
1

A JML-Based Strategy for

Incorporating Formal Specifications

into the Software Development

Process

Author:

João Miguel Alves Pestana, 2046403

Advisor:

Néstor Cataño

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Digital da Universidade da Madeira

https://core.ac.uk/display/62477429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

i

Abstract

This thesis presents a JML-based strategy that incorporates formal specifications into the

software development process of object-oriented programs. The strategy evolves functional

requirements into a “semi-formal” requirements form, and then expressing them as JML

formal specifications. The strategy is implemented as a formal-specification pseudo-phase that

runs in parallel with the other phase of software development. What makes our strategy

different from other software development strategies used in literature is the particular use of

JML specifications we make all along the way from requirements to validation-and-verification.

ii

Keywords

Software Development

Software Correctness

Formal Methods

Design by Contract

Java Modelling Language (JML)

JML-based Strategy

Informal Functional Requirements

Semi-Formal Functional Requirements

Invariants

Formal Specifications

Abstract Variables

Java

iii

Acknowledgments

First of all, I would like to thank Professor Néstor Cataño, my thesis advisor, without

whose guidance I would surely have been lost. I’m grateful for his patience, support and

specially his enthusiasm on this work. I’m also grateful for the documents he provided to me

and his knowledge, as well as his advice on formal methods and the Java Modelling Language.

I would like also to thank Ricardo Rodrigues, my master's mate, for his collaboration on

this thesis and being by my side while we worked together. His work helped to validate the

work proposed in this thesis, and in some aspects had a strong influence in its precise

definition. Our two thesis works complement each other. I’m grateful for his support in those

hard times we had while working.

Finally, I give many thanks to my family and friends who gave me support and strength by

being on my side each day. Words are not enough to express all my gratitude.

iv

Contents

1. Introduction .. 1

2. Preliminaries.. 2

2.1. Software Correctness .. 2

2.1.1. Design by Contract .. 3

2.2. Formal Methods in the Software Development Process .. 10

3. The Java Modelling Language (JML).. 13

3.1. The JML Specifications .. 13

3.1.1. JML Expressions... 14

3.2. Abstract Variables ... 16

3.2.1. JML Abstract Data Types ... 17

3.3. The JML Common Tools .. 18

4. Related Work... 18

4.1. Formal Methods Strategies for Software Development Processes 18

4.2. SOFL... 19

4.3. ConGu.. 21

5. The JML-based Strategy for Software Development of Java Programs.............................. 22

5.1. Requirements Analysis .. 24

5.2. From Informal Functional Requirements to Semi-Formal Specifications 25

5.2.1. Semi-Formal Functional Requirements... 26

5.2.2. Class Invariants.. 27

5.2.3. System Invariants .. 27

5.3. Design.. 28

5.4. Implementation... 29

5.4.1. Writing JML Abstract Variables ... 30

5.4.2. Writing JML Class Invariants.. 31

5.4.3. Writing JML Method Functional Specifications... 32

5.4.4. Coding the applications... 33

5.5. Validation and Verification.. 33

6. A Running Example.. 34

6.1. Introduction of an Application to be Formally Developed..............Erro! Marcador não

definido.

v

6.1.1. The HealthCard Application Erro! Marcador não definido.

6.1.2. HealthCard Formal Development ... 35

6.1.3. HealthCard System Architecture... 36

6.2. Smart cards and Java Card .. 38

6.2.1. Elements of a Java Card Application ... 38

6.2.2. Accessing the Smart Card (Communication in Java Card)................................... 40

6.2.3. Java Card Remote Method Invocation (JCRMI)... 41

6.3. JML-based Formal Development of the HealthCard... 43

6.3.1. Getting the Informal Requirements .. 43

6.3.2. Getting the Semi-Formal Functional Requirements ... 44

6.3.3. Getting the Class and System Invariants ... 45

6.3.4. Design and Implementation.. 45

6.3.5. JML Formal Specification Pseudo-Phase ... 46

7. Conclusion ... 47

Bibliography .. 51

List of Figures .. 54

List of Code.. 54

List of Tables.. 54

vi

1

1. Introduction

Although software engineering methods provide a disciplined approach to software

development, it is still quite common to find flawed software systems. An approach to tackle

the problem of constructing correct programs is through the use of mathematical formalisms

and mathematically based tools as part of software engineering practices. Formal

specifications allow the capture of requirements unambiguously as part of a software

engineering methodology. A formal specification can be used to generate a collection of

documents describing the expected behaviour of a system. This documentation can be used to

resolve any differences regarding the expected behaviour of the system between members of

the quality assurance team, the programmers and the client. An interesting effort towards the

development and use of tools based on a common specification language is JML (short for Java

Modelling Language), which is the standard language for formally specifying the behaviour of

Java classes. The JML is a tool that provides support to B. Meyer’s design by contract

principles. (Leavens G. , 2008) (Leavens & Cheon, 2006) (Meyer, 1997) JML makes possible to

use run-time and static checkers for checking program correctness.

In this thesis we propose a software development strategy in the style of Bertrand Meyer’s

design-by-contract principles, which makes use of JML specifications for writing contracts (see

Section 3). JML (Leavens) is used as the formal specification language for writing specifications

to support the correct implementation of Java programs. Our strategy consists in evolving

informal functional software requirements (written in English) into formal specifications,

through an intermediate stage in which semi-formal requirements are written, i.e.,

requirements written in English but in a more mathematical style. The informal functional

requirements are suggested by the client (or stakeholders). Often these requirements are

ambiguous, inconsistent and incomplete, due to the use of natural language. Our strategy

involves the transformation of informal functional requirements into semi-formal

requirements so as to provide functional requirements a structure. Having semi-formal

functional requirements is halfway to obtain formal specifications. Hence, the client is not only

capable of following and supporting the software development process, but also the obtained

formal specifications can be used by the software development team to solve differences. For

the transformation process between informal functional requirements and formal

specifications, we propose to write the informal functional requirements as semi-formal

functional requirements of the form if <event/condition> then <restriction/rule>, or as

semiformal class and system invariants respectively specifications imposing system/class

properties restrictions in small and large scale. Later, these semi-formal requirements are to

be ported into JML method specifications, and JML class invariants respectively. These JML

specifications are written within the Java implementation of the application. Some of the

benefits of using JML specifications in software development process are inherent

documentation aspect of JML specifications, and the existence of tools that make the

specifications executable or allow making runtime assertion checks of the JML specifications

against their respective implementation code. With JML as a tool for code documentation, one

can apply the principles of design by contract while programming the client

applications/classes that will request services on the supplier side (JML specified classes and

methods). That is, by having the supplier applications specified with JML, one has to respect

the conditions when coding a call for a supplier method. This code programming style helps

the reduction of redundant code, like unnecessary data validations. By using JML specifications

on the supplier side, one specifies the conditions of a method and invariants, so there is no

need for validating code of the passing arguments or another conditions validation because it

2

becomes the responsibility of the client applications to make validations. Therefore, we can

have a lightweight supplier application/class.

The structure of this document is as it follows. First, in Section 2, we describe the

preliminaries of this work, i.e., we describe the background of software correctness, design by

contract and the usage of formal methods in software development processes. In Section 3,

we give an overview of JML, presenting some specification expressions and the notion of

abstract variables. Further, in Section 4 we present some related work, including types of

strategies for incorporating formal specifications into the software development process. In

Section 5, we present our proposed strategy of incorporating formal methods into software

development processes, including a description for each phase of the development process.

Section 6 shows an example of development of a Smart Card application using our strategy.

The application was originally written by Ricardo Rodrigues as part of his Master thesis work

(Rodrigues, 2009)

2. Preliminaries

In this section we present topics on the software correctness and formal methods in

software development processes. The topics described here provide the minimal background

that is needed to understand the matter of the thesis. The introduction of a strategy for

incorporating formal specifications into the software development process is the key aspect of

in this thesis. Section 2.1 presents software correctness, including the Design by Contract

design methodology, which is the basis of the strategy, and next we focus on the use of formal

methods in the development process.

2.1. Software Correctness

To determine if a software program is correct, first we must specify what the software is

intended to do. We can’t check correctness of a software program in isolation, but only with

respect to some specification. Even an incorrect program can perform some processing

correctly, although it could be a different processing to the one the developers (or clients)

have in mind. Obtaining the requirement specifications is vital as first step in the process of

developing a correct software system. (Priestley) To help us assess the correctness of a

software program we can express these requirement specifications through the use of

assertions. To prove the correctness of a software program’s routine body or instruction, these

assertions must be checked against it. This proof can be explained here by a correctness

formula (also called Hoare triples) as an expression of the form denoting the following

property (Meyer, 1997) Notice that this formula is a mathematical notation, not a

programming construct. It serves only to explain how we can prove the software correctness

of a program’s routine:

{P} A {Q}

• Where, A is some operation (for example, an instruction or a routine body); and

• P is an assertion called precondition; and

• Q is an assertion called postcondition.

The formula shown above denotes that A as an operation which requires P to assure Q,

where this must hold to A be correct. The general meaning of a total correctness formula is: -

3

“Any execution of A, starting in a state where P holds, will terminate in a state where Q holds.”

(Meyer, 1997)

As an example, let’s use a mathematical expression. Considering x as an integer value, the

arithmetic operation x := x + 2, the precondition {x >= 5} and the postcondition {x >= 6}, we

have the correctness expression:

{x >= 5} x := x + 2 {x >= 6}

Assuming a correct implementation of the integer arithmetic operation, the above

expression holds: – if x >= 5 is true when calling the instruction x := x + 2, then x>= 6 will be

true afterwards. And of course, if the precondition were false, then the integer arithmetic

operation couldn’t assure nothing, i.e., the postcondition would be neither true nor false.

However, now assuming an incorrect implementation of the above correctly specified

expression (i.e. assuming that the instruction violates its specification), if the precondition is

true and the postcondition is false, then we could conclude that the integer arithmetic

operation was wrongly implemented according to what is specified, i.e., the tester would know

that something was wrong with the implementation against the specifications. These

preconditions and postconditions can be strengthen or weaken.

• Stronger preconditions are better: If we have a strong precondition, that means

that the routine must handle a limited set of cases, making easier the routine’s

job. However, a weaker precondition makes the routine’s job harder, as it has to

consider several cases not specified by the precondition. A false precondition is

the strongest possible assertion, since it’s never satisfied by any state. By this,

any request to execute the routine will be incorrect, as the fault is of the client

(i.e., obviously he will never satisfy the preconditions). Whatever the routine’s

result, it may be useless, but it will be always correct, as it is consistent with the

specifications. (Meyer, 1997) However, the least restrictive precondition is the

weakest precondition.

• Weaker postconditions are better: In postconditions, the situation is reversed.

A strong postcondition means that a harder job by the routine must be made to

assure all the postconditions. By this, the routine’s result has to respect a bigger

set of conditions. However, the weaker a postcondition is the better for the

routine’s job, which means that its result will be satisfied by more states.

Asserting a postcondition as true is the weakest possible assertion, because it is

satisfied by all states. (Meyer, 1997)

The design by contract is a software correctness methodology that has its roots in Hoare

logic. Like the Hoare triples formula: {P} A {Q} , the design by contract has the concept of

preconditions {P} and postconditions {Q} to document the change in state caused by a piece

of a program A. These pre- and postconditions are used to strengthen the conditions of a

contract between a caller and a supplied routine. (Meyer, 1997) Further, in Section 3, it is

presented the Java Modelling Language (JML) which is a design by contract tool. In JML, the

Hoare logic is applied through the use of requires (precondition - {P}) and ensures

(postcondition - {Q}) expressions that specifies some Java method’s body behaviour (A).

2.1.1. Design by Contract

The essence of the design by contract methodology is that a contract exists between a

routine class (supplier of certain services) and its callers (clients of those services). Some

4

documents refer the routine classes (serving some services to others) as suppliers, server or

server side, while callers can be referred as clients or client side. The design by contract makes

the Hoare logic (see beginning of the Section 2.1), a vital component in a program

development strengthening the notion of contract. Like in the Hoare logic, in design by

contract we may specify the routine task’s contract with two associated assertions: -

precondition and a postcondition. The precondition defines the properties that must hold

whenever the routine is called and the postcondition defines the expected return properties.

These two assertions are a way to define a contract between the routine and its callers.

(Meyer, 1997) The design by contract, as a tool for a software development process can lead

to the construction of more reliable object-oriented systems, provides a mechanism through

assertions for checking the conformance of the code against its specification. (Meyer, 1997)

Before discussing further the design by contract we’ll show below an example of pseudo-

specification of a contract. Let’s supposed we have a Medicines class for managing a list of

medicines. In the following Code 1 we are presented with a Medicines operation specified with

pseudo-specification that demonstrates how assertions are used in practice for describing a

contract for a routine (Eiffel Software). Here, preconditions and postconditions are

represented respectively by require and ensure keywords. (Meyer, 1997) In JML, these two

keywords are actually requires and ensures, with “s”.

class MEDICINES create

 make

feature

 quantity: INTEGER

 name_length: INTEGER is 20

...

 addMedicine (medicine: STRING) is

 -- Adds a medicine into the list of medicines.

 require

 medicine.length <= name_length

 do

 insert(medicine)

 ensure

 quantity = old(quantity) + 1

end

…

end -- class MEDICINES

Code 1. Example of a Medicines class specified with pseudo-specification

In the example above, the precondition states that a client who calls the addMedicine

routine must assure that the medicine’s name length must be lesser or equal to the constant

value of name_length which is 20. The postcondition states that the post-state of the method

must verify that the quantity is updated and higher by 1 than the old medicine quantity. Note

that when we say “client”, it refers to a routine that calls another, that is, the contract

between a client and a supplier is made by a communication of software-software. (Meyer,

1997) In a contract, both clients and suppliers have obligations and benefits.

5

2.1.1.1. Obligations and Benefits

The precondition is related to the client in a way that it defines the conditions under which

is legitimate for the client to call a method, i.e., it’s an obligation for the client and a benefit for

that supplier (server). The postcondition is related to the class, which defines the conditions

that must be ensured by the class routine on return, i.e., it’s a benefit for the client and an

obligation for the supplier. That is, from the previous statements we can say that the benefits

are, for the client, the guarantee that he will get what he expects after the call, and for the

supplier, the guarantee that certain assumptions will be satisfied when the routine is called,

while the obligations are, for the client, to satisfy the requirements as defined by the

precondition, and for the supplier, to produce results as defined in the postcondition. (Meyer,

1997) The following example taken from (Tucker & Noonan, 2001) shows how design by

contract plays out for a factorial computation in respect for client/suppliers’ benefits and

obligations.

Table 1. A design by contract example (Tucker & Noonan, 2001)

 Obligations Benefits

Client
(Satisfy precondition :)

Pass

(From postcondition :)

Receive computed

Supplier
(Satisfy postcondition :)

Compute

(From precondition :)

Can assume that

When an assertion fails, we can assign blame to the party that did not fulfil its

responsibilities: if the precondition is violated then the supplier won’t be benefited and the

client is to blame, and if the postcondition is violated then the client won’t be benefited and

the routine implementation is to blame. (Meyer, 1997) In any of these cases, part of the

contract won’t be fulfilled.

Following these obligations and benefits’ convention a developer can simplify its

programming style while developing an application. Having specified preconditions that clients

must respect when calling a routine, the developers may assume when writing the routine’s

body that the preconditions are satisfied, i.e., the developer do not need to validate them in

the routine’s body. It helps to clear redundancy in the code as under no circumstances shall

the body of a routine ever test for the routine’s precondition. This is called the principle of

non-redundancy. (Meyer, 1997) By this principle, we add the responsibility of validating the

preconditions to the client, reducing the code on the supplier side (server side). For instances,

in the previous Table 1, the routine computing the factorial has a precondition that specifies n

as a positive value or equal to zero, so in its body we haven’t to validate if n is respecting that

condition.

2.1.1.2. Clearing redundancy

By following the non-redundancy principle we are clearing out the redundancy in our code.

