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Abbreviations 

 

AMH   Anatomically Modern Human 

bp/kb(p)/Mb(p) base pair / thousand (kilo) base pairs / mega (million) base pairs 

ca.  circa, about 

(r)CRS  (revised) Cambridge Reference Sequence 

D-loop  displacement loop/control region of mtDNA 

DNA   deoxyribonucleic acid 

dsDNA  double-stranded DNA 

HVS-I/HVS-II first/second hypervariable segment of mtDNA 

Indel(s) polymorphism of insertion-deletion 

ky(a)  thousand/kilo years (ago) 

LGM  Last Glacial Maximum 

(T)MRCA  (time to the) Most Recent Common Ancestor 

mtDNA  mitochondrial DNA 

my(a)  million years (ago) 

np(s)  nucleotide position(s) 

PCR  Polymerase Chain Reaction 

RFLP  Restriction Fragment Length Polymorphism 

SNP   Single Nucleotide Polymorphism 

STR   Short Tandem Repeat 

rRNA  ribosomal ribonucleic acid 

tRNA  transfer ribonucleic acid 
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Definition of basic terms and concepts: 

 

Allele(s) – Variant recognizable form(s) of a gene or DNA sequence at a specific chromosomal 

location. 

 

Bottleneck – The reduction of genetic diversity that results from a drastic reduction in population size. 

 

Clade – An evolutionary branch. 

 

Cladistics – The science of reconstructing evolutionary relationships by identifying common ancestors 

through the sharing among taxa of “derived” characteristics, rather than the sharing of “ancestral” 

characteristics.  

 

Coalescence time (age) - Time, sufficient to generate observed genetic variation of a phylogenetic 

tree, as a rule somewhat shorter than time when particular clade arose; coalescence age is usually 

considered as a time since the beginning of expansion of a monophyletic clade. 

 

Effective population size (Ne) - The number of adults contributing gametes to the next generation, on 

average a third of the actual size (“census” size) of a human population in present, according to the 

empirical principle (see, e.g. Cavalli-Sforza et al. 1994). 

 

Fixation - The process by which one allele increases in a population until all other alleles go extinct 

and the locus becomes monomorphic. 

 

Founder effect – Reduced genetic diversity in a population founded by a small number of individuals. 

 

Founder haplotype - Common ancestral haplotype to which all haplotypes under concern coalesce to. 

 

Genetic drift – Random fluctuations in the frequency of haplotypes in a finite population owed to 

stochastic sampling from one generation to the next, which may accelerate differentiation of groups, in 

particular in small populations. 

Genetic Marker - Random mutations in the DNA sequence which act as genetic milestones.  

 

Haplotype – The combination of allelic states of a set of polymorphic markers lying on the same DNA 

molecule, e.g. a chromosome or region of a chromosome. Of mtDNA (= lineage), sequence footprint 

for the characterized polymorphisms encompassing all identical sequences. Of Y chromosome, 
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defined by the pattern of length variation of STRs of a particular chromosome. The difference of a 

single genetic marker delineates a distinct haplotype. 

 

Haplogroup - Monophyletic clade of haplotypes that share characteristic sequence polymorphisms 

(genetic mutations or “markers”), and derive from a single ancestral founder haplotype. It is usually 

defined by relatively slowly mutating markers and thus has more phylogenetic stability than 

haplotypes. 

 

Homoplasy – Sharing of identical character states that cannot be explained by inheritance from the 

common ancestor of a group of taxa. 

 

Lineage – A group of taxa sharing a common ancestor to the exclusion of other taxa. 

 

Monophyletic – Relating to a clade, consisting of an ancestor and all of its descendants.  

 

Mutation - Transmission error in DNA, fixed after the replication of DNA. 

 

Natural selection – evolutionary process of differential contribution of individuals to the following 

generations, favouring the transmission of beneficial mutations and limiting the transmission of 

deleterious ones. 

  

Paraphyletic – A grouping that shares a common ancestor to the exclusion of many other lineages but 

does not include all descendants of that common ancestor. 

 

Parsimony – The principle that the best explanation is that which requires the least number of causal 

factors. 

 

Phylogeny – Representation of the origin and evolution of a set of organisms or lineages, where the 

ancestral relationships and pathways of transmittion from parents to offsprings are depicted. 

Phylogeography - Analysis of the geographical distribution of the different clades of a phylogeny. 

 

Recombination – The emergence of new combinations of alleles due to meiotic crossing-over. 

