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1. Introduction 

Although formal methods can dramatically increase the quality of software systems, they 

have not widely been adopted in software industry. Many software companies have the 

perception that formal methods are not cost-effective cause they are plenty of mathematical 

symbols that are difficult for non-experts to assimilate. The Java Modelling Language (short for 

JML) Section 3.3 is an academic initiative towards the development of a common formal 

specification language for Java programs, and the implementation of tools to check program 

correctness. This master thesis work shows how JML based formal methods can be used to 

formally develop a privacy sensitive Java application. This is a smart card application for 

managing medical appointments. The application is named HealthCard. We follow the 

software development strategy introduced by João Pestana, presented in Section 3.4. Our 

work influenced the development of this strategy by providing hands-on insight on challenges 

related to development of a privacy sensitive application in Java. Pestana’s strategy is based on 

a three-step evolution strategy of software specifications, from informal ones, through semi-

formal ones, to JML formal specifications. We further prove that this strategy can be 

automated by implementing a tool that generates JML formal specifications from a well-

defined subset of informal software specifications. Hence, our work proves that JML-based 

formal methods techniques are cost-effective, and that they can be made popular in software 

industry. Although formal methods are not popular in many software development companies, 

we endeavour to integrate formal methods to general software practices. We hope our work 

can contribute to a better acceptance of mathematical based formalisms and tools used by 

software engineers.  

The structure of this document is as follows. In Section 2, we describe the preliminaries of 

this thesis work. We make an introduction to the application for managing medical 

applications we have implemented. We also describe the technologies used in the 

development of the application. This section further illustrates the Java Card Remote Method 

Invocation communication model used in the medical application for the client and server 

applications. Section 3 introduces software correctness, including the design by contract and 

the concept of contract in JML. Section 4 presents the design structure of the application. 

Section 5 shows the implementation of the HealthCard. Section 6 describes how the 

HealthCard is verified and validated using JML formal methods tools. Section 7 includes some 

metrics of the HealthCard implementation and specification. Section 8 presents a short 

example of how a client-side of a smart card application can be implemented while respecting 

formal specifications. Section 9 describes a prototype tools to generate JML formal 

specifications from informal specifications automatically. Section 10 describes some challenges 

and main ideas came acrorss during the development of the HealthCard. The full formal 

specification and implementation of the HealthCard smart card application presented in this 

document can be reached at https://sourceforge.net/projects/healthcard/. 
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2. Preliminaries 

In the following, we present the HealthCard smart card application we have formally 

implemented using JML technology. We start presenting some problems related to the 

management of medical appointments, and define some important concepts for the domain 

application. Then, we propose a solution to the development of a Java Card Health Card 

Application that deals with privacy sensitive medical people information. We introduce the 

Smart Card technology that will provide support to the development of our application, and 

introduce the programming language Java Card, which will be used to develop the card side 

application.   

2.1. Managing Medical Appointments 

In this section we present and discuss a common problem about medical appointments 

(Section 2.1.1). Next, we describe our solution to the development the HealthCard, in which 

we also make a short introduction to the proposed solution technologies, namely, smart cards. 

2.1.1. General Description of the Problem  

Finding a medical history is not always an easy task when a doctor is checking a patient, 

especially during the first checking. In most cases, medical histories are kept in a particular 

medical centre as hard-copy files. Hence, if a patient has to go to a different medical centre 

other than to the one he usually goes, it might be the case that he could not know how to tell 

the doctor about his medical problem, and if he could, doctors always need a dossier with 

patients’ information (that is, they need a medical history). Treating a patient without having 

his/her medical information can be time-consuming. The following case describes this problem 

in real life: 

“John is British and usually travels between Portugal and the USA. One day, while in Portugal, 

he got sick and went to the doctor. The Portuguese doctor started making a diagnosis. He 

asked John if he already got his Tetanus immune shot, but John didn’t know.  After listening 

John and running some medical exams, the doctor identified the possible problem and then 

prescribed some medications to John. 

One week later, John went to New York and his health got worse, so he decided to go to the 

nearest medical centre to see a doctor. The American doctor asked him if he already had gone 

to see a doctor about his problem before, and what medication he has been taking.  John didn’t 

know all the names of the medication prescribed by the Portuguese doctor, and worse, he 

couldn’t explain exactly what problem he was suffering! ” 

2.1.2. Problem analysis 

The main issue on the previous scenario is the lack of communication between patients 

and the medical staff, especially between different medical centres. Lack of communication 

means a possible inefficient patient treatment. Knowing relevant patient information can save 

time and result in a faster medical diagnosis of the patient situation. 
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Typically, a patient would not know how to express to another doctor all the information 

about his health problems. He would not know what medication he’s taking, or his medical 

history, and drug allergies or other types of allergies he suffers, and could consequently be 

mistreated. In any case, even if the doctor explained the medical problem to the patient well 

and even if the patient could roughly explain his medical problem to others; a new doctor 

would anyway need a ”record" with the patient's information. This information is usually kept 

as "dossiers" in medical centres. 

2.1.3. Proposed solution 

We propose here a solution to the problem described above. Our solution builds on the 

software development strategy introduced by João Pestana (see Section 3.4), formal methods, 

JML (see Section 3.3), and smart cards (see Section 2.2). The reason why we use of this 

strategy in the development process of the HealthCard application is due to the application’s 

domain nature in which people’s medical information is involved. This information is privacy 

sensitive. Through the use of formal methods in this strategy we develop a correct smart card 

application. Formal methods ensure that the application behaves as described in its 

specification. When developing a software application for privacy sensitive domains, like 

medical ones, the programmer must implement mechanisms that ensure that information is 

not disclosed to non-authorized parts. In our work, such mechanisms are implemented 

through the use of JML formal specifications, and the use of formal methods tools to check 

program correctness (see Section 3 for a description about software correctness). Security 

properties such as authentication, confidentiality or integrity are difficult to express with JML, 

and are out of the scope of this master thesis work. [1] 

The HealthCard application runs on smart cards. Therefore, a patient can carry his medical 

information on a card and use it when going to any medical centre with the appropriate 

system to read it. A smart card is a pocket-sized card with embedded integrated circuits that 

can hold and process data. A typical smart card includes in-card applications (the applets 

running on the card), a card reader-side, and back-end elements (a computer communicating 

with the card applets). For implementing the in-card applications we use the Java Card 

language (see Section 2.2). This language is a precise subset of the Java language used to 

program applets for devices such smart cards. In Java Card, smart cards provide two models 

for the communication between a host application and a Java Card applet.[2] The first model is 

the fundamental message-passing APDU model, which basically relies on the trade of 

messages in the APDU format between the in-card applets and the off-card applications. The 

second model is based on the Java Card Remote Method Invocation (JCRMI), in which a Java 

Card applet is the server and makes accessible functions to external client applications.  The 

smart card technology provides patients with:  

1.) A way to digitalize their information.  

2.) A mechanism to convey their information to others.  

3.) A security mechanism so that their information is not disclosed to non-authorized 

parts. 

Carrying a card with relevant medical information easies the way a patient can tell his 

health problems to medical professionals. In this way, the card acts as a patient data server. In 

our solution, smart cards are used to carry people medical information. It encompasses 

personal data such as name, age, gender and blood type, as well as medical history about 

allergies, vaccinations, previous health problems and treatment plans. Figure 1 shows how 

medical information is organized within a smart card. Notice that the figure conveys in the 
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necessary patient’s information contained in the card rather than the structural description of 

the HealthCard. The information stored can be divided into the patient’s personal data, the 

scheduled appointments and his medical history. Information about the patient’s medical 

history includes allergies, vaccination, health problems and treatment plans associated with 

health problems. The treatment plans are associated with diagnostics, prescriptions and 

medical recommendations. 

 

 

Figure 1. Proposed information held on a smart card for medical appointment management 

 

For managing the data stored in the card we need at least an in-card applet that provides 

functions to manage it. Since we’ll use smart cards, we propose the use of Java Card for 

programming those in-card applets (i.e., the health card application). Java Card is a 

programming language that has in consideration the memory resource limitations of smart 

cards [2] (see Section 2.2). We can follow the strategy that supports the software development 

process of the Health Card application as at same time uses Java Modelling Language (JML)
1
 

for formally specify the Health Card application based on the informal requirements. These 

JML formal specifications used in this strategy will lead us to a correct implementation of our 

application. Also, we propose the use of JML-based tools to check for correctness of the 

implementation.  

2.1.3.1. Proposed System Architecture 

The architecture of our proposed application is illustrated in Figure 2. A patient can use his 

smart card in any medical centre that has our system implemented. 

 

                                                           
1
 JML is a formal behavioral interface specification language for Java which includes the essential 

notations used in Design by Contract as a subset. [33] 
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Figure 2. Proposed system using a smart card 

This system architecture consists of at least two card terminals. One is the patient terminal, 

which includes an attached smart card reader. This terminal may be used for appointment 

scheduling, appointment check-ins, visualization and modification of some in-card personal 

data, and for requesting medical prescriptions renewals.  The second terminal is the doctor’s 

terminal, which also can include a smart card reader. This is used by medical staff, possibly a 

doctor providing a way to access the patient’s personal and medical information. The doctor 

may insert medical information into the patient’s card by using this terminal. Beyond those 

two terminals our architecture includes a Medical Centre database. This database provides 

support to the on-the-card patient’s information, by storing all known allergies, medicines and 

vaccines, and other medical standard designations. In this way, the card will only need to keep 

references to those items rather than the whole designation (i.e. the names of allergies, 

vaccines, medicines, etc.). Also, that database will provide support to the information about 

doctor’s available schedules and other medical centre information. This medical centre 

database may be linked to other medical centres and one of them may be the central system 

database. This central system would update medical information in all medical centres 

databases. Finally, there’s a system administrator that has the responsibility for operating and 

keeping the medical centre database updated. 

Proposed System Components 

This section presents the list of components of the proposed system 

architecture. 

Health Card (smart card) contains personal and medical information about the card 

owner (patient) and his scheduled appointments.  
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Card reader will serve as terminals for reading/writing the smart cards and linking 

points to client machines (Patient Terminal and Doctor’s computer).  

Patient Terminal for appointment scheduling, checking-in and some other basic card 

operations made by the patient.  

Doctor will have a terminal for accessing patient medical data contained on the card.  

Medical Centre Database will contain doctor’s schedules, medical centre information, 

patient appointments, and lists of known allergies, health problems and vaccines. 

System Administrator will be responsible for maintaining the medical centre database.  

Central System Database will update all the medical centres systems. 

 

2.1.3.2. Proposed System Scenario 

At the end of the development of our system, the following scenario should be:  

“ John has an appointment with his doctor today at 5:00 PM. John will be using his 

HealthCard smart card at the Yorkshire medical centre for checking-in prior to his appointment. 

The Yorkshire medical centre has a smart card compatible card reader set for patients to check-

in using their HealthCards. Therefore, doctors can access patient’s medical information relevant 

to appointments, e.g., general description of the patient’s medical problem, past treatment 

information, historical of medicines used during past treatments, previous record of allergies 

related to a particular medical substance, age and gender of the patient, etc. HealthCards are 

dynamic: last week, when John was away on vacations in the United States, he fell back into 

illness after his 7 hours trip from Heathrow airport in London to the John Kennedy airport in 

New York. He visited an American doctor who read John’s medical information from his 

HealthCard. The American doctor prescribed an alternative complementary treatment for 

John’s health problem. The details of this complementary treatment were stored into John’s 

HealthCard smart card. John’s doctor will be able to consult the details of the American 

doctor’s prescription when John will be back into Yorkshire.” 

2.2. Smart cards and Java Card 

A smart card is a plastic card that contains an embedded integrated circuit (IC) and basically 

resembles a credit card. Most smart cards have both microprocessors and memory, for secure 

processing and storage. Smart cards are highly secure by design, and tampering with one 

results in the destruction of the information it contains. [2] Usually, a smart card has about 1Kb 

of RAM and 16Kb of EEPROM, which contains persistent data, including the compiled program 

code. Smart cards don't contain a battery, and become active only when connected with a card 

reader. When connected, after performing a reset sequence the card remains passive, waiting 

to receive a command request from a client (host) application. [2] Java Card is a programming 

language for programming smart cards. Java Card is a subset of the Java programming 

language specially designed having in mind the memory resource limitations of smart cards. [2] 

ISO 7816 is the international standard for smart cards that use electrical contacts on the card. 

[3] 
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2.2.1. Elements of a Java Card Application 

A smart card system is composed by a card-side (the applets running on the card), a card 

reader-side, and back-end elements (a computer communicating with the card applets). [2] 
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Figure 3. Architecture of a Java Card Application [2] 

 

2.2.1.1. Back-End Application and Systems 

Back-end applications are elements of the system that provide services that support in-card 

Java applets. For example, a back-end application could provide a connection to security 

systems that together, with credentials from the card, could result in a better security. In a 

credit card payment system, the back-end application could provide payment information and 

access to the credit-card. 

2.2.1.2. Reader-Side Host Application 

Reader-Side terminals can be a PC or an electronic payment terminal, a cell phone, or a 

security subsystem. In them reside host applications that can handle communication between 

the user, the Java Card applet, and the provider’s back-end application. 

2.2.1.3. Reader-Side Card Acceptance Device 

The Card Acceptance Device (CAD) is a card reader. It’s the gateway of communication 

between the host application and the Java Card device, and besides serving as a way of 

communication, a CAD provides power to the card. A CAD may be attached to a desktop 
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computer using a serial port, or it may be integrated into a terminal such as an electronic 

payment terminal (ex., at a restaurant or a gas station). 

2.2.1.4. Card-Side Applets and Environment 

In Java Card, an in-card application is an applet. A Java Card can have one or more applets 

residing the card, along with supporting software. The supporting software consists in the 

card’s operating system and the Java Card Runtime Environment (JCRE). The latter one 

includes the Java Card VM, the Java Card Framework and API’s, and some extension APIs. 

All Java Card applets extend the Applet base class and must implement the install() and 

process() methods. Later, when installing the applet, JCRE calls install(). And every time 

there is an incoming APDU message for the applet, JCRE calls process().  

When loaded, Java Card applets are instantiated, and stay alive when the power is switched 

off. A card applet acts like as a server and is passive. Once a card is powered up, each applet 

remains inactive until it's selected. The applet is active only when an APDU has been 

dispatched to it. 

2.2.2. Accessing the Smart Card (Communication in Java Card) 

According to ISO 7816-5 standard, each smart card application must have an application 

identifier (AID). [3] These AIDs are sequence of bytes between 5 and 16 bytes in length, and in 

Java Card technology they are used to identify Java Card applets as well as packages of Java 

Card applets. When inserted a smart card into a card acceptance device, the running external 

application sends a command to the card containing the AID of the applet to perform the 

required operation. The AID is crucial for allowing the external applications accessing Java Card 

applications in smart cards. [4] 

For accessing smart cards there are two models for the communication between a host 

application and a Java Card applet. The first model is the fundamental message-passing APDU 

model, and the second is based on Java Card Remote Method Invocation (JCRMI), a subset of 

the J2SE RMI distributed-object model.  

A logical data packet is exchanged between the CAD and the Java Card Framework, which is 

called APDU (Application Protocol Data Unit). An APDU is sent by the CAD, received and then 

forwarded to the appropriate applet that processes the APDU command and returns a 

response APDU. [2] 

A command APDU has a required header and an optional body, containing: 

• CLA (1 byte): This required field identifies an application-specific class of instructions. 

• INS  (1 byte): This required field indicates a specific instruction within the instruction 

class identified by the CLA field. 

• P1 and P2 (1 byte each) are required fields used to pass command specific parameters 

for the qualification of INS, or input data. 

• Lc (1 byte): This optional field is the number of bytes in the data field of the command 

(length command). 

• Data field (with length given by Lc): This optional field holds the command data. 

• Le (1 byte): This optional field specifies the maximum number of bytes in the data field 

of the expected response (length expected). 

Table 1. A command APDU format [2] 
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Command APDU 

Header  

(required) 

Body 

(optional) 

CLA INS P1 P2 Lc 

Data  

Field 

Le 

A response APDU has a format much simpler: 

• Data field (with a length determined by Le in the command APDU): This optional field 

contains the data returned by the applet. 

• SW1 (1 byte) and SW2 (1 byte) are required status words. They contain the status 

information as defined in ISO 7816-4. [3] In case of successful execution, they contain 

0x9000. 

Table 2. A response APDU format [2] 

Response APDU 

Body 

(optional) 

Trailer 

(required) 

Data 

Field 

SW1 SW2 

Our Java Card implementation of the application for managing medical appointments is 

based on JCRMI (Java Card Remote Method Invocation). It adds an additional abstraction layer 

above the message-passing model, avoiding low-level communication through APDU’s [5] 

therefore simplifying the code written and saving memory space in the card. Simplifying the 

code makes it easier to specify the implementation, which leads to more concise and reliable 

code.   

2.2.3. Java Card Remote Method Invocation (JCRMI) 

In the message-passing model for communication between the host application and the 

Java Card applets we had to program explicitly low-level byte sequences of APDU messages, 

but with the Java Card Remote Method Invocation (JCRMI) framework we don’t need to 

program like that anymore. The JCRMI makes it possible to directly call methods from the Java 

Card smart card. [6] Basically, JCRMI adds a middleware layer that translates calls to the 

methods of an applet to ADPU messages. On the card, APDU messages are translated back to 

methods of the remote object. These processes are called marshalling and unmarshaling. [6] 

These remote objects residing on the card are created on the moment of the applet 

installation. A client can get a reference to those remote objects. When a client calls a method 

on the remote object, the method that the client calls on is actually a stub object that resides 

on the client side. This stub translates the method call to an APDU command message and 

sends it to the card. On the Java Card side this APDU is passed on to a skeleton object that 

translates the message back to a method call. [6] 
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Figure 4. Java Card Remote Method Invocation architecture [6] 

The method call is invoked and the return value is translated to an APDU response message 

by the skeleton object, which then sends it to the client. On the client side the APDU message 

passes through the stub, which translates it back to a return value. 

 

A JCRMI applet consists of at least one interface and two classes: - a remote interface; the 

implementation of that interface, and the applet class. 

 

• The remote interface extends java.rmi.Remote interface and defines what methods can 

be called with JCRMI. This interface must also be presented on the client side. 

 

• The implementation of the remote interface is the implementation itself. It can be used 

to generate a stub class for the client. 