One of the main advantages of clearing redundancy is that it reduces considerably the quantity

of lines of code when programming, and thus its complexity. Having been specified as

preconditions, the constraints that must be respected for calling a routine, we may assume

that those constraints are satisfied when writing the routine body, and also we do not need to

test them in the body. (Meyer, 1997) So if a factorial computation meant to produce a positive

integer as result, is of the form seen in Code 2:

6

fact(n: INTEGER): INTEGER is

 Factorial of n

 require

do … end

Code 2. Pre-condition example for a factorial computation (Tucker & Noonan, 2001) (1997)

We may write the “do … end” algorithm for computing the factorial without concerning

whether is negative or not. This concern is taken care by the precondition which becomes

the clients’ responsibility. (Meyer, 1997) If the “do” clause was on the form as seen in Code 3:

if then

“Handle this erroneous case!”

else

“Proceed with normal factorial computation”

end

Code 3. A redundant test ()

Then the test “ ” is not just unnecessary but unacceptable, because it violates the

non-redundancy principle. This is a characteristic of the defensive programming in which it

states that to obtain reliable software one should design every component of a system to

protect itself as much as possible. The defensive programming technique is advocated by many

software engineering books, but this technique causes redundancy in the code when following

the design by contract methodology. The more redundant checks added to a software

application, more complexity to the software will be added. This may cause problems to obtain

reliability
1
 and may imply a performance penalty. (Meyer, 1997) By applying the principle of

non-redundancy, we are light weighting the supplier operations. In case of an application

developed in Java Card, to be supported by smart cards, this may be a benefit for memory

saving on the card side, due its limited small capacity (see Section 6.2 for a description on

smart cards and Java Card). When an external client makes a remote call on the card, it is

assumed that the preconditions of remote methods in the card side are valid. These

preconditions validations are made in the client side, so there is no need of validations in the

card side.

The notion of a contract in design by contract can be extended down to the

method/procedure level besides the concepts of preconditions and postconditions. A contract

can also be strengthened by concepts like invariants, inheritance and exceptions.

2.1.1.3. Invariants

Besides having preconditions and postconditions, we can have invariants to express global

properties of routine’s contracts between suppliers and clients. Preconditions and

postconditions only describe properties of single routines. There is a necessity of expressing

global properties of instances of a class, which must be preserved by all routines. We may

1
 Reliability is the ability of a system or component to perform its required functions under stated

conditions for a specified period of time.

7

consider an invariant as being an extension for both preconditions and postconditions of every

class’s routines. (Meyer, 1997) For instance, let A be a certain body of a routine (the set of

instructions in its do clause), P is precondition, Q its postcondition and INV the routine’s class

invariant. The correctness requirement on A may be expressed by using the notation

introduced earlier in this section as:

{INV and P} A {INV and Q}

The expression above means that: – “any execution of A, started in any state in which INV

and P both hold, will terminate in a state in which both INV and Q hold”. (Meyer, 1997) Here

adding the invariant makes both the precondition and the postcondition stronger or equal, i.e.,

the invariant could either reinforce the conditions or could have no effect on them (redundant

conditions). So when implementing the routine’s body A, the invariant INV makes the job

easier in addition to the precondition P due to the assumption that the initial state satisfies

INV, further restricting the set of cases that must be handled by the precondition specification.

However, in addition to the postcondition Q which A must ensure, the routine’s body must

also ensure that the final state satisfies INV, making the implementation harder. Considering

again the earlier Medicines class example and its pseudo-specifications shown in the beginning

of Section 2.1.1, we demonstrate in Code 4 how we could specify a class invariant. (Eiffel

Software)

class MEDICINES create

 make

feature

 quantity: INTEGER

 name_length: INTEGER is 20

 total_medicines: INTEGER is 250

...

 addMedicine (medicine: STRING) is

 -- Adds a medicine into the list of medicines.

 requires

 medicine.length <= name_length

 do

 insert(medicine)

 ensures

 quantity = old(quantity) + 1

 end

…

invariant

 quantity <= total_medicines

end -- class MEDICINES

Code 4. Example of a Medicines class implementation with an invariant

In this example, at Code 4, we can see that a total of medicines variable now exists. It’s an

integer value of 250. In the example we specified that the quantity must always be lesser than

or equal to the total of medicines. We specified this as an invariant, therefore all routines of

the class must preserve it. Before having a specified invariant one could assume that the

quantity could be any value upper than 250 on any routine of the class, i.e., it didn’t exist a

8

limit to the quantity of medicines. The invariant represents a general consistency constraint

obligatory for all routines of the class. (Eiffel Software) So to preserve this property defined by

the invariant, one has to implement the routine’s body in a way to not violate what is stated in

the invariant clause, in this example, the routine addMedicine must also ensure that the

variable of quantity must not exceed the value defined by total_medicines.

So far we used invariants to express global properties of a single class, denominated by

class invariants, but there is another concept within the invariants known as system invariants

which describes instance properties that must be preserved by all routines from more than

one class. For instances, let X and Y be two different classes. An invariant INV would be a

system invariant if instances from both X and Y are affected by INV. A system invariant is

basically described like a class invariant and it is specified in a class that has references to X

and Y objects.

Besides the earlier Medicines class, let’s supposed that we have an Appointments class to

manage appointments information. In the following example shown in Code 5, X and Y are

exemplified respectively by the classes Medicines and Appointments, where Medicines is a

class that manages Medicine objects and Appointments is a class that manages Appointment

objects. The defined invariant is a system invariant because it affects instances of these two

different classes. The invariant basically states that for every Medicine object instances

obtained through the Medicines instance, their prescription date attribute (i.e.,

meds.getDate(i)) must be higher or equal to the respective Appointment’s date (i.e.,

apps.getDate(k)), obtained through the Appointments instance. This compares the date of the

medicine’s prescription renewal with the date when the medicine was prescribed for the first

time. That is, for all Medicine and Appointment instances if a Medicine instance has an

appointmentID attribute equal to another Appointment instance ID attribute, then that

Medicine’s date must have a higher or equal value to the that appointment’s date. This

invariant restricts the value of a medicine’s date making it dependable of the respective

appointment’s date.

class SERVICES create

 make

feature

 meds: MEDICINES

 apps: APPOINTMENTS

...

invariant

 forall(int i; i < meds.getMedicines().length && i >= 0;

 forall(int k; k < apps.getAppointments().length && k >= 0;

 meds.getAppointmentID(i) == apps.getID(k)

 ==>

 meds.getDate(i) >= apps.getDate(k)))

end -- class SERVICES

Code 5. Example of a Services class referencing Medicines and Appointments classes with a system invariant

Another concept that extends the notion to contracts, at a lower level, within the design by

contract is the inheritance. The preconditions, postconditions and even invariants can be also

inherited.

9

2.1.1.4. Inheritance

The concept of inheritance allied with the notion of contracts from design by contract

brings us to a new level, as contracts can also be inherited by subclasses in terms of object-

oriented programming. A routine’s precondition and postcondition are inherited by their

redefinitions in sub-classes as well as super-class invariants. This is actually the case in JML

specifications (see Section 3) which can also be inherited. Although inheritance is one of the

pillars of the object oriented paradigm flexibility, many programmers have the difficulty in use

it correctly. (Júnior, Figuereido, & Guerrero, 2005) Through the inheritance mechanism one

can create new classes from those already existent, and the behaviour from their routines

doesn’t necessarily have to be maintained by their sub-classes. It is possible to redefine the

routines with a partial behaviour or even a complete distinct one. However, from these

possibilities and the use of design by contract methods one could redefine a routine that

produces an incompatible effect to the described routine’s behaviour specification (contract)

in the super-class. (Júnior, Figuereido, & Guerrero, 2005) This incompatible redefinition is a

problem connected with the bad use of the inheritance, which design by contract helps to

avoid in a way that we can redefine those routines as longs as they respect the established

original contract defined in the respective inherited routines from the super-classes. (Júnior,

Figuereido, & Guerrero, 2005)

For instance, let X and X1 be two classes where X1 is a sub-class of X, and Y any class

communicating with an instance of type X. Due to polymorphism, Y can actually be dealing

with an instance of X1. The developer of Y knows that he must respect the defined contract in

X, but he doesn’t know of the existence of other classes inheriting X. So, Y could discover only

in runtime that he is communicating with X1, and the contract of a certain inherited routine of

X1 could be different from the contract specified in the super-class X. That is, Y could be calling

for a routine under a certain contract, while in reality is communicating with another

completely different. In fact there are two things that could make a class deteriorate its super-

class contract specification (Júnior, Figuereido, & Guerrero, 2005):

1. A sub-class could make its precondition to be more restrictive than the one from the

super-class, causing the risk of any calls previously considered correct by the client class

Y’s perspective (in a way that they satisfied the original conditions imposed to the

client) to become violating the contract’s rules.

2. A sub-class could be making its postconditions to be more permissive, returning a result

less satisfactory than the promised to Y.

Under the previous situation the client class Y could get “deceived” by a call that makes

something unexpected. From this problem, we conclude that every contract specifications

must be compatible with the original contract specifications, but nevertheless sub-classes have

the right to improve them, i.e., by making its methods’ postconditions stronger or making its

methods’ preconditions weaker. Besides the inheritance rules applied to preconditions and

postconditions, also the inheritance mechanism has effect upon the invariants, in a way that

these are passed to their inheritors. For instance, an invariant from X also would be inherited

by X1, and this is the case in JML where invariant specifications written in Java interfaces are

inherited by the concrete Java classes implementing the interfaces.

The result of the inheritance concept, in which every instance of a class is also an instance

of every ascendant class, is also logically valid for the contract specifications defined in the

super-classes to be applied to their sub-classes. That is, a set of invariants of a certain class is

the sum of all invariants from the ascendant hierarchy of inheritance. (Júnior, Figuereido, &

Guerrero, 2005)

10

 Another concept extending the notion of a contract is the treatment of exceptions

within a contract between a client and a supplier.

2.3.1.5. Exceptions

As a routine in design by contract is seen like an implementation of a certain specification

rather than just a piece of code, and as it is possible for that implementation to fail with

respect to the specifications in runtime, then one can extend the notion of a contract to the

exception handling. Besides errors in implementations, exceptions in a routine’s behaviour can

happen due to unpredictable events like hardware malfunctions or another external event. So,

in these situations it becomes useful to use exceptional specifications attached to contract

specifications to describe exceptional behaviours when some strategy for fulfil a contract

doesn’t succeed. By this definition and the notion of preconditions and postconditions from a

contract, it is possible to establish the following rule: - A routine must not launch an exception

when its preconditions is not fulfilled, as it doesn’t denote a failure within the routine but it

does for the routine’s caller. When the routine fulfils its postconditions it must not launch an

exception. – This is known as the principle of exception. (Júnior, Figuereido, & Guerrero, 2005)

As for the global properties from a class, routines and constructors must preserve and

respect the invariants in both normal and abrupt terminations, that is, invariants are included

in both normal and exceptional postconditions. (Júnior, Figuereido, & Guerrero, 2005)

2.2. Formal Methods in the Software Development Process

A formal software specification is a specification expressed in a language that has its

semantics and syntax mathematically or logically defined. Based on the definition of

Sommerville (Sommerville, 2000), the formal methods are a way of employing software

correctness in software development processes. The need for a formal specification in a

software development process means that we cannot solely rely in natural language to

develop a system. The natural language is ambiguous and can lead to inconsistent and

incomplete specifications. Formal specifications make possible the capture of software

requirements unambiguously as part of a software engineering methodology. By using formal

specifications, one might invest more effort in the early phases of software development cycle,

especially in the requirement analysis phase. Nonetheless, the use of formal specifications

reduces requirements errors as it forces a detailed analysis of them, and also helps to detect

and resolve incompleteness and inconsistencies. Hence, the amount of rework due to

requirements problems is reduced, and thus also the cost related to the implementation and

validation phases. However, according to Sommerville (Sommerville, 2000), in the software

engineering, the formal methods are not widely used as software development techniques,

although their promise to increase the systems quality by supporting their correctly

development according to the client’s real needs. Eventually other software engineering

techniques have surpassed the need for formal methods for various reasons that extend from

the complexity and the incapability of formal methods in dealing with large-scale systems, to

frequent changes in requirements and designs in practice. (Liu, Takahashi, Hayashi, &

Nakayama, 2009) Sommerville (Sommerville, 2000) suggests that formal specification

techniques have not been broadly used in industrial software development environments,

because:

I. There is a lack of methodologies and tools to support the use of formal methods in

software development. Barely minimal guidelines are provided on how to elicit and

structure the requirements into formal notation. Lack of guidance makes it hard to

developers use formal methods by themselves and from the lack of tools developers

11

have difficulties of applying formal methods into their development cycles, especially to

develop, analyze and process large-scale specifications using formal specification

languages. The production of well-defined guiding lines and supporting tools are

needed.

II. The use of formal methods requires the knowledge of discrete mathematics and

symbolic logic. Most of the developers (i.e., software engineers, programmers, and

designers) have not been trained in techniques required to develop formal software

specifications. Techniques have been tested by Japanese researchers over the last

fifteen years in formal methods education programs for undergraduate and graduate

students at universities as well as practitioners at companies. (Liu, Takahashi, Hayashi,

& Nakayama, 2009)

III. The formal specifications are an inappropriate tool for communications with the end

user at the later stages of requirements specification. More than the software

developers, most end users who provide the requirements and approve their

specifications are neither familiar nor comfortable with the formal specification

languages. According to Sommerville (Sommerville, 2000), Hall suggests that one can

paraphrase in natural language the formal specifications or use animated illustrations,

that is, presenting the formal specifications in a form that can be understood by the

client.

IV. The use of formal specifications at initial stages may hold back the creative side of

developers, that is, having a poorly structured problem, the formal representations

from it may restrain the developers from exploring alternatives. Formal specifications

may not be an ideal tool for exploring and discovering the problem’s structure. The

problem may have to be studied and understood before being formalized.

V. The use of formal specifications for development of user interfaces is hard. With the

current techniques is practically impossible for specifying interactive components of

user interfaces. Also, some other system components are hard to specify like parallel

processing systems, such interrupt driven-systems.

VI. Most of software development managers are normally conservative and reluctant in

using techniques whose benefits are not yet well-known. The recompense by using

formal methods is not immediate and it is hard to quantify. Nevertheless, Sommerville

(Sommerville, 2000) concludes that when a conventional software development

process (i.e., without using formal methods) is used, validation costs are more than

50% of the whole development costs, and implementation and design costs are the

double of the specification cost. With the use of formal methods, the specification,

implementation and design costs are almost equal and validation costs are considerably

reduced to less than the development costs.

Knowing these difficulties in the wide acceptance of formal methods in software

development, one has the challenge to integrate formal methods to the system development

effort, especially in large-scale development projects. For this, viable strategies for supporting

the integration of formal method techniques into the software development process are

paramount important; without existing strategies it may be difficult to integrate formal

methods into the real-world development project. Our JML-based strategy (described in

Section 5) is a strong attempt to tackle some of the difficulties of making formal methods

popular among the developers in the software industry. In the following, we describe how our

strategy overcomes some of these difficulties.

12

To address the “lack of methodologies and tools to support the use of formal methods in

software development” difficulty (see point I. – Section 2.2), our strategy provides guidelines

for iteratively transforming informal functional requirements (given by the stakeholders) into

formal specifications. By using this specification transformation process we can formally

develop software applications. In our strategy, the specifications go along three stages: the

informal, the semi-formal, and the formal ones. The informal specifications are given by the

stakeholders, and in a middle stage are then structured into the semi-formal ones (see Section

5.2 for details about the semi-formal specifications creation). The semi-formal specifications

are still written in natural language like the informal specifications, but mathematically and

logically structured. They serve as an intermediate step for writing formal specifications. The

formal specifications are written in JML, and they are produced from the semi-formal

specifications. From the JML specifications, the Java programs are developed accordingly. Also,

as the JML uses Java syntax, it is a formal specification language easy to be used by any

developer with the minimal knowledge about the Java language. There are tools for supporting

the validation of Java implementations against their respective JML specifications. The most

popular tools in the field are the JML Common Tools (see Section 3.3). Our JML-based strategy

provides not only guidance for incorporating formal specifications, but also it benefits from the

existence of a variety of supporting tools and the usage of a specification language easy to

understand by any Java developer.

To address the difficulty of “formal specifications as an inappropriate tool for

communicating with the end user” (see point III. – Section 2.2), our strategy uses semi-formal

specifications as a means of communication between formal specifications and end users. That

is, as the semi-formal specifications are closer to formal specifications than the informal ones,

yet written in a structured natural language, it becomes easy to communicate with the end

user about the system specifications through the semi-formal specifications. Our strategy

recommends structuring the semi-formal specifications in a way like the JML specifications,

while being written in natural language. For example, the semi-formal specification if

<event/condition> then <restriction/rule> can be mapped directly to a JML specification

requires <precondition> ensures <postcondition>, and vice-versa. The following example

presents this relation between semi-formal and formal specification stages:

• Semi-formal specification for event addName:

 IF length of name LESS OR EQUAL TO 50 THEN stored_name EQUALS name.

• Formal specification (JML) for event addName:

...

requires name.length() <= 50;

...

ensures stored_name == name;

...

Where IF ���� requires and THEN ���� ensures. In our strategy, the semi-formal IF statement is

similar to the requires statement from JML, and the THEN is similar to the ensures from JML.

As the semi-formal specification, written in natural, can be easily understood by an end user,

then we can communicate with them the formal specifications. We conclude that our JML-

based strategy provides a first solution for the communication of formal specifications to the

end-users.

To address the difficulty of “the use of formal specifications at initial stages may hold back

the creative side of developers” (see point IV. – Section 2.2), our strategy does not make use

13

of formal specification at the initial stages of a software development process. At the initial

stage of the software development our strategy recommends producing domain concepts to

understand the problem. After having domain concepts, one can start writing use cases, and

then designing informal functional requirements describing the rules. These (unstructured)

informal specifications are then ported into semi-formal specifications. These semi-formal

specifications are still in natural language and the developers can still discuss them with the

stakeholders while giving them enough space for their creative sides. The semi-formal

specifications can easily be ported into formal specifications just before starting implementing

the system. To provide support to the creative side in later stages of the development, our

strategy recommends designing the system using Java interfaces with JML specifications,

giving the implementation a higher level of abstraction. During implementation, one can

implement the concrete classes (and their methods) in various ways provided that they

respect what is specified in the implemented Java interfaces or abstract classes. Furthermore,

the JML specifications make use of abstract variables declared as JML abstract types. These

JML abstract variables can abstract a complex data structure, allowing programmers to

implement those complex data structures as they desire while in concordance with the formal

specifications (see Section 3.2 for further details about abstract variables and JML abstract

data types).

For addressing the difficulty of “the use of formal specifications for development of user

interfaces is hard” (see point V. – Section 2.2), our strategy makes use of the B. Meyer’s

Design by Contract principles. As our strategy complies with the design by contract principles,

we can formally describe the behaviour of components with JML and then when implementing

a client routine we must respect the contract conditions when programming a call on a

specified supplier routine. The use of JML supports a style of programming by contract. By

following our strategy we can end up with components that have formal specifications to

describe contracts for their methods (JML method functional specifications) or even classes

(JML invariants). For instance, these components can be user interface components, and as

they use JML specifications, one can implement a system around them by respecting the

specifications. That is, all the calls made for the specified components must have to respect

their contracts. By employing our JML-based strategy it is possible to develop user interfaces

like any other Java program, as it is possible to describe components behaviours.

3. The Java Modelling Language (JML)

JML is a specification language for Java, which as a tool provides support for B. Meyer’s

design by contract principles (Meyer, 1992). JML was started by Gary Leavens and his team at

Iowa State University, but is now an academic community effort with many people involved

through the development of tools providing support for the language (The ESC/Java 2 Tool;

The Jack Tool; The Krakatoa Tool; van den Berg & Jacobs, 2001). All the concepts discussed in

the Design by Contract section (see Section 2.1.1), that is, the notion of contracts along with its

preconditions and postconditions; and the concepts of invariants, inheritance and exceptions,

also apply to JML.

3.1. The JML Specifications

JML specifications use Java syntax, and are embedded in Java code between special marked

comments /*@ ... */ or after //@ . A simple JML specification for a Java class consists of

pre- and postconditions added to its methods, and class invariants restricting the possible

states of class instances. Specifications for method pre- and postconditions are embedded as

14

comments immediately before method declarations. JML predicates are first-order logic

predicates formed of side-effect free Java boolean expressions and several specification-only

JML constructs. Because of this side-effect restriction, Java operators like ++ and -- are not

allowed in JML specifications.

JML provides notations for forward and backward logical implications, ==> and <==, for

non-equivalence <=!=> , and for logical or and logical and , || and &&.

The JML notations for the standard universal and existential quantifiers are (\forall T
x; E) and (\exists T x; E) , where T x; declares a variable x of type T, and E is the

expression that must hold for every (some) value of type T. The expressions (\forallT x;
P; Q) and (\exists T x; P; Q) are equivalent to (\forall T x; P ==> Q)

and (\exists T x; P && Q) , respectively.

The JML numerical quantifier (\num_of T x; P; Q) returns the number of variables x

of type T that make both predicates P and Q true; (\max T x; P; E) returns the

maximum value of the expression E where its variables satisfy the range P; (\sum T x; P;
E) returns the sum of possible values of E where its variables satisfy the range P.

JML provides specifications for several mathematical types such assets, sequences,

functions and relations. As JML is a tool to employ design by contract methods, there is some

mechanisms used to support contracts like the specification of method’s preconditions and

postconditions through the use of respectively the keywords requires and ensures ; the

specification of invariants by using the JML keyword invariant ; the specification of

exceptional behaviours to describe how to deal with unexpected behaviours; and also the JML

specifications are inherited by sub-classes, i.e., sub-class objects must satisfy super-class

invariants, and subclass methods must obey the specifications of all super-class methods that

they override. In the following, we briefly review JML specification constructs. A brief

description of some JML expressions used in specification can be seen in Section 3.1.1, but the

reader is invited to consult (Leavens G. , 2008) for a full introduction to JML.

3.1.1. JML Expressions

In this section we present some of the common JML expressions and a simple example

based on the pop() method of a Stack class.

Table 2. Some JML expressions

requires P Specifies a method pre-condition P, which must be true

when the method is called. Predicate P is a valid JML

predicate.

ensures Q Specifies a normal method post-condition Q. It says that if

the method terminates in a normal state, i.e. without

throwing an exception, then the predicate Q will hold in that

state. Predicate Q is a valid JML predicate.

signals (E e) R

Specifies an exceptional method post-condition R. It says

that if the method throws an exception e of type E, a

subtype of java.lang.Exception , then the JML

predicate R must hold. Predicate R is a valid JML predicate.

JML allows the use of the alternative clause exsures for

signals.

normal_behavior Specifies that if the method precondition holds in the pre-

15

 state of the method, then it will always terminate in a

normal state, and the normal post-condition will hold in this

state.

exceptional_behavior

Specifies that if the method pre-condition holds in the pre-

state of the method, then it will always terminate in an

exceptional state, throwing a java.lang.Exception ,

and the corresponding exceptional post-condition will hold

in this state.

assignable L

Specifies that the method may only modify location L. Any

other location not listed in L may therefore not be modified.

This must be true for both normal and exceptional post-

conditions. Two special assignable specifications exist,

assignable \nothing , which specifies that the

method modifies no location, and assignable
\everything , which specifies that the method may

modify any location. JML allows the use of the alternative

clauses modifies and modifiable for assignable.

\old(e)

Refers to the value of the expression e in the pre-state of a

method. This specification can only be used in normal or

exceptional method post-condition specifications.

\fresh(e)

Says that e is not null and was not allocated in the pre-state

of the method.

\result

Represents the value returned by a method. It can only be

used in a normal or an exceptional method post-condition.

invariant I

Declares a class invariant I. In JML, class invariants must be

established by the class constructors, and must hold after

any public method is called. Invariants can temporally be

broken inside methods, but must be re-established before

returning from them.

The following example shows how a JML specification can be used to specify the method

pop().

public interface Stack {
//@ public model instance JMLObjectSequence stack;

/*@ public normal_behavior
@ requires !stack.isEmpty();
@ assignable size, stack;
@ ensures stack.equals(\old(stack.trailer()));
@ also
@ public exceptional_behavior
@ requires stack.isEmpty();
@ assignable \nothing;
@ signals(java.lang.Exception e) true;
@*/
public void pop() throws java.lang.Exception;
}

Code 6. Example of how JML can be used to specify a method

16

In the example shown in Code 6, we can see that method pop() has been given a normal

and an exceptional behaviour formal specification. For the normal behaviour, the precondition

is defined by the requires clause, which states that the stack must not be empty. Then the

assignable clause specifies that the size and stack instances may suffer a change, that is,

only the locations named through the assignable clause, and locations in the data groups

associated with these locations, can be assigned to during the execution of the method. A JML

assignable clause can be used in a method contract to specify which parts of the system state

may change as the result of the method execution. The postcondition in the normal behaviour

is defined by the ensures clause, which states that the stack will be equal to a portion of the

old stack after the execution of pop(). The exceptional behaviour if the stack is empty when

attempting to call pop() an exception will be thrown. The assignable clause in this case is

\nothing because nothing is changed within pop() and the signals clause specifies a

condition that will be true when an exception of type java.lang.Exception is thrown.

3.2. Abstract Variables

To have a higher level of abstraction in specifications, JML provides support for abstract

variables. These are variables that exist at the level of the specification, but not in the

implementation. Declarations of abstract variables have the same format as declarations of

normal variables, but are preceded by the keyword model . As we can’t declare concrete

variables in interfaces, the abstract variables can be used in interfaces and abstract Java

classes to describe abstractly the distinct data types used in the application. The abstract

variables can be used to support the writing of correct code for concrete classes that

implement the interfaces and the abstract Java classes. In the following Code 7 example we

demonstrate a declaration of an abstract variable named dosage_model in interface Medicine.

The abstract variable dosage_model represents the dosage quantity of a medicine.

public interface Medicine {
...
//@ public model instance double dosage_model;
...
}

Code 7. Example of how JML can declare an abstract variable

Abstract variables can be related to concrete variables (or other abstract variables) by a

represents clause. A represents clause specifies how the value of an abstract variable can

be calculated from the values of the concrete variables (variables at the implementation level).

In the following Code 8 example it’s demonstrated how we can relate an abstract variable with

a concrete expression involving a concrete variable.

public class Medicine_Impl implements Medicine {
...
public byte[] dosage ; //@ in dosage_model;
/*@ public represents
 @ dosage_model <- dosage[0] + dosage[1]*0.1;
 @*/
...
}

Code 8. Example of how JML abstract variables can be represented by concrete values

17

In the above example, the abstract variable dosage_model is related with the expression

“dosage[0] + dosage[1]*0.1 “, which maps the values in the byte array dosage into

the double value calculated as the sum of the all the values in the array. For specifications

purpose we can treat the dosage of a medicine like a double value, but in reality it can be

implemented as an array of primitive bytes. In this case, the use of abstract variables gives a

level of abstraction that allows us to implement a medicine’s dosage information in different

ways as long as it respects the specifications.

Abstract variable specifications for interfaces and for abstract classes do not need to be

written down again in implementing classes and sub-classes, since JML specifications are

inherited by sub-classes and by implementing classes. This ensures behavioural sub-typing.

That is, a sub-class object can always be used where a super-class object is expected.

Therefore, a sub-class satisfies super-class invariants, and sub-class methods obey the

specifications of super-class methods.

For abstracting complex data structures, i.e., modelling complex data structures into

specifications, there are model data types provided by the JML, also known as JML abstract

data types.

3.2.1. JML Abstract Data Types

The Java Modelling Language (JML) also provides abstract data types from the package

org.jmlspecs.models to abstract complex data structures. Based on the description of

Leavens (Iowa State University, 2002), this package is a collection of types with immutable

objects. An object is immutable if it has no time-varying state. The types of the immutable

objects in this package are all pure, meaning that none of their specified methods have any

user-visible side-effects (although a few inherited from Object do have side effects). Their

pure methods are designed for use in JML specifications. When using such methods we have

to do something with the result returned by the method, as in functional programming. The

original object's state is never changed by a pure method. For example, to insert an element e,

into a set s, one might execute s.insert(e), but this does not change the object s in any way,

instead, it returns a set that contains all the old elements of s as well as e. At first we shouldn't

worry about the time and space used to make such set, because specifications are not mainly

designed to be executed. However, there are justifiable reasons to worry about the efficiency

of executing specifications for testing and debugging purposes.

In the following list are described some abstract data types that can be used while declaring

abstract variables in JML specifications. The reader is invited to consult (Iowa State University,

2002) for a complete description of JML model data types.

JMLObjectSequence – This class defines immutable sequences of objects, including a

series of pure methods for sequence manipulation. For example, insertFront() ,
insertBack() , itemAt(int i) . This type can be used to declare abstract variables

to model complex data structures containing objects.

JMLValueSequence – This class defines immutable sequences of values, and also

including a series of pure methods for value sequence manipulation. This type can be used

to declare abstract variables to model complex data structures containing values, such as

characters of a String or Integer values of an array.

JMLEqualsSequence – This class is similar to JMLObjectSequence but has an

“.equals ” method to compare elements.

18

JMLType – There are classes which implements JMLType to reflect Java types like

JMLByte to reflect Byte , JMLChar to reflect characters, JMLFloat to reflect float

type, etc.

By using these data types in the specifications, one can abstract the way programmers can

represent data structures. For example, an abstract variable of the type

JMLObjectSequence abstracts a complex data structure to hold object instances, which

besides simplifying the JML specifications it also gives the freedom, through their

representation, of implementing concrete data structures in various ways (object arrays,

stacks, queues, etc.) as long as the specifications are respected.

3.3. The JML Common Tools

The JML common tools (Leavens G. T., 2008) is the most basic suite of tools providing

support to run-time assertion checking of JML-specified Java programs. The suite includes jml,

jmlc, jmlunit and jmlrac. The jml tool checks the JML specifications for syntax errors. The jmlc

tool compiles JML-specified Java programs into a Java byte-code that includes instructions for

checking JML specifications at run-time. The jmlunit tool generates JUnit unit tests code from

JML specifications and uses JML specifications processed by jmlc to determine whether the

code being tested is correct or not. Test drivers are run by using the jmlrac tool, a modified

version of the Java command that refers to appropriate runtime assertion checking libraries.

The JML common tools make it possible the automation of regression testing from the

precise and correct JML characterization of a software system. The quality and the coverage of

the testing carried out by JML depend on the quality of the JML specifications. The runtime

assertion checking with JML is sound, i.e., no false reports are generated. The checking is

however incomplete, e.g., users can write informal descriptions in JML specifications. The

completeness of the checking performed by JML depends on the quality of the specifications

and the test data provided. These JML Common Tools are available at (Leavens G.).

4. Related Work

In this section we start by presenting the various proposed types of strategies for

incorporating formal specifications into software development processes. Further, we present

the SOFL language that is used for constructing formal specifications and for the software

development process, and then we present a framework named ConGu that is aimed at

providing support to the checking of formal specifications and Java code, that is, the

verification & validation phase.

4.1. Formal Methods Strategies for Software Development

Processes

The way people formalize informal software requirements (i.e., the client’s requirements to

a system to be developed) can be categorized into several strategy types. Some of the

proposed strategies suggest going directly from informal specifications (i.e. high level, natural

language) to formal specifications (i.e., low level, more mathematical language) making the

software development’s specification activity being in the formal domain from the beginning.

For example, according to Kemmerer (Kemmerer, 1990) through his “Integrated” approach

which defines that formal methods is completely integrated into the development cycle, we

use critical requirements written in English and stated in precise mathematical terms to

19

describe the system’s behaviour without giving too much implementation details, so later they

can be incrementally detailed until the system can be coded according to them. Also Jones

(Fraser, Kumar, & Vaishnavi, 1994) uses a similar process by suggesting that proof obligations

of VDM decomposition rules can stimulate design steps. Others like Miriyala and Harandi, and

Wing (Fraser, Kumar, & Vaishnavi, 1994), have proposed strategies where high-level formal

specifications of the system can be derived directly from a precise English statement of critical

requirements. A strategy that goes directly from informal specifications to a formal

specification without any transitional step is known by using a direct formalization process.

However there is another type of formalization strategy used to introduce formal methods

into software development processes. Rather than using a direct formalization process, one

can define intermediate steps that help to move from the informal the initial natural language

to formal specifications. Through this kind of strategy, we resort to one or more semi-formal

specifications which provide us with evolutionary steps between the informal natural language

specification and the formal specifications. This type of strategy, which starts from informal

specifications and moves to formal ones through intermediate specifications, is known as

transitional formalization process. (Fraser, Kumar, & Vaishnavi, 1994) We can say that the

transitional formalization of the specifications can be divided into three degrees: informal,

semi-formal and formal. At the informal stage, the specifications are incomplete sets of rules

to constraint the system to be developed, usually written in natural language or presented as

unstructured pictures that can lead to ambiguous meanings and introduce inconsistencies in

the system or its incompleteness. At the semi-formal state, the informal specifications are

evolved so as to become closer to the formal ones. Although the semi-formal specifications

still use natural language, they are presented with a defined syntax and written in a

mathematical form or illustrated in a diagrammatic technique that defines precise rules.

Through this technique we are clearing out possible inconsistencies and also detecting possible

incomplete specifications. The semi-formal specifications are viewed as helpers to achieve

formal specifications from the informal ones. At the formal state, the specifications become

closer to code. These formal specifications have a rigorous defined syntax and semantics and

can be used to automatically test the code against the specifications (the informal ones

evolved into formal specifications) given by the clients. (Fraser, Kumar, & Vaishnavi, 1994) An

example of a strategy using a transitional formalization process is the strategy proposed by

Kemmerer (Kemmerer, 1990) through the “Parallel” approach. His proposed formalization

process approach involves the use of standard development methods (to develop semi-formal

requirements) as intermediate steps from which formal specifications are derived.

The strategy proposed in this thesis work is based on a transitional formalization process

that integrates formal specifications into the software development process. The strategy is

similar to Kemmerer’s “Parallel” approach in that we also define an intermediate step that

introduces semi-formal specifications before writing JML formal specifications. This

transitional process runs in parallel with the development process itself.

4.2. SOFL

The SOFL (Structured Object-based Formal Language) is a language proposed by Liu,

Offutt, Ho-Stuart, Sun and Ohba in 1997 (Liu, Offutt, Ho-Stuart, Sun, & Ohba, 1997) to address

the problems of lack of formal methods wide acceptance by the industry, namely, the need for

integration of formal methods into the software development processes, the requirement of

significant abstraction and mathematical skills, and the lack of tools to support the entire

formal software development process. Developing a software system using SOFL consists in

three separate activities: the requirements specification, the design, and the implementation.

20

The SOFL provides a specification language, a method, and a systematic process for the

development of software systems.

SOFL = Specification Language + Method + Software Process Model

As a specification language, the SOFL integrates Data Flow Diagrams, Petri Nets, and

VDM-SL. Data Flow Diagrams provide notation for expressing the overall architecture of a

system; Petri Nets are used to provide an operational semantics for the Data Flow Diagrams;

and VDM-SL with certain syntactical reason and extension is used for specifying the behaviour

of processes occurring in the related formalized Data Flow Diagrams.

As a method, the SOFL consists on a three-step approach, i.e., informal, semi-formal, and

formal specifications, for the development of system specifications in a structured way

(including requirements, and abstract design specifications) and transformation from a

structured abstract design into a more detailed object-oriented design and then

implementation of the system. Additionally, the SOFL also offers means for verifying and

validating specifications and programs. When using the SOFL methodology, engineers

construct the initial condition Data Flow Diagrams and specification modules, and then they

use decomposition, evolution, and transformation to construct an object-based design from

the structured requirements specifications, at the end they finally transform the design to

implementation. (Liu, Offutt, Ho-Stuart, Sun, & Ohba, 1997)

SOFL also provides a software process model that supports a systematic way to develop

software systems. The SOFL’s software process model includes three main features:

1. The informal and semi-formal specifications are used for capturing and

documenting user functional requirements, while the formal specification is

used for abstract design.

2. The importance of the development’s evolution of informal, semi-formal, and

formal abstract design specifications, and refinement for the development of

detailed design and implementation.

3. The use of rigorous reviews and tests to verify and validate specifications and

program applications.

In SOFL, the process of constructing formal specifications occurs in the three-step,

informal, semi-formal and formal specifications, much like in our proposed JML-base strategy.

First, the informal specifications are written and then in the semi-formal specification stage

these informal specifications must be organized as sets of inter-related modules conforming to

the SOFL syntax. The involved data resources are represented as variables and given the

appropriate data types. After having variables, pre and postconditions are written in SOFL

syntax for specifying processes, or Data Flow Diagrams can be used for the same effect,

however the latter option may not be complete for specifying a process. (Liu, Offutt, Ho-

Stuart, Sun, & Ohba, 1997)

What distinguishes our strategy from SOFL is that it has a specification syntax more

abstract for specifying systems in any OO programming language, and it allows the use of

hierarchal diagrams to specify the requirements. In our JML-based strategy we use only textual

specifications from the beginning to the end of the specification construction and these textual

specifications go through an evolution from the informal requirements to JML formal

specifications, where the client is still capable of following them to the semi-formal stage. That

is, in our semi-formal stage we still use natural language but in a structured and more

mathematical manner which is yet understandable by the client, creating a bridge between the

informal functional requirements and JML formal specifications. Also, the JML syntax uses Java

21

syntax, so it is more adequate to specify Java programs than by SOFL, which is more abstract.

Another difference is that SOFL can’t be integrated with the implementation code like JML and

Java programs. As the JML has the particularity of being a specification language for the Java

programming language, it can be integrated with the Java code itself (i.e., the specifications

can be written in the same Java code files) and it can be used for testing the code and

documenting it at the same time.

People may use either of our strategy or SOFL to develop a Java system.

Nonetheless, our strategy is more cost-effective and straight-forward for a Java

programmer because JML uses Java syntax.

4.3. ConGu

The ConGu (Contract Guided System Development) is a project that has the purpose of

providing a framework for creating property-driven algebraic specifications to fully test Java

implementations. The ConGu project adopted a property-driven algebraic approach to

specifications rather than the model-based approach to Design-by-Contract like those

proposed for JML, Z, Larch and AsmL. (Vasconcelos, Nunes, & Lopes, 2008) The basic idea of an

algebraic specification is to specify data types independently of any representation or

programming language. An algebraic specification is constituted by a set of sorts, a set of

constants and operations symbols, and a set of conditional equations or short equations. Each

sort represents a domain of a data structure and each operation symbol represents an

operation. More precisely, an operation symbol declaration consists on an operation name, a

list of argument sorts and a range sort or a result sort. Operation symbols can be combined to

write a specification. Having names for domains of data structures, and declarations for

operations, the only thing needed to write a specification is the description of what the

operations should do, which is what serves the last constituent part of an algebraic

specification, the set of conditional equations (or short equations), which provides the needed

descriptions. (Classen, Ehrig, & Wolz, 1993, p. 8)

The main components of ConGu are specifications, modules, and refinements. The

specifications used are property-driven algebraic as they define sort and operations on those

sorts. The ConGu supports partial specifications whose operations can be interpreted by

partial functions with conditional axioms. Each specification defines a single sort that may be

defined involving an operation or other sorts like parameters or results of operations. Another

component of ConGu is the notion of modules. The notion of module is used for denoting a set

of specifications to self-contained them. In order to check the specifications against the Java

classes, for violation of axioms or domain restrictions, the specifications logic and Java classes

must be bridged, and this is where the ConGu refinement component enters. In ConGu, the

refinement mappings have to be defined indicating which sort is implemented by which class,

and which operation is implemented by which method. In the refinement mappings activity,

the knowledge about concrete representations on the classes isn’t required. (Vasconcelos,

Nunes, & Lopes, 2008)

The Congu can be used to support a formal development process, but not the entire

process. Unlike our proposed JML-based strategy and SOFL, the ConGu as a framework does

not support the process of constructing formal specifications from the informal. The ConGu is

focused on the validation & verification phase of software development processes. The main

aspect of the ConGu approach is to ease the problem of testing implementations against the

respective property-driven algebraic specifications to the run-time monitoring of contract

annotated classes, supported today by several run-time assertion- checking tools.

(Vasconcelos, Nunes, & Lopes, 2008) The ConGu has tool available as a plug-in for the Eclipse

22

IDE. This tool allows users to test Java classes against a module of specifications to check for

runtime axiom violations. The tool reads algebraic specifications and a mapping relating

specifications and Java entities, and produces a number of classes that are used to test the

original implementation against the given specifications, in a way that is transparent to the

user. By using this ConGu technique all specification properties are checked against

implementations because monitorable JML contracts are generated to cover them all.

(Vasconcelos, Nunes, & Lopes, 2008)

5. The JML-based Strategy for Software Development of Java

Programs

This section describes our strategy to incorporate formal specifications into the software

development of Java programs. We have developed a strategy for evolving informal functional

requirements into formal specifications. This strategy can be employed as part of existing

object-oriented software development methodologies. In particular, the strategy suits

Bertrand Meyer's design-by-contract principles (Meyer, 1992), which lie on the core of the JML

language and JML-based formal methods tools. Hence, software developers must define

precise interface specifications for underlying software components, based upon data type’s

theory and the conceptual metaphor of software contract. The strategy is part of an

engineering integrated effort whereby software development is conducted in parallel with a

formal specification pseudo-phase (see Figure 1) Therefore, JML specifications are evolved

from informal requirements and written in parallel with the development of the application

itself. In Figure 1, the presented software development process consists in four phases,

namely, analysis, design, implementation, and validation-and-verification. In the same spirit of

the methodology introduced by Meyer (Meyer, 1997)(see Chapter 11), we do not restrict any

phase of the software development cycle to occur before or after any other phase, so the

arrows 1 to 5 in Figure 1 convey information on usage rather than on precedence in time.

Figure 1. The Software Development Process

23

During the analysis phase - described in Section 5.1 - requirements are gathered, and two

documents are produced, namely, the use cases document and the “informal” functional

requirements document (i.e., functional requirements written in plain English). As informal

functional requirements are expressed in a natural language, ambiguities and inconsistencies

can be introduced during the analysis phase. Hence, during the formal specification pseudo-

phase, the informal functional requirements document is first evolved into a “semi-formal”

requirements document (see Figure 1 – arrow 1), and then ported into (formal) JML

specifications (see Figure 1 – arrow 4). The process of passing the informal functional

requirements into semi-formal requirements is described in Section 5.2. The semi-formal

requirements document is composed of three documents. The semi-formal functional

requirements document (later ported into JML method specifications), the class invariant

document, and the system invariant document (these two are later ported into JML class

invariant specifications). Having formal specifications expressed in JML makes it possible to use

JML-based formal methods tools to check for inconsistencies. Evolving the informal functional

requirements document into the semi-formal one involves expressing informal requirements

into an “if <event/condition> then <restriction/rule>” form (see Section 5.2.1 for more

details about semi-formal functional requirements) and class/system invariants are created by

expressing the respective informal functional requirements into a restriction/rule written in

natural language but more formalized, and normally without making references to conditions,

for example, expressions without “if… then…” indication an obligation, rule or restriction like

“...mustn’t…”, “…must…” (For more details on the class and system invariants, see

respectively Sections 5.2.2 and 5.2.3). The process of going from the informal functional

requirements to semi-formal specifications is described in Section 5.2.

During the design phase - described in Section 5.3 - the requirements gathered from the

analysis are used to define the structure of the system (see Figure 1 – arrow 2). This structure

is later used to write classes, their attributes, their methods, and the relations among them

(see Figure 1 – arrow 3). These classes are later formally specified with the JML specifications,

yield during the formal specification pseudo-phase.

During the implementation phase - described in Section 5.4 - we start by writing Java

interfaces and Java abstract classes (from the model structure designed in the design phase,

see Figure 1 – arrow 3). From the semi-formal requirements document, JML functional

specifications are furnished to the (abstract) methods in these interfaces and classes in Java,

and JML class invariants are provided to model global properties of the system. Additionally,

JML abstract variable specifications (see Section 3.2 for a description of abstract variables)

serve to describe the distinct abstract data types used in the application and how they are

manipulated through class inheritance, i.e., abstract variable specifications are used to

represent concrete data structures. JML specifications provide support to the writing of correct

code for concrete classes implementing the interfaces and the abstract Java classes, but

besides that, JML specifications also provide support to a business contract programming style

of programming, in accordance with Bertrand Meyer's design by contract principles (see

Section 2.1.1 for Design by Contract details).

Finally, during the validation-and-verification phase - described in Section 5.5 - the

implementation is checked against the specifications (see Figure 1 – arrow 5). This phase can

occur iteratively with the implementation phase, with the purpose of developing correctly the

application while checking if it is in concordance with its specifications. We employ the JML

common tools to do this checking (see Section 3.3). As the methodology is iterative, it is

possible to go back to a previous phase and make amendments to JML specifications or code.

Notice that inconsistencies can be detected before an implementation for the system is

24

written. For instance, Java interfaces and Java abstract classes are checked against JML

specifications, obtained from the formal specification pseudo-phase, before writing an

implementation for those classes and interfaces.

In summary, the proposed strategy is based on JML to incorporate formal specifications

into software development processes to support the production of system applications in a

way that reflects the client's needs, i.e., correct systems. By employing a specification

formalization strategy, informal requirements are evolved from natural language to JML

specifications, which provide a high level of formality. The purpose of achieving this high level

of formality is to provide support to development of correct systems. JML specifications

further serve a complementary purpose, as they also play the role of a precise documentation

of the application. For instance, the JML specification of an abstract class precisely describes

what the implementation (perhaps written by an external programmer) must be. In software

development projects, JML facilitates the communication between developers in a way that it

unambiguously describes the expected behaviour of classes, methods, and data structures.

In the following sections we present each development phase with the employment of the

strategy to incorporate formal specifications along the process. A running example of the

strategy employment for the development of an application is described in Section 6.

5.1. Requirements Analysis

In this Section we describe the first phase of the software development known as the

requirements analysis phase. At this phase we get, in an informal way, all the rules and

requirements that are expected for the purpose and functionality of the final system (i.e., the

product of our development). Also, this phase is the very first step to build the formal

specification. All the informal requirements obtained will serve as a base to formulate the JML

formal specifications in the formal specification pseudo-phase that follows in parallel the

development process.

The first thing to do in the requirements analysis is to extract information from the client

and comprehend the concepts of the domain where the system to be developed will work and

its purpose. These concepts are things related to the domain where the system will be applied.

For example, in case of the HealthCard the concepts could be like “appointments”, “patient”,

“doctor”, “health problem”, “diagnostic” and “medicine”. These concepts give us an insight

about the environment where the system will work, providing us the basis to communicate

with the client and formulate with him the possible use cases in a next stage. One must notice

that these concepts eventually will become data entities to be managed by the system;

moreover these domain concepts may be later represented as JML abstract variables while

formally specifying the system, as the abstract variables normally represent data to be

managed in a concrete implementation (see Section 3.2 for information on abstract variables).

The next thing to do, after getting some background about the problem’s domain, is to

write the use cases. Like the domain concepts, the use cases are formulated conjointly with

the stakeholders (i.e., client, specialized people, etc), through brainstorming or by reading

documentation about the domain. These use cases are to be reflected into future methods

and functionalities of the system to be developed. The use cases may include some additional

textual information like scenarios or activity diagrams. These additional documents give some

extra details about the use cases by describing their usage, while clearing some existing

ambiguity. For example, a scenario for the use case “Scheduling an appointment” could give

some extra information about the data that should be passed to schedule an appointment, like

for instance a date, a local, or a doctor’s name. The use cases are formulated as a mean of

communication between stakeholders and developers to give an idea of what functionalities

25

and usage the future system will have within its domain. Afterwards, in the Design phase,

these use cases are used to originate a major part of the system’s classes and their methods.

For example, for the use case “Scheduling an appointment” the method addAppointment(...)

will emerge in the Design phase. The additional information of the use case can state the entry

parameters of the method addAppoiment, like for example addAppointment(date, hour, local,

doctor, type).

Having formulated domain concepts and use cases are a halfway to start developing a

system. As the objective with this proposed strategy is to formally develop a correct

application, then rules of operational behaviour must exist to create formal specifications for

methods or classes, describing their proprieties and behaviours. These rules basically describe

use cases behaviours and limitations. So, the last thing to do in this phase is the description of

informal functional requirements, which dictates those needed rules (i.e., to be ported into

formal specifications). These requirements are rules (i.e., specifications) written in an informal

way that the future system must hold and respect for its purpose, functionality and usability.

For example, an informal functional requirement for the HealthCard could be like this: - “To

schedule an appointment, it must be inserted a date, an hour, a local, a doctor or type of

appointment”. Later, these requirements with the combination of the use cases will be used

to design the structure model of the system, and also are to be used to formulate semi-formal

requirements, system invariants and class invariants, which will become the JML formal

specification for supporting the correct development of the system.

It is important to remember that developers are free to return to this phase when on later

stages, as this software development phases are iterative. The requirements phase is

exemplified in the running example in Section 6.3.1.

5.2. From Informal Functional Requirements to Semi-Formal

Specifications

This step occurs during the first stage of the formal specifications pseudo-phase, where

from the informal functional requirements it can be identified and extracted the semi-formal

requirements, and the system and class invariants. These three documents will serve as a base

to write down the JML formal specifications of the Java implementation code.

The semi-formal requirements are written in natural language but expressed in a more

mathematical and logical form, suitable to be used into JML specifications. In a later stage of

the formal specifications pseudo-phase, these semi-formal requirements are expressed as JML

methods preconditions and postconditions.

At this step, the system and class invariants are identified and written in a semi-formal way.

These invariants come from requirements that tend to restrict properties or to impose some

general limits of the system. Eventually these kind of informal requirements are to become

JML class invariants. The system invariants express global properties of the system classes’

instances which must be preserved by all routines, and class invariants express the same thing,

but for the respective class only. Although, in JML there isn’t a direct way of expressing system

invariants, these will be identified as system invariants from the informal functional

requirements but later they will be expressed simply as JML class invariants.

Basically, at the end of this step it is required to have three documents. One document with

semi-formal requirements which will support method’s preconditions and postconditions and

two documents with a list of informal requirements classified as class invariants and system

invariants.

26

5.2.1. Semi-Formal Functional Requirements

Some of the informal functional requirements are evolved into a more mathematical form.

Yet expressed in natural language, this new form brings requirements closer to JML method

specifications. However, the process of evolving informal functional requirements into this

new form is not linear, and it requires some expertise and ingenuity. For almost of the informal

functional requirements that describe some system’s functionality (i.e., method or operation)

executed under certain conditions, the general form of a semi-formal functional requirement

is “if <event/condition> then <restriction/rule>”, in which the guard is an event or a

condition that triggers a rule that restricts (changes) the current state of the system. This rule

can be regarded as the body of a method in a class, and the condition as the pre-condition

under which this rule may be triggered. This new form is closer to JML specification, and the

principles advocated by the design-by-contract. For example, considering an informal

functional requirement like “To schedule an appointment, it must be inserted a date, an hour,

a local, a doctor or type of appointment”, one can clearly associate it with a system’s

operation. In this case the operation is the one obtained from the use case of adding an

appointment where certain data must be passed when scheduling an appointment. The semi-

formal taken from this informal function requirement for the event of adding an appointment

would be something like this:

IF <date NOT EQUALS null AND hour NOT EQUALS null AND local NOT EQUALS null AND

(doctor NOT EQUALS null OR type NOT EQUALS null)>

THEN <date EQUALS date_model AND hour EQUALS hour_model AND local EQUALS

local_model AND (doctor EQUALS doctor_model OR type EQUALS type_model)>

The above expression form is a suggestion on how a semi-formal functional requirement

could be written. The semi-formal functional requirement expression can be written in any

form desired, as long as it is mathematically and logically structured as the above example. It is

highly recommended that the semi-formal specifications are written in a form understandable

by the clients (i.e., stakeholders) and at the same time structured in a manner that it can be

easily mapped into a JML specification. As can be seen, the previous expression is still written

in natural language but in a structured form. The expression indicates the conditions under

which the operation of adding an appointment must hold. The first statement, the IF

statement, indicates the preconditions for adding an appointment that must be respected, and

the second statement, the THEN statement, dictates the postconditions that must hold after

executing an operation of adding an appointment. One must notice the “***_model” fields

written in the second statement. It is here that we begin to think about the abstract variables.

The fields given in the first statement are entry parameters of an operation, and the model

fields given in the second statement are abstract variables that represent concrete data from a

certain class. The second statement tells us that the given parameters should be stored, i.e., at

the end of the operation, each concrete data represented by the abstract variables must be

equal to their respective given entry parameters.

Notice that not all the informal functional requirements can be expressed in semi-formal

functional requirements of this form. Some of them can even be expressed as class or system

invariants (see Section 2.1.1.3 for a description of class and system invariants) restricting

system properties in small and larger scales.

27

5.2.2. Class Invariants

Some of the informal functional requirements are identified as being class invariants. They

are those functional requirements that describe small limitations or boundaries, i.e.,

limitations of properties that eventually will restrict or describe a certain class. In a first stage

of the formal specifications pseudo-phase we turn the identified class invariants into a semi-

formalized form of the correspondent informal functional requirement. Later, these class

invariants are to be ported into JML class invariants (see Section 5.4.2). For instance, from an

informal functional requirement such as “It must not be possible to overlap schedules in the

same date and hour” we can assume that it imposes a restriction on appointments, so it

represents an invariant. In this case the informal functional requirement involves only

appointments, so it becomes a class invariant. In this semi-formal phase, the invariants are

written in a restrictive form involving natural expressions like “...it must...” or “...it mustn’t...”,

but one can recur to logic forms for writing the semi-formal invariant such by using the

expressions of “For all...”, “Exists...”, etc. As long as it restricts some global property of a class

we can write it as a class invariant. So, the class invariant for the previously given informal

functional requirement could be written like this:

FOR ALL objects a1 AND a2 of type appointment: IF a1 NOT EQUAL a2 THEN (date(a1) NOT

EQUAL date(a2) AND hour(a1) NOT EQUAL hour(a2))

Again, the above expression form is only a suggestion on how a semi-formalized class

invariant could be written. Because of the ambiguous essence of natural language, the way

people identify invariant properties from informal functional requirements is not a

deterministic process. Hence, there is no universal rule that fully describes this process.

Nonetheless, we give below some hints to identify invariants. Looking at the informal

functional requirement example given, we identified as a class invariant because it describes

there mustn’t ever be appointments with the same date and hour, so this is obviously a

limitation of the appointments properties. In the above expression the attributes hour and

date of an appointment object are referred as hour(***) and date(***).

5.2.3. System Invariants

Some of the other informal functional requirements are identified as being system

invariants. They are those functional requirements that describe restrictions involving more

than one distinguishable class, i.e., involving instance properties of more than one class. Also,

as we carried out for the class invariants, in a first stage of the formal specifications pseudo-

phase we turn the identified system invariants into a semi-formalized form of the respective

informal functional requirement. Later, these system invariants are to be ported into JML class

invariants (see Section 5.4.2). Considering an informal functional requirement like “The

prescription date of a medicine must be bigger than or equal to the date of the appointment in

which the medicine was prescribed”, one can clearly see, by analysing it, that the informal

functional requirement is describes a restriction involving more than one class, i.e.,

appointments and medicines. The informal functional requirement is identified as a system

invariant because it suggests that a global access to medicines and appointments in the card

must exist, i.e., it involves two distinguishable classes. So, the system invariant for the

previously given informal functional requirement could be written like this:

FOR ALL object m of type medicine AND FOR ALL object a of type appointment:

appointment(m) EQUALS a AND date(m) MORE OR EQUAL TO date(a)

Once more, the above expression form is only a suggestion on how a semi-formalized

system invariant could be written.

28

5.3. Design

In this section we describe the design phase, which follows the requirement analysis. At this

phase, the use cases and the informal requirements from the requirement’s phase are used as

a base to design the structure model of the future application to be implemented. With the

help from the previously defined use cases (including their textual specification) and informal

functional requirements, we can have an idea of what modules and their respective

functionalities (i.e. parts of the system and their responsibilities) that are needed to design the

system application structure. First, a modularization of the requirements is made, i.e., by

grouping informal requirements into specific parts of the system. The goal of grouping

requirements is to be able to organize the system’s structure so it can be more reusable and

maintainable, and consequently making the JML specifications simple and reusable. For

instances, taking the HealthCard development as an example (see Section Erro! A origem da

referência não foi encontrada.) its structure is divided into Personal Data, Allergies, Vaccines,

Appointments, Diagnostics, Treatments and Medicines. Each one of those modules have their

respective responsibilities towards the management and storage of personal patient’s

information, patient’s allergies information, patient’s vaccines information, scheduled

appointments and the respective diagnostics, treatments and medicines prescribed by a

doctor. When implementing the system, those modules are basically the Java packages

containing the respective Java interfaces and classes.

We suggest of making class diagrams to model the structure of the system. For each

identified module, classes are designed and their methods are added to the model. The classes

and their methods are written mainly based on the use cases. At the end, this class diagrams

represent the structure of the system to be developed. So, by describing classes, interfaces

and their method signatures, one can associate the semi-formal specifications to the structure

model. The semi-formal specifications can be used to describe the behaviour of the methods

and restrictions within the classes. Later, these semi-formal specifications are evolved into JML

specifications and they will describe the behaviour of the implemented methods.

Basically, the relation between the class diagrams (or another model structure), obtained in

this phase, with the formalization of the specifications is that here we can begin to associate

the semi-formal specifications with the future classes and methods to be developed. The

developers can have an idea where to write the JML specifications. For example, which semi-

formal specifications will be associated with the method addAppointment(***) still written in

the structure model. Figure 2 illustrates an example of associating semi-formal specifications

with the structure model’s methods. In case of a class invariant or system invariant, they are

associated with the classes.

29

Figure 2. Semi-formal relations with the Structure Model

Important design recommendation: We strongly recommend designing the system by the

interfaces. Designing the system by the interfaces means that for every class that probably will

have specifications written, it is beneficial if the Java classes are implementing Java interfaces

or abstract classes. For the sake of abstraction, the JML specifications are to be written in

those Java interfaces, describing the methods that will be implemented in the respective

concrete classes. Having a system designed by the interfaces we are making it reusable and

maintainable and consequently the JML specifications will also be reusable and maintainable.

That is, later we can implement the classes as we pleased as long as we respect the JML

specifications written on the Java interfaces.

5.4. Implementation

In this section we describe the implementation phase, which follows the design. At this

phase we implement the system structure with the support of the structure models previously

defined and we complete this implementation through the support of JML specifications. From

the semi-formal requirements and invariants attained in the first step of the formal

specifications pseudo-phase we get JML specifications to specify how to implement the

operations’ procedures and their limitations. Through the class diagrams, the Java interfaces

and its implementation skeleton classes
2
 can be generated. Having those Java interfaces and

classes still without implementations inside the methods, and taking a look to the method

signatures at the interfaces, we associate with them each semi-formal requirement defined

from the informal functional requirements (see example in Figure 2 - Section 5.3), and also

each invariant is associated to the respective interface. Those JML specifications are written

mostly at the remote Java interfaces and later one can develop the method implementations

in the respective concrete classes in many ways as long as the specifications in the interfaces

2
 Skeleton classes are classes without implementation on its methods, only the signatures (i.e., method

headers) and variable declaration exist. These classes are future implementation classes, i.e., they

contain incomplete methods, without its procedures inside.

30

are respected. The process of implementing the system begins with the JML specifications

writing. This is the final step of the formal specifications pseudo-phase, where semi-formal

specifications are ported into formal specifications, i.e., the JML specifications. First we should

write the JML abstract variables and next the JML class invariants and JML method functional

specifications. Having the Java interfaces described with JML specifications we can start

implementing the concrete classes according with the written specifications. Besides

supporting a correct implementation of the system, the JML specifications also serve as the

system documentation integrated with the code itself, a support for testing the code against

the specifications and a support for employing a programming respecting the principles of B.

Meyer’s Design by Contract.

5.4.1. Writing JML Abstract Variables

The JML abstract variables, also known as model variables, are model specifications

declared and used only at the JML specifications level. As it is recommended to write the JML

specifications in Java interfaces of the classes due to reusability purpose, one cannot declare

concrete attributes. In Java interfaces one can declare constant values but not non-static

variables, so the use of abstract variables brings the advantage of representing concrete

variables at the specification level. Having abstract variables at the specifications instead of

concrete variables gives the developers the possibility of modifying those concrete variables

without modifying the entire specifications of a class, and the many possibilities of

implementing them as they want as long as the JML specifications aren’t violated. For

example, one could change a concrete variable’s name but the specifications would stay

correct if the abstract variable still represents that modified concrete variable, or one could

even modify how an abstract variable represents concrete properties but still maintaining the

old specifications. In a concrete class we can change the concrete variable being represented

by using represents and still maintain without changes the specifications at the interfaces.

As seen in the requirement analysis phase, the abstract variables first originated from

some domain concepts attained at the initial steps. They represent concrete data that will be

managed by the classes. Also, when writing the semi-formal specifications, it is possible to

identify the relevant abstract variables to be used in the JML specifications. Normally, these

abstract variables are identified from data entities written in the semi-formal specifications,

for instance, the date of an appointment, or the medicine’s designation.

Declaration of Abstract Variables

The first step after making the skeleton Java classes and interfaces should be the abstract

variable declaration. These abstract variables will be used in the various JML method

functional specifications and class invariants. Abstract variables are declared in JML

specifications by using the keyword model or ghost for ghost variables (which can’t be

represented and only exist in JML specifications) followed by the keyword instance .

Abstract variables are declared in a similar way as concrete variables. Abstract variables can be

declared as Java standard types, custom types or JML abstract data types. For example, an

abstract variable of a Java standard type can be of the type byte, short, int, or any other Java

type; an abstract variable of a custom type can be of the type Appointment, Allergy (both as

example from the HealthCard) or another custom class object; and an abstract variable can be

of a JML abstract data type like JMLValueSequence, JMLObjectSequence, or another type, from

the JML’s org.jmlspecs.models package, that represents a complex data structure (Iowa State

University, 2002). For details about JML abstract data types, see Section 3.2.1. An abstract

variable declaration is like this:

//@ public model instance short xpto_model;

31

This abstract variable xpto_model can represent another abstract variables, concrete

variables, values or even expressions.

Linking Abstract Variables with Concrete Variables

The abstract variables can represent other abstract variables or concrete data related to a

certain class or classes (except for ghost variables). These abstract variables are used to model

class attributes or complex data structures in an abstract way, and only exist at the

specifications level, being linked with real variables or expressions by using a mechanism of

representation through the JML represents clause (see Section 3.2). A representation of

abstract variables occurs in the concrete classes like this:

private /*@ spec_public @*/ short xpto; //@ in xpto_model;
/*@ public represents
 @ xpto_model <- age;
 @*/

Abstract variables are inherited, so they can be used in the concrete classes implementing

the Java interfaces with the JML specifications written.

5.4.2. Writing JML Class Invariants

From the class and system invariants semi-formalized in the initial stages of the formal

specifications pseudo-phase, we get the JML class invariants. Both class invariants and system

invariants are to be ported into JML invariants. Apparently there’s no difference between the

two kinds of invariants when specifying them in JML, because we do it in the same way.

However, system invariants are turned into JML invariants that involve instances from more

than one distinguishable class and class invariants becomes JML invariants that don’t involve

instances for more than one class. By “one class” we assume, for example, that a certain Java

interface X and its implementation class X1 are one class, that is, basically we consider them

as one class because X1 inherits all the properties do X.

From Semi-Formalized Class Invariants

Considering an Appointment class from the HealthCard, from a semi-formalized class

invariant attained in the first stage of the formal specifications pseudo-phase (see Section

5.2.2) like this: - “FOR ALL objects a of type appointment: date_model NOT EQUALS null AND

hour_model NOT EQUALS null AND local_model NOT EQUALS null” - we can write the following

JML class invariant in the Appointment Java interface:

/*@ public invariant date_model != null
 @ && hour_model != null
 @ && local_model!= null;
 @*/

Where in any state of an object Appointment, its attributes of date, hour and local must

never have the value null. This JML invariant is written in the Appointment interface and all

methods and constructor must respect all it visible state. Each time an Appointment object

instance is created, it is required to declare and instantiate the concrete variables represented

by the abstract variables written in the invariant (i.e., date_model � date, hour_model �

hout and local_model � local).

From Semi-Formalized System Invariants

Being a system invariant an invariant that involves two distinguished classes, then JML

specification written for a system invariant must be written in a class that makes reference do

32

those two classes. For example if we have two distinguishable classes, X and Y, and we have a

system invariant making reference to X and Y, then the invariant formalization must be written

in a class XY that makes reference to X and Y. The class XY has a global access to X and Y so it

makes sense having the invariant written there to restrict properties in which X and Y are

involved.

Let’s consider as example the class X as Appointment class, the class Y as Medicine class and

the class XY as CardServices class, all from the HealthCard (see Section Erro! A origem da

referência não foi encontrada. for a description on the structure of the HealthCard). From a

system invariant attained in the first stage of the formal specifications pseudo-phase (see

Section 5.2.3) like this: - “FOR ALL object m of type medicine AND FOR ALL object a of type

appointment: appointment(m) EQUALS a AND date(m) MORE OR EQUAL TO date(a)” – Where

an appointment has a date and a certain medicine is prescribed in an appointment, then that

medicine has a date equal of the respective appointment’s date (when it was prescribed) or

the medicine has its prescription renovated at later date. The following JML invariant specifies

this property that must be preserved:

/*@ public invariant
@ (\forall int i; i < ((Medicine[])medicines.getDat a()).length
@ && i >= 0;

 @ (\forall int k; k < appointments.getData().le ngth
 @ && k >=0;

 @ ((Medicine[])medicines.getData())[i].getAppointmentID()
 @ != appointments.getData()[k].getID()

 @ ||
 @ ((Medicine[])medicines.getData()) [i].date_model

 @ >= appointments.getData()[k].date_model
 @)
 @);

 @*/

5.4.3. Writing JML Method Functional Specifications

The JML method functional specifications are the specifications that describe the method’s

behaviour. They can describe a method’s normal behaviour, their preconditions,

postconditions and even its exceptional behaviour. We write these specifications from the

semi-formal functional requirements attained in the first step of the formal specifications

pseudo-phase (see Section 5.2.1). Later, when coding the empty methods, one has to respect

these specifications as they describe the conditions under which the methods will correctly

function. To start writing the JML method functional specifications we begin by looking at the

semi-formal functional requirements. For example, let’s consider the example of class

Appointment of the HealthCard. From the following semi-formal functional requirement for

the method addAppointment:

“IF <date NOT EQUALS null AND hour NOT EQUALS null AND local NOT EQUALS null

AND (doctor NOT EQUALS null OR type NOT EQUALS null)>

THEN <date EQUALS date_model AND hour EQUALS hour_model AND local EQUALS

local_model AND (doctor EQUALS doctor_model OR type EQUALS type_model)>”

We can generate the following JML specification:

/*@ public normal_behavior

 @ requires date != null && hour != null && local != null

 @ && (doctor != null || type != 0);

33

 @ assignable appointments_model;

 @ ensures (\forall int i; 0 <= i && i < date.length(); date[i] == date_model[i])

 @ && (\forall int i; 0 <= i && i < hour.length(); hour[i] == hour_model[i])

 @ && (\forall int i; 0 <= i && i < local.length(); local[i] == local_model[i])

 @ &&

 @ ((\forall int i; 0 <= i && i < local.length(); local[i] == local_model[i])

 @ ||

 @ type == type_model);

 @ also

 @ public exceptional_behavior

 @ requires date == null || hour == null || local == null

 @ || (doctor == null && type == 0);

 @ signals_only UserException;

 @ signals_redundantly (UserException e)

 @ appointments_model.equals(\old(appointments_model));

 @*/

public void addAppointment (byte[] date, byte[] hour, byte[] local, byte[] doctor, byte type)

throws RemoteException, UserException;

Where we can map the semi-formal functional specifications into formal specifications

like: IF ���� requires and THEN ���� ensures. In our strategy, the semi-formal IF statement is

similar to the requires statement from JML, and the THEN is similar to the ensures from JML.

The implementation of addAppointment is made in the concrete class implementing

Appointments. In the specifications, the normal behaviour describes the preconditions and

postconditions. These conditions are written by using the JML keywords of requires and

ensures . The first part of the previously presented semi-formal functional requirement is

mapped into the requires block, and the second part is mapped into the ensures block.

Under the exceptional behaviour, we state the conditions of an exceptional execution of the

method.

5.4.4. Coding the applications

At this step we already have Java interfaces with JML specifications written within them

asserting invariants, methods and attributes, and incomplete concrete Java classes (i.e., only

with method skeletons). In this step, we begin to code the procedures of the empty methods

from the concrete classes which implements the JML specified Java interfaces.

We can implement the concrete classes and their methods in various ways, as long as the

specifications are respected. Let’s not forget that the JML specifications are written from an

evolutive process that comes directly from the informal requirements. Another purpose of

formally specifying the Java code with JML, it’s the documentation. Besides serving as a mean

of correctly implement the code and for supporting its verification and validation against the

specifications, it can be used, at the same time as a way of documenting the application Java

code. The JML specifications can be used to document the code like JavaDocs, however we

can’t use JavaDocs to test the specifications against the code.

5.5. Validation and Verification

While implementing, it is possible to validate and verify the code against the JML

specifications. There are tools for supporting validation and verification and the most basic is

34

the JML Common Tools suite [2]. This suite provides support to the run-time and static

assertion checking of JML specifications (see Section 3.3). Checking an application with this

suite is an iterative process of checking the implementation with respect to the JML

specifications, and then evolving either the specification or the implementation (or both) when

a run-time error is produced. Errors can be detected before a concrete implementation for the

application is written. For instance, Java interfaces and Java abstract classes are checked

against JML specifications, obtained from the formal specification pseudo-phase, before

writing full implementation for those interfaces and abstract classes. At this point,

programmers can go back to an earlier development phase, e.g., modifying some informal

functional requirements; thereafter JML specifications are evolved accordingly.

6. A Running Example

6.1. The HealthCard Application

In the following, we describe the application we used to validate our software development

strategy. The application is named HealthCard. It is a smart card application for managing

medical appointments. The application has been fully implemented by Ricardo Rodrigues,

following the software development strategy introduced by us, as part of his master thesis

work (Rodrigues, 2009).

HealthCard stores people’s medical information. It is named HealthCard because it runs on

a smart card, a pocket-sized plastic card with embedded integrated circuits that process data

(see Section 6.2 for further information about smart cards). A typical smart card application

includes on-card applets (the applets running on the card), a card reader-side, and off-card

applications (e.g., a computer program communicating with the card applets). HealthCard is

written in Java Card, a subset of Java used to program card applets. We used the Java Card

Method Invocation (JCRMI) model for communication between off-card applications and on-

card applets. This model implements a client-server setting with the HealthCard acting as

server, and off-card applications as clients, communicating via APDU (Application Protocol

Data Unit) messages. Figure 3 shows the structure of the HealthCard smart card.

Figure 3. HealthCard application structure

A patient can use his HealthCard to furnish accurate medical information to general

practitioners in medical centres with the appropriate system to read it. The HealthCard

35

manages the patient’s personal details, his historical record of allergies, vaccines, diagnostics,

treatments and prescribed medicines. The HealthCard is divided in several modules for

managing the medical information. Each module has a remote interface, and an

implementation class that serves the appropriate services. All the remote interfaces are

referenced in a single remote interface named CardServices whereby an external client can

invoke services. For example, if an external client calls the method getApp() in CardServices, he

gets a reference to the Appointments remote interface. This reference can then be used to

invoke appropriate methods implementing services.

6.1.1. HealthCard Formal Development

HealthCard addresses the problem of providing accurate and concise medical information

to medical centres and general practitioners. The use of formal methods in the HealthCard

development process is due to the application’s domain nature, that is, due to the fact that the

medical domain involves people’s healthcare, people’s lives and overall, medical information

trustiness. Through the use of formal methods we can achieve a correct smart card

application, and that means that the application will work as specified, that is, its

implementation and execution must respect its specifications and it must function as it is really

intended to function (i.e., must be a reliable system). When developing a software application

for sensible domains, such as medical, one must develop it correctly (see Section 2.1 for a

description about software correctness). Also, besides using JML to specify functionalities

properties, we can use JML to address the security and privacy problems related with this kind

of medical software application. JML can be used to formally describe security and privacy

properties, however supporting a correct security implementation doesn’t mean that the

system will be secure. Correctness does not necessarily imply security. When addressing these

kinds of problems with JML specifications, it is still a challenge if we have to deal with all the

low-level details of Java. That is, some program wide security properties such as

authentication, confidentiality or integrity are far harder to express in JML. (Warnier, 2006)

This medical software application is to be held in smart cards. Therefore, a patient can

carry his medical information on a card and use it when going to any medical centre with the

appropriate system to read it. A typical smart card includes in-card applications, i.e., the

applets running on the card. For implementing the in-card applications we use the Java Card

language (see Section 6.2 for further information on Java Card). This language is a precise

subset of the Java language used to program applets for devices such smart cards. In Java Card,

smart cards provide two models for the communication between a host application and a Java

Card applet. (Ortiz, 2003) The first model is the fundamental message-passing APDU model,

which basically relies on the trade of messages in the APDU format between the in-card

applets and the off-card applications. The second model is based on the Java Card Remote

Method Invocation (JCRMI), in which a Java Card applet is the server and makes accessible

functions to external client applications. The smart card technology provides patients with:

1.) A way to digitalize their information.

2.) A mechanism to convey their information to others.

3.) A security mechanism so that their information is not disclosed to non-authorized

parts.

Carrying a card with relevant medical information easies the way a patient can tell his

health problems to medical professionals. In this way, the card acts as a patient data server. In

36

our solution, smart cards are used to carry people medical information. It encompasses

personal data such as name, age, gender and blood type, as well as medical history about

allergies, vaccinations, previous health problems and treatment plans. Figure 4 shows how

medical information is organized within a smart card. Notice that the figure conveys in the

necessary patient’s information contained in the card rather than the structural description of

the HealthCard. The information stored can be divided into the patient’s personal data, the

scheduled appointments and his medical history. Information about the patient’s medical

history includes allergies, vaccination, health problems and treatment plans associated with

health problems. The treatment plans are associated with diagnostics, prescriptions and

medical recommendations.

Figure 4. Proposed information held on a smart card for medical appointment management

For managing the data held on the card we need at least an in-card applet that provides functions

to manage it. Since we’ll use smart cards, we propose the use of Java Card for programming those in-

card applets (i.e., the health card application). Java Card is a programming language that has in

consideration the memory resource limitations of smart cards (Ortiz, 2003) (see Section 6.2). We

propose the use of Java Modelling Language (JML)
3
 for formally specify the health card application’s

informal requirements. These JML formal specifications are used to support the correct implementation

of our application. Also, we propose the use of JML-based tools to check for correctness of the

implementation.

6.1.2. HealthCard System Architecture

The architecture of the HealthCard system is illustrated in Figure 5. A patient can use his

smart card in any medical centre that has our system implemented.

3
 JML is a formal behavioral interface specification language for Java which includes the essential

notations used in Design by Contract as a subset. Leavens, G. T., & Cheon, Y. (2006). Design by Contract

with JML. Iowa State University; University of Texas at El Paso, Dept. of Computer Science.

37

Figure 5. HealthCard System

Besides including the HealthCard application supported in smart cards, the HealthCard

system architecture idea consists in more components. However, Ricardo Rodrigues developed

the card application and a prototype of an external client only. The system architecture in

Figure 5 consists of at least two card terminals. One is the patient terminal, which includes an

attached smart card reader. This terminal may be used for appointment scheduling,

appointment check-ins, visualization and modification of some in-card personal data, and for

requesting medical prescriptions renewals. The second terminal is the doctor’s terminal, which

also can include a smart card reader. The doctor may insert medical information into the

patient’s card by using this terminal. Beyond those two terminals our architecture includes a

Medical Centre database. This database provides support to the on-the-card patient’s

information, by storing all known allergies, medicines and vaccines, and other medical

standard designations. In this way, the card will only need to keep references to those items

rather than the whole designation (i.e. the names of allergies, vaccines, medicines, etc.). Also,

that database will provide support to the information about doctor’s available schedules and

other medical centre information. This medical centre database may be linked to other

medical centres and one of them may be the central system database. This central system

would update medical information in all medical centres databases. Finally, there’s a system

administrator that has the responsibility for operating and keeping the medical centre

database updated.

System Components:

HealthCard (smart card) contains personal and medical information about the card

owner (patient) and his scheduled appointments, i.e., contains the HealthCard

application that was developed to validate the proposed strategy.

Card reader will serve as terminals for reading/writing the smart cards and linking

points to client machines (Patient Terminal and Doctor’s computer).

38

Patient Terminal for appointment scheduling, checking-in and some other basic card

operations made by the patient.

Doctor will have a terminal for accessing patient medical data contained on the card.

Medical Centre Database will contain doctor’s schedules, medical centre information,

patient appointments, and lists of known allergies, health problems and vaccines.

System Administrator will be responsible for maintaining the medical centre database.

Central System Database will update all the medical centres systems.

6.2. Smart cards and Java Card

The HealthCard application involves the technologies of smart cards and Java Card. The

HealthCard is implemented in Java Card and it is to be supported in smart cards. A smart card

is a plastic card that contains an embedded integrated circuit (IC) and basically resembles a

credit card. Most smart cards have both microprocessors and memory, for secure processing

and storage. Smart cards are highly secure by design, and tampering with one results in the

destruction of the information it contains. (Ortiz, 2003) Usually, a smart card has about 1Kb of

RAM and 16Kb of EEPROM, which contains persistent data, including the compiled program

code. Smart cards don't contain a battery, and become active only when connected with a card

reader. When connected, after performing a reset sequence the card remains passive, waiting

to receive a command request from a client (host) application. (Ortiz, 2003) Java Card is a

programming language for programming smart cards. Java Card is a subset of the Java

programming language specially designed having in mind the memory resource limitations of

smart cards. (Ortiz, 2003) ISO 7816 is the international standard for smart cards that use

electrical contacts on the card. (Cardlogix Corporation, 2009)

6.2.1. Elements of a Java Card Application

A smart card system is composed by a card-side (the applets running on the card), a card

reader-side, and back-end elements (a computer communicating with the card applets). (Ortiz,

2003) In the following Figure 6 we can see an illustration of this composition.

39

R
e
s
p
o
n
s
e

C
o
m
m
a
n
d
s

J
a
v
a
 C

a
rd

R
u
n
ti
m
e

E
n
v
ir
o
n
m
e
n
t

Figure 6. Architecture of a Java Card Application (Ortiz, 2003)

6.2.1.1. Back-End Application and Systems

Back-end applications are elements of the system that provide services that support in-card

Java applets. For example, a back-end application could provide a connection to security

systems that together, with credentials from the card, could result in a better security. In a

credit card payment system, the back-end application could provide payment information and

access to the credit-card.

6.2.1.2. Reader-Side Host Application

Reader-Side terminals can be a PC or an electronic payment terminal, a cell phone, or a

security subsystem. In them reside host applications that can handle communication between

the user, the Java Card applet, and the provider’s back-end application.

6.2.1.3. Reader-Side Card Acceptance Device

The Card Acceptance Device (CAD) is a card reader. It’s the gateway of communication

between the host application and the Java Card device, and besides serving as a way of

communication, a CAD provides power to the card. A CAD may be attached to a desktop

computer using a serial port, or it may be integrated into a terminal such as an electronic

payment terminal (ex., at a restaurant or a gas station).

6.2.1.4. Card-Side Applets and Environment

In Java Card, an in-card application is an applet. A Java Card can have one or more applets

residing the card, along with supporting software. The supporting software consists in the

card’s operating system and the Java Card Runtime Environment (JCRE). The latter one

includes the Java Card VM, the Java Card Framework and API’s, and some extension APIs.

40

All Java Card applets extend the Applet base class and must implement the install() and

process() methods. Later, when installing the applet, JCRE calls install(). And every
time there is an incoming APDU message for the appl et, JCRE calls
process().

When loaded, Java Card applets are instantiated, and stay alive when the power is switched

off. A card applet acts like as a server and is passive. Once a card is powered up, each applet

remains inactive until it's selected. The applet is active only when an APDU has been

dispatched to it.

6.2.2. Accessing the Smart Card (Communication in Java Card)

According to ISO 7816-5 standard, each smart card application must have an application

identifier (AID). (Cardlogix Corporation, 2009) These AIDs are sequence of bytes between 5 and

16 bytes in length, and in Java Card technology they are used to identify Java Card applets as

well as packages of Java Card applets. When inserted a smart card into a card acceptance

device, the running external application sends a command to the card containing the AID of

the applet to perform the required operation. The AID is crucial for allowing the external

applications accessing Java Card applications in smart cards. (Ort, 2001)

For accessing smart cards there are two models for the communication between a host

application and a Java Card applet. The first model is the fundamental message-passing APDU

model, and the second is based on Java Card Remote Method Invocation (JCRMI), a subset of

the J2SE RMI distributed-object model.

A logical data packet is exchanged between the CAD (Card Acceptance Device) and the Java

Card Framework, which is called APDU (Application Protocol Data Unit). An APDU is sent by the

CAD, received and then forwarded to the appropriate applet that processes the APDU

command and returns a response APDU. (Ortiz, 2003)

A command APDU has a required header and an optional body, containing:

• CLA (1 byte): This required field identifies an application-specific class of instructions.

• INS (1 byte): This required field indicates a specific instruction within the instruction

class identified by the CLA field.

• P1 and P2 (1 byte each) are required fields used to pass command specific parameters

for the qualification of INS, or input data.

• Lc (1 byte): This optional field is the number of bytes in the data field of the command

(length command).

• Data field (with length given by Lc): This optional field holds the command data.

• Le (1 byte): This optional field specifies the maximum number of bytes in the data field

of the expected response (length expected).

Table 3. A command APDU format (Ortiz, 2003)

Command APDU

Header

(required)

Body

(optional)

CLA INS P1 P2 Lc
Data

Field
Le

41

A response APDU has a format much simpler:

• Data field (with a length determined by Le in the command APDU): This optional field

contains the data returned by the applet.

• SW1 (1 byte) and SW2 (1 byte) are required status words. They contain the status

information as defined in ISO 7816-4. (Cardlogix Corporation, 2009) In case of

successful execution, they contain 0x9000.

Table 4. A response APDU format (Ortiz, 2003)

Response APDU

Body

(optional)

Trailer

(required)

Data

Field
SW1 SW2

The Java Card implementation of the HealthCard application is based on JCRMI (Java Card

Remote Method Invocation). It adds an additional abstraction layer above the message-passing

model, avoiding low-level communication through APDU’s (Warnier & Oostdijk, Java Card

Remote Method Invocation) therefore simplifying the code written and saving memory space

in the card. Simplifying the code makes it easier to specify the implementation, which leads to

more concise and reliable code.

6.2.3. Java Card Remote Method Invocation (JCRMI)

In the message-passing model for communication between the host application and the

Java Card applets we had to program explicitly low-level byte sequences of APDU messages,

but with the Java Card Remote Method Invocation (JCRMI) framework we don’t need to

program like that anymore. The JCRMI is similar to Java Remote Method Invocation (JRMI)

applied in Java applications. The JCRMI makes it possible to directly call methods from the Java

Card smart card. (Oostdijk & Warnier) Basically, JCRMI adds a middleware layer that translates

calls to the methods of an applet to ADPU messages. On the card, APDU messages are

translated back to methods of the remote object. These processes are called marshalling and

unmarshaling. (Oostdijk & Warnier) These remote objects residing on the card are created on

the moment of the applet installation. A client can get a reference to those remote objects.

When a client calls a method on the remote object, the method that the client calls on is

actually a stub object that resides on the client side. This stub translates the method call to an

APDU command message and sends it to the card. On the Java Card side this APDU is passed

on to a skeleton object that translates the message back to a method call. (Oostdijk & Warnier)

42

Figure 7. Java Card Remote Method Invocation architecture (Oostdijk & Warnier)

The method call is invoked and the return value is translated to an APDU response message

by the skeleton object, which then sends it to the client. On the client side the APDU message

passes through the stub, which translates it back to a return value.

A JCRMI applet consists of at least one interface and two classes: - a remote interface; the

implementation of that interface, and the applet class.

• The remote interface extends java.rmi.Remote interface and defines what methods can

be called with JCRMI. This interface must also be presented on the client side.

• The implementation of the remote interface is the implementation itself. It can be used

to generate a stub class for the client.

• The applet class extends javacard.framework.Applet and contains the inherited install(),

select() and process() methods. This class act as the entry point for all method calls and

directs these to the actual implementations. (Oostdijk & Warnier)

When developing a JCRMI applet we should start implementing the remote interface. From

that interface we write its implementation and the client class, the class that will call remote

object methods. Next, we compile the code so that we have their class files. In the

compilation, the interface will originate a stub, which will provide, to the client, a way to

interact with the remote object. The stub and the client class stays at the client side. The

applet and remote implementation classes are converted into a cap file and inserted in a smart

card. The Figure 1 illustrates this whole process.

43

Figure 8. JCRMI applet implementation process (Oostdijk & Warnier)

6.3. JML-based Formal Development of the HealthCard

In the following we describe the employment of our strategy in the development of part of

the HealthCard.

6.3.1. Getting the Informal Requirements

During the analysis phase, requirements are described using use cases and functional

requirements. The use cases model the purpose and functionality of the application to

develop. They are later used to determine what classes, methods and structure will be

modelled at the design phase. The informal functional requirements define, in an informal

way, the inputs, the behaviour, the outputs, and the restrictions of the system to develop. In

the following, we present a small example from the HealthCard system that shows how

informal functional requirements are evolved into the three semi-formal requirements

documents described in Section 5.2. We present below a use cases example in Figure 9 and

some of the informal requirements of the HealthCard application:

44

Doctor

Patient

#6: Viewing

allergies

Adding allergy«extends»

Removing allergy

«extends»

«requirement»

the Patient only has reading permission

#7: Managing allergies

Figure 9. Use Cases of the patient’s allergies’ information management example

• IFR1 There must not exist duplicated entries for allergies with the same designation

code.

• IFR2 A fixed number of allergies can be introduced in the card only.

• IFR3 All allergy designation codes must have a stipulated length.

• IFR4 The prescription date of a medicine must be bigger than or equal to the date of

the appointment in which the medicine was prescribed.

In the following, we show the three semi-formal documents obtained from the informal

functional requirements above.

6.3.2. Getting the Semi-Formal Functional Requirements

Some of the informal functional requirements are evolved into a more mathematical form.

Yet expressed in natural language, this new form brings requirements closer to JML method

specifications. However, the process of evolving informal functional requirements into this

new form is not linear, and it requires some expertise and ingenuity. The general form of a

semi-formal functional requirement is if <event/condition> then <restriction/rule>, in

which the guard is an event or a condition that triggers a rule that restricts (changes) the

current state of the system. This rule can be regarded as the body of a method in a class, and

the condition as the pre-condition under which this rule may be triggered. This new form is

closer to JML specification, and the principles advocated by the design-by-contract. Notice that

not all the informal functional requirements can be expressed in this form. Some of them can

even be expressed as class or system invariants (see Section 6.3.3). As an example of how this

semi-formal form is attained, the informal functional requirement IFR1 is transformed into if

<a new allergy is to be added to the list of referenced allergies, and the allergy designation has

already been referenced>, then <the new allergy is not inserted>. We show below the semi-

formal requirements obtained from the first two informal requirements above:

• SFR1 From IFR1. If a new allergy is to be added to the list of referenced allergies, and

the allergy designation has already been referenced, then the new allergy is not

inserted.

• SFR2 From IFR2. If an allergy is to be added to the list of referenced allergies, and the

limit of the number of referenced allergies has already been attained, then the state of

the card remains unchanged.

45

6.3.3. Getting the Class and System Invariants

Some of the informal functional requirements are identified as class invariants. They are

written from those functional requirements that describe limitations or boundaries in small-

scale, i.e., limitations of properties that eventually will restrict or describe a certain object class

only. For example, the informal functional requirement IFR3: “All allergy designation codes

must have a stipulated length”, restricts the length of designation code that instances of the

class Allergy manipulate. To write this class invariant (see CI1 below), we use a variable des

to represent the designation code of an allergy. Later on, this variable can be modelled as a

JML abstract variable (see Section 6.3.4).

• CI1 size(des) equals to CODE_LENGTH

Because of the ambiguous essence of natural language, the way people identifies invariant

properties from informal functional requirements is not a deterministic process. Hence, there

is no universal rule that fully describes this process. Nonetheless, we give below some hints to

help people identify invariants. CI1 describes a property on a reference code and its length of

an allergy, so that eventually these two will be fields of some class Allergy. The reference code

will be an instance variable of this class, initialised in its constructor, and the length will be a

static field as it needs to be the same for any instance class. Some other informal functional

requirements are identified as system invariants. Unlike class invariants, system invariants

describe invariant properties relating objects of distinguished classes. For instance, IFR4 (see

Section 6.3.1) describes a property of objects of classes Appointment, managing information

about appointments scheduling, and Medicine, managing information on prescribed medicines

in appointments, must satisfy together. IFR4 becomes the semi-formal system invariant

requirement SI1 below:

• SI1 For all object m of type medicine, and all object a of type appointment such that if

appointment(m) equals to a, then date(m) is bigger than or equal to date(a).

6.3.4. Design and Implementation

During the design phase, the structure of the application is created from the requirements.

This structure encompasses class diagrams for interfaces, abstract classes, and concrete

classes. In parallel with the design phase, during the formal specification pseudo-phase, semi-

formal functional requirements, and class and system invariants are written (Sections 6.3.2

and 6.3.3). Semi-formal specifications are later ported to JML specifications (Section 6.3.5).

During the implementation phase, from the structure of the application generated in the

design phase, Java abstract classes, Java interfaces and Java classes are written. In a first stage,

the implementation only contains code skeletons, so no method in any concrete class is

implemented. JML specs are embedded within the code. Hence, the JML Common tools can be

used to check the code during early stages of the implementation (i.e., before fully

implementing concrete Java classes). Therefore, the Java code can be evolved so as to conform

to the JML specifications, or the specifications can be evolved to conform to an expected

behaviour. Checking that one conforms to the other is done automatically with the JML

Common Tools. JML eliminates programmers’ responsibility of keeping track of how properties

a program must respect are affected by changes in the code. To have a high level of

abstraction in specifications, JML provides support for abstract variables, which exist at the

level of the specification, but not in the implementation. Declarations of abstract variables are

preceded by the JML keyword model, and are related to Java code by a represents clause. This

clause specifies how the value of an abstract variable is calculated from the values of concrete

variables (see Section 6.3.5). Abstract variables are useful in describing properties about

46

interfaces because these are not allowed to declare (concrete) variables in Java. Within an

interface, an abstract variable describes the state of the implementing classes. Abstract

variable specifications for interfaces and for abstract classes do not need to be written down

again in implementing classes or sub-classes, since JML specifications are inherited. This

ensures behavioural sub-typing. That is, a sub-class object can always be used where a super-

class object is expected. The reader is invited to see Sections 5.3 and 5.4 for respectively

details about the design and implementation phases.

6.3.5. JML Formal Specification Pseudo-Phase

Semi-formal functional requirements SFR1 and SFR2 (from Section 6.3.2) relate to method

addAllergy in interface Allergies (see below in Code 9). In Java, interfaces cannot declare

attributes, hence, Allergies declares an abstract JML variable as, modelling stored referenced

allergies. The JML JMLEqualsSequence type models a sequence of objects that can be

compared using the standard method equals (see Section 3.2.1 for a description about JML

abstract data types). We declare two additional abstract variables, size and maxsize, modelling

the number of referenced allergies, and the maximum number of referenced allergies. A

normal behaviour specification expresses that if all the pre-conditions hold (clauses requires) in

the pre-state of the method, it will terminate in a state in which all the postconditions (clauses

ensures) hold. The semi-formal functional requirement SFR2 is expressed as the JML pre-

condition size < maxsize, while the SFR1 appears in two separated normal postconditions that

make use of the abstract method existsAllergy (not shown here) for checking whether the

designation of an allergy has already been stored in as or not. Therefore, if the designation has

already been stored, the list of allergies remains unchanged, as.equals(\old(as)), otherwise the

allergy designation is stored at the end of the list:

- as.equals(\old(as).insertBack(desigRepr(designation)))

JML abstract method desigRepr (not shown here) maps an array of bytes to a unique value.

//@ model instance JMLEqualsSequence as;
//@ model instance short size;
//@ model instance short maxsize;
/*@ public normal_behavior
 @ requires size < maxsize;
 @ requires designation != null && date != null;
 @ requires existsAllergy(designation);
 @ assignable as, size;
 @ ensures as.equals(\old(as));
 @ also
 @ public normal_behavior
 @ requires size < maxsize;
 @ requires designation != null && date != null;
 @ requires !existsAllergy(designation);
 @ assignable \nothing;
 @ ensures as.equals(\old(as).insertBack(
 @ desigRepr(designation)));
 @*/
public abstract void addAllergy (byte[] designatio n,byte[] date)
throws RemoteException, UserException;

Code 9. Specified addAllergy method from Allergies interface

Abstract specifications are related to actual Java code through the use of a JML represents

clause. The following Code 10 exemplifies this relation between abstract specifications and

concrete variables. In the presented code below, as, declared in Allergies shown in Code 9, is

related to code in the Allergies_Impl, which implements the interface Allergies. The abstract

variable size is represented as the concrete field nextFree, and maxsize as the static variable

MAX_ITEMS. The pure method allergiesRepr represents as as a JMLEqualsSequence produced

47

by the insertion of all the elements in allergies. In JML, pure methods are side-effect free

methods.

//@ represents size <- nextFree;
//@ represents maxsize <- MAX_ITEMS;
//@ represents as <- allergiesRepr();
/*@ pure model JMLEqualsSequence allergiesRepr() {
 @ JMLEqualsSequence r = new JMLEqualsSequence();
 @ for (short i=0; i < nextFree; i++) {
 @ r = r.insertBack((Object)(allergies[i]));
 @ }
 @ return r;
 @ }
 @*/

Code 10. Relating abstract specifications with actual Java code in Allergies_Impl

JML Class and System Invariants.

The class invariant CI1 is expressed as the JML invariant below. This invariant is declared in

class Allergy.

//@ instance invariant des.size == CODE_LENGTH;

The system invariant SI1 is expressed as the JML invariant below in Code 11. This invariant

suggests that a global access to medicines and appointments in the card must exist. Following

the Java Card Remote Method invocation (JCRMI) approach for communication, in which the

Java Card applet is the server, the HealthCard application defines an interface CardServices

that declares all the services available for remote objects. Class CardServices_Imp, an

implementation of this interface in Java, accesses the information and the state of any remote

object in the card. CardServices_Imp declares two variables med and app for keeping track of

medicines and medical appointments respectively. Method getData() returns an array of

objects of type Medicine. Method getApp() returns an array of objects of type Appointment.

/*@ invariant
 @ (\forall int i; i<med.getData().length & i>=0;
 @ (\forall int k; k<app.getApp().length & k>=0;
 @ med.getData()[i].getAppID() == app.getApp() [k].getID()
 @ ==>
 @ med.getData()[i].getDate() >= app.getApp()[k].getDate()))
 @*/

Code 11. A system invariant as JML invariant

7. Conclusion

The use of formal methods reduces the chances for requirements errors as it forces a

detailed analysis of those requirements, and also helps to detect and resolve their

incompleteness and inconsistencies while developing a software system. The use of formal

methods in software development has the purpose of producing correct software programs.

According to Sommerville (Sommerville, 2000), when a conventional software development

process (i.e., without using formal methods) is used, validation costs are more than 50% of the

whole development costs, and implementation and design costs are the double of the

specification cost. However, formal methods are not widely used as software development

techniques in software industry. Some of the main reasons are: the lack of methodologies and

tools to support the use of formal methods; the inefficient use of formal specifications as an

48

appropriate tool for communicating with the end user; and the inefficient support of

developers’ creative side while employing formal methods in their development processes.

Overall, software development managers feel reluctant to use formal methods techniques

because their benefits are not yet well-known. The recompense of using formal methods is not

immediate and it is hard to quantify. The reader is invited to see Section 2.2, for a more

complete description on the formal methods in software development and the difficulties

associated with their wider acceptation.

One of the main goals of thesis work was to integrate formal methods with the system

development effort. For this, viable strategies to support the integration of formal method

techniques into the software development process are important. In this thesis we propose a

JML-based strategy for incorporating formal specifications into software development

processes for correctly writing Java programs. This JML-based strategy is in the style of

Bertrand Meyer’s design-by-contract, and makes use of JML specifications to write the

contracts. The written JML specifications are integrated with the Java code itself, but they are

written inside special marked comment blocks (see Section 3.1). The JML specifications are

declared as model , by using that keyword we are declaring that the specification is abstract

and they have no influence on the program execution or the Java code writings. This aspect

also covers methods defined in the JML specifications declared as model and pure . That is,

developers can write auxiliary specification methods if needed in the same way as a normal

Java method, but written in special comment block by declaring them as model and pure .

Again, this kind of methods has no secondary effects on the program execution. Our strategy

provides solutions to some of the main difficulties in the wide acceptance of formal methods

by the software industry. Our strategy offers basic guidelines for a formal development while

supporting the developers’ creative side, and by providing the developers a mean of

communicating formal specifications with the end-users.

The strategy is part of an engineering integrated effort whereby software development is

conducted in parallel with a formal specification pseudo-phase (see Figure 1 – Section 5). In

this pseudo-phase, our strategy offers a guideline for formal development of Java programs by

a stepwise process. In this stepwise process we evolve informal functional software

requirements into JML formal specifications and we go through an intermediate stage in which

semi-formal requirements are written. The informal functional requirements are suggested by

the client (or stakeholders, end-users). Often these requirements are ambiguous, inconsistent

and incomplete, due to the use of natural language. We then transform these informal

requirements into semi-formal specifications, which are still written in natural language but in

a structured way closer to the formal specifications (JML specifications). In the semi-formal

stage we produce three kinds of semi-formal specifications: the semi-formal functional

requirements, the class invariants and the system invariants. These semi-formal specifications

are then ported into JML specifications (i.e., JML method functional specifications and JML

invariants). In our strategy, the informal requirements and the semi-formal requirements can

be used to support the communication between developers and clients. The formal

specifications can be used to support the implementation of the system and communication

between developers. Our strategy is defined as a guideline to address the problem of lack of

methodologies to incorporate formal methods into software development processes, at least

for Java programs. As for the lack of tools problem, there are various tools for supporting JML

specification of Java programs. The main suite of tools is the JML Common Tools, which

provides tools for compiling, and checking statically and in runtime the JML specifications

against Java code. With only these tools we are capable of formally developing a program.

Other tools are further available.

49

In this thesis we suggested a way to write semi-formal specifications in a manner that they

can be easily mapped into JML specifications, while still being understood by the client (see

Sections 5.4.1 to 5.4.3). Besides serving as an intermediate stage for writing JML specifications,

with the semi-formal specifications we can clearly communicate with the client about the

formal specifications. As the semi-formal specifications can be easily understood by an end

user, then we can communicate the formal specifications to them. By this, our JML-based

strategy provides a first solution to the problem of communication of formal specifications to

the end-users.

Our strategy addresses the difficulty of providing some liberty to developer’s creative side.

When employing our strategy, it is recommended to design the system using Java interfaces,

derived from the JML specifications, so as to increase the level of abstraction. This provides

programmers liberty for their creative side while coding, as long as they respect the

specifications. Furthermore, the use of JML abstract variables can provide support to the

abstraction of complex data structures. Programmers can implement them later as desired

while respecting the formal specifications.

Our strategy adheres to the Design by Contract principles. By following this strategy we

can design and implement system components with formal specifications that describe

contracts for their methods (JML method functional specifications) or even classes (JML

invariants). Further, one can implement a correct system that uses these components and

respects the specifications. That is, all the calls programmed for the specified components

must respect the contracts defined in JML. Using this programming technique, the specified

methods oughtn’t to implement validations of their preconditions in their method bodies,

because those validations are of the client’s responsibility. That is, the method’s preconditions

must be assured by the clients when they call them. The use of these principles reduces

considerably the amount of code from the specified methods implementations, leaving the

validation code of preconditions for the client side. This aspect is useful when one has to

develop a system with a client-server architectural style in which one of the parts must be

light-weight, and also helps to reduce the redundancy of code for instances validation, i.e., a

common error while programming a system where validations are made in both sides

(defensive programming). It is possible to develop user interfaces components and other

structures through the employment of our strategy and the use of JML.

We believe that our strategy is indeed simple enough to teach students about the

incorporation of formal methods into software development processes. We can teach students

on how to bring informal specifications closer to formal ones for developing small Java

applications. The teaching should include the subject of basic logics for understanding how an

informal functional requirement can be ported into semi-formal specifications, i.e., how we

can write semi-formal specifications to be closer to JML specifications. The most important

aspects to teach students about our strategy is to present them with ways of producing semi-

formal specifications, teaching them the basics of JML and to think on the concept of

invariants, abstract variables, and the design by contract principles. A student should basically

learn how to pass an informal functional requirement into semi-formal specifications, and then

to JML specification.

We also want to emphasise the importance of thinking of invariant properties when

developing software. Thinking about invariants prior to writing code is a practice to which

programmers do not easily adhere. Having a formal specification of an application and

systematically using a tool, i.e., the JML Common Tools, for checking the correctness of the

code as it is written forces programmers to think about how the written code affects the

consistency and the correctness of the whole program. It is our experience that invariants are

50

the key notion in formal software development that makes a difference with respect to

traditional (non formal methods based) software engineering methodologies (Catano, Barraza,

García, Ortega, & Rueda, 2008). In general, programmers feel intimidated by the idea of

coming up with an invariant. Often, they design code that can make their programs be in an

inconsistent state. We strongly believe JML helps in this sense, from furnishing a friendly Java-

like syntax, to making it possible to use first-order logic predicates in JML specifications

naturally.

Our strategy can be employed for a formal development of any Java program. In particular,

the strategy has been used by Ricardo Rodrigues (Rodrigues, 2009) in the full development of

the HealthCard introduced by us in Section Erro! A origem da referência não foi encontrada..

In the beginning of this development, some problems related to the definition of our strategy

arose. One of the problems was about the generation of formal specifications from informal

ones. When initially applying our strategy on the HealthCard, we didn’t think of having a semi-

formal phase. We faced the challenge of defining a way to write JML specifications from the

informal functional requirements. It was hard to write formal specifications directly from

informal ones, like it was hard to modify them when the requirements changed. The solution

came with the creation of an intermediate step of semi-formal specifications for developing

formal specifications from informal ones. Having semi-formal specifications we could start

shaping informal functional requirements given by the clients into an organized and structured

way, prepared to be mapped into JML specifications. At the same time, we can use semi-

formal specifications to communicate the formal specifications to the end-users.

The strategy described in this thesis can be easily employed in the formal development of

other Java (or Java Card) applications. As it helped developing a correct HealthCard application

for managing information of a patient, it could help other types of smart card applications like

the HealthCard as well. For example, our strategy could be employed in the development of

student cards for managing information about their academic life, or for smart cards

applications for keeping and managing information on a member (of libraries, of sport clubs,

etc.), or even smart cards for keeping basic information of elderly people, children and teens

for getting service discounts, etc. There are numerous possibilities of employing this strategy

for formally develop applications, similar to the HealthCard, for serving the local communities.

As seen in Section 4, there are other strategies for incorporating formal methods into

software development processes of Java programs, but our strategy is more cost-effective and

straight-forward for a Java programmer because JML uses Java syntax. The strategy in this

thesis is described as being used to incorporate JML formal specifications in the development

of a Java/Java Card application, but although we chose JML as the formal specification

language, these ideas can be adapted to the development of C++ programs, with formal

specifications written in the ACSL (ANSI/ISO C Specification Language) (Baudin, Filliâtre,

Marché, Monate, Moy, & Prevosto) language instead, and the verification work accomplished

with the Frama-C Tool (The Frama-C Tool).

Some future work can be done to enhance the usefulness of our strategy. In this thesis we

suggested how one could write semi-formal specifications. We highly propose further studies

and the development of a semi-formal language understandable by a common software

development client while also being easy to be mapped into JML formal specifications. The

semi-formal specification language could be based on our suggestion, but it needs to be

standardized. Also, a tool can be developed for automatically convert simple semi-formal

expressions into JML specifications. The author of this thesis and Ricardo Rodrigues, have

written a prototype tool that converts semi-formal specifications into JML formal specifications

for the simplest cases.

51

Bibliography

(n.d.). From The ESC/Java 2 Tool: http://secure.ucd.ie/products/opensource/ESCJava2/

(n.d.). From The Jack Tool: http://www-sop.inria.fr/everest/soft/Jack/jack.html

(n.d.). From The Krakatoa Tool: http://krakatoa.lri.fr/

(n.d.). From KindSoftware: ESC/Java2: http://secure.ucd.ie/products/opensource/ESCJava2/

(n.d.). From JACK: Java Applet Correctness Kit: http://www-

sop.inria.fr/everest/soft/Jack/jack.html

(n.d.). From Krakatoa: a verification tool for Java programs: http://krakatoa.lri.fr/

(2007, June 20). Retrieved September 1, 2009 from EclipseJCDE User Guide: http://eclipse-

jcde.sourceforge.net/user-guide.htm

(2008, March 2). Retrieved September 1, 2009 from EclipseJCDE: http://eclipse-

jcde.sourceforge.net/

ARC - Care Parent Network. (n.d.). Information and Medical Forms. Retrieved December 2008

from CARE Parent Network Resource :

http://www.contracostaarc.org/html/careresources.html

Baudin, P., Filliâtre, J. -C., Marché, C., Monate, B., Moy, Y., & Prevosto, V. (n.d.). From ACSL:

ANSI/ISO C specification language: http://frama-c.cea.fr/-download/plug-

in_development_guide.pdf

Bell, D. (2004, September 15). UML basics: The class diagram. From IBM:

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/

Breunesse, C.-B., Cataño, N., Huisman, M., & Jacobs, B. (2008). Formal Methods for Smart

Cards: an experience report.

Cardlogix Corporation. (2009). Smart Card Standards. Retrieved September 2009 from Smart

Card Basics: http://www.smartcardbasics.com/standards.html

Catano, N., Barraza, F., García, D., Ortega, P., & Rueda, C. (2008). A case study in JML-assisted

software development. In P. Machado, A. Andrade, & A. Duran (Ed.), Brazilian Symposium on

Formal Methods (SBMF), (pp. 5-21).

Cataño, N., & Huisman, M. (n.d.). Electronic Purse Case Study. From http://www-

sop.inria.fr/lemme/verificard/electronic_purse/

Cataño, N., & Huisman, M. Formal specification and static checking of Gemplus’ electronic

purse using ESC/Java. INRIA Sophia-Antipolis, France.

Classen, I., Ehrig, H., & Wolz, D. (1993). Algebraic Specification Techniques and Tools for

Software Development. World Scientific Publishing Co. Pte. Ltd.

52

Cornell University. (n.d.). Making Appointments . Retrieved December 2008 from Gannett

Health Services : http://www.gannett.cornell.edu/accesstocare/appointments.html

Eiffel Software. (n.d.). DESIGN BY CONTRACT AND ASSERTIONS. Retrieved January 2009 from

Eiffel Software: http://archive.eiffel.com/doc/online/eiffel50/intro/language/invitation-

07.html

Fraser, M. D., Kumar, K., & Vaishnavi, V. K. (1994, October). Strategies for Incorporating Formal

Specifications in Software Development. Communications of the ACM , 37.

Iowa State University. (2002). Package org.jmlspecs.models. From JML and MultiJava

Documentation: http://opuntia.cs.utep.edu/utjml/jml-

javadocs/org/jmlspecs/models/package-summary.html

Júnior, R. D., Figuereido, J. C., & Guerrero, D. D. (2005). Design by Contract com JML. In

UNISINOS (Ed.), XXV Congresso da Sociedade Brasileira de Computação , (pp. 1455-1499). São

Leopoldo.

Kemmerer, R. A. (1990, September). Integrating Formal Methods into Development Process.

Kostrubiak, A. (2009). Integration of Java Generics Into The jmle.

Krause, B., & Wahls, T. jmle: A Tool for Executing JML Specifications via Constraint

Programming. Dickinson College, Department of Mathematics and Computer Science.

Leavens. (n.d.). Java Modeling Language. From SourceForge.net:

http://sourceforge.net/tracker/?func=detail&atid=510629&aid=2822469&group_id=65346

Leavens, G. (n.d.). Downloading the JML Common Tools. From The Java Modeling Language

(JML): http://www.eecs.ucf.edu/~leavens/JML/download.shtml

Leavens, G. (2008, May 20). JML Reference Manual. From

http://www.eecs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman.html

Leavens, G. T. (2008, July 29). Documentation. From The Java Modeling Language (JML):

http://www.eecs.ucf.edu/~leavens/JML//documentation.shtml

Leavens, G. T., & Cheon, Y. (2006). Design by Contract with JML. Iowa State University;

University of Texas at El Paso, Dept. of Computer Science.

Liu, S., Offutt, A. J., Ho-Stuart, C., Sun, Y., & Ohba, M. (1997). SOFL: A Formal Engineering

Methodology for Industrial Applications.

Liu, S., Takahashi, K., Hayashi, T., & Nakayama, T. (2009, June). Teaching Formal Methods in

the Context of Software Engineering. inroads — SIGCSE Bulletin , 41, pp. 17-23.

McDermott, B., Elliott, J., Fabbri, L., Panseri, P., & Primerano, F. (1998, January 9).

Disadvantages of Smart Cards. (Massachusetts Institute of Technology) Retrieved January 22,

2009 from Smart Cards: http://web.mit.edu/ecom/Spring1997/gr12/4DISADV.HTM

53

Medical Assistant.net. (n.d.). Medical Assistant Net - What is a SOAP Note? Retrieved

December 2008 from Medical Assistant: http://www.medicalassistant.net/soap_note.htm

Meyer, B. (1992). Applying “Design by Contract". Computer , pp. 40-51.

Meyer, B. (1997). Design by Contract: Building Reliable Software. In Object-Oriented Software

Construction (pp. 331-410). Prentice Hall.

NetBeans. (2009). NetBeans IDE. From NetBeans.org: http://www.netbeans.org/

Oostdijk, M., & Warnier, M. On the combination of Java Card Remote Method Invocation and

JML. Univ. Nijmegen, Dept. Com. Sci.

Ort, E. (2001, January). Writing a Java Card Applet. From Sun Developer Network (SDN):

http://java.sun.com/javacard/reference/techart/intro/

Ortiz, C. E. (2003, May 29). Sun Developer Network. Retrieved January 2009, from An

Introduction to Java Card Technology - Part 1:

http://java.sun.com/javacard/reference/techart/javacard1/

Priestley, M. The Logic of Correctness in Software Engineering. University of Westminster,

Cavendish School of Computer Science, London.

Riehle, D. (2000). Method Types in Java. SKYVA International.

Rodrigues, R. (2009). JML-Based Formal Development of a Java Card Application for Managing

Medical Appointments. University of Madeira.

Sommerville, I. (2000). Formal Specification. In Software Engineering (pp. 159-169).

Swiss Federal Institute of Technology Zurich. (n.d.). JML2 Eclipse Plug-In. From Department of

Computer Science - Chair of Programming Methodology:

http://www.pm.inf.ethz.ch/research/universes/tools/eclipse

The Frama-C Tool. (n.d.). From http://frama-c.cea.fr

The Krakatoa Tool for Java Program Verification. (2009, 1 30). Retrieved 10 22, 2009 from

Krakatoa: http://krakatoa.lri.fr/krakatoa0.html

Tucker, A., & Noonan, R. (2001). Program Correctness. In Programming Languages: Principles

and Paradigms. McGraw-Hill Science/Engineering/Math.

van den Berg, J., & Jacobs, B. (2001). The LOOP compiler for Java and JML. In In Proceedings of

TACAS (pp. 299-312). Springer.

Vasconcelos, V. T., Nunes, I., & Lopes, A. (2008). Monitoring Java Code Using ConGu. WADT

2008. Italy.

Warnier, M. (2006). Language Based Security for Java and JML.

54

Warnier, M., & Oostdijk, M. (n.d.). Java Card Remote Method Invocation. University of

Nijmegen.

List of Figures

Figure 1. The Software Development Process .. 22

Figure 2. Semi-formal relations with the Structure Model ... 29

Figure 3. HealthCard application structure... 34

Figure 4. Proposed information held on a smart card for medical appointment management 36

Figure 5. HealthCard System... 37

Figure 6. Architecture of a Java Card Application [26].. 39

Figure 7. Java Card Remote Method Invocation architecture [30]... 42

Figure 8. JCRMI applet implementation process [30] ... 43

Figure 9. Use Cases of the patient’s allergies’ information management example 44

List of Code

Code 1. Example of a Medicines class specified with pseudo-specification................................. 4

Code 2. Pre-condition example for a factorial computation [8][3]... 6

Code 3. A redundant test [3]... 6

Code 4. Example of a Medicines class implementation with an invariant.................................... 7

Code 5. Example of a Services class referencing Medicines and Appointments classes with a

system invariant .. 8

Code 6. Example of how JML can be used to specify a method ... 15

Code 7. Example of how JML can declare an abstract variable .. 16

Code 8. Example of how JML abstract variables can be represented by concrete values 16

Code 9. Specified addAllergy method from Allergies interface .. 46

Code 10. Relating abstract specifications with actual Java code in Allergies_Impl 47

Code 11. A system invariant as JML invariant... 47

List of Tables

Table 1. A design by contract example [8] .. 5

Table 2. Some JML expressions... 14

Table 3. A command APDU format [26].. 40

Table 4. A response APDU format [26] ... 41