 

Star-like phylogeny - Phylogeny of a set of sequences that follows, in their length distribution, a 

Poisson mode of distribution and coalesces into an ancestral haplotype, i.e. each extant taxon is 

derived independently from the common ancestor of all taxa. 
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Abstract 

  

 The maternal and paternal genetic profile of Guineans is markedly sub-Saharan West African, 

with the majority of lineages belonging to L0-L3 mtDNA sub-clusters and E3a-M2 and E1-M33 Y 

chromosome haplogroups. Despite the sociocultural differences among Guinea-Bissau ethnic groups, 

marked by the supposedly strict admixture barriers, their genetic pool remains largely common. Their 

extant variation coalesces at distinct timeframes, from the initial occupation of the area to later inputs 

of people. Signs of recent expansion in mtDNA haplogroups L2a-L2c and NRY E3a-M2 suggest 

population growth in the equatorial western fringe, possibly supported by an early local agricultural 

centre, and to which the Mandenka and the Balanta people may relate. Non-West African signatures 

are traceable in less frequent extant haplogroups, fitting well with the linguistic and historical evidence 

regarding particular ethnic groups: the Papel and Felupe-Djola people retain traces of their putative 

East African relatives; U6 and M1b among Guinea-Bissau Bak-speakers indicate partial diffusion to 

Sahel of North African lineages; U5b1b lineages in Fulbe and Papel represent a link to North African 

Berbers, emphasizing the great importance of post-glacial expansions; exact matches of R1b-P25 and 

E3b1-M78 with Europeans likely trace back to the times of the slave trade. 

 

  

Resumo 

 

 O perfil genético materno e paterno dos Guineenses é característico das populações do Oeste 

sub-Sahariano, observando-se que a maioria das linhagens pertence aos haplogrupos mitocondriais 

L0-L3 e do cromossoma Y E3a-M2 e E1-M33. Apesar das diferenças sócio-culturais entre os grupos 

étnicos da Guiné-Bissau, marcadas por supostas barreiras de miscigenização, a sua estrutura 

genética é semelhante. A diversidade actual coalesce em distintas escalas temporais, desde a 

colonização inicial da área aos subsequentes episódios imigratórios. Indícios de expansão recente 

nos haplogrupos mitocondriais L2a-L2c e NRY E3a-M2 sugerem um crescimento populacional no 

Oeste Africano, possivelmente suportado por um centro local de agricultura, no qual os Mandenka e 

Balanta podem ter desempenhado um papel preponderante. Haplogrupos menos frequentes 

representam influências não Oeste africanas, corroborando as evidências linguísticas e históricas de 

determinados grupos: os Papel e Felupe-Djola retêm traços genéticos de possíveis origens Este 

Africanas; as linhagens U6 e M1b, presentes em membros da família linguística Bak, indicam difusão 

parcial de linhagens Norte Africanas; mtDNAs U5b1b encontrado em Fulbes e Papel sugerem uma 

ligação aos Berberes, e enfatizam a importância das expansões pós-glaciais; haplotipos R1b-P25 e 

E3b1-M78, observados em Europeus e idênticos aos encontrados em Guineenses, possivelmente 

remontam ao tráfego de escravos. 
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Chapter One 

 

Introduction 

 

 The mitochondrial DNA (mtDNA) and the non-recombining portion of the Y chromosome 

constitute haploid and non-recombining genetic systems of uniparental inheritance, whose particular 

features makes them valuable molecular records. In the last decades, both systems have proved to be 

powerful tools for investigating the demographic history of humankind, assuming that the present 

variability can unveil episodes in which our maternal and paternal ancestors were involved. 

 Throughout time, the main molecular differentiation of anatomically modern humans occurred 

during their processes of dispersal into different continents and regions, and therefore the subsets of 

variation tend to be associated to particular geographic areas and populations. The phylogeographic 

approach is then applied in order to better understand past demographic phenomena such as range 

expansion, genetic drift (founder-effects and bottlenecks) and population subdivision. The lineage-

based approach attempts to unravel the history of genetic lineages of shared ancestry (known as 

haplogroups), while the population-based approach focuses on the prehistory of individual populations, 

geographical regions or on population migrations, by using human population groups as the unit of 

study.  

  The history of uniparental systems sheds light over a novel dimension but may not accurately 

reflect the history of a population because of drift effects in a single locus. Indeed, sex-specific 

scenarios may rather diverge than converge because of differential demographic histories throughout 

time. It has therefore become clear that studies of mtDNA variation need to be complemented with 

data on the male-specific Y chromosome, and ideally with autosomal data. In that sense, researchers 

are able to unravel socio-cultural effects that might have influenced the extant pool such as polygyny, 

the effects of matrilocality versus patrilocality or the social stratification dictated by ethnolinguistic 

affiliation. This is particularly important when dealing with African populations deeply-structured on 

ethnic social constraints.  

 The particular interest of our work is to understand the origin and rise of the genetic diversity of 

the main ethnic groups in Guinea-Bissau, together with the processes that might have shaped it. The 

first section gives us an overview of the basic principles of the phylogenetic and phylogeographic 

approaches. A description of particular features of both mtDNA and Y chromosome genetic systems 

follows, driving the reader to the central focus of the literature overview - the general phylogenetic 

topology and worldwide variation of mtDNA and Y chromosome haplogroups. The analysis is 

nevertheless multidisciplinary and is performed in the context of genetic, linguistic, historical and 

demographic evidences, described in more detail in the last part of the overview. The synthesis will 

serve as background for to interpret the variation in the studied groups. 
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Chapter Two 

 

Literature overview 

 

 

1 – Basic concepts of the phylogenetic and phylogeographic approaches 

 

1.1 - Phylogenetic trees and networks  

 

 A phylogenetic approach (from the Greek: phylon = race and genetic = birth) is the 

classification of taxa based on how closely they are related in evolutionary terms. The existing 

variation and pattern of relationship of lineages are expressed by the construction of phylogenetic 

trees as attempts to arrange and order the evolutionary relationships between different variants in a 

relevant and meaningful way (for in-depth descriptions see Li 1997, Page and Holmes 1998, Graur and Li 2000, Salemi and 

Vandamme 2003). Individual differences at the molecular level of DNA sequences can constitute the raw 

information to relate the entities. Each coalescent node with descendants represents the hypothetical 

or “real” Most Recent Common Ancestor (MRCA) of the divergent lines (the latter when characters 

evolve sufficiently fast to be tracked in extant populations), where edge lengths are proportional to 

divergence time. A character state is assigned to each node, and each split partions a set of 

sequences into two mutually exclusive sets. The tree building requires determining the tree topology 

(branching order and, if of interest, determination of a root), the evolutionary time (branch lengths) and 

the ancestral types, as the overall likelihood and reliability. There are three main methods of 

constructing phylogenetic trees from molecular data: distance-based such as neighbour-joining (NJ; 
Saitou and Nei 1987, Studier and Keppler 1988), parsimony-based such as maximum parsimony (MP; Fitch 1971, 1977; 

Swofford 1993), and character-state-based such as maximum likelihood (ML; Felsenstein 1988). Traditional tree 

building methods are however of limited success in human DNA analysis due to intraspecific short 

distance between individuals. The evolution of DNA characters may well be polytomous at many 

branching points, what in tree building would be reduced to dichotomous earlier branching or artificially 

resolved polytomies (as in NJ and MP, respectively; Bandelt et al. 2000, Graur and Li 2000). Homoplasies (similar 

characters produced by convergent evolution) and variable substitution rates among sites also create 

incompatibilities in the classical trees: a high number of equally likely topologies can be drawn from the 

same dataset and conflicts are mostly solved by chance, so that one can select an incorrect topology.  

 All the plausible trees are better summarized in networks where links connect the nodes under 

the assumption of maximum parsimony (Page and Holmes 1998, Graur and Li 2000, Salemi and Vandamme 2003). These are 

expected to better model reality since the actual evolutionary history may not be particularly tree-like. 

The homoplasic parallel mutations and the state reversal of characters are represented by reticulations 
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- equally likely pathways of evolution that unite divergent haplotypes. Fast algorithms of network 

construction have been set to remove the network’s least likely links from all the generated possible 

trees (reduced-median, RM; applied to studies of mtDNA by Bandelt et al. 1995). The algorithm is applied in 

a hypothetical sequential decomposition of informative characters, e.g. partitioning the groups of 

haplotypes character-by-character, where correlated sites across haplotypes are combined in one 

character. A binary matrix of presence or absence of the mutation compared to a reference sequence 

is built from which a network with 0-1 vectors will be constructed (Figure 1). Each reduction step 

employs parsimony and frequency criteria, allied to the knowledge of site mutation rate (Bandelt et al. 2000). 

This approach, usually applied for small samples sizes (n<50) contains all the equally likely trees and 

can assist in identifying sequencing errors, which manifest themselves in implausible network 

substructures (Bandelt et al. 2002). 

 
 Figure 1 – One-step subnetworks of the vectors 000, 011, 101: a) six-linked network with three unobserved 

intermediate nodes (in black); b) generation of a median vector (001) by parsimony criteria. In Bandelt et al. (1995). 

 

 

An alternative to limit the levels of reticulation in multi-state markers and large datasets 

(several hundreds) is the median-joining method (Figure 2; Bandelt et al. 1999). The algorithm is based on 

selective inