are highly secure by design, and tampering with one results in the 

destruction of the information it contains. (Ortiz, 2003) Usually, a smart card has about 1Kb of 

RAM and 16Kb of EEPROM, which contains persistent data, including the compiled program 

code. Smart cards don't contain a battery, and become active only when connected with a card 

reader. When connected, after performing a reset sequence the card remains passive, waiting 

to receive a command request from a client (host) application. (Ortiz, 2003) Java Card is a 

programming language for programming smart cards. Java Card is a subset of the Java 

programming language specially designed having in mind the memory resource limitations of 

smart cards. (Ortiz, 2003) ISO 7816 is the international standard for smart cards that use 

electrical contacts on the card. (Cardlogix Corporation, 2009) 

 

6.2.1. Elements of a Java Card Application 

A smart card system is composed by a card-side (the applets running on the card), a card 

reader-side, and back-end elements (a computer communicating with the card applets). (Ortiz, 

2003) In the following Figure 6 we can see an illustration of this composition. 
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Figure 6. Architecture of a Java Card Application (Ortiz, 2003) 

6.2.1.1. Back-End Application and Systems 

Back-end applications are elements of the system that provide services that support in-card 

Java applets. For example, a back-end application could provide a connection to security 

systems that together, with credentials from the card, could result in a better security. In a 

credit card payment system, the back-end application could provide payment information and 

access to the credit-card. 

6.2.1.2. Reader-Side Host Application 

Reader-Side terminals can be a PC or an electronic payment terminal, a cell phone, or a 

security subsystem. In them reside host applications that can handle communication between 

the user, the Java Card applet, and the provider’s back-end application. 

6.2.1.3. Reader-Side Card Acceptance Device 

The Card Acceptance Device (CAD) is a card reader. It’s the gateway of communication 

between the host application and the Java Card device, and besides serving as a way of 

communication, a CAD provides power to the card. A CAD may be attached to a desktop 

computer using a serial port, or it may be integrated into a terminal such as an electronic 

payment terminal (ex., at a restaurant or a gas station). 

6.2.1.4. Card-Side Applets and Environment 

In Java Card, an in-card application is an applet. A Java Card can have one or more applets 

residing the card, along with supporting software. The supporting software consists in the 

card’s operating system and the Java Card Runtime Environment (JCRE). The latter one 

includes the Java Card VM, the Java Card Framework and API’s, and some extension APIs. 
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All Java Card applets extend the Applet base class and must implement the install() and 

process() methods. Later, when installing the applet, JCRE calls install(). And every 
time there is an incoming APDU message for the appl et, JCRE calls 
process().  

When loaded, Java Card applets are instantiated, and stay alive when the power is switched 

off. A card applet acts like as a server and is passive. Once a card is powered up, each applet 

remains inactive until it's selected. The applet is active only when an APDU has been 

dispatched to it. 

6.2.2. Accessing the Smart Card (Communication in Java Card) 

According to ISO 7816-5 standard, each smart card application must have an application 

identifier (AID). (Cardlogix Corporation, 2009) These AIDs are sequence of bytes between 5 and 

16 bytes in length, and in Java Card technology they are used to identify Java Card applets as 

well as packages of Java Card applets. When inserted a smart card into a card acceptance 

device, the running external application sends a command to the card containing the AID of 

the applet to perform the required operation. The AID is crucial for allowing the external 

applications accessing Java Card applications in smart cards. (Ort, 2001) 

For accessing smart cards there are two models for the communication between a host 

application and a Java Card applet. The first model is the fundamental message-passing APDU 

model, and the second is based on Java Card Remote Method Invocation (JCRMI), a subset of 

the J2SE RMI distributed-object model.  

A logical data packet is exchanged between the CAD (Card Acceptance Device) and the Java 

Card Framework, which is called APDU (Application Protocol Data Unit). An APDU is sent by the 

CAD, received and then forwarded to the appropriate applet that processes the APDU 

command and returns a response APDU. (Ortiz, 2003) 

A command APDU has a required header and an optional body, containing: 

• CLA (1 byte): This required field identifies an application-specific class of instructions. 

• INS  (1 byte): This required field indicates a specific instruction within the instruction 

class identified by the CLA field. 

• P1 and P2 (1 byte each) are required fields used to pass command specific parameters 

for the qualification of INS, or input data. 

• Lc (1 byte): This optional field is the number of bytes in the data field of the command 

(length command). 

• Data field (with length given by Lc): This optional field holds the command data. 

• Le (1 byte): This optional field specifies the maximum number of bytes in the data field 

of the expected response (length expected). 

Table 3. A command APDU format (Ortiz, 2003) 

Command APDU 

Header  

(required) 

Body 

(optional) 

CLA INS P1 P2 Lc 
Data  

Field 
Le 
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A response APDU has a format much simpler: 

• Data field (with a length determined by Le in the command APDU): This optional field 

contains the data returned by the applet. 

• SW1 (1 byte) and SW2 (1 byte) are required status words. They contain the status 

information as defined in ISO 7816-4. (Cardlogix Corporation, 2009) In case of 

successful execution, they contain 0x9000. 

Table 4. A response APDU format (Ortiz, 2003) 

Response APDU 

Body 

(optional) 

Trailer 

(required) 

Data 

Field 
SW1 SW2 

The Java Card implementation of the HealthCard application is based on JCRMI (Java Card 

Remote Method Invocation). It adds an additional abstraction layer above the message-passing 

model, avoiding low-level communication through APDU’s (Warnier & Oostdijk, Java Card 

Remote Method Invocation) therefore simplifying the code written and saving memory space 

in the card. Simplifying the code makes it easier to specify the implementation, which leads to 

more concise and reliable code.   

6.2.3. Java Card Remote Method Invocation (JCRMI) 

In the message-passing model for communication between the host application and the 

Java Card applets we had to program explicitly low-level byte sequences of APDU messages, 

but with the Java Card Remote Method Invocation (JCRMI) framework we don’t need to 

program like that anymore. The JCRMI is similar to Java Remote Method Invocation (JRMI) 

applied in Java applications. The JCRMI makes it possible to directly call methods from the Java 

Card smart card. (Oostdijk & Warnier) Basically, JCRMI adds a middleware layer that translates 

calls to the methods of an applet to ADPU messages. On the card, APDU messages are 

translated back to methods of the remote object. These processes are called marshalling and 

unmarshaling. (Oostdijk & Warnier) These remote objects residing on the card are created on 

the moment of the applet installation. A client can get a reference to those remote objects. 

When a client calls a method on the remote object, the method that the client calls on is 

actually a stub object that resides on the client side. This stub translates the method call to an 

APDU command message and sends it to the card. On the Java Card side this APDU is passed 

on to a skeleton object that translates the message back to a method call. (Oostdijk & Warnier) 
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Figure 7. Java Card Remote Method Invocation architecture (Oostdijk & Warnier) 

The method call is invoked and the return value is translated to an APDU response message 

by the skeleton object, which then sends it to the client. On the client side the APDU message 

passes through the stub, which translates it back to a return value. 

 

A JCRMI applet consists of at least one interface and two classes: - a remote interface; the 

implementation of that interface, and the applet class. 

 

• The remote interface extends java.rmi.Remote interface and defines what methods can 

be called with JCRMI. This interface must also be presented on the client side. 

 

• The implementation of the remote interface is the implementation itself. It can be used 

to generate a stub class for the client. 

 

• The applet class extends javacard.framework.Applet and contains the inherited install(), 

select() and process() methods. This class act as the entry point for all method calls and 

directs these to the actual implementations. (Oostdijk & Warnier) 

 

When developing a JCRMI applet we should start implementing the remote interface. From 

that interface we write its implementation and the client class, the class that will call remote 

object methods. Next, we compile the code so that we have their class files. In the 

compilation, the interface will originate a stub, which will provide, to the client, a way to 

interact with the remote object. The stub and the client class stays at the client side. The 

applet and remote implementation classes are converted into a cap file and inserted in a smart 

card. The Figure 1 illustrates this whole process. 
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Figure 8. JCRMI applet implementation process (Oostdijk & Warnier) 

 

6.3. JML-based Formal Development of the HealthCard 

In the following we describe the employment of our strategy in the development of part of 

the HealthCard. 

6.3.1. Getting the Informal Requirements 

During the analysis phase, requirements are described using use cases and functional 

requirements. The use cases model the purpose and functionality of the application to 

develop. They are later used to determine what classes, methods and structure will be 

modelled at the design phase. The informal functional requirements define, in an informal 

way, the inputs, the behaviour, the outputs, and the restrictions of the system to develop. In 

the following, we present a small example from the HealthCard system that shows how 

informal functional requirements are evolved into the three semi-formal requirements 

documents described in Section 5.2. We present below a use cases example in Figure 9 and 

some of the informal requirements of the HealthCard application: 
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Doctor

Patient

#6: Viewing

allergies

Adding allergy«extends»

Removing allergy

«extends»

«requirement»

the Patient only has reading permission

#7: Managing allergies

 

Figure 9.  Use Cases of the patient’s allergies’ information management example 

• IFR1 There must not exist duplicated entries for allergies with the same designation 

code. 

• IFR2 A fixed number of allergies can be introduced in the card only. 

• IFR3 All allergy designation codes must have a stipulated length. 

• IFR4 The prescription date of a medicine must be bigger than or equal to the date of 

the appointment in which the medicine was prescribed. 

 

In the following, we show the three semi-formal documents obtained from the informal 

functional requirements above. 

6.3.2.  Getting the Semi-Formal Functional Requirements 

Some of the informal functional requirements are evolved into a more mathematical form. 

Yet expressed in natural language, this new form brings requirements closer to JML method 

specifications. However, the process of evolving informal functional requirements into this 

new form is not linear, and it requires some expertise and ingenuity. The general form of a 

semi-formal functional requirement is if <event/condition> then <restriction/rule>, in 

which the guard is an event or a condition that triggers a rule that restricts (changes) the 

current state of the system. This rule can be regarded as the body of a method in a class, and 

the condition as the pre-condition under which this rule may be triggered. This new form is 

closer to JML specification, and the principles advocated by the design-by-contract. Notice that 

not all the informal functional requirements can be expressed in this form. Some of them can 

even be expressed as class or system invariants (see Section 6.3.3). As an example of how this 

semi-formal form is attained, the informal functional requirement IFR1 is transformed into if 

<a new allergy is to be added to the list of referenced allergies, and the allergy designation has 

already been referenced>, then <the new allergy is not inserted>. We show below the semi-

formal requirements obtained from the first two informal requirements above:  

• SFR1 From IFR1. If a new allergy is to be added to the list of referenced allergies, and 

the allergy designation has already been referenced, then the new allergy is not 

inserted. 

• SFR2 From IFR2. If an allergy is to be added to the list of referenced allergies, and the 

limit of the number of referenced allergies has already been attained, then the state of 

the card remains unchanged. 
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6.3.3.  Getting the Class and System Invariants 

Some of the informal functional requirements are identified as class invariants. They are 

written from those functional requirements that describe limitations or boundaries in small-

scale, i.e., limitations of properties that eventually will restrict or describe a certain object class 

only. For example, the informal functional requirement IFR3: “All allergy designation codes 

must have a stipulated length”, restricts the length of designation code that instances of the 

class Allergy  manipulate. To write this class invariant (see CI1 below), we use a variable des 

to represent the designation code of an allergy. Later on, this variable can be modelled as a 

JML abstract variable (see Section 6.3.4).  

• CI1 size(des) equals to CODE_LENGTH  

Because of the ambiguous essence of natural language, the way people identifies invariant 

properties from informal functional requirements is not a deterministic process. Hence, there 

is no universal rule that fully describes this process. Nonetheless, we give below some hints to 

help people identify invariants. CI1 describes a property on a reference code and its length of 

an allergy, so that eventually these two will be fields of some class Allergy. The reference code 

will be an instance variable of this class, initialised in its constructor, and the length will be a 

static field as it needs to be the same for any instance class. Some other informal functional 

requirements are identified as system invariants. Unlike class invariants, system invariants 

describe invariant properties relating objects of distinguished classes. For instance, IFR4 (see 

Section 6.3.1) describes a property of objects of classes Appointment, managing information 

about appointments scheduling, and Medicine, managing information on prescribed medicines 

in appointments, must satisfy together. IFR4 becomes the semi-formal system invariant 

requirement SI1 below: 

• SI1 For all object m of type medicine, and all object a of type appointment such that if 

appointment(m) equals to a, then date(m) is bigger than or equal to date(a). 

6.3.4. Design and Implementation 

During the design phase, the structure of the application is created from the requirements. 

This structure encompasses class diagrams for interfaces, abstract classes, and concrete 

classes. In parallel with the design phase, during the formal specification pseudo-phase, semi-

formal functional requirements, and class and system invariants are written (Sections 6.3.2 

and 6.3.3). Semi-formal specifications are later ported to JML specifications (Section 6.3.5). 

During the implementation phase, from the structure of the application generated in the 

design phase, Java abstract classes, Java interfaces and Java classes are written. In a first stage, 

the implementation only contains code skeletons, so no method in any concrete class is 

implemented. JML specs are embedded within the code. Hence, the JML Common tools can be 

used to check the code during early stages of the implementation (i.e., before fully 

implementing concrete Java classes). Therefore, the Java code can be evolved so as to conform 

to the JML specifications, or the specifications can be evolved to conform to an expected 

behaviour. Checking that one conforms to the other is done automatically with the JML 

Common Tools. JML eliminates programmers’ responsibility of keeping track of how properties 

a program must respect are affected by changes in the code. To have a high level of 

abstraction in specifications, JML provides support for abstract variables, which exist at the 

level of the specification, but not in the implementation. Declarations of abstract variables are 

preceded by the JML keyword model, and are related to Java code by a represents clause. This 

clause specifies how the value of an abstract variable is calculated from the values of concrete 

variables (see Section 6.3.5). Abstract variables are useful in describing properties about 
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interfaces because these are not allowed to declare (concrete) variables in Java. Within an 

interface, an abstract variable describes the state of the implementing classes. Abstract 

variable specifications for interfaces and for abstract classes do not need to be written down 

again in implementing classes or sub-classes, since JML specifications are inherited. This 

ensures behavioural sub-typing. That is, a sub-class object can always be used where a super-

class object is expected. The reader is invited to see Sections 5.3 and 5.4 for respectively 

details about the design and implementation phases.   

6.3.5.  JML Formal Specification Pseudo-Phase 

Semi-formal functional requirements SFR1 and SFR2 (from Section 6.3.2) relate to method 

addAllergy in interface Allergies (see below in Code 9). In Java, interfaces cannot declare 

attributes, hence, Allergies declares an abstract JML variable as, modelling stored referenced 

allergies. The JML JMLEqualsSequence type models a sequence of objects that can be 

compared using the standard method equals (see Section 3.2.1 for a description about JML 

abstract data types). We declare two additional abstract variables, size and maxsize, modelling 

the number of referenced allergies, and the maximum number of referenced allergies. A 

normal behaviour specification expresses that if all the pre-conditions hold (clauses requires) in 

the pre-state of the method, it will terminate in a state in which all the postconditions (clauses 

ensures) hold. The semi-formal functional requirement SFR2 is expressed as the JML pre-

condition size < maxsize, while the SFR1 appears in two separated normal postconditions that 

make use of the abstract method existsAllergy (not shown here) for checking whether the 

designation of an allergy has already been stored in as or not. Therefore, if the designation has 

already been stored, the list of allergies remains unchanged, as.equals(\old(as)), otherwise the  

allergy designation is stored at the end of the list: 

-  as.equals(\old(as).insertBack(desigRepr(designation))) 

JML abstract method desigRepr (not shown here) maps an array of bytes to a unique value. 

 
//@ model instance JMLEqualsSequence as; 
//@ model instance short size; 
//@ model instance short maxsize; 
/*@ public normal_behavior 
  @ requires size < maxsize; 
  @ requires designation != null && date != null; 
  @ requires existsAllergy(designation); 
  @ assignable as, size; 
  @ ensures as.equals(\old(as)); 
  @ also 
  @ public normal_behavior 
  @ requires size < maxsize; 
  @ requires designation != null && date != null; 
  @ requires !existsAllergy(designation); 
  @ assignable \nothing; 
  @ ensures as.equals(\old(as).insertBack( 
  @ desigRepr(designation))); 
  @*/ 
public abstract void addAllergy ( byte[] designatio n,byte[] date) 
throws RemoteException, UserException; 

Code 9. Specified addAllergy method from Allergies interface 

Abstract specifications are related to actual Java code through the use of a JML represents 

clause. The following Code 10 exemplifies this relation between abstract specifications and 

concrete variables. In the presented code below, as, declared in Allergies shown in Code 9, is 

related to code in the Allergies_Impl, which implements the interface Allergies. The abstract 

variable size is represented as the concrete field nextFree, and maxsize as the static variable 

MAX_ITEMS. The pure method allergiesRepr represents as as a JMLEqualsSequence produced 
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by the insertion of all the elements in allergies. In JML, pure  methods are side-effect free 

methods. 

 
//@ represents size <- nextFree; 
//@ represents maxsize <- MAX_ITEMS; 
//@ represents as <- allergiesRepr(); 
/*@ pure model JMLEqualsSequence allergiesRepr() { 
  @ JMLEqualsSequence r = new JMLEqualsSequence(); 
  @ for (short i=0; i < nextFree; i++) { 
  @ r = r.insertBack((Object)(allergies[i])); 
  @ } 
  @ return r; 
  @ } 
  @*/ 

Code 10. Relating abstract specifications with actual Java code in Allergies_Impl 

JML Class and System Invariants. 

The class invariant CI1 is expressed as the JML invariant below. This invariant is declared in 

class Allergy. 

//@ instance invariant des.size == CODE_LENGTH; 

The system invariant SI1 is expressed as the JML invariant below in Code 11. This invariant 

suggests that a global access to medicines and appointments in the card must exist. Following 

the Java Card Remote Method invocation (JCRMI) approach for communication, in which the 

Java Card applet is the server, the HealthCard application defines an interface CardServices 

that declares all the services available for remote objects. Class CardServices_Imp, an 

implementation of this interface in Java, accesses the information and the state of any remote 

object in the card. CardServices_Imp declares two variables med and app for keeping track of 

medicines and medical appointments respectively. Method getData() returns an array of 

objects of type Medicine. Method getApp() returns an array of objects of type Appointment. 

 
 
/*@ invariant 
  @ (\forall int i; i<med.getData().length & i>=0; 
  @   (\forall int k; k<app.getApp().length & k>=0;  
  @     med.getData()[i].getAppID() == app.getApp() [k].getID() 
  @     ==> 
  @     med.getData()[i].getDate() >= app.getApp()[ k].getDate() )) 
  @*/ 

 

Code 11. A system invariant as JML invariant 

 

7. Conclusion 

The use of formal methods reduces the chances for requirements errors as it forces a 

detailed analysis of those requirements, and also helps to detect and resolve their 

incompleteness and inconsistencies while developing a software system. The use of formal 

methods in software development has the purpose of producing correct software programs. 

According to Sommerville (Sommerville, 2000), when a conventional software development 

process (i.e., without using formal methods) is used, validation costs are more than 50% of the 

whole development costs, and implementation and design costs are the double of the 

specification cost. However, formal methods are not widely used as software development 

techniques in software industry. Some of the main reasons are: the lack of methodologies and 

tools to support the use of formal methods; the inefficient use of formal specifications as an 
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appropriate tool for communicating with the end user; and the inefficient support of 

developers’ creative side while employing formal methods in their development processes. 

Overall, software development managers feel reluctant to use formal methods techniques 

because their benefits are not yet well-known. The recompense of using formal methods is not 

immediate and it is hard to quantify. The reader is invited to see Section 2.2, for a more 

complete description on the formal methods in software development and the difficulties 

associated with their wider acceptation. 

One of the main goals of thesis work was to integrate formal methods with the system 

development effort. For this, viable strategies to support the integration of formal method 

techniques into the software development process are important. In this thesis we propose a 

JML-based strategy for incorporating formal specifications into software development 

processes for correctly writing Java programs. This JML-based strategy is in the style of 

Bertrand Meyer’s design-by-contract, and makes use of JML specifications to write the 

contracts. The written JML specifications are integrated with the Java code itself, but they are 

written inside special marked comment blocks (see Section 3.1). The JML specifications are 

declared as model , by using that keyword we are declaring that the specification is abstract 

and they have no influence on the program execution or the Java code writings. This aspect 

also covers methods defined in the JML specifications declared as model and pure . That is, 

developers can write auxiliary specification methods if needed in the same way as a normal 

Java method, but written in special comment block by declaring them as model and pure . 

Again, this kind of methods has no secondary effects on the program execution. Our strategy 

provides solutions to some of the main difficulties in the wide acceptance of formal methods 

by the software industry. Our strategy offers basic guidelines for a formal development while 

supporting the developers’ creative side, and by providing the developers a mean of 

communicating formal specifications with the end-users.  

The strategy is part of an engineering integrated effort whereby software development is 

conducted in parallel with a formal specification pseudo-phase (see Figure 1 – Section 5). In 

this pseudo-phase, our strategy offers a guideline for formal development of Java programs by 

a stepwise process. In this stepwise process we evolve informal functional software 

requirements into JML formal specifications and we go through an intermediate stage in which 

semi-formal requirements are written. The informal functional requirements are suggested by 

the client (or stakeholders, end-users). Often these requirements are ambiguous, inconsistent 

and incomplete, due to the use of natural language. We then transform these informal 

requirements into semi-formal specifications, which are still written in natural language but in 

a structured way closer to the formal specifications (JML specifications). In the semi-formal 

stage we produce three kinds of semi-formal specifications: the semi-formal functional 

requirements, the class invariants and the system invariants. These semi-formal specifications 

are then ported into JML specifications (i.e., JML method functional specifications and JML 

invariants). In our strategy, the informal requirements and the semi-formal requirements can 

be used to support the communication between developers and clients. The formal 

specifications can be used to support the implementation of the system and communication 

between developers. Our strategy is defined as a guideline to address the problem of lack of 

methodologies to incorporate formal methods into software development processes, at least 

for Java programs. As for the lack of tools problem, there are various tools for supporting JML 

specification of Java programs. The main suite of tools is the JML Common Tools, which 

provides tools for compiling, and checking statically and in runtime the JML specifications 

against Java code. With only these tools we are capable of formally developing a program. 

Other tools are further available.  
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In this thesis we suggested a way to write semi-formal specifications in a manner that they 

can be easily mapped into JML specifications, while still being understood by the client (see 

Sections 5.4.1 to 5.4.3). Besides serving as an intermediate stage for writing JML specifications, 

with the semi-formal specifications we can clearly communicate with the client about the 

formal specifications. As the semi-formal specifications can be easily understood by an end 

user, then we can communicate the formal specifications to them. By this, our JML-based 

strategy provides a first solution to the problem of communication of formal specifications to 

the end-users. 

Our strategy addresses the difficulty of providing some liberty to developer’s creative side. 

When employing our strategy, it is recommended to design the system using Java interfaces, 

derived from the JML specifications, so as to increase the level of abstraction. This provides 

programmers liberty for their creative side while coding, as long as they respect the 

specifications. Furthermore, the use of JML abstract variables can provide support to the 

abstraction of complex data structures. Programmers can implement them later as desired 

while respecting the formal specifications. 

Our strategy adheres to the Design by Contract principles. By following this strategy we 

can design and implement system components with formal specifications that describe 

contracts for their methods (JML method functional specifications) or even classes (JML 

invariants).  Further, one can implement a correct system that uses these components and 

respects the specifications. That is, all the calls programmed for the specified components 

must respect the contracts defined in JML. Using this programming technique, the specified 

methods oughtn’t to implement validations of their preconditions in their method bodies, 

because those validations are of the client’s responsibility. That is, the method’s preconditions 

must be assured by the clients when they call them. The use of these principles reduces 

considerably the amount of code from the specified methods implementations, leaving the 

validation code of preconditions for the client side. This aspect is useful when one has to 

develop a system with a client-server architectural style in which one of the parts must be 

light-weight, and also helps to reduce the redundancy of code for instances validation, i.e., a 

common error while programming a system where validations are made in both sides 

(defensive programming). It is possible to develop user interfaces components and other 

structures through the employment of our strategy and the use of JML. 

We believe that our strategy is indeed simple enough to teach students about the 

incorporation of formal methods into software development processes. We can teach students 

on how to bring informal specifications closer to formal ones for developing small Java 

applications. The teaching should include the subject of basic logics for understanding how an 

informal functional requirement can be ported into semi-formal specifications, i.e., how we 

can write semi-formal specifications to be closer to JML specifications. The most important 

aspects to teach students about our strategy is to present them with ways of producing semi-

formal specifications, teaching them the basics of JML and to think on the concept of 

invariants, abstract variables, and the design by contract principles. A student should basically 

learn how to pass an informal functional requirement into semi-formal specifications, and then 

to JML specification.  

We also want to emphasise the importance of thinking of invariant properties when 

developing software. Thinking about invariants prior to writing code is a practice to which 

programmers do not easily adhere. Having a formal specification of an application and 

systematically using a tool, i.e., the JML Common Tools, for checking the correctness of the 

code as it is written forces programmers to think about how the written code affects the 

consistency and the correctness of the whole program. It is our experience that invariants are 
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the key notion in formal software development that makes a difference with respect to 

traditional (non formal methods based) software engineering methodologies (Catano, Barraza, 

García, Ortega, & Rueda, 2008). In general, programmers feel intimidated by the idea of 

coming up with an invariant. Often, they design code that can make their programs be in an 

inconsistent state. We strongly believe JML helps in this sense, from furnishing a friendly Java-

like syntax, to making it possible to use first-order logic predicates in JML specifications 

naturally.  

Our strategy can be employed for a formal development of any Java program. In particular, 

the strategy has been used by Ricardo Rodrigues (Rodrigues, 2009) in the full development of 

the HealthCard introduced by us in Section Erro! A origem da referência não foi encontrada..  

In the beginning of this development, some problems related to the definition of our strategy 

arose. One of the problems was about the generation of formal specifications from informal 

ones. When initially applying our strategy on the HealthCard, we didn’t think of having a semi-

formal phase. We faced the challenge of defining a way to write JML specifications from the 

informal functional requirements. It was hard to write formal specifications directly from 

informal ones, like it was hard to modify them when the requirements changed. The solution 

came with the creation of an intermediate step of semi-formal specifications for developing 

formal specifications from informal ones. Having semi-formal specifications we could start 

shaping informal functional requirements given by the clients into an organized and structured 

way, prepared to be mapped into JML specifications. At the same time, we can use semi-

formal specifications to communicate the formal specifications to the end-users.   

The strategy described in this thesis can be easily employed in the formal development of 

other Java (or Java Card) applications. As it helped developing a correct HealthCard application 

for managing information of a patient, it could help other types of smart card applications like 

the HealthCard as well. For example, our strategy could be employed in the development of 

student cards for managing information about their academic life, or for smart cards 

applications for keeping and managing information on a member (of libraries, of sport clubs, 

etc.), or even smart cards for keeping basic information of elderly people, children and teens 

for getting service discounts, etc. There are numerous possibilities of employing this strategy 

for formally develop applications, similar to the HealthCard, for serving the local communities. 

As seen in Section 4, there are other strategies for incorporating formal methods into 

software development processes of Java programs, but our strategy is more cost-effective and 

straight-forward for a Java programmer because JML uses Java syntax. The strategy in this 

thesis is described as being used to incorporate JML formal specifications in the development 

of a Java/Java Card application, but although we chose JML as the formal specification 

language, these ideas can be adapted to the development of C++ programs, with formal 

specifications written in the ACSL (ANSI/ISO C Specification Language) (Baudin, Filliâtre, 

Marché, Monate, Moy, & Prevosto) language instead, and the verification work accomplished 

with the Frama-C Tool (The Frama-C Tool). 

Some future work can be done to enhance the usefulness of our strategy. In this thesis we 

suggested how one could write semi-formal specifications. We highly propose further studies 

and the development of a semi-formal language understandable by a common software 

development client while also being easy to be mapped into JML formal specifications. The 

semi-formal specification language could be based on our suggestion, but it needs to be 

standardized. Also, a tool can be developed for automatically convert simple semi-formal 

expressions into JML specifications. The author of this thesis and Ricardo Rodrigues, have 

written a prototype tool that converts semi-formal specifications into JML formal specifications 

for the simplest cases. 
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