 

• The applet class extends javacard.framework.Applet and contains the inherited install(), 

select() and process() methods. This class act as the entry point for all method calls and 

directs these to the actual implementations. [6] 

 

When developing a JCRMI applet we should start implementing the remote interface. From 

that interface we write its implementation and the client class, the class that will call remote 

object methods. Next, we compile the code so that we have their class files. In the 

compilation, the interface will originate a stub, which will provide, to the client, a way to 

interact with the remote object. The stub and the client class stays at the client side. The 

applet and remote implementation classes are converted into a cap file and inserted in a smart 

card. The Figure 5 illustrates this whole process. 
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Figure 5. JCRMI applet implementation process [6] 

3. Formal Software Development 

During this section, we introduce the use of formal methods in software development, 

describing the software correctness and its fundamental essence. We continue, giving a brief 

introduction to the Java Modelling Language (JML) and for last we consider the strategy of 

João Pestana, as followed strategy of this thesis work. 

3.1. Formal Methods in the Software Development Process 

A formal software specification is a specification expressed in a language that has its 

semantics and syntax mathematically or logically defined. The formal methods are a way of 

employing software correctness in software development processes. The need for a formal 

specification in a software development process means that we cannot solely rely in natural 

language to develop a system.  The natural language is ambiguous and prone to specifications 

inconsistencies and their incompleteness. Formal specifications make possible the capture of 

software requirements unambiguously as part of a software engineering methodology. By 

using formal specifications, one involves investing more effort in the early phases of software 

development cycle, especially in requirement analysis. This reduces requirements errors as it 

forces a detailed analysis of them, and also helps to detect and resolve incompleteness and 

inconsistencies. Hence, the amount of rework due to requirements problems is reduced, as 

also the cost related to the implementation and validation phases. However, according to 

Sommerville [7], in the software engineering, the formal methods are not widely used as 

software development techniques, although their promise to increase the systems quality by 

supporting their correctly development according to the client’s real needs. Eventually other 

software engineering techniques have surpassed the need for formal methods for various 

reasons that extend from the complexity and the incapability of formal methods in dealing 
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with large-scale systems, to frequent changes in requirements and designs in practice. [8] 

Sommerville [7] suggests that formal specification techniques have not been broadly used in 

industrial software development environments, because: 

  

I. There is a lack of methodologies and tools to support the use of formal methods in 

software development. Barely minimal guidelines are provided on how to elicit and 

structure the requirements into formal notation. Lack of guidance makes it hard to 

developers use formal methods by themselves and from the lack of tools developers 

have difficulties of applying formal methods into their development cycles, especially to 

develop, analyze and process large-scale specifications using formal specification 

languages. The production of well-defined guiding lines and supporting tools are 

needed. 

 

II. The use of formal methods requires the knowledge of discrete mathematics and 

symbolic logic. Most of the developers (i.e., software engineers, programmers, and 

designers) have not been trained in techniques required to develop formal software 

specifications. Techniques have been tested by Japanese researchers over the last 

fifteen years in formal methods education programs for undergraduate and graduate 

students at universities as well as practitioners at companies. [8] 

 

III. The formal specifications are an inappropriate tool for communications with the end 

user at the later stages of requirements specification. More than the software 

developers, most end users who provide the requirements and approve their 

specifications are neither familiar nor comfortable with the formal specification 

languages. According to Sommerville [7], Hall suggests that one can paraphrase in 

natural language the formal specifications or use animated illustrations, that is, 

presenting the formal specifications in a form that can be understood by the client. 

 

IV. The use of formal specifications at initial stages may hold back the creative side of 

developers, that is, having a poorly structured problem, the formal representations 

from it may restrain the developers from exploring alternatives. Formal specifications 

may not be an ideal tool for exploring and discovering the problem’s structure. The 

problem may have to be studied and understood before being formalized. 

 

V. The use of formal specifications for development of user interfaces is hard. With the 

current techniques is practically impossible for specifying interactive components of 

user interfaces. Also, some other system components are hard to specify like parallel 

processing systems, such interrupt driven-systems. 

 

VI. Most of software development managers are normally conservative and reluctant in 

using techniques whose benefits are not yet well-known. The recompense by using 

formal methods is not immediate and it is hard to quantify. Nevertheless, Sommerville 

[7] concludes that when a conventional software development process (i.e., without 

using formal methods) is used, validation costs are more than 50% of the whole 

development costs, and implementation and design costs are the double of the 

specification cost. With the use of formal methods, the specification, implementation 

and design costs are almost equal and validation costs are considerably reduced to less 

than the development costs. 

Knowing these difficulties in the wide acceptance of formal methods use in software 

development processes, one has the challenge of integrating the formal methods with the 
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system development effort, especially in large scale development projects. For this, viable 

strategies for supporting the integration of formal method technique into the software 

development process are important, and without existing strategies it may be difficult to 

integrate formal methods into the real-world development project. 

3.1.1. Formalization Strategies for Software Development Processes 

The way people can use formal methods to formalize their informal specifications (i.e., the 

client’s requirements to a system to be developed) into formal ones can be categorized into 

several strategy types. Some of the proposed strategies suggest going directly from informal 

specifications (i.e. high level, natural language) to formal specifications (i.e., low level, more 

mathematical language) making the software development’s specification activity being in the 

formal domain from the beginning. For example, according to Kemmerer [9] through his 

“Integrated” approach which defines that formal methods is completely integrated into the 

development cycle, we use critical requirements written in English and stated in precise 

mathematical terms to describe the system’s behaviour without giving to much 

implementation details, so later they can be incrementally detailed until the system can be 

coded according to them. Also Jones [10] uses a similar process through his suggestion that 

proof obligations of VDM decomposition rules can stimulate design steps. Others like Miriyala 

and Harandi, and Wing [10], have process propositions where high-level formal specifications 

of the system can be derived directly from a precise English statement of critical requirements. 

A strategy which goes directly from informal specifications to a formal specification without 

any transitional step is known by using a direct formalization process. 

However there is another type of formalization strategy used to introduce formal methods 

into software development processes which rather than using a direct formalization process, 

one can define intermediate steps that help to move from the informal the initial natural 

language to formal specifications. Through this kind of strategy, we recur to one or more semi-

formal specifications providing us evolutionary steps between the informal natural language 

specification and the formal specifications. This type of strategy, which starts from informal 

specifications and moves to formal ones through intermediate specifications, is known by 

using a transitional formalization process. [10] We can say that the transitional formalization of 

the specifications can be divided into three degrees: - informal, semi-formal and formal.  At 

the informal state, the specifications are incomplete sets of rules to constraint the system to 

be developed, usually written in natural language or presented as unstructured pictures that 

can lead to ambiguous meanings and introduce inconsistencies in the system or its 

incompleteness. At the semi-formal state, the informal specifications are evolved so as to 

become more close to the formal ones. Although the semi-formal specifications still use 

natural language, they are presented with a defined syntax and written in a mathematical form 

or illustrated in a diagrammatic technique that defines precise rules. By this technique we are 

clearing out possible inconsistencies and also detecting possible incomplete specifications. The 

semi-formal specifications are viewed as helpers to achieve formal specifications from the 

informal ones. At the formal state, the specifications become more closely to the code. These 

formal specifications have a rigorous defined syntax and semantics and can be used to 

automatically test the code against the specifications (the informal ones evolved into formal 

specifications) given from the clients. [10] An example of a strategy using a transitional 

formalization process is the strategy proposed by Kemmerer [9] through the “Parallel” 

approach. His proposed formalization process approach involves the use of standard 

development methods (to develop semi-formal requirements) as intermediate steps from 

which formal specifications are derived. 
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3.2. Software Correctness  

To determine if a software program is correct, first we must specify what the software is 

intended to do. We can’t check correctness of a software program in isolation, but only with 

respect to some specification. Even an incorrect program can perform some processing 

correctly, although it could be a different processing to the one the developers (or clients) 

have in mind. Obtaining the requirement specifications is vital as first step in the process of 

developing a correct software system. [11] To help us assess the correctness of a software 

program we can express these requirement specifications through the use of assertions. To 

prove the correctness of a software program’s routine body or instruction, these assertions 

must be checked against it. This proof can be explained here by a correctness formula (also 

called Hoare triples) as an expression of the form denoting the following property [12]. Notice 

that this formula is a mathematical notation, not a programming construct. It serves only to 

explain how we can prove the software correctness of a program’s routine: 

{P} A {Q} 

• Where, A is some operation (for example, an instruction or a routine body); and 

• P  is an assertion called precondition; and 

• Q is an assertion called postcondition. 

 

The formula shown above denotes that A as an operation requires P to assure Q, where this 

must hold to A be correct. The general meaning of a total correctness formula is: - “Any 

execution of A, starting in a state where P holds, will terminate in a state where Q holds.” [12] 

 

As an example, let’s use a mathematical expression. Considering x as an integer value, the 

arithmetic operation x := x + 2, the precondition {x >= 5} and the postcondition {x >= 6}, we 

have the correctness expression: 

{x >= 5} x := x + 2  {x >= 6} 

 

Assuming a correct implementation of the integer arithmetic operation, the above 

expression holds: – if x >= 5 is true when calling the instruction x := x + 2, then x>= 6 will be 

true afterwards. And of course, if the precondition were false, then the integer arithmetic 

operation couldn’t assure nothing, i.e., the postcondition would be neither true nor false. 

However, now assuming an incorrect implementation of the above correctly specified 

expression, if the precondition is true and the postcondition is false, then we could conclude 

that the integer arithmetic operation was wrongly implemented according to what is specified, 

i.e., the tester would know that something was wrong with the implementation against the 

specifications. These preconditions and postconditions can be strengthen or weaken. 

• Stronger preconditions are better: If we have a strong precondition, that means 

that the routine must handle a limited set of cases, making easier the routine’s 

job. However, a weaker precondition makes the routine’s job harder, as it has to 

consider several cases not specified by the precondition. A false precondition is 

the strongest possible assertion, since it’s never satisfied by any state.  By this, 

any request to execute the routine will be incorrect, as the fault is of the client 

(i.e., obviously he will never satisfy the preconditions). Whatever the routine’s 

result, it may be useless, but it will be always correct, as it is consistent with the 

specifications. [12] However, the least restrictive precondition is the weakest 

precondition. 
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• Weaker postconditions are better: In postconditions, the situation is reversed. 

A strong postcondition means that a harder job by the routine must be made to 

assure all the postconditions. By this, the routine’s result has to respect a bigger 

set of conditions. However, the weaker a postcondition is the better for the 

routine’s job, which means that its result will be satisfied by more states. 

Asserting a postcondition as true is the weakest possible assertion, because it is 

satisfied by all states. [12]  

 

The design by contract is a software correctness methodology that has its roots in Hoare 

logic.  Like the Hoare triples formula: {P} A {Q} , the design by contract has the concept of 

preconditions {P} and postconditions {Q} to document the change in state caused by a piece 

of a program A. These pre- and postconditions are used to strengthen the conditions of a 

contract between a caller and a supplied routine. [12] Further, in Section 3.3, we present the 

Java Modelling Language (JML) which is a design by contract tool. In JML, the Hoare logic is 

applied through the use of requires (precondition - {P}) and ensures (postcondition - {Q}) 

expressions that specifies some Java method’s body behaviour (A). 

3.2.1. Design by Contract 

The essence of the design by contract methodology is that a contract exists between a 

routine class (supplier of certain services) and its callers (clients of those services). Some 

documents refer the routine classes (serving some services to others) as suppliers, server or 

server side, while callers can be referred as clients or client side. The design by contract makes 

the Hoare logic (see Section 3), a vital component in a program development strengthening 

the notion of contract. Like in the Hoare logic, in design by contract we may specify the routine 

task’s contract with two associated assertions: - precondition and a postcondition. The 

precondition defines the properties that must hold whenever the routine is called and the 

postcondition defines the expected return properties. These two assertions are a way to 

define a contract between the routine and its callers. [12] The Design by Contract, as a tool for 

a software development process can lead to the construction of more reliable object-oriented 

systems, provides a mechanism through assertions for checking the conformance of the code 

against its specification. [12] 

Before discussing further the design by contract we’ll show below an example of a 

Medicines class operation specified with pseudo-specification on how assertions are used in 

practice [13]. Here, preconditions and postconditions are represented respectively by require 

and ensure keywords. [12] In JML, these two keywords are actually requires and ensures, with 

“s”. 

 

class MEDICINES create 

    make 

feature 

    quantity: INTEGER 

    name_length: INTEGER is 20 

... 

    addMedicine (medicine: STRING) is 

            -- Adds a medicine into the list of medicines. 

       requires 

            medicine.length <= name_length 

 do 
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  insert(medicine) 

       ensures 

            quantity = old(quantity) + 1 

end 

… 

end -- class MEDICINES 

 

 

Code 1. Example of a Medicines class specified with pseudo-specification 

In the example above, the precondition states that a client who calls the addMedicine 

routine must assure that the medicine’s name length must be lesser or equal to the constant 

value of name_length which is 20. The postcondition states that the post-state of the method 

must verify that the quantity is updated and higher by 1 than the old medicine quantity. Note 

that when we say “client”, it refers to a routine that calls another, that is, the contract 

between a client and a supplier is made by a communication of software-software. [12] 

3.2.1.1. Obligations and Benefits 

The precondition is related to the client in a way that it defines the conditions under which 

is legitimate for a client call a method, i.e., it’s an obligation for the client and a benefit for that 

supplier (server). The postcondition is related to the class, which defines the conditions that 

must be ensured by the class routine on return, i.e., it’s a benefit for the client and an 

obligation for the supplier. That is, from the previous statements we can say that the benefits 

are, for the client, the guarantee that he will get what he expects after the call, and for the 

supplier, the guarantee that certain assumptions will be satisfied when the routine is called, 

while the obligations are, for the client, to satisfy the requirements as defined by the 

precondition, and for the supplier, to produce results as defined in the postcondition. [12] The 

following example taken from [14] shows how design by contract plays out for the factorial 

computation in respect for client/suppliers’ benefits and obligations. 

Table 3. A design by contract example [14] 

 Obligations Benefits 

Client 

(Satisfy precondition :) 

Pass  

(From postcondition :) 

Receive  computed 

Supplier 

(Satisfy postcondition :) 

Compute  

(From precondition :) 

Can assume that  

 

 

When an assertion fails, we can assign blame to the party that did not fulfil its 

responsibilities: if the precondition is violated then the supplier won’t be benefited and the 

client is to blame, and if the postcondition is violated then the client won’t be benefited and 

the routine implementation is to blame. [12] In any of these cases, part of the contract won’t 

be fulfilled.  
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Following these obligations and benefits’ convention a developer can simplify its 

programming style while developing an application. Having specified preconditions that clients 

must respect when calling a routine, the developers may assume when writing the routine’s 

body that the preconditions are satisfied, i.e., the developer do not need to test them in the 

routine’s body. It helps to clear redundancy in the code as under no circumstances shall the 

body of a routine ever test for the routine’s precondition. This is called the principle of non-

redundancy. [12] By this principle, we add the responsibility of validating the preconditions to 

the client, reducing the code on the supplier side (server side). For instances, from Table 3, the 

routine computing the factorial has a precondition that specifies n as a positive value or equal 

to zero, so in its body we haven’t to validate if n is respecting that condition.  

3.2.1.2. Clearing redundancy 

By following the non-redundancy principle we are clearing out the redundancy in our code. 

One of the main advantages of clearing redundancy is that it reduces considerably the quantity 

of lines of code when programming, and thus its complexity. Having been specified as 

preconditions the constraints that must be respected for calling a routine, we may assume that 

those constraints are satisfied when writing the routine body, and also we do not need to test 

them in the body. [12] So if a factorial computation meant to produce a positive integer as 

result, is of the form seen in Code 2: 

 

fact(n: INTEGER): INTEGER is 

   Factorial of n 

 require 

   

do … end 

 

Code 2. Pre-condition example for a factorial computation [14][12] 

We may write the “do … end” algorithm for computing the factorial without concerning 

whether  is negative or not. This concern is taken care by the precondition which becomes the 

clients’ responsibility. [12] If the “do” clause was on the form as seen in Code 3: 

 

if  then 

“Handle this erroneous case!” 

else 

“Proceed with normal factorial 

computation” 

end 

 

Code 3. A redundant test [12] 

Then the test “” is not just unnecessary but unacceptable, because it violates the non-

redundancy principle. This is a characteristic of the defensive programming in which it states 

that to obtain reliable software one should design every component of a system to protect 

itself as much as possible. The defensive programming technique is advocated by many 

software engineering books, but this technique causes redundancy in the code when following 

the design by contract methodology. The more redundant checks added to a software 

application, more complexity to the software will be added. This may cause problems to obtain 
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reliability
2
 and may imply a performance penalty. [12] We have applied the principle of non-

redundancy in the development of the HealthCard. By applying the principle of non-

redundancy, we are light weighting the card side applications. When an external client makes a 

remote call on the card, it is assumed that the preconditions of remote methods in the card 

side are valid. These preconditions validations are made in the client side, so there is no need 

of validations in the card side. While developing the HealthCard system, employing this 

principle is advantageous due to the limited memory of smart cards. 

The notion of a contract in design by contract can be extended down to the 

method/procedure level besides the concepts of preconditions and postconditions. A contract 

can also be strengthened by concepts like invariants, inheritance and exceptions. 

3.2.1.3. Invariants 

Besides having preconditions and postconditions, we can have invariants to express global 

properties of routine’s contracts between suppliers and clients. Preconditions and 

postconditions only describe properties of single routines. There is a necessity of expressing 

global properties of instances of a class, which must be preserved by all routines. We may 

consider an invariant as being an extension for both preconditions and postconditions of every 

class’s routines. [12]  For instance, let A be a certain body of a routine (the set of instructions 

in its do clause), P is precondition, Q its postcondition and INV the routine’s class invariant. 

The correctness requirement on A may be expressed by using the notation introduced earlier 

in this section as:  

{INV and P} A {INV and Q} 

This expression above means that:  – “any execution of A, started in any state in which INV 

and P both hold, will terminate in a state in which both INV and Q hold”. [12] Here adding the 

invariant makes both the precondition and the postcondition stronger or equal, i.e., the 

invariant could either reinforce the conditions or could have no effect on them (redundant 

conditions). So when implementing the routine’s body A, the invariant INV makes the job 

easier in addition to the precondition P due to the assumption that the initial state satisfies 

INV, further restricting the set of cases that must be handled by the precondition specification. 

However, in addition to the postcondition Q which A must ensure, the routine’s body must 

also ensure that the final state satisfies INV, making the implementation harder. Considering 

again the earlier implementation of the Medicines class example and its pseudo-specifications 

shown in this section, we demonstrate in Code 4 how we could specify a class invariant. [13] 

 

 

class MEDICINES create 

    make 

feature 

    quantity: INTEGER 

    name_length: INTEGER is 20 

    total_medicines: INTEGER is 250 

... 

    addMedicine (medicine: STRING) is 

            -- Adds a medicine into the list of medicines. 

       requires 

            medicine.length <= name_length 

                                                           
2
 Reliability is the ability of a system or component to perform its required functions under stated 

conditions for a specified period of time. 
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 do 

  insert(medicine) 

       ensures 

            quantity = old(quantity) + 1 

       end 

… 

invariant 

        quantity <=  total_medicines 

end -- class MEDICINES 

 

 

Code 4. Example of a Medicines class implementation with an invariant 

In this example, at Code 4, we can see that a total of medicines variable now exists. It’s an 

integer value of 250. In the example we specified that the quantity must always be lesser than 

or equal to the total of medicines. We specified this as an invariant, therefore all routines of 

the class must preserve it. Before having a specified invariant one could assume that the 

quantity could be any value upper than 250 on any routine of the class, i.e., it didn’t exist a 

limit to the quantity of medicines. The invariant represents a general consistency constraint 

obligatory for all routines of the class. [13] So to preserve this property defined by the 

invariant, one has to implement the routine’s body in a way to not violate what is stated in the 

invariant clause, in this example, the routine addMedicine must also ensure that the variable 

of quantity must not exceed the value defined by total_medicines.  

So far we used invariants to express global properties of a single class, denominated by 

class invariants, but there is another concept within the invariants known as system invariants 

which describes instance properties that must be preserved by all routines from more than 

one class. For instances, let X and Y be two different classes. An invariant INV would be a 

system invariant if instances from both X and Y are affected by INV. A system invariant is 

basically described like a class invariant and it is specified at a class that has references to X 

and Y objects.  

In the following example shown in Code 5, X and Y are exemplified respectively by the 

classes Medicines and Appointments. The defined invariant is a system invariant because it 

affects instances of the two different classes which basically states that for every medicine 

object instances obtained through the Medicines instance, their prescription date attribute 

must be higher or equal to the respective appointment’s date, obtained through the 

Appointments instance, when the medicine was prescribed for the first time. That is, for all 

medicines and appointments instances if a medicine instance has an appointment ID attribute 

equal to another appointment instance ID attribute, then that medicine’s date must have a 

higher or equal value to the that appointment’s date. This invariant restricts that value of a 

medicine’s date. 

 

 

class SERVICES create 

    make 

feature 

    meds: MEDICINES 

    apps: APPOINTMENTS 

... 

invariant 
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   forall( int i; i < meds.getMedicines().length && i >= 0; 

               forall( int k; k < apps.getAppointments().length && k >= 0; 

                             meds.getAppointmentID(i) == apps.getID(k) 

                             ==> 

                             meds.getDate(i) >= apps.getDate(k)  )) 

 

end -- class SERVICES 

 

Code 5. Example of a Services class referencing Medicines and Appointments classes with a system invariant 

Another concept that extends the notion to contracts at a lower level within the design by 

contract and used to the preconditions, postconditions and even invariants is the inheritance. 

3.2.1.4. Inheritance 

The concept of inheritance allied with the notion of contracts from design by contract 

brings us to a new level, as contracts can also be inherited by subclasses in terms of object-

oriented programming. A routine’s precondition and postcondition are inherited by their 

redefinitions in sub-classes as well as super-class invariants. This is actually the case in JML (see 

Section 3.3). Although inheritance is one of the pillars of the object oriented paradigm 

flexibility, many programmers have the difficulty in use it correctly. [15] Through the 

inheritance mechanism one can create new classes from those already existent, and the 

behaviour from their routines doesn’t necessarily have to be maintained by their sub-classes. It 

is possible to redefine the routines with a partial behaviour or even a complete distinct one. 

However, from these possibilities and the use of design by contract methods one could 

redefine a routine that produces an incompatible effect to the routine’s behaviour 

specification described (contract) in the super-class. [15] This incompatible redefinition is a 

problem attained with the bad use of the inheritance, which design by contract helps to avoid 

in a way that we can redefine those routines as longs as they respect the established original 

contract defined in the respective inherited routines from the super-classes. [15] 

For instance, let X and X1 be two classes where X1 is a sub-class of X, and Y any class 

communicating with an instance of type X. Due to polymorphism, Y can actually be dealing 

with an instance of X1. The developer of Y knows that he must respect the defined contract in 

X, but he doesn’t know of the existence of other classes inheriting X. So, Y could discover only 

in runtime that he is communicating with X1, and the contract of a certain inherited routine of 

X1 could be different from the contract specified in the super-class X. That is, Y could be calling 

for a routine under a certain contract, while in reality is communicating with another 

completely different. In fact there are two things that could make a class deteriorate its super-

class contract specification [15]: 

3.3.1. 1. A sub-class could make its precondition to be more restrictive than the one 

from the super-class, causing the risk of any calls previously considered correct by the 

client class Y’s perspective (in a way that they satisfied the original conditions imposed 

to the client) to become violating the contract’s rules. 

 

3.3.1. 2. A sub-class could be making its postconditions to be more permissive, 

returning a result less satisfactory than the promised to Y.  

Under the previous situation the client class Y could get “deceived” by a call that makes 

something unexpected. From this problem, we conclude that every contract specifications 

must be compatible with the original contract specifications, but nevertheless sub-classes have 

the right to improve them, i.e., by making its methods’ postconditions stronger or making its 
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methods’ preconditions weaker. Besides the inheritance rules applied to preconditions and 

postconditions, also the inheritance mechanism has effect upon the invariants, in a way that 

these are passed to their inheritors. For instance, an invariant from X also would be inherited 

by X1, and this is the case in JML. 

The result of the inheritance concept, in which every instance of a class is also an instance 

of every ascendant class, is also logically valid for the contract specifications defined in the 

super-classes to be applied to their sub-classes. That is, a set of invariants of a certain class is 

the sum of all invariants from the ascendant hierarchy of inheritance. [15] 

 Another concept extending the notion of a contract is the treatment of exceptions 

within a contract between a client and a supplier. 

3.2.1.5. Exceptions 

As a routine in design by contract is seen like an implementation of a certain specification 

rather than just a piece of code, and it is possible for that implementation to fail with respect 

to the specifications in runtime, then one can extend the notion of a contract to the exception 

handling. Besides errors in implementations, exceptions in a routine’s behaviour can happen 

due to unpredictable events like hardware malfunctions or another external event. So, in these 

situations it becomes useful to use exceptional specifications attached to contract 

specifications to describe exceptional behaviours when some strategy for fulfil a contract 

doesn’t succeed. By this definition and the notion of preconditions and postconditions from a 

contract, it is possible to establish the following rule: - A routine must not launch an exception 

when its preconditions is not fulfilled, as it doesn’t denote a failure within the routine but it 

does for the routine’s caller. When the routine fulfils its postconditions it must not launch an 

exception. – This is known as the principle of exception. [15] 

As for the global properties from a class, routines and constructors must preserve and 

respect the invariants in both normal and abrupt terminations, that is, invariants are included 

in both normal and exceptional postconditions. [15]  

3.3. The Java Modelling Language (JML) 

JML is a specification language for Java, which as a tool provides support for B. Meyer’s 

design by contract principles [16]. JML was started by Gary Leavens and his team at Iowa State 

University, but is now an academic community effort with many people involved through the 

development of tools providing support for the language [17; 18; 19; 20]. All the concepts 

discussed in the Design by Contract section (see Section 3.2.1), that is, the notion of contracts 

along with its preconditions and postconditions; and the concepts of invariants, inheritance 

and exceptions, also apply to JML.  

3.3.1. The JML Specifications 

JML specifications use Java syntax, and are embedded in Java code between special marked 

comments /*@ ... */  or after //@ . A simple JML specification for a Java class consists of 

pre- and postconditions added to its methods, and class invariants restricting the possible 

states of class instances. Specifications for method pre- and postconditions are embedded as 

comments immediately before method declarations. JML predicates are first-order logic 

predicates formed of side-effect free Java boolean expressions and several specification-only 

JML constructs. Because of this side-effect restriction, Java operators like ++ and --  are not 

allowed in JML specifications. 
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JML provides notations for forward and backward logical implications, ==> and <==, for 

non-equivalence <=!=> , and for logical or  and logical and , ||  and &&. 

  

The JML notations for the standard universal and existential quantifiers are (\forall T 
x; E)  and (\exists T x; E) , where T x; declares a variable x of type T, and E is the 

expression that must hold for every (some) value of type T. The expressions (\forall T 
x; P; Q)  and (\exists T x; P; Q)  are equivalent to (\forall T x; P ==> 
Q)  and (\exists T x; P && Q) , respectively. 

  

The JML numerical quantifier (\num_of T x; P; Q)  returns the number of variables x 

of type T that make both predicates P and Q true; (\max T x; P; E)  returns the 

maximum value of the expression E where its variables satisfy the range P; (\sum T x; P; 
E)  returns the sum of possible values of E where its variables satisfy the range P. 

  

JML provides specifications for several mathematical types such assets, sequences, 

functions and relations. As JML is a tool to employ design by contract methods, there is some 

mechanisms used to support contracts like the specification of method’s preconditions and 

postconditions through the use of respectively the keywords requires  and ensures ; the 

specification of invariants by using the JML keyword invariant ;  the specification of 

exceptional behaviours to describe how to deal with unexpected behaviours; and also the JML 

specifications are inherited by sub-classes, i.e., sub-class objects must satisfy super-class 

invariants, and subclass methods must obey the specifications of all super-class methods that 

they override.  In the following, we briefly review JML specification constructs. A brief 

description of some JML expressions used in specification can be seen in Section 3.3.1. 1, but 

the reader is invited to consult [21] for a full introduction to JML. 

3.3.1. 1. JML Expressions 

In this section we present some of the common JML expressions and a simple example 

based on the pop() method of a Stack class.  

Table 4. Some JML expressions 

requires P Specifies a method pre-condition P, which must be 

true when the method is called. Predicate P is a valid 

JML predicate.  

 

ensures Q Specifies a normal method post-condition Q. It says that if 

the method terminates in a normal state, i.e. without 

throwing an exception, then the predicate Q will hold in that 

state. Predicate Q is a valid JML predicate.  

 

signals (E e) R  
 

Specifies an exceptional method post-condition R. It says 

that if the method throws an exception e of type E, a 

subtype of java.lang.Exception , then the JML 

predicate R must hold. Predicate R is a valid JML predicate. 

JML allows the use of the alternative clause exsures  for 

signals.  

 

normal_behavior  
 

Specifies that if the method precondition holds in the pre-

state of the method, then it will always terminate in a 

normal state, and the normal post-condition will hold in this 
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state.  

 

exceptional_behavior  
 

Specifies that if the method pre-condition holds in the pre-

state of the method, then it will always terminate in an 

exceptional state, throwing a java.lang.Exception , 

and the corresponding exceptional post-condition will hold 

in this state.  

 

assignable L  
 

Specifies that the method may only modify location L. Any 

other location not listed in L may therefore not be modified. 

This must be true for both normal and exceptional post-

conditions. Two special assignable specifications exist, 

assignable \nothing , which specifies that the 

method modifies no location, and assignable 
\everything , which specifies that the method may 

modify any location. JML allows the use of the alternative 

clauses modifies and modifiable for assignable.  

 

\old(e)  
 

Refers to the value of the expression e in the pre-state of a 

method. This specification can only be used in normal or 

exceptional method post-condition specifications.  

 

\fresh(e)  
 

Says that e is not null and was not allocated in the pre-state 

of the method.  

 

\result  
 

Represents the value returned by a method. It can only be 

used in a normal or an exceptional method post-condition.  

 

invariant I  
 

Declares a class invariant I. In JML, class invariants must be 

established by the class constructors, and must hold after 

any public method is called. Invariants can temporally be 

broken inside methods, but must be re-established before 

returning from them.  

 

 

The following example shows how a JML specification can be used to specify the method 

pop().  

 
public interface Stack { 
//@  public model instance JMLObjectSequence stack;  
 
/*@  public normal_behavior 
@   requires !stack.isEmpty(); 
@   assignable size, stack; 
@   ensures stack.equals(\old(stack.trailer())); 
@   also 
@  public exceptional_behavior 
@   requires stack.isEmpty(); 
@   assignable \nothing; 
@   signals(java.lang.Exception e) true; 
@*/ 
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public void pop( ) throws java.lang.Exception; 
} 
 

Code 6. Example of how JML can be used to specify a method 

In the example shown in Code 6, we can see that method pop() has been given a normal 

and an exceptional behaviour formal specification. For the normal behaviour, the precondition 

is defined by the requires  clause, which states that the stack must not be empty. Then the 

assignable  clause specifies that the size and stack instances may suffer a change, that is, 

only the locations named through the assignable clause, and locations in the data groups 

associated with these locations, can be assigned to during the execution of the method. A JML 

assignable clause can be used in a method contract to specify which parts of the system state 

may  change as the result of the method execution. The postcondition in the normal behaviour 

is defined by the ensures  clause, which states that the stack will be equal to a portion of the 

old stack after the execution of pop(). The exceptional behaviour if the stack is empty when 

attempting to call pop() an exception will be thrown. The assignable  clause in this case is 

\nothing  because nothing is changed within pop() and the signals clause specifies a 

condition that will be true when an exception of type java.lang.Exception is thrown.  

3.3.2. Abstract Variables 

To have a higher level of abstraction in specifications, JML provides support for abstract 

variables. These are variables that exist at the level of the specification, but not in the 

implementation. Declarations of abstract variables have the same format as declarations of 

normal variables, but are preceded by the keyword model . As we can’t declare concrete 

variables in interfaces, the abstract variables can be used in interfaces and abstract java classes 

to describe abstractly the distinct data types used in the application. The abstract variables can 

be used to support the writing of correct code for concrete classes that implement the 

interfaces and the abstract Java classes. In the following Code 7 example we demonstrate a 

declaration of an abstract variable named dosage_model in interface Medicine. The abstract 

variable dosage_model represents the dosage quantity of a medicine. 

 
public  interface  Medicine { 
... 
//@ public model instance double dosage_model;  
... 
} 
 

Code 7. Example of how JML can declare an abstract variable 

 

Abstract variables can be related to concrete variables (or other abstract variables) by a 

represents  clause. A represents clause specifies how the value of an abstract variable can 

be calculated from the values of the concrete variables (variables at the implementation level). 

In the following Code 8 example it’s demonstrated how we can relate an abstract variable with 

a concrete expression involving a concrete variable.  

 

 

 

 



30 

 

 
public  class  Medicine_Impl implements  Medicine {  
... 
public  byte[]  dosage ; //@ in dosage_model;  
/*@ public represents  
  @  dosage_model <- dosage[0] + dosage[1]*0.1; 
  @*/ 
... 
} 
 

Code 8. Example of how JML abstract variables can be represented by concrete values 

In the above example, the abstract variable dosage_model  is related with the expression 

“dosage[0] + dosage[1]*0.1 “, which maps the values in the byte array dosage into 

the double value calculated as the sum of the all the values in the array. For specifications 

purpose we can treat the dosage of a medicine like a double value, but in reality it can be 

implemented as an array of primitive bytes. In this case, the use of abstract variables gives a 

level of abstraction that allows us to implement a medicine’s dosage information in different 

ways as long as it respects the specifications.  

Abstract variable specifications for interfaces and for abstract classes do not need to be 

written down again in implementing classes and sub-classes, since JML specifications are 

inherited by sub-classes and by implementing classes. This ensures behavioural sub-typing. 

That is, a sub-class object can always be used where a super-class object is expected. 

Therefore, a sub-class satisfies super-class invariants, and sub-class methods obey the 

specifications of super-class methods. 

For abstracting complex data structures, i.e., modelling complex data structures into 

specifications, there are model data types provided by the JML, also known as JML abstract 

data types. 

3.3.2.1. JML Abstract Data Types 

The Java Modelling Language (JML) also provides abstract data types from the package 

org.jmlspecs.models  to abstract complex data structures. Based on the description of 

Leavens [22], this package is a collection of types with immutable objects. An object is 

immutable if it has no time-varying state. The types of the immutable objects in this package 

are all pure, meaning that none of their specified methods have any user-visible side-effects 

(although a few inherited from Object do have side effects). Their pure  methods are designed 

for use in JML specifications. When using such methods we have to do something with the 

result returned by the method, as in functional programming. The original object's state is 

never changed by a pure method. For example, to insert an element e, into a set s, one might 

execute s.insert(e), but this does not change the object s in any way, instead, it returns a set 

that contains all the old elements of s as well as e. At first we shouldn't worry about the time 

and space used to make such set, because specifications are not mainly designed to be 

executed. However, there are justifiable reasons to worry about the efficiency of executing 

specifications for testing and debugging purposes.  

In the following list are described some abstract data types that can be used while declaring 

abstract variables in JML specifications. The reader is invited to consult [22] for a complete 

description of JML model data types. 
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JMLObjectSequence  – This class defines immutable sequences of objects, including a 

series of pure methods for sequence manipulation. For example, insertFront() , 
insertBack() , itemAt(int i) . This type can be used to declare abstract variables 

to model complex data structures containing objects. 

JMLValueSequence  – This class defines immutable sequences of values, and also 

including a series of pure methods for value sequence manipulation. This type can be used 

to declare abstract variables to model complex data structures containing values, such as 

characters of a String or Integer values of an array. 

JMLEqualsSequence  – This class is similar to JMLObjectSequence  but has an 

“.equals ” method to compare elements. 

JMLType  – There are classes which implements JMLType  to reflect Java types like 

JMLByte  to reflect Byte , JMLChar  to reflect characters, JMLFloat  to reflect float  

type, etc. 

By using these data types in the specifications, one can abstract the way programmers can 

represent data structures. For example, an abstract variable of the type 

JMLObjectSequence  abstracts a complex data structure to hold object instances, which 

besides simplifying the JML specifications it also gives the freedom, through their 

representation, of implementing concrete data structures in various ways (object arrays, 

stacks, queues, etc.) as long as the specifications are respected.  

3.3.3. The JML Common Tools 

The JML common tools [23] is a suite of tools providing support to run-time assertion 

checking of JML-specified Java programs. The suite includes jml, jmlc, jmlunit and jmlrac. The 

jml tool checks the JML specifications for syntax errors. The jmlc tool compiles JML-specified 

Java programs into a Java byte-code that includes instructions for checking JML specifications 

at run-time. The jmlunit tool generates JUnit  unit tests code from JML specifications and uses 

JML specifications processed by jmlc to determine whether the code being tested is correct or 

not. Test drivers are run by using the jmlrac tool, a modified version of the java command that 

refers to appropriate runtime assertion checking libraries.  

 

The JML common tools make it possible the automation of regression testing from the 

precise and correct JML characterization of a software system. The quality and the coverage of 

the testing carried out by JML depend on the quality of the JML specifications. The runtime 

assertion checking with JML is sound, i.e., no false reports are generated. The checking is 

however incomplete, e.g., users can write informal descriptions in JML specifications. The 

completeness of the checking performed by JML depends on the quality of the specifications 

and the test data provided. These JML Common Tools are available at [24]. 

3.4. The JML - Based Software Development Strategy 
 

This strategy is introduced by João Pestana [25]. The strategy integrates formal 

specifications written in JML to the software development of Java applications.  The strategy 

evolves informal functional requirements into formal specifications, which can be employed as 

part of existing object-oriented software development methodologies[12]. Hence, software 

developers can define precise interface specifications for underlying software components, 
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based on data types and the conceptual metaphor of the design-by-contract [16]. In Figure 6, 

the strategy is outlined as a formal specification pseudo phase (bottom of Figure 6). This 

strategy is similar to the Kemmerer’s “Parallel” approach in that he also defines an 

intermediate step that introduces semi-formal specifications before writing the JML formal 

specifications. 

 

 

Figure 6. The Software Development Process 

The formal specification pseudo-phase runs in parallel with the analysis, design, and 

implementation phases in an integrated manner. There is no restriction in any phase to occur 

before or after any other phase, so that arrows 1 to 5 in Figure 6 convey information on usage 

rather than on precedence in time. Software development phases are iterative so that they 

can be revisited at later phases to obtain a correct implementation of the system. During the 

analysis phase, requirements are gathered, and two documents are produced, namely, the use 

cases document and the “informal” functional requirements document. As informal functional 

requirements are expressed in a natural language, inconsistencies can be introduced during 

the analysis phase.  

Some aspect new in the strategy is the formal specification pseudo-phase, where the 

informal functional requirements document is first evolved into“semi-formal” requirements 

document (see Arrow 1), and then ported into (formal) JML specs (see Arrow 4). Having formal 

specifications expressed in JML makes it possible to use JML based formal methods tools to 

check for flaws. The semiformal requirements document is composed of three documents.  

The semi-formal functional requirements document (ported into JML method 

specifications), the class invariant document, and the system invariant document (these two 

are ported into JML class invariant specifications) (see Arrow 4). Evolving the informal 

functional requirements document into the semi-formal one involves expressing informal 

requirements into an if <event/condition> then <restriction/rule> form, this is an idea 

proposed by the author of this strategy. 
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During the design phase, the requirements gathered from the analysis are used to define 

the structure of the system (see Arrow 2), which is later used to write classes, their attributes, 

their methods, and the relations among them (see Arrow 3). These classes are asserted with 

the JML specifications written during the formal specification pseudo-phase. 

During the implementation phase, we start by writing Java interfaces and Java abstract 

classes. From the semi-formal requirements document, JML functional specifications are 

written within the (abstract) methods in these Java interfaces and classes, and JML class 

invariants are written, modeling global properties of the system. Finally, JML abstract variables 

are defined to describe the distinct abstract data types used in the application, and how they 

are manipulated through class inheritance (see Section 3.2.1.4). JML specs provide support to 

the writing of correct code for concrete classes that implement the interfaces and the abstract 

Java classes. JML specifications also provide support to a business contract programming style 

of programming, in accordance with Bertrand Meyer’s design-by-contract principles. 

During the validation-and-verification phase, the implementation is checked against the 

specifications (Arrow 5), using the JML Common Tool[24]. Furthermore, it is possible to go 

back to a previous phase and make amendments to the JML specifications or the 

implementation itself. Notice that inconsistencies can be detected before an implementation 

for the system is written. For instance Java interfaces and Java abstract classes are checked 

against JML specifications, obtained from the formal specification pseudo-phase, before 

writing an implementation for these classes and interfaces, or JML specs can be validated in 

isolation [26]. 

This strategy will be used during our implementation in this thesis work where it be 

described all steps, referred in this section and how helpful will be the formal specification in 

the software development process.  

4. The Approach 

To develop the HealthCard, we first obtain the information about the domain and concepts 

related to medical appointment. Then, we use these concepts to obtain the requirements and 

uses cases, so that we can apply João pestana’s software development strategy (see Section 

3.4 for a description of this strategy). As part this strategy, we use JML to provide support to 

the writing of formal specifications. Therefore, we can validate the correct implementation of 

the Health Card application introduced in Section 2.1. 

 

4.1. Domain Concepts 

Before getting the Use Cases and Functional Requirements, the first step of our 

development was the extraction of the most relevant concepts from the problem at hand, and 

the comprehension of the medical appointments domain.  The concepts extracted are shown 

in Figure 7. These concepts are things related to the domain where the future system will be 

applied, and their purpose is to help to understand the domain and to allow for a better 

comprehension when talking with the stakeholders, formulating use cases and functional 

requirements. Eventually, later these domain concepts are shown as class attributes at the 

design phase, and they will be modelled in JML specifications as abstract variables 

representing class attributes.      

The extraction of domain concepts was carried out by talking with specialized people 

(doctors, medical students, nurses, patients) and doing literature review about medical 

appointments [27; 28].  
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Figure 7. Summary of the medical appointments concepts hierarchy 

Next, with the main domain concepts obtained, a hierarchy between concepts was made so 

we could have a good perspective of the domain, as seen in the above Figure 7. Of course, our 

concept model suffered an evolution while our comprehension of the domain was growing. 

One of the specialized people (a doctor) that we’ve talked suggested that we follow SOAP 

notes [29] as a metaphor to implement our Health Card system. SOAP notes are written to 

improve communication among the medical staff when caring for a patient. These are used to 

display the assessment, problems and plans in an organized format. The letters S-O-A-P stand 

for Subjective, Objective, Assessment and Plan. Where: - Subjective consists of patient’s 

symptoms descriptions; Objectives are related to measurable symptoms such as blood 

pressure, temperature, pulse or diagnostic results; Assessment is the diagnosis of the patient’s 

condition made by a doctor; and Plan refers to medical prescriptions which may be 

treatments, other diagnostic tests or medical recommendations. SOAP notes facilitate better 

medical care when used in the patient's record for review and quality control. [29] The 

following two examples describe SOAP notes: 

SOAP Note Example 1: 

Patient Name: Robert Dreg  

DOB: 09/17/1967 

Record No. D-679dk978   

Date: 12/4/2007   
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 S—Pain in left hip x 3 months; worse when walking or doing exercise. NKDA.   

O—Wt. 195 lb, Ht. 5'5'', normal ROM both hips, no swelling or redness.   

A—Possible osteoarthritis; R/O rheumatoid arthritis   

P—blood work—sed rate, rheumatoid factor, x ray L hip PA and lateral; ibuprofen 600 mg t.i.d po; recheck 2 months.    

SOAP Note Example 2: 

Patient Name: Lisa Brown  

DOB: 2/3/1960    

Record No. B-583uw809    

Date: 10/19/2001   

 S—Pt. here for weekly BP check, no complaints. NKDA, NKA.   

O—BP 142/88; Atenolol 50 mg daily   

A—hypertension controlled   

P—Continue Atenolol; RTO 6 months    

Abbreviations keys: 
WT = weight 
HT = height 
BP = blood pressure 
Pt = patient 
RTO = Return to office 
ROM = range of motion 

R/O = rule out 
PA= posterior/anterior 

NKDA = No known drug allergies 
NKA = No known allergies 

 

 

Where S stands for Subjective, O stands for Objective, A stands for Assessment and P 

stands for Plan. One must notice that normally in a real SOAP note the descriptions are 

abbreviated. Some of the domain concepts came from this notion of SOAP notes. Our system 

to be developed would be based on SOAP notes which are used in many medical centres and 

offices, but in our case we would use codes instead of abbreviations to save space in the 

Health Card, and the client systems would have references to those codes.  

Having the domain concepts, we proceed with the formulation of Use Cases. These will 

model the functionalities of the future system. 

4.2. Use Cases 

In this section we describe how we get the Use Cases and we present them with their 

respective diagrams and the textual scenarios for each one of them. In the beginning, after 

having a general idea of the Health appointments domain, we indentified twenty relevant use 

cases for our system. Those are shown in the list below. Through these, we made detailed 

ones that helped us to design the structure model of our system in combination with the 

functional requirements. Also, at this phase the Use Cases served us as a base to make the 

informal functional requirements. 

These are the Health Card system use cases obtained at a first stage: 

1. Inserting personal code 

2. Modifying personal code 

3. Inserting personal data 

4. Modifying personal data 

5. Viewing personal data 

6. Searching a doctor 
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7. Making an appointment 

8. Modifying an appointment 

9. Cancelling an appointment 

10. Viewing medical history 

11. Inserting a medical history entry 

12. Modifying a medical history entry 

13. Removing a medical history entry 

14. Checking-in appointment 

15. Viewing appointments 

16. Setting up database information 

17. Renewing medical prescription 

18. Viewing medical prescriptions 

19. Accepting/Denying medical 

prescriptions 

20. Viewing patients request

 

They were written in a general from the domain concepts and from talking with the 

stakeholders. Their description is: 

1. Inserting personal code: When inserted a health card into a card reader, the pin-code is 

asked. The card owner should then insert the pin-code digits. 

 

2. Modifying personal code: The card owner can modify the pin-code of his card. But first, it 

will be asked his pin-code before he can proceed to change it. 

 

3. Inserting personal data: The required patient’s personal data (e.g. name, gender, birth 

date, blood type, ID number or passport ID, his birthplace and nationality) are included 

when the card is created by the Card Issuer.  Personal optional data (e.g. contact, an 

address, social security number, etc) are inserted by either, the card issuer or the owner.  

 

4. Modifying personal data: The card owner can change his personal optional data (e.g. 

contact, an address, social security number, etc). 

 

5. Viewing personal data: From this use case it is possible to view the card owner’s personal 

data, if the pin-code was inserted correctly. 

 

6. Searching a doctor: When the card owner inserts his health card into a patient terminal, he 

can search for a doctor. The main objective here is to check time availability of the searched 

doctor and then schedule an appointment. 

 

7. Making an appointment: It should be possible for a card owner to schedule an 

appointment with his Health card. A doctor can also schedule an appointment for his 

patient, if necessary, being the information about the appointment schedule in the owner’s 

card. When making an appointment, date, place (insert automatic by the system), and 

doctor (or type of appointment) are stored in the card.  

 

8. Modifying an appointment: The card owner can change an appointment with his card. He 

can choose, from the schedule appointments, which one he wants to change. The system 

will show an alternative of the doctor’s schedule availability, and the card owner can 

choose to change the appointment date, or doctor/type of appointment. 

 

9. Cancelling an appointment: The card owner can cancel an appointment with his card by 

inserting it into a patient terminal. 

 

10. Viewing medical history: Medical staff can see medical history from the patient. 

Visualization of medical history includes the visualization of health problems, prescriptions 

/ past and recent treatment plans, allergies, vaccinations and medicine prescription. 
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11. Inserting a medical history entry: Only medical staff can insert into the patient card an 

entry about the patient medical history. This includes inserting a new allergy to the list of 

the patient’s allergies, information about some health problem and plan of treatments, or 

adding information in the vaccination list. When some entry is added to the medical 

history, it is the responsibility of the system for the association of the doctor who made the 

entry and the date of that entry. 

 

12. Modifying a medical history entry: Changes in an entry of the patient’s medical history only 

can be made by medical stuff. Data changed has associated the date of modify and the 

doctor’s name that changed it. 

 

13. Removing a medical history entry: Removing an entry from the patient’s medical history 

only can be made by medical stuff. Removed data will be temporally removed, being 

possible to go back during the medical appointment. The doctor will be responsible for data 

removed. 

 

14. Checking-in appointment: When a patient arrives to an appointment, he can use the card 

to do the check-in. So the medical staff can know that the patient already arrived. 

 

15. Viewing appointments: The card owner can visualize his appointments when he inserts his 

card into a patient terminal. It will be given the possibility to change or cancel a medical 

appointment. 

 

16. Setting up database information: The system administrator can insert, modify or erase 

data from the central database of the system. That central database will have doctor’s 

availability schedules and information about the doctors, information about the medical 

centre, list of allergies and vaccines.  

 

17. Renewing medical prescription: Patients can renew a medical prescription for a medicine 

without having to schedule an appointment. They could choose the prescription that they 

want to renew. 

 

18. Viewing medical prescriptions: The patient and the medical staff can visualize all medical 

prescription as list of medicines prescribed by the doctors. It is possible to patient renew a 

prescription that he is seeing when inserted a card into a patient terminal. 

 

19. Accepting/Denying medical prescriptions: The doctor can access the requests of 

prescriptions to renew, where they can accept or reject.  Later, when the patient inserts the 

card into a client terminal will know the status of the order. 

 

20. Viewing patient’s requests: The doctor can visualize a list medical prescription requests to 

renew. 

These use cases suggests that user roles must be implemented so that authorized users can 

perform authorized operations. Each user role eventually characterizes which operations can 

be done by a user performing the respective role.  

4.2.1. System Actors 

After having identified the main use cases, we identified the possible system users (actors 

in the system). These are the system actors that we identified: 

� Doctor / Medical staff  
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� Patient / Card owner  

� Card Issuer  

� Administrator 

System Actors descriptions 

Doctor / Medical staff  

From the system’s point of view, this is the user who consults the patient’s medical and 

personal information and who is responsible for adding, modifying or removing data from 

the medical history. 

Patient / Card owner  

In this context, the patient is the card owner, and the entire card’s data refers directly or 

indirectly to him. The patient will interact directly with the system for scheduling 

appointments, or for consulting his scheduled appointments, allergies, vaccinations or 

medical prescriptions. 

Card Issuer 

The card issuer is the person responsible for creating new cards. He’s responsible for 

inserting into a card the patient’s data. 

Administrator 

The system administrator is the responsible for the updating of the central database in the 

medical centre. He updates doctor’s schedules, lists of known allergies and vaccines, and 

other general medical centres information. 

4.2.2. Use Case models 

From the identified use cases and system actors we wrote Use Case models. They relate use 

cases with the possible system users. These Use Case models give an insight of the system’s 

functionalities and usage. Later, they will support the design of the  system’s structure, i.e., 

through the Use Case models we can obtain the classes and their methods that probably are 

needed. The following Figure 8 ilustrates a main use cases diagram of the Health Card system 

containning the initial use cases. 
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Figure 8. Main Use Cases diagram 

From the main use cases diagram, we divided the use cases into four sub-diagrams: - the 

medical history, the personal data, the appointments scheduling and the administration. In 

this way, we have detailed and organized use cases, where it is visible which ones are from the 

card side and from the external side of the Health Card system. These can be consulted in the 

Annex of this document at 1. Annex: Use Cases Diagrams. As an example, Figure 9 presents 

the Use Cases sub-diagram for Appointments.  
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Figure 9. Use Cases sub-diagram of Appointments 

Also, for each of the use case presented in the Use Cases diagrams (i.e., the use cases sub-

diagrams seen in the annex) we did textual specifications, or scenarios. The purpose of writing 

textual specifications of the use cases is to clarify in natural language the interactions between 

users and the system. These Use Case Textual Specifications can be seen in the Annex at 2. 

Annex: Use Case Textual Specifications. As an example we present in the following Table 5, a 

textual specification for the Use Case “#03: Managing Appointments” from Appointments. 

 
Table 5. Textual specification of "Managing Appointments" from Appointments' Use Cases 

Name: Managing Appointments ID: C03 

Main Scenario 

This use case extends the Viewing Appointments use case. In this use case the user 

chooses to manage an appointment after selecting it. Then, the system offers ways 

of modifying and cancelling the selected appointment. The user chooses one of the 

options. 

Alternative Scenario 1 (the user chooses to modify) 

The user chooses to modify the scheduled appointment after selecting the 

schedule entry. The system then offers a way of modifying the date and the doctor 

or type of appointment by showing to the user the available schedules. The user 

then chooses the pretended date, doctor and appointment type and confirms. The 
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system stores the changes into the card. 

Alternative Scenario 2 (the user chooses to cancel) 

The user chooses to cancel a scheduled appointment after selecting the schedule 

entry. The system then asks for the confirmation. The user confirms it and then 

the system removes the scheduled appointment.  

 

Like the given examples, for each part of the system, we made the Use Cases diagrams and 

its textual specifications. 

Medical History 

 

This sub-diagram illustrates use cases that are related with the patient’s allergies, 

chronic conditions, health problems, diagnostics, treatments, medical prescriptions. – 

see Annex: Use Cases Diagrams – Figure i - It includes the following use cases: 

� A01: Viewing Medical History 

� A02: Viewing Chronic Condition 

� A03: Managing Chronic Condition 

� A04: Viewing Vaccinations 

� A05: Managing Vaccinations 

� A06: Viewing Allergies 

� A07: Managing Allergies 

� A08: Viewing Family History 

� A09: Managing Family History 

� A10: Viewing Health Problems 

� A11: Managing Health Problems 

� A12: Viewing Current and Past 

Medication 

� A13: Viewing Diagnosis Information 

� A14: Managing Diagnosis 

Information 

� A15: Viewing Treatment Plan 

� A16: Viewing Medical 

Recommendations 

� A17: Managing Medical 

Recommendation 

� A18: Viewing Medical Prescription 

� A19: Requesting Prescriptions 

Renewal 

� A20: Managing Medicines 

 

The textual specification of the medical history use cases can be seen in the Annex 

at 2. Annex: Use Cases Textual Specification under the A: Medical History Use Cases 

section. 

 

Personal Data 

 

This sub-diagram illustrates use cases that are related with the patient’s personal 

information, like managing required or optional personal details. – see Annex: Use 

Cases Diagrams – Figure ii - It includes the following use cases: 

� B01: Viewing Personal Data 

� B04: Managing Optional Details 

� B05: Managing Required Details 

The textual specification of the personal data use cases can be seen in the Annex at 

2. Annex: Use Cases Textual Specification under the B: Personal Data Use Cases 

section. 

 

Appointments 

 

This sub-diagram illustrates use cases that are related with appointments scheduling and 

management. – see Annex: Use Cases Diagrams – Figure iii - It includes the following use 

cases: 

� C01: Scheduling Appointment � C02: Viewing Appointments 
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� C03: Managing Appointments 

� C04: Checking-in 

� C05: Viewing Schedule Availability 

� C06: Searching by Doctor 

� C07: Searching by Date 

 

The textual specification of the appointments use cases can be seen in the Annex 

at 2. Annex: Use Cases Textual Specification under the C: Appointments Use Cases 

section. 

 

Administration 

This sub-diagram illustrates use cases that are related with the external system 

administration, like updating the system’s central database (lists of allergies, vaccines, 

doctor’s registries, schedules, etc). As our thesis work only focuses on the card side of 

the whole system, these use cases weren’t considered as a priority for us. – see Annex: 

Use Cases Diagrams – Figure iv - It includes the following use cases: 

 

� D01: Updating Allergies 

� D02: Updating Vaccines 

� D03: Setting medical centre information 

� D04: Managing doctor’s schedules 

The textual specifications of the administration use cases haven’t been written, as 

these use cases aren’t a priority to the purpose of this work. 

 

Having the Use Cases and its Textual Specifications, next we write the informal functional 

requirements. These basically are rules and specifications that the system to develop must 

hold. 

4.3. Informal Functional Requirements 

 

From the discussions with stakeholders and from reading documents about medical 

appointments, the functional requirements were described in an informal way. These informal 

functional requirements are listed at 3. Annex: Informal Functional Requirements. As an 

example, and continuing using the Appointments part of our work, we describe some of its 

informal functional requirements (FR): 

 

Scheduling 
FR107. A scheduled appointment must contain data of a place (local), a date/time and a 

doctor and an appointment type. 

FR108. When adding a new scheduled appointment information it is required to specify its 

date, hour, local and also the doctor and the type of appointment. 

FR109. If the limit of possible appointment insertions is achieved, the system must not allow 

insertions of appointments into the card. 

FR121. The system must not allow modifying the data (i.e. date and time, local, doctor, type of 

appointment) of an appointment after checking in to that appointment. 

FR123. It must not be possible to overlap schedules in the same date and hour. 

Checking-in 
FR125. When a check-in of a scheduled appointment is not made in a period of 1 day, that 

scheduled appointment must be erased from the card. 

Effective Appointments 
FR127. To an effective appointment there must be related diagnostic inserted by the 

appointment doctor. 

FR128. An appointment has an effective status when it has medical information associated. 

FR129. An appointment cannot be deleted from the card if its status is effective. 
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Some of the informal functional requirements will turn into semi-formal requirements, 

others will be used to write class and system invariants. 

4.4. From Informal Functional Requirements to Formal 

Specifications 

This step occurs during the first stage of the formal specifications pseudo-phase, where 

from the informal functional requirements – see 3. Annex: Informal Functional Requirements 

– it can be identified and extracted the semi-formal requirements, and the system and class 

invariants. These three documents will serve as a base to write down the JML formal 

specifications of the java implementation code.  

The semi-formal requirements are written in natural language but expressed in a more 

mathematical form, suitable to be used into JML specifications. These semi-formal 

requirements are to be expressed as JML methods preconditions and postconditions.  

At this step, the system and class invariants are identified and written in a semi-formal way. 

These invariants come from requirements that tend to restrict properties or to impose some 

general limits of the system. Eventually these kind of informal requirements are to become 

JML class invariants. The system invariants express global properties of the system classes’ 

instances which must be preserved by all routines, and class invariants express the same thing, 

but for the respective class only. Although, in JML there isn’t a direct way of expressing system 

invariants, these will be identified as system invariants from the informal functional 

requirements but later they will be expressed simply as JML class invariants.  

Basically, at the end of this step it is required to have three documents. One document with 

semi-formal requirements which will support method’s preconditions and postconditions and 

two documents with a list of informal requirements classified as class invariants and system 

invariants. 

4.4.1. Semi-Formal Requirements 

Some of the informal functional requirements are evolved into a more mathematical form. 

Yet expressed in natural language, this new form brings requirements closer to JML method 

specifications. However, the process of evolving informal functional requirements into this 

new form is not linear, and it requires some expertise and ingenuity. The general form of a 

semi-formal functional requirement is “if <event/condition> then <restriction/rule>”, in 

which the guard is an event or a condition that triggers a rule that restricts (changes) the 

current state of the system. This rule can be regarded as the body of a method in a class, and 

the condition as the pre-condition under which this rule may be triggered. This new form is 

closer to JML specification, and the principles advocated by the design-by-contract. Notice that 

not all the informal functional requirements can be expressed in this form. Some of them can 

even be expressed as class or system invariants (see Section 3.2.1.3 for a description of system 

invariants).   

As an example of how this semi-formal form is attained, the informal functional 

requirement FR108 is transformed into if < adding a new scheduled appointment > then < it 

must be inserted a date, an hour, a place and doctor or a type of appointment >. We show the 

complete list of semi-formal requirements obtained from the informal ones in the annex – see 

4. Annex: Semi-Formal Requirements. As an example, the following Table 6 describes this 
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process between informal functional requirements and semi-formal requirements for the 

Appointments. 

 
Table 6. Semi-Formal Requirements from Appointments informal functional requirements 

ID 
From 

Requirement 
Semi-Formal Requirement 

SFR108 FR108 If adding a new scheduled appointment, then it must be 

inserted a date, an hour, a place and doctor and  a type of 

appointment. 

SFR109 FR109 If adding a new scheduled appointment and the limit has 

been achieved, then the system must do no changes. 

SFR121 FR121 If an appointment is already checked-in, then the 

appointment header cannot be modified (date and time, 

local, doctor, type of appointment).   

SFR124 FR124 If an appointment is checked-in, then that appointment 

must turn into a checked-in state. 

SFR129 FR129 If removing an appointment and its status is effective, then 

the system must do no changes. 

 

For each semi-formal requirement we gave an identification (i.e., ID) like we did for the 

informal functional requirements. This was done for the sake of requirements traceability, i.e., 

to easily trace them in later stages of development. 

4.4.2. Class Invariants 

Some of the informal functional requirements are identified as being class invariants. They 

are those functional requirements that describe small limitations or boundaries, i.e., 

limitations of properties that eventually will restrict or describe a certain class. In a first stage 

of the formal specifications pseudo-phase we turn the identified class invariants into a semi-

formalized form of the correspondent informal functional requirement. All this class invariants 

are identified with a reference code in the format of CIxxx. Later, these class invariants are to 

be ported into JML invariants (see Section 5.2). We show the complete list of the Health Card‘s 

class invariants obtained from the informal functional requirements in the annex – see 5. 

Annex: Class Invariants. Continuing with the Appointments example, we describe some of the 

informal functional requirements identified as class invariants:  

FR108. All scheduled appointment must contain data of a place (local), a date/time and a doctor or 

an appointment type. 

o CI108. For all object a of type appointment, such that local(a)  not equal to null, 

date(a) not equal to null, hour(a) not equal to null and (doctor (a) not equal to null 

and type(a)  not equal to null). 

FR124. It must not be possible to overlap schedules in the same date and hour. 

o CI124. For all objects a1 and a2 of type appointment, if a1 not equal to a2 then 

(date(a1) not equal to date(a2)  and hour(a1) not equal to hour(a2)). 

FR126. When a check-in of a scheduled appointment is not made in a period of 1 day, that 

scheduled appointment must be erased from the card. 

o CI126. For all objects a of type appointment, if status(a) less than CHECK_IN then 

timeDifference(schedule_time(a), actual_time) must be less than 24 hours.  
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Because of the ambiguous essence of natural language, the way people identify invariant 

properties from informal functional requirements is not a deterministic process. Hence, there 

is no universal rule that fully describes this process. Nonetheless, we give below some hints to 

identify invariants. Looking at the informal functional requirement example given, we 

identified FR108 as a class invariant because it describes that an appointment must have the 

attributes of a date, hour, place, doctor and appointment type, so eventually the Java class of 

an appointment must declare those attributes and the constructor must initialize them. As for 

the FR124, there mustn’t ever be appointments with the same date and hour, so this is 

obviously a limitation of the appointments properties. The last informal requirement from the 

example, FR126, is considered as a class invariants because it restricts the non existence of 

scheduled appointment with 1 day after the date and hour of their schedule. After 1 day they 

must be checked-in or deleted. 

4.4.3. System Invariants 

Some of the other informal functional requirements are identified as being system 

invariants. They are those functional requirements that describe restrictions involving more 

than one distinguishable class, i.e., involving instance properties of more than one class. Also, 

as we carried out for the class invariants, in a first stage of the formal specifications pseudo-

phase we turn the identified system invariants into a semi-formalized form of the respective 

informal functional requirement. Later, these system invariants are to be ported into JML class 

invariants (see Section 5.2). Considering the following informal functional requirement from 

Medicines: 

• FR93. The prescription date of a medicine must be bigger than or equal to the date 

of the appointment in which the medicine was prescribed. 

 

We can see that the above informal functional requirement is identified as a system 

invariant because it suggests that a global access to medicines and appointments in the card 

must exist, i.e., it involves two distinguishable classes. All this system invariants are identified 

with a reference code in the format of SIxxx.  

• SI93. For all object m of type medicine and for all object a of type appointment 

such that appointment(m) equals to a and date(m) is bigger than or equal to 

date(a). 

 

In the Annex of this document we present the complete list of the Health Card‘s system 

invariants obtained from the informal functional requirements in the annex – see 6. Annex: 

System Invariants. 

4.5. Design 

In this section we describe the design phase, which follows the requirement analysis. At this 

phase, the use cases and the informal requirements from the requirement’s phase are used as 

a base to design the structure model of the future application to be implemented. With the 

help from the previously defined use cases (and its textual specification) and informal 

functional requirements, we can have an idea of what modules and their respective 

functionalities (i.e. parts of the system and their responsibilities) that are needed to design the 

system application structure. First, a modularization of the requirements is made, i.e., by 

grouping informal requirements about specific parts of the system. The goal of grouping 

requirements is to be able to organize the system’s structure so it can be more reusable and 

maintainable, and consequently, besides having its implementations reusable, the JML 

specifications also can be easily reused. In our case, our structure was divided into Personal 
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Data, Allergies, Vaccines, Appointments, Diagnostics, Treatments and Medicines. Each one of 

those modules have their respective responsibilities towards the management and storage of 

personal patient’s information, patient’s allergies information, patient’s vaccines information, 

scheduled appointments and the respective diagnostics, treatments and medicines prescribed 

by a doctor. When implementing the system, those modules are basically the java packages 

containing the respective java interfaces and classes. 

4.5.1.  Structure Modelling 

Having in mind that our application is based on the Java Card Remote Method Invocation 

(JCRMI) model (see Section 2.2.3), our structure also had to have architecture in conformance. 

Since our work was centred on the use of the Java Card language, we gave more importance to 

the design of the server side of the system, i.e., the card side. The design that we describe in 

this section is all about the card side, the side of the system that will contain the JML 

specifications that will provide support to, among other things
3
, the development of the client 

applications, external to the card.  

Each previously mentioned module in the beginning of this Design section, as java 

packages, contains a remote java interface in which are described constant values and 

signatures of the methods that will be called remotely by external clients. Through these 

remote java interfaces, the client applications can invoke remote methods, i.e., functions 

served by the card applications. Also, it’s at the remote java interfaces where most of the JML 

specifications are written to define the behaviour of the remote methods (i.e., preconditions 

and postconditions) as well as its invariants. These JML specifications, at the remote java 

interfaces (i.e., at the server side, the card side), support the coding of the respective 

implementation classes (i.e., concrete classes) including its method procedures as well as to 

inform the external applications developers (i.e., the client side, the external side) of the 

conditions of each remote method that can be called.  

 

Applying the JCRMI model (see Section 2.2.3), one produces remote java interfaces that are 

a convenient point where one can write JML specifications for the methods that can be called 

by external clients. These JML specified remote java interfaces are shared with the client side 

and while developing the client side applications, the developers can program the client side 

supported by the specifications from those shared java interfaces. When writing a procedure 

that makes a call to a certain JML specified remote method, the developers are aware of the 

preconditions and postconditions of those remote methods as well as the its class invariants. 

The developer is aware that while writing the client applications and making a remote method 

call, he must respect the method precondition, and by doing so, he may safely assume the 

method postcondition. This process of writing code follows the design by contract 

methodology, in which method’s calls at the client side are programmed according to the 

specifications of these methods at the server side, i.e., a contract between the client and 

server sides is enforced. Having described the structural implications brought by the relations 

between the server side and the client side when using a JCRMI model and JML specifications, 

we will next demonstrate how we can go from use cases and informal functional requirements 

obtained at the analysis requirement, to a model of the structure of the system to be 

implemented. 

 

As said before, in the beginning of the Design section, the informal functional requirements 

and use cases obtained at the requirement analysis were organized into modules. Based on 

                                                           
3
 JML specifications support the implementation of the respective specified methods, its documentation 

and communication between developers and consequentially the support of the development of client 

procedures that contains calls to the specified methods. 
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the use cases, the possible operations (i.e., in the form of methods signatures) were 

formulated at each different class for each module, and method’s parameters were written 

from the informal functional requirements descriptions. Starting, as an example, from the 

requirements related to the Appointments of our Health Card system, we’ll describe the 

process from the analysis requirements to a fully structure model at the end of the Design 

phase.  

Based on the following use cases from Appointments (see Figure 10), one can extract 

certain functionalities and classes. 

 

Figure 10. C: Appointments Use Cases Sub-Diagram 

Our objective at this phase is to have a structure model of the system and for accomplish 

that we can use class diagrams
4
 from the UML. The first thing to do is to identify the possible 

classes and write them from a particular set of related use cases, in this example, the 

Appointments class is identified. Next, we can start formulating methods (i.e., operations) for 

that class. Of course, we’ll also need to define parameters for certain methods to receive (i.e., 

parameters for the mutation methods
5
). The methods’ parameters can be extracted from the 

informal functional requirements descriptions. Having a look back at Figure 10, from the use 

case Scheduling appointment (C01), one can assume that the class Appointments needs the 

method addAppointment, and being a mutation method, to add an appointment we need to 

pass certain values, so we need the informal functional requirements to get details on how and 

what is needed to perform that operation. Looking at the following informal functional 

requirement: 

• FR108. A scheduled appointment must contain data of a place (local), a date/time 

and a doctor and an appointment type.  

We can see that for the creation of a new appointment we need to pass values of a local, a 

date, an hour, a doctor and an appointment type. So the signature for the method of adding 

an appointment is like: 

                                                           
4
 Class diagrams are structure diagrams of the UML 2 that show the static structure of a system being 

modeled. They focus on the elements of a system, showing the relationships between them and even 

their internal structure. [34] 
5
 Mutation methods are methods that do something to an object, and typically receive parameters and 

do not return anything. For example: void setDoctor(byte[] doctor)  [35] 
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• addAppointment(byte[] date, byte[] hour, byte[] local, byte[] doctor, byte type) 

And for the management of those attributes we define query
6
 and mutation methods for 

each one of them (i.e., getAppointmentDate, setAppointmentDate, getAppointmentHour, 

setAppointmentHour, etc.). For the other use cases from Appointments, the process of creating 

methods for the class Appointments is similar: 

• Viewing appointments (C02) – This use case implies that we should use query methods 

for it. So the following query methods can be used to support the information viewing 

about appointments: 

 

o getAppointmentDate(short position) 

o getAppointmentHour(short position) 

o getAppointmentLocal(short position) 

o getAppointmentDoctor(short position) 

 

• Managing appointment (C03) – This use case includes modifying information about an 

appointment and removing it. That implies the definition of mutation methods. The 

following mutation methods can be used to support the modification or removal of 

appointments: 

 

o setAppointmentDate(short position, byte[] date ) 

o setAppointmentHour(short position, byte[] hour) 

o setAppointmentLocal(short position, byte[] local) 

o setAppointmentDoctor(short position, byte[] doctor) 

o removeAppointment(short position) 

Note that the parameter position is the value of the Appointment object’s position in the 

data structure containing Appointment objects. 

For the last use case, Checking-in (C04), and from the informal requirement about checking-

in an appointment: – FR125. When a check-in of an appointment is made, that scheduled 

appointment must be turned into a checked-in appointment – we’ve created a concept of 

appointment status. This status is represented as an attribute of an Appointment to inform 

about the status of it, for example, status scheduled appointment or checked-in or done. The 

query and mutation methods for that attribute status we also written (i.e., respectively 

getAppointmentStatus and setAppointmentStatus). 

The following Figure 11 illustrates the remote java interface for the management of 

Appointments, obtained from the previous process.  

                                                           
6
 Query methods are methods through which we can request information, but it doesn’t change the 

state of an object. For example: byte[] getDoctor() [35] 
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Figure 11. Model Structure of Appointments remote java interface 

This Appointments interface is the provider of the card remote related with appointments 

scheduling management, i.e., this interface is shared between the client and server 

applications where the client can access them remotely. Also, it is here that JML specifications 

for the appointments scheduling management will be written at the Implementation phase. 

One must note that from Figure 11, that we also created a getAppointmentID method. This 

method is necessary because each appointment managed by the Appointments must be 

unique, i.e., each one has a different internal identification having the purpose of facilitating 

their relations with other modules’ objects (i.e., diagnostics, treatments, medicines). Each 

Appointment object instance managed by the Appointments class is also represented by a class 

itself. The classes representing single appointment objects are the interface Appointment and 

its implementation class Appointment_Impl as seen in Figure 12. Each Appointment object 

holds information about a real appointment and has methods to manage its attributes. 

 

Figure 12. Model Structure of Appointment and its implementation class 

The Appointment interface isn’t remote like the Appointments interface, so an Appointment 

object isn’t accessed directly by the client applications but it is managed through the 

Appointments interface and its implementation class Appointments_Impl, i.e., through a data 

structure in Appointments containing Appointment objects instances. The Figure 13 shows the 
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dependency between Appointments and Appointment, where Appointments_Impl is the 

implementation class of the interface Appointments and Appointment_Impl is the 

implementation class of the interface Appointment. 

 

Figure 13. Model Structure of the Appointments and Appointment implementation classes 

The rest of the modules were design like the Appointments exemplified in this section, and 

another module was created to manage the rest of the card application parts, this one was 

named CardServices. Basically CardServices is dependent of the Personal, Allergies, Vaccines, 

Appointments, Diagnostics, Treatments and Medicines modules and have methods to get the 

their instances, so the client applications can make calls to the remote interfaces of each one 

of them. Figure 14 illustrates the CardServices module and its dependencies. One must notice 

that the CardServices module acts like a broker, where the client applications can access other 

modules through it. This decision of creating a broker module for the card side came when we 

implemented our first prototype. We had some difficulty in getting the other module 

interfaces while calling them on the applet of the Health Card. 
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Figure 14. Structure Model of the Health Card 

Concluding this section, we’ve described the process at the Design phase that goes from 

the initial requirements to a model structure of the system, by giving an example of the 

Appointments module. For the complete model structure of the card application the Annex 

document should be consulted – see 7. Annex: Class Diagrams. 

5. Implementation 

In this section we describe the implementation phase, which follows the design. At this 

phase we implement the system structure with the support of the structure models previously 

defined and we complete this implementation supported by JML specifications. From the 

semi-formal requirements and invariants attained in the first step of the formal specifications 

pseudo-phase we get JML specifications to specify how to implement the operations’ 

procedures and their limitations. Through the class diagrams, the java interfaces and its 

implementation skeleton classes
7
 can be generated using an automatic code generation tool or 

manually. In our work we have used NetBeans IDE [30] to design the system structure model 

and to automatically generate the java code skeletons from it. This automatic code generation 

is not complete and sometimes is blind and produces mistakes, so one has to correct the code 

manually. For example, all array types written in the structure model were wrongly generated 

to code, so we had to correct those data types by hand. Having generated those java 

documents, which are still without implementations inside the methods,  and taking a look to 

the method signatures at the interfaces, we begin to associate with them each semi-formal 

requirement defined from the informal functional requirements (see section 4.4), and also 

each invariant is associated to the respective interface. Those JML specifications are written 

mostly at the remote java interfaces (due to the JCRMI employment) and later one can 

develop the method implementations in the respective concrete classes in many ways as long 

                                                           
7
 Skeleton classes are classes without implementation on its methods, only the signatures (i.e., method 

headers) and variable declaration exist. These classes are future implementation classes, i.e., they 

contain incomplete methods, without its procedures inside. 
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as the specifications in the interfaces are respected. First we describe the process of writing 

abstract variables (i.e., model fields) to represent the concrete class attributes at the 

specifications level, next  we describe the  formalization process done at the formal 

specifications pseudo-phase which from the semi-formal requirements we get JML 

specifications of method’s preconditions and postconditions and also the specification of class 

invariants at the interfaces, and finally we describe the advantages of implementing a system 

with the support of JML specifications and problems encountered while implementing it as 

well as the solutions found. 

5.1. Writing the Abstract Variables 

When writing the JML specifications, one is most likely to refer to implementation 

attributes (i.e., concrete class properties), but as we have seen in this document most of the 

specifications are written in the Java interfaces (or abstract classes). However, in Java 

interfaces one can declare constant values but not non-static variables, so the use of abstract 

variables (or abstract variables) brings an advantage in this case because one can use them to 

represent concrete variables at the specification level. Having abstract variables at the 

specifications instead of concrete variables gives the developers the possibility of modifying 

those concrete variables without modifying the entire specifications of a class. For example, 

one could change a concrete variable’s name but the specifications would stay correct if the 

abstract variable still represents that modified concrete variable, or one could even modify 

how an abstract variable represents concrete properties but still maintaining the old 

specifications. For example, in a concrete class we could change the concrete variable being 

represented by using represents and still maintaining without changes the specifications at the 

interfaces: 

Before modifying id attribute’s name 

  
private  /*@ spec_public @*/ byte  id; //@ in id_model; 
/*@ public represents 
  @  id_model <- id; 
  @*/ 

 

After modifying id attribute’s name to appointmentID 
 
private  /*@ spec_public @*/ byte  appointmentID; //@ in id_model; 
/*@ public represents 
  @  id_model <- appointmentID; 
  @*/ 

By this, the specifications would stay exactly the same if the concrete variable is modified.  

We start declaring abstract variables in JML by using the keyword model , or ghost  for 

ghost variables (which can’t be represented and only exist in JML specifications). Abstract 

variables are declared in a similar way as concrete variables. Abstract variables can be declared 

as Java standard types, custom types or JML abstract data types. For example, an abstract 

variable of a Java standard type can be of the type byte, short, int, or any other Java type; an 

abstract variable of a custom type can be of the type Appointment, Allergy or another custom 

class object; and an abstract variable can be of a JML abstract data type like 

JMLValueSequence, JMLObjectSequence, or another type, from the JML’s org.jmlspecs.models 
package, that represents a complex data structure[22]. For details about JML abstract data 

types, see Section 3.3.2. 

The abstract variables can represent other abstract variables or concrete data related to a 

certain class or classes (except for ghost variables). These abstract variables are used to model 
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class attributes or complex data structures in an abstract way, and only exist at the 

specifications level, being connected with real variables or expressions by using a mechanism 

of representation through the JML represents clause (see Section 3.3.1. 2). Continuing from the 

structure model example given in the Design phase (see Section 4.5), we identified the 

possible abstract variables by analysing the design structure, specially, the attributes for each 

class. Having analyzed the structure model of the Appointments module, these were the 

attributes that would contain information about an Appointment object: - appointment 

identification, date, hour, local, doctor, appointment type and appointment status – and they 

were modelled in the specifications respectively like: - id_model, date_model, hour_model, 

local_model, doctor_model, type_model and status_model. Also, looking to the structure 

model of the Appointments module, more precisely at Appointments interface and its 

implementation class Appointments_Impl, we noticed the necessity of having an abstract 

variable representing a structure that would contain Appointment object instances. We named 

it appointments_model and for the sake of data abstraction, we declared it as a JML abstract 

data type JMLObjectSequence instead of Appointment array. The JMLObjectSequence is one of 

the object collections type defined for JML, where it treats its elements as object references 

(i.e., addresses) rather than the values of those objects. For example, when inserting an object 

in one JMLObjectSequence, that object isn’t cloned but its reference is stored. The choice to 

abstract the structure holding Appointment object instances was to abstract the way how a 

developer could program a data structure to store the appointments, and by a data structure 

for holding objects can be implemented in many ways (see Section 3.3.2). For the same reason 

we used the JML abstract data type JMLValueSequence for declaring some other abstract 

variables, which represents a complex data structure containing values like primitive byte 

values (the mainly use in the HealthCard specifications). The following piece of code (see Code 

9) describes the declaration of abstract variables in the Common
8
 and Appointment interfaces. 

 
public  interface  Common { 

… 
//@ public model instance JMLValueSequence date_mod el; 
… 
//@ public model instance JMLValueSequence hour_mod el; 
… 
//@ public model instance JMLValueSequence local_mo del; 
… 
//@ public model instance JMLValueSequence doctor_m odel; 
… 
… 

} 
 
public  interface  Appointment extends  Common{ 

…   
//@ public model instance byte id_model; 
//@ public model instance byte status_model; 
//@ public model instance byte type_model; 
… 

} 

 
Code 9. Common and Appointment interfaces abstract variables 

In Code 9, we have abstract variables declared in Common interface which is extended by 

Appointment interface. Hence, all JML specifications from Common are inherited by 

Appointment, including these abstract variables. As abstract variables are inherited from 

Common, they can be referred in Appointment specifications. In our work, we chose to declare 

abstract variables in a super interface because abstract variables can be reusable (i.e., they can 

                                                           
8
 Common is an interface, from our work, with concrete constant values, JML model variables and JML 

specifications used by multiple classes that extend this one. This includes specifications about the 

correct format of a date, an hour, a doctor code and a medical center’s local code.  
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represent multiple concrete variables) and for the fact that we needed those abstract variables 

in specifications of multiple classes, as well as invariants related with those abstract variables 

which also were specified in Commons (invariants are also inherited, see Section 3.2.1.4). For 

example, at the Common interface we have the abstract variable date_model and it can be 

reused for specifying a birthday date, an allergy identification date or an appointment date. 

The following piece of code (see Code 10), describes the connection between concrete 

variables and abstract variables made at the implementation classes, i.e., the representation of 

concrete variables by abstract variables at the classes implementing the specified interfaces. 

 
public  class  Appointment_Impl implements  Appointment {  

… 
 

private  /*@ spec_public @*/ byte  id; //@ in id_model; 
/*@ public represents 
  @  id_model <- id; 
  @*/  
private  /*@ spec_public @*/ byte [] date; //@ in date_model; 
/*@ public represents 
  @  date_model <- toJMLValueSequence(date); 
  @*/ 
 
private  /*@ spec_public @*/ byte [] hour; //@ in hour_model; 
/*@ public represents 
  @  hour_model <- toJMLValueSequence(hour); 
  @*/ 
 
private  /*@ spec_public @*/ byte [] local; //@ in local_model; 
/*@ public represents 
  @  local_model <- toJMLValueSequence(local); 
  @*/ 
 
private  /*@ spec_public @*/ byte [] doctor; //@ in doctor_model; 
/*@ public represents 
  @  doctor_model <- toJMLValueSequence(doctor); 
  @*/ 
 
private  /*@ spec_public @*/ byte  type; //@ in type_model; 
/*@ public represents 
  @  type_model <- type; 
  @*/ 

… 

} 

Code 10. Concrete attribute fields of an Appointment and its model representations 

In Code 10, each abstract variable represents a concrete variable or an expression. This 

representation is made through the JML specification using the clause represents. Looking at 

the JML specifications we can see an expression toJMLValueSequence being used at the 

represents clauses. This expression is a pure helper method, at the JML specifications level, 

made to convert an array of bytes into a JMLValueSequence (a pure method doesn’t have side 

effects on an implementation runtime). This is how we can make a representation of a 

concrete array of bytes by a JMLValueSequence abstract variable. The following Code 11 

describes the specification helper method toJMLValueSequence.  

 
 
public  interface  Common { 

… 
/*@ public static model pure JMLValueSequence toJML ValueSequence(byte[] b){ 
  @  JMLValueSequence _m = new JMLValueSequence(); 
  @  for(int i = 0; i < b.length; i++) 
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  @   _m = _m.insertBack(new JMLByte(b[i])); 
  @  return _m;  
  @ } 
  @*/ 

… 
} 

 

Code 11. Specification helper method toJMLValueSequence 

As seen in the previous code, every byte of the array is casted into a JMLByte, an abstract 

JML type reflecting the Java type Byte, and inserted into a temporary object _m of the abstract 

type JMLValueSequence. This method is written as a JML model method in the super interface 

Common, and it’s inherited by the Appointment interface which is implemented by 

Appointment_Impl.  

After modelling the attributes, i.e., defining abstract variables from the class variables, we 

begin to look at the method signatures in the interfaces and at the requirements. The next 

step in an implementation with the support of JML specifications is to write down the 

method’s preconditions and postconditions specifications, and also to write the class 

invariants which must be respected by the entire class, including its methods and constructors. 

These specifications will use the abstract variables that were obtained at this first step of the 

implementation phase. 

5.2. Writing JML Invariants 

Continuing from the Appointments example given in the Design phase and abstract 

variables written descriptions (see respectively Sections 4.5 and 5.1) and going back to the 

defined semi-formal class and system invariants (see Sections 4.4.2 and 4.4.3), we describe in 

this section the process made in the final stage of the formal specifications pseudo-phase, in 

which from the class and system invariants semi-formalized we get the JML specifications. 

Both class invariants and system invariants are to be ported into JML invariants. Apparently 

there’s no difference between the two kinds of invariants when specifying them in JML, 

because we do it in the same way. However, system invariants are turned into JML invariants 

that involve instances from more than one distinguishable class and class invariants becomes 

JML invariants that don’t involve instances for more than one class. By “one class” we assume, 

for example, that an interface Appointment and its implementation class Appointment_Impl 

are one class, that is, basically we consider them as one class because Appointments is just an 

interface for the concrete class Appointment_Impl.  

From the class invariant C106 – “For all object a of type appointment, such that local(a)  not equal 

to null, date(a) not equal to null, hour(a) not equal to null and (doctor (a) not equal to null and type(a)  

not equal to null).” – attained in the first stage of the formal specifications pseudo-phase 

presented in Section 4.4.2, we get the following JML invariant in Code 12: 

 
/*@ public invariant  

@ local_model != null 
         @   && 
         @    date_model != null 
         @ && 
         @   hour_model!= null 
         @ && 
         @   doctor_model != null 
         @ && 
         @   type_model != 0; 
         @   

  @*/  
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Code 12. Class Invariant example as a JML invariant 

Where local_model, date_model, hour_model and doctor_model are JMLValueSequences 

modelling concrete data structures containing values, and type_model is a byte. This JML 

invariant is written in the Appointment interface and all methods and constructor must respect 

all it visible state. Each time an Appointment object instance is created, it is required to declare 

and instantiate the concrete variables represented by the previous abstract variables.   

From the system invariant attained in the first stage of the formal specifications pseudo-

phase presented in Section 4.4.3 – “SI100. For all object m of type medicine, and all object a of 

type appointment such that appointment(m) equals to a, then date(m) is bigger than or equal 

to date(a).” – From it an appointment has a date and a certain medicine is prescribed in an 

appointment, then that medicine has a date equal of the respective appointment’s date (when 

it was prescribed) or the medicine has its prescription renovated at later date. The following 

JML invariant in Code 13 specifies this property that must be preserved: 

 
/*@ public invariant  

@ (\forall int i; i < ((Medicine[])medicines.getDat a()).length         
@      && i >= 0;  

   @  (\forall int k; k < appointments.getData().le ngth  
         @        && k >=0; 

  @              ((Medicine[])medicines.getData())[ i].getAppointmentID()         
  @    != appointments.getData()[k].getID() 

   @      ||  
   @              ((Medicine[])medicines.getData()) [i].date_model  

  @    >= appointments.getData()[k].date_model 
   @  ) 
   @ ); 

  @*/  

 

Code 13. System Invariant example as a JML invariant 

The presented system invariant is formally specified in JML at the CardServices interface, 

because as this invariant suggests that a global access to medicines and appointments in the 

card must exist, and following the Java Card Remote Method invocation (JCRMI) approach for 

communication, in which the Java Card applet is the server, the interface CardServices defined 

in the HealthCard declares all the services available for remote objects. Class 

CardServices_Imp, an implementation of this interface in Java, accesses the information and 

the state of any remote object in the card. CardServices_Imp declares two variables medicines 

and appointments for keeping track of medicines and medical appointments respectively. In 

Code 13, method getData() returns an array of objects of type Medicine and method getApp() 

returns an array of objects of type Appointment. As seen in Code 13, we check if each 

medicine’s date, represented by the abstract variable date_model, is the same respective 

appointment’s date or a later date. This is done by using the JML \forall clause, where we go 

through every instance of Medicine and check if the correspondent Appointment instance (i.e., 

through a unique appointment identification attribute) has the same date or a later one. This 

comparison is possible only because, in this case, the abstract variable date_model was 

declared as a float type and it represents an expression that calculates a float value from a 

concrete sequence of byte values of an attribute date. This representation in 

Medicine_Impl  and at Appointment_Impl classes is described in the following Code 

14. 
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private /*@ spec_public @*/  byte [] date;//@ in date_model; 

/*@ public represents 
  @ date_model <- date[2]*100+date[3]+date[1]*0.01+ date[0]*0.001; 
  @*/ 
 

Code 14. Representation of date_model in Medicine_Impl and Appointment_Impl 

While specifying JML invariants we came across with a problem attained with the use of 

/exists quantifier expression and JML abstract data types. For instances, when testing the 

following expression the result was always true.  

… 

requires (\exists int i; 0 <= i && i < MAX_APPOINTM ENTS; 
  ((Appointment)appointments_model.itemAt(i)).getId () == id); 
… 

 

The expression states that it is required to exist one Appointment object instance with an 

attribute id equal to the parameter id passed in a certain method. But, even if it wasn’t true, 

when testing this expression, the result was always true. Besides this example, other similar 

expressions had the same problem. We finally concluded from several experiments, that the 

problem was in the use of quantifiers and JML abstract data types. In our example, 

appointments_model is of the abstract data type JMLObjectSequence. We have tried to report 

this problem in the Java Modeling Language forum at SourceForge.net [31], but we haven’t got 

any word on that. For solving this problem, we made methods that only exist in the 

specifications level, through the use of the JML keyword model, to replace JML expressions 

that didn’t function as supposed. The following Code 15 describes a JML helper method, 

existsID, to replace the previous expression. 

 
/*@ public pure model boolean existsID(byte id){ 
  @  for(int i = 0; i < appointments_model.int_leng th(); i++){     
  @  if(appointments_model.itemAt(i) != null){ 
  @     if(((Appointment)diagnostics_model.itemAt(i )).getId() == id) 
  @    return true; 
  @  } 
  @ } 
  @  return false; 
  @ } 
  @*/ 
  

Code 15. JML helper method to support JML specifications 

The method described in Code 15 is pure, i.e., without side effects, and exists only in the 

JML specifications. The method returns a boolean indicating the existence of an Appointment 

object with an id equal to the given id parameter. These helper methods are written as 

comments like JML specifications, and can be used to support invariant, methods’ 

preconditions and postconditions specifications. 

5.3. Writing JML Method Specifications 

Continuing from the Appointments example given in the Design phase and abstract 

variables written descriptions (see respectively Sections 4.5 and 5.1) and going back to the 

defined semi-formal requirements (see Section 4.4.1), we describe in this section the process 

made in the final stage of the formal specifications pseudo-phase, in which from the semi-
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formal requirements we get the JML specifications. Table 6 in Section 4.4.1 describes the semi-

formal requirements that will support the JML specifications written for the methods in class 

Appointment, i.e., they will support the writing of method’s preconditions and postconditions 

specifications. From those semi-formal requirements of Appointments, presented in that table, 

we get JML preconditions and postconditions specifications, but before we present the process 

of transformation between them, one must know that not all JML preconditions and 

postconditions come from the semi-formal requirements. Some JML specifications can be 

more oriented to the code itself rather to the requirements, for example, a specification for a 

data structure that describes how its elements are organized or a specification for a 

postcondition which guarantees that data was correctly modified. The reason why this kind of 

specifications isn’t obtained from the requirements is that normally the requirements are 

written at a higher level, more closely to the real problem rather than a lower level like the 

Java coding. 

In the following tables (Table 7 to Table 11), JML preconditions and postconditions are 

described. These were obtained from each of the semi-formal requirements presented in 

Table 6 from Section 4.4.1. One must note that each normal behaviour precondition has an 

inverse one at the exceptional behaviour of a method. This is for the specification of method 

behaviour when the normal preconditions in a contract between a caller and a server are not 

met (see Section 3.2.1.5 for a description about exceptions on a contract in design by 

contract). 

Table 7. JML specifications from Semi-Formal Requirement SFR108 

FROM: SFR108 

Normal Behaviour 
requires date != null  
&& hour != null  
&& local != null 
&& doctor != null; 

Exceptional Behaviour 
requires date == null  
|| hour == null  
|| local == null 
|| doctor == null; 
 

The JML preconditions in Table 7 are written from the formal requirement SFR108:  – “If 

adding a new scheduled appointment, then is necessary to insert date and hour of the 

appointment and also the local and doctor and type of appointment.” – Where it must be 

inserted these parameters when adding a new appointment, and if they must be inserted then 

they must be not null. Roughly speaking, in the normal behaviour, the preconditions written 

using the requires clause obligates to enter not null values when calling the method 

addAppointment. At the exceptional behaviour we have the reverse of the normal behaviour 

preconditions, i.e., the preconditions of the exceptional behaviour are for those cases that do 

not fit into the preconditions of the normal behaviour.  

Table 8. JML specifications from Semi-Formal Requirement SFR110 

FROM: SFR110 

Normal Behaviour 
requires appointments_model.count(null) > 0;  

Exceptional Behaviour 
requires appointments_model.count(null) == 0;  
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In Table 8, is presented an abstract variable from a collection of JML types. In the 

precondition’s expression there’s a reference to an abstract variable named 

appointments_model. This is an abstract variable of the JML abstract data type 

JMLObjectSequence which represents a data structure containing Appointment objects. In the 

previous table, the precondition written in JML was based on the semi-formal requirement 

SFR110:  – “If adding a new scheduled appointment and the limit has been achieved, then the 

system must do no changes.” – So in JML we made an expression that uses the count method 

from JMLObjectSequence, which is a pure method that hasn’t any side effects, to count the 

number of null objects in appointments_model. By this, when there are zero occurrences of a 

null object, it means that the structure of appointments is full, and then the preconditions for 

an exceptional behaviour are met, i.e., there aren’t conditions met to add a new appointment 

because it’s full. To add an appointment, there must be at least one position in 

appointments_model with a null object, so somewhere in the addAppointment 

implementation there must be a mechanism that adds an object to a position where its object 

reference is null. 

Table 9. JML specifications from Semi-Formal Requirement SFR122 

FROM: SFR122 

Normal Behaviour 
requires ((Appointment)                   
appointments_model.itemAt(position)).status_model = = 
AppointmentsSetup.STATUS_SCHEDULE;  

Exceptional Behaviour 
requires ((Appointment) 
appointments_model.itemAt(position)).status_model ! = 
AppointmentsSetup.STATUS_SCHEDULE;  

The previous Table 9 has a precondition written in JML that is based on the semi-formal 

requirement SFR122: – “If an appointment is already checked-in, then the appointment header 

cannot be modified (date and time, local, doctor, type of appointment). “  – So, for this JML 

specification we wrote what it’s required for the appointment status to be scheduled, a status 

before the check-in. So for the methods where this precondition will be necessary, it is 

required that the appointment status is equal to the STATUS_SCHEDULE constant value. In our 

work we used this JML precondition in the specifications of setAppointmentDate, 

setAppointmentHour, setAppointmentLocal, setAppointmentDoctor and setAppointmentType. 

All these methods are mutation methods, and after checking-in an appointment its header 

information cannot be modified, i.e., once the appointment is checked-in, the schedule date 

and hour, local, doctor and appointment type cannot be modified. For this precondition 

expression, we pass, as a method’s parameter, the position of the Appointment object to be 

modified and through the JMLObjectSequence’s method itemAt, we get the reference of that 

object and we gain access to its specifications, which in this case is the abstract variable 

status_model. 

Table 10. JML specifications from Semi-Formal Requirement SFR125 

FROM: SFR125 

Normal Behaviour 
ensures ((Appointment) 
appointments_model.itemAt(position)).status_model = = status;  
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In Table 10, a postcondition in JML specification is described. That postcondition was 

written from the semi-formal requirement SFR125: – “If an appointment is checked-in, then 

that appointment must turn into a checked-in state.” – So, when checking-in the system must 

ensure that the status of the appointment is modified. This is a postcondition because the 

semi-formal requirement states a system responsibility towards an event.  We have used this 

postcondition for specifying the method setAppointmentStatus. 

Table 11. JML specifications from Semi-Formal Requirement SFR130 

FROM: SFR130 

Normal Behaviour 
requires ((Appointment) 
appointments_model.itemAt(position)).status_model = = 
AppointmentsSetup.STATUS_SCHEDULE  || ((Appointment ) 
appointments_model.itemAt(position)).status_model = = 
AppointmentsSetup.STATUS_CHECK_IN;  

Exceptional Behaviour 
requires ((Appointment) 
appointments_model.itemAt(position)).status_model = = 
AppointmentsSetup.STATUS_DONE;  

Finally, in Table 11 we have the JML specifications written from the last semi-formal 

requirement of Appointments: – “If removing an appointment and its status is effective, then 

the system must do no changes.”  – Where the abstract variable status_model must have a 

value equal to the constant STATUS_SCHEDULE or STATUS_CHECK_IN when removing an 

appointment. An appointment may be deleted if it has a status equal to schedule or checked-

in. This preconditions is used for specify the removeAppointment method. 

 

After writing JML preconditions and postconditions from the semi-formal requirements, we 

have almost every method specified. However, not all the preconditions and postconditions 

come from the semi-formal requirements. Some other preconditions and postconditions are 

written to support the specification of implementation code, i.e., specifications more related 

to the coding itself. It is good to reinforce the specifications that we already have from the 

requirements with other specifications, especially to specify things that the requirements 

weren’t sufficient to support it, like aspects of the programming such as data structure 

management or specification of input values like the maximum value of a byte type. 

Every single JML precondition or postcondition previously written for a certain method is 

brought together to describe in more detail its behaviour. As an example, from the previous 

obtained JML specifications described in the tables of this section (and others not showed in 

this examples), one can specify the addAppointment method as it follows: 

 
/*@ public normal_behavior 

  @ requires appointments_model.count(null) > 0; 
  @ requires date != null  
  @       && hour != null  
  @       && local != null 
  @       && doctor != null; 
  @ requires date.length == DATE_LENGTH  
  @           && hour.length == HOUR_LENGTH   
  @        && local.length == LOCAL_CODE_LENGTH 
  @        && doctor.length == DOCTOR_CODE_LENGTH 
  @        && 0x00 < type && type <= AppointmentsSe tup.MAX_TYPE_CODES; 
  @ requires_redundantly (\forall int i; 0 <= i && i < DOCTOR_CODE_LENGTH; 
  @          ((byte)0x41 <= doctor[i] &&  doctor[i]  <= (byte)0x5A ) 

 @    || ((byte)0x61 <= doctor[i] &&  doctor[i] <= (byte)0x7A ) 
  @    || ((byte)0x30 <= doctor[i] &&  doctor[i] <=  (byte)0x39 )); 
  @  assignable appointments_model; 

A 

B 
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  @ ensures appointments_model.count(null) == \old( appointments_model.count(null)-1); 
  @ ensures_redundantly getLast(appointments_model)  instanceof Appointment; 
  @ ensures getLast(appointments_model).date_model. equals(toJMLValueSequence(date); 
  @ ensures getLast(appointments_model).hour_model. equals(toJMLValueSequence(hour); 
  @ ensures getLast(appointments_model).local_model .equals(toJMLValueSequence(local); 
  @ ensures getLast(appointments_model).doctor_mode l.equals(toJMLValueSequence(doct); 
  @ ensures getLast(appointments_model).type_model == type; 
  @ also 
  @ public exceptional_behavior 
  @ requires appointments_model.count(null) == 0  
  @      || date == null || date.length != DATE_LEN GTH 
  @      || hour == null || hour.length != HOUR_LEN GTH 
  @      || local == null || local.length != LOCAL_ CODE_LENGTH 
  @         || doctor == null || doctor.length != D OCTOR_CODE_LENGTH 
  @      || !(0x00 < type && type <= AppointmentsSe tup.MAX_TYPE_CODES) 
  @      || (\forall int i; 0 <= i && i < DOCTOR_CO DE_LENGTH;  
  @          ((byte)0x41 <= doctor[i] &&  doctor[i]  <= (byte)0x5A ) 
  @    || ((byte)0x61 <= doctor[i] &&  doctor[i] <=  (byte)0x7A ) 
  @    || ((byte)0x30 <= doctor[i] &&  doctor[i] <=  (byte)0x39 )); 
  @     assignable \nothing; 

  @ signals_only UserException; 
  @ signals_redundantly (UserException e)  
  @   appointments_model.equals(\old(appointments_m odel)); 
  @*/ 
 public  void  addAppointment ( byte [] date, byte [] hour, byte [] local, byte [] doctor, byte  
type) throws  RemoteException, UserException; 
 

Code 16. JML specifications for addAppointment method 

As can be seen in Code 16, at point A we have the addAppointment normal behaviour 

precondition. At point D we have the reverse of all normal behaviour preconditions from 

points A. If one of the normal behaviour preconditions is not met, then the exceptional 

behaviour preconditions must be met and in that case it is specified that the system must do 

no changes.  The normal behaviour postconditions of addAppointment are specified at point C, 

and exceptional postconditions are specified at point E. At the normal behaviour and 

exceptional behaviour, the assignable clause at points B and E are indicating the method’s side 

effects, i.e., what data is to be modified. Only the fields listed on the assignable clause can be 

modified. If we had assignable \nothing, the method shouldn’t modify anything and if we had 

assignable \everything, the method could modify any variable.  

Having described how we defined JML abstract variables, JML invariants and how we 

written the JML specifications for specifying the method’s preconditions and postconditions, 

next we describe how the JML specifications supported the concrete classes code writing while 

developing the HealthCard application. 

5.4. Writing the Code 

At this step we already have Java interfaces with JML specifications written within them 

asserting invariants, methods and attributes, and incomplete concrete Java classes (i.e., only 

with method skeletons). In this step, we begin to code the procedures of the empty methods 

from the concrete classes which implements the JML specified Java interfaces. Taking again 

the addAppointment example with JML specifications from the Appointments in Code 16 (see 

Section 5.3), we can start to implement it in the concrete class Appointments_Impl by 

respecting its specifications and class invariants. The following Code 17 describes the 

implementation of addAppointment (in Appointments_Impl) according to its specifications 

written in Appointments interface. 

 
public  void  addAppointment( byte [] date, byte [] hour, byte [] local, byte [] doctor, byte  
type) throws  RemoteException, UserException { 
      

D 

C 

E 

F 
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  boolean  notInUse = true ; 
  byte  id = 0; 
  for ( byte  code = 0x00; code <= 0x7F; code++){ 
     for  ( short  j = ( short )0; j < ( short )AppointmentsSetup. MAX_APPOINTMENT_ITEMS; j++) { 
      if (appointments[j] != null ){ 
       if (appointments[j].getID() == code){ 
       notInUse = false ; 
       break ; 
      } 
       } 
      }   
      if (notInUse){  
     id = code; 

break ; 
      } 
     notInUse = true ; 
   } 
 
   for  ( short  i = ( short )0; i < ( short )AppointmentsSetup. MAX_APPOINTMENT_ITEMS; i++) { 
     if  (appointments[i] == null ) { 
       Appointment a = new Appointment_Impl(id, date, hour, local, doctor, ty pe); 
       appointments[i] = a; 
       break ; 
     }             
   } 
} 
 

Code 17. Implementation of method addAppointment from Appointments_Impl 

In Code 17, in the first for cycle we are automatically trying to generate an identification for 

the new appointment to be added as a unique byte value. In that cycle, it is verified 

incrementally if a byte is already an identification value for another appointment instance, 

until the mechanism finds a value that isn’t equal to any other appointment identification 

value.  This mechanism respects a class invariant, from Appointments, which specifies that all 

appointments must have a unique identification attribute (not shown in this document). In the 

second for cycle we are looking in the appointments array for the first position with a null 

object. When we find a position with a null object, a new Appointment instance is created with 

the given arguments and with the generated identification (id) and then inserted into the 

appointments array. This last mechanism respects the postcondition normal behaviour 

specifications, presented in Code 16 (see Section 5.3), which states that an Appointment 

instance must be inserted and its attributes must be equal to the given arguments by the client 

when calling addAppointment. Also, in the for cycle, when looking for the first position with a 

null object we are meeting with a specified invariant (not shown in this document) which 

states that there must not exist any position with a null object between two positions with 

Appointment objects in the Appointment array. 

One must notice that the precondition specifications for the method addAppointment in 

Code 16 from the previous Section 5.3, aren’t validated in the method’s implementation. This 

is because of the design by contract principles, i.e., the client calling for the method is the 

responsible for the method’s preconditions validation. By this programming technique, it helps 

to avoid redundancy in the code (see Section 3.2.1.2 ). Redundant code may cause problems to 

obtain a reliable system and its performance may be penalized, i.e. problems in the ability of a 

system or component to perform its required functions under stated conditions for a specified 

period of time. Also by reducing the preconditions’ validations, one is reducing the code from 

the server side. In our case this brings benefits, as smart cards have limited memory. 
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6. Validation and Verification 

In this section we describe the validation and verification phase, which follows the 

implementation. In the software development strategy used, the validation and verification 

phase doesn’t necessarily occur after the implementation phase, it can occur somewhat 

iteratively with the implementation phase. In this phase, the application java code is checked 

against its JML specifications statically and in runtime. If any of these cases is true, we are free 

to go back to other phase. 

6.1. Static Assertion Checking 

Even before implementing the concrete classes, it is possible to check the specifications in 

the Java interfaces for errors or inconsistencies. For instance, Java interfaces and Java abstract 

classes are checked against JML specifications, obtained from the formal specification pseudo-

phase, before writing full implementation for those interfaces and abstract classes. The static 

assertion checking is made through the JML Common Tool called jml, which is a JML Type 

Checker (see Section 3.3.3). We have used Eclipse IDE for implementing the HealthCard 

application, and we have installed the JML2 Eclipse plug-in which included tools based on the 

JML Common Tools. One of the plug-in tools is for runtime assertion compilation and another 

for static assertion checks of JML specifications (semantically and syntactically). The tool used 

for static assertion checking of the Eclipse plug-in is based on the JML Common Tool jml, and 

can be used in real time while writing the specifications. The JML2 Eclipse plug-in is available in 

[32]. 

6.2. Runtime Assertion Checking 

While making a runtime assertion checking, one is simulating the execution of an 

application’s code and checking the execution against the code specifications, i.e., checking the 

Java code against its JML specifications in runtime. To make a runtime assertion checking, first 

we need to compile JML-specified Java classes into a Java byte-code that includes instructions 

for checking JML specifications at run-time. This can be made through the use of the JML 

Common Tool named jmlc (see Section 3.3.3). The files obtained after compiling the JML-

specified Java programs are like the common compiled files of a Java program (*.class), but 

these can be used in runtime assertion checking with JML specifications. The following step is 

to generate the JUnit unit tests of the JML-specified Java classes to be tested in runtime. This 

can be done through the use of the jmlunit tool from the JML Common Tools. The jmlunit tool 

generates JUnit unit tests code from JML specifications. When using the jmlunit tool, two kinds 

of class files are generated, the test class and test data class. The test class generated file has 

methods for testing each class (to be tested) method, while through the test data class we 

provide data sets to be used as inputs on the methods to be tested. These two generated files 

are named respectively as ‘*_JML_Test.java’ and ‘*_JML_TestData.java’, for instance, if 

generating test cases for the Appointments we would generate through the jmlunit the files 

‘Appointments_JML_Test.java’ and ‘Appointments_JML_TestData.java’. These two files are 

compiled normally as java classes, and they are executed as test drivers by using the jmlrac 

tool, a modified version of the java command that refers to appropriate run-time assertion 

checking libraries.  

After executing the test drivers, the test results are listed. For each tested method 

(including the constructor) are shown a number of tests as the number of combinations of the 

provided given data through the test data class, i.e., methods are tested with combinations of 

different data as their parameters. When detecting some violation in invariants, or method’s 

preconditions or postconditions, in the respective test result is described where and what 
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caused the violation. Below we describe a practical example from a verification and validation 

done to the method addAppointment from Appointments class. 

After writing the specifications and the implementation of addAppointment (see Code 16 

and Code 17 in Section 5.3), we have to check if the implementation is correct according with 

its specifications. We start the runtime assertion checking by generating the test classes. When 

writing the test data sets in the test data class (in this example, 

Appointments_Impl_JML_TestData.java) we should try to write down data that may violate 

some method’s normal behaviour specifications during the runtime tests. The objective of 

supplying possible invalid data is to observe how the methods and their specifications reacts 

during the tests, that is, to check if the specifications are complete and to observe if the 

method tests are returning unexpected results, which in the latter case indicates some 

problem with the implementation or even in the specifications. During a running test, if the 

method to be tested receives arguments, then the inserted test data is arranged into all 

possible combinations to be passed as arguments. The test data supplied through a test data 

class have data types, thus, for testing a method, for each argument type described on the 

method’s header, a value from the test data sets of the same type is passed through. In our 

work, most of the supplied data sets are of the byte types, and they are written as 

hexadecimal values. In Code 18 the addAppointment method header, from Appointments 

class, is presented. We describe the tests made to this method below as an example. 

… 

addAppointment( byte [] date, byte [] hour, byte [] local, byte [] doctor, byte  type)  

… 

Code 18. Method addAppointment header 

In Code 18, the method to be tested accepts byte sequences for the parameters date, hour, 

local, doctor and one byte for the parameter type. In the generated test data class 

‘Appointments_Impl_JML_TestData.java’, we supply the data sets in methods for each 

different data type. Among the supplied test data, some are of the Object type, and are 

supplied for testing the creation of class Appointments_Impl objects through the method 

make: - case 0: return new Appointments_Impl() (see below Code 19, line 3). For each test data 

type there are methods where we supply data. For example, there is a method for supplying 

byte sequences, and another for supplying bytes values. In Code 19, among the supplied byte 

sequence data, we supplied some valid values, like {0x01,0x01,0x14,0x09} hexadecimal values 

for a date attribute (01/01/2009); {0x09,0x00} for an hour attribute; 

{0x41,0x45,0x62,0x7A,0x69,0x35,0x67,0x39} for a local attribute and 

{0x69,0x69,0x69,0x69,0x69} for a doctor attribute. One must know that the null value is given 

as argument by default during the tests. Also in Code 19 we supplied a byte value 0x02, but by 

default during the tests the values 0xFF, 0x00 and 0x01 are given as arguments. 

… 
1 protected  Object make( int  n) { 
2                    switch  (n) { 
3                    case  0: return  new Appointments_Impl(); 
4                    default : 
5                        break ; 
6                     }  

… 

7 protected  java.lang.Object[] addData() { 
8                    return  new byte [][] { 
9                            {0x09,0x00}, 
10                           {0x01,0x01,0x14,0x09},  
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11                           {0x69,0x69,0x69,0x69,0 x69}, 
12                          {0x41,0x45,0x62,0x7A,0x 69,0x35,0x67,0x39} 
13                    }; 

… 

14 protected  byte [] addData() { 
15                  return  new byte [] { 
16                    ( byte )0x02 
17                  }; 
18                } 

… 

Code 19. Test data sets for Appointments_Impl 

According to addAppointment’s preconditions, the arguments date, hour, local and doctor 

must have a precise length defined by the constant attributes DATE_LENGHT, HOUR_LENGHT, 

LOCAL_LENGHT and DOCTOR_LENGHT (see Section 5.3 - Code 16) Also, not shown in 

addAppointment specification examples in this document, there is a specification constraining 

a date attribute, with the purpose of specifying a correct date format. This date attribute 

specification is written in the Common Java interface which is extended by Appointments, 

therefore Appointments inherit the specifications in Common. Also similar constraints exist for 

constraining the value format of an hour, local and doctor attributes. Continuing our 

addAppointment runtime checking example, one must notice that the valid length for each 

argument received by addAppointment is: - 4 bytes for a date, 2 bytes for an hour, 8 bytes for a 

local and 5 bytes for a doctor. The argument type must have only one byte. This limitation is 

one of the preconditions for the method addAppointment. In Figure 15, some test results for 

addAppointment are listed. The results are presented as blue � and green �symbols, the 

blue symbol indicates a test failure and the green symbol indicates a successful test. We can 

observe in Figure 15 that there are two successful tests. The successful tests indicate that 

there were no violation on the preconditions, postconditions and invariants. The arguments 

passed through addAppointment in those two successful tests were valid according to the 

methods preconditions.  

 

 
Figure 15. Some runtime assertion checking test results of addAppointment  

One must notice the difficulty in checking visually which supplied byte sequences were 

passed as arguments, as it only shows to the tester, the type and number of elements (for 

instance, byte[4]). When having a method with multiple byte sequence arguments we noticed 



66 

 

that the tests are made through the combination of all byte sequences given in the same order 

as written in the data test class. 

 

In the previous Figure 15, it’s selected one of the test results.  This selected test resulted in 

a failure, because there was a precondition violation. In the following Figure 16, the failure 

reason of the selected test result is shown in detail. The tester can consult these details to 

check where and what violation occurred while testing the method.  In our example, there is a 

precondition violation.  

 
Figure 16. addAppointment test failure details 

We can see that the violation was caused by a precondition error in a method named 

setType within the addAppointment method (i.e. JMLInternalPreconditionError). This 

precondition violation happened because there are a JML normal behaviour specification for 

the method addAppointment which specifies that the argument type must be a byte value 

higher than (byte) 0x00, and an exceptional behaviour specification that specifies the inverse 

(see Code 20). By this failure we have tested the precondition specifications of 

addAppointment, with the assurance that we have covered in the JML specifications, the case 

where a type argument is equal to (byte) 0x00. One must know, that according with the design 

by contract principles, the addAppointment method must not validate any precondition. For 

this reason, it is assumed that the client respects his part of the contract when he calls for 

addAppointment, that is, it is assumed that the argument type has a value higher than (byte) 

0x00.  

 

public normal_behavior 
… 
&& 0x00 < type && type <= AppointmentsSetup.MAX_TYP E_CODES; 
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… 
public exceptional_behavior 
… 
|| !(0x00 < type && type <= AppointmentsSetup.MAX_T YPE_CODES) 
… 

Code 20. Argument type JML specification for the method addAppointment 

Both static and runtime assertion checking in the verification and validation phase can be 

used while implementing the system. By this iterative process, one can evolve the Java code as 

well the JML specifications according to the validations made through testing. 

7. The HealthCard Application Metrics 

After the HealthCard application development we did some measurements to determine 

the quantity of written code and specifications. In the following Table 12, it is described the 

number of classes (interfaces and concrete classes) and their number of Java source code and 

JML specification lines. From these measurements we conclude that almost half of the lines 

written are JML specifications (50,12%) for almost another half of source code (42,01%), being 

a small percentage (7,87%) the amount of mixed lines. We didn’t make any study about an 

application of this type developed without the use of JML specifications, but certainly we 

would end with a large number of lines of code, due to the large number of validations 

performed within the methods implemented on the card side. The JML specifications describe 

the conditions that, according to the design-by-contract principles, which according to the 

design by contract principles, must be respected by the clients when calling the specified 

methods, so it is assumed the method’s preconditions are valid and therefore no validation 

coding is necessary within these methods. When developing a smart card application, one has 

to consider the card’s limited capacities. The HealthCard application has 36 classes, being 20 

interfaces and 16 concrete classes. The total lines of code are almost 4300.  

Table 12. The HealthCard application metrics per module 

Modules 

Modules 

Size 

(bytes) 

Classes Interfaces 
Concrete 

Classes 

Source 
Code 
Lines 

Source 
Code 
Lines 
(%) 

Specification 
Lines 

Specification 
Lines (%) 

Mixed 
Lines 

Mixed 
Lines 
(%) 

Total 

Lines 

Allergies 17.768 5 3 2 151 37,75% 220 55,00% 29 7,25% 400 

Appointments 37.158 5 3 2 325 37,27% 483 55,39% 64 7,34% 872 

Diagnostics 22.400 5 3 2 268 45,50% 271 46,01% 50 8,49% 589 

Treatments 23.551 5 3 2 262 42,26% 299 48,23% 59 9,52% 620 

Medicines 32.027 5 3 2 359 44,21% 385 47,41% 68 8,37% 812 

Vaccines 15.985 5 3 2 150 41,21% 189 51,92% 25 6,87% 364 

Commons 12.871 2 1 1 61 17,18% 265 74,65% 29 8,17% 355 

CardServices 10.433 3 1 2 183 85,51% 19 8,88% 12 5,61% 214 

HealthApplet 1.572 1 0 1 34 80,95% 8 19,05% 0 0,00% 42 

Totals 173.765 36 20 16 1793 42,01% 2139 50,12% 336 7,87% 4268 

In the following Table 13 we describe the quantity of Java source code and JML 

specification lines per Java interfaces and concrete classes. From the values presented in the 

table, we can see that almost of the JML specifications are written within the Java interfaces 

(abstract classes), being 1605 specification lines against the 263 lines in the concrete classes. 

This is because of the way the system was designed to achieve a better reusability and 
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maintainability. If we write the specifications in the interfaces, we can write the 

implementation in concrete classes in several ways as long as we respect what is specified in 

the super-classes. 

Table 13. The HealthCard application metrics per interface and concrete classes 

Java Files Number 
Source 
Code 
Lines 

Source 
Code 

Lines (%) 

Specification 
Lines 

Specification 
Lines (%) 

Mixed 
Lines 

Mixed 
Lines (%) 

Total 

Lines 

Interfaces 20 431 19,01% 1605 70,80% 231 10,19% 2267 

Concrete Classes 14 1212 76,71% 263 16,65% 105 6,65% 1580 

Also based on Table 13, we can see that most specification effort is done in the interfaces. 

Most of the JML specifications are written in the interfaces to add some level of abstraction to 

the implementation process and to make the specifications more reusable. By this way, we can 

implement the concrete classes in various ways while respecting the specifications written in 

the interfaces (i.e. reusability).  

8. A Client-Side Small Example 

After having fully specified and implemented the in-card HealthCard application we will 

show know how to write a simple method from a client that call methods of the application 

while adhering to its JML specifications (see Section 5). We will describe how to write the 

client-side Java code for the method addAppointment( byte [] date, byte [] hour, byte [] local, 

byte [] doctor, byte  type)  shown in Code 16 (see Section 5.3). The code client-side will be 

determined by the JML specification of the method, and the Design-by-Contract principles 

underlying JML (Section 3.2.1), which states that a method precondition has be respected by 

the client to be able to call the method, and the method postcondition must be ensured by the 

method supplier.  

In the following, we describe the JML specification of the method addAppointment . The 

precondition specification below states that if the number of null appointments in the card is 

positive (so a free slot exists), a new appointment object element can be inserted into the list 

of appointments.  
 

 @ requires appointments_model.count(null) > 0; 

 

The JML specification below makes clear that the date, hour, and local associated to an 

appointment cannot be null.  

 

  @ requires date != null  
  @       && hour != null  
  @       && local != null; 

 

The method precondition specification below states well-formedness conditions about 

objects of type appointment.  

 

  @  requires date.length == DATE_LENGTH  
  @           && hour.length == HOUR_LENGTH   
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  @        && local.length == LOCAL_CODE_LENGTH 
  @        && doctor.length == DOCTOR_CODE_LENGTH 
  @        && 0x00 < type && type <= AppointmentsSe tup.MAX_TYPE_CODES; 

 

The client-side implementation below reflects the JML specifications for the method 

addAppointment  above. 

 

... 

1 if(countAppointments() < AppointmentsSetup.MAX_APPOINTMENT_ITEMS){ 

2             if(date!=null && hour != null && local != null ){ 

3                                             if( _date.length == Common.DATE_LENGTH  

4          && _hour.length == Common.HOUR_LENGTH   

5          && doctor.length() == Common.DOCTOR_CODE_LENGTH   

6          && local.length() == Common.LOCAL_CODE_LENGTH  

7          &&  0<= Integer.parseInt(type)  

8          && Integer.parseInt(type) <= AppointmentsSetup.MAX_TYPE_CODES  

9  myAppointments.addAppointment(_date, _hour, _local , _doctor, b); 

         ... 

Code 21. From the client addAppointment method 

9. A Prototype Tool for Generating JML Formal Specifications 

from Informal Software Requirements 

In the following, we describe a prototype tool we built to automate the process of writing 

JML formal specifications from semi-formal specifications. We used João Pestana’s software 

development strategy for implementing the HealthCard (see Section 5). In this strategy, semi 

formal specifications are transformed into JML specifications. The transformation relies on the 

idea that semi-formal specifications can be written in a “if <event/condition> then 

<restriction/rule>” way. This was an important factor that determined the way we 

implemented our prototype tool:  after “if” and before “then” there is a method 

precondition; after “then” there is a method postcondition.  

We further looked at the requirements written for the HealthCard and noticed some 

patterns that relate semi-formal requirements and JML formal specifications. Preconditions in 

the semi-formal requirements have logical conditions. In these conditions data structures, 

variables, constants or values, joint with relational and logical operators (EQUAL, NOT EQUAL, 

MORE THAN, LESS THAN, MORE OR EQUAL, LESS OR EQUAL, AND, OR) are found. For instance, 

in the informal requirement “To schedule an appointment, a valid date and a valid type for the 

appointment must also be inserted”, a logical and operation for the date and type of an 

appointment is found (see below). Furthermore, the “then” part outlines a JML method 

postcondition. 

if < date NOT EQUAL null AND date is an array that has length EQUAL length of array 

date_model AND type MORE THAN 0)>  

then <date EQUALS date_model AND type EQUALS type_model> 

 

We show below the JML specification for the semi-formal specification above 

 

/*@ public normal_behavior  
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   @   requires date != null 

   @               && date.length() == date_model.length() 

   @               && type > 0 

   @*/ 

 

 

We show below a screenshot (Figure 17) implementing the reasoning introduced above. 

The prototype tool was based on Adobe Flex 3 
9
 technology. 

 

 

 

Figure 17. Screenshot from the prototype 

 

 

 

 

                                                           
9
 Adobe Flex is a software development kit released by Adobe Systems for the development and 

deployment of cross-platform rich Internet applications based on the Adobe Flash platform 
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10. Conclusion 

This master thesis is about the JML driven formal development of a privacy sensitive Java 

application. It was developed following João Pestana’s strategy, introduced in [25]. We 

consider that this strategy is suitable for developing correct applications implementing any 

client-server architecture with a strong need for a lightweight server specification in general. In 

this client-server setting, validations of methods’ pre-conditions are not carried out within 

methods’ implementations. On the contrary, it is the client’s responsibility to ensure that 

methods are called with the appropriate parameters. This reduces the size of implemented 

methods. This is particularly important for smart cards whose generated byte-code cannot be 

bigger than a certain limit. JML ensures that methods are called with the right parameters. This 

prevents programmers from making validations both inside and outside methods, a common 

programming mistake. 

One of the main goals of our work was to validate João Pestana’s strategy. Our work 

benefits from using this strategy, hence bringing informal software requirements (as 

understood by clients and general stakeholders) into a final software product (as understood 

by developers and engineers) that fulfils the real needs of the client. Evolving informal 

requirements into formal specifications is not a linear process; it requires great ingenuity and 

experience. This evolving process is stepwise. Therefore, we transform informal functional 

requirements into semi-formal ones, before being expressed as JML specifications.  

The use of JML facilitates the communication between requirements’ teams, designers 

and programmers. JML specifications further serve as software documentation, likewise 

JavaDocs, but while the first can be used to check the source code against it, the latter cannot. 

We carried this checking with the JML Common tools, which automatically generated JUnit 

tests from JML specifications. These tests are checked in runtime.  

We implemented a Smart Card application written in Java Card. This explains the use of 

JML for writing our specifications. The syntax of Java Card is limited compared to syntax of Java 

itself. For instance, Java Card does not support dynamic memory allocation, and some native 

data-types are missing. These limitations led us to use JML model types to abstract data 

structures. For instance, the JMLObjectSequence model type was used to represent a 

collection of objects, and the JMLValueSequence model type was used to represent a 

collection of values. The use of JML abstract variables keeps the specifications maintainable 

and reusable, giving a range of possibilities for the actual concrete data structure to be 

implemented.    

JML specifications can be re-used straightforward. For instance, the more restricted 

version of the JML specification of the in-card implementation was re-used for the 

specification of the prototype of our Java client easily. 

In Bertrand Meyer’s design-by-contract principles, the specified methods oughtn’t to 

implement validations of their preconditions in their method bodies, because those validations 

are of the client’s responsibility, i.e., the method’s preconditions must be assured by the 

clients when they call them. The employment of these principles reduces considerably the 

amount of code from the specified methods implementations, leaving the validation code of 

preconditions for the client side. This aspect is useful when one has to develop a system with a 

client-server architectural style in which one of the parts must be light weighted, and also 

helps to reduce the redundancy of code for instances validation, i.e., a common error while 

programming a system where validations are made in both sides. In our case, when we 

developed the HealthCard, we needed to reduce the card side code, because we had to 

consider the smart card’s memory limitation. We use JML to describe contracts, and we use 
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the JML Common tools to check against the code.  Using JML specifications while developing 

the HealthCard, we didn’t only make a correct system but also we have reduced considerably 

the card side code, leaving the precondition validations to the external client applications 

when they called for remote methods. 

Other interesting aspect of using design by contract principles is that it also helps to 

reduce the redundant validation code, a common programming error. Removing redundant 

code potentially helps to improve the performance of applications. If we produce strong 

preconditions, and they are already respected in the client side, these preconditions become 

redundant. For instance, if the preconditions are describing that some arguments must be 

different from null, the client must guarantee the validation of those arguments before calling 

the method. The card side will have less code because there is no need to verify the null 

arguments twice and the application will not achieve an abnormal state. This will make the 

card application lighter. 

We want to stress on the use of JML as specification language for applications that use the 

Java Card Runtime Method Invocation (JCRMI) as the model of communication between the 

server and the client side applications. JCRMI and the design-by-contract (as enforced by JML) 

can be used together in a way that the remote Java interfaces or abstract classes in the server 

side (card-side) become place where specifications can be written and respected when a client 

makes a call to the remote method. These JML-specified remote Java interfaces are shared 

with the client side. Hence developers can implement the client side supported by the 

specifications written for the shared Java interfaces. 

In our work, some challenges became evident from the application domain itself, i.e. 

JCRMI and Java Card. Sometimes problem arose when we were using a client that tested 

methods of the Health Card.  In those cases, the JCRMI threw an exception because we didn’t 

know about JCRMI data transfer limit. Thus, every time the method was called, our application 

crashed. After some tests we found out that JCRMI does not provide support to messages of 

more than 150 bytes. All this put in evidence the fact that, even having some freedom to 

express specifications, we still needed to master the language used for implementing the 

HealthCard.   

To introduce formal methods in software industry, we first have to educate people on the 

strategies for incorporating formal specifications, and formal methods in general, into 

software development. This not only counts for software developers, but at some extent, 

people leading groups. Formal methods provide ways document code and new ways to 

implement software. Different software development groups can implement an application in 

parallel from a common formal specification. For instance, in a client-server application, one 

team can work on the client side implementation, the other on the server side. 

Regarding Madeira Island, we can envision having a central database with the information 

of medical data records of Madeira people. The full medical data records would be formally 

specified, for example using JML. Therefore, any company in the area of the healthcare that 

wants to develop a software application must comply with the common formal specification of 

the medical data records.  

Finally, we want to emphasize that the CardSecurity class declared in the Java Card tools 

was not specified in JML. However, we re-used the CardSecurity class in our Java 

implementation of the HealthCard.  
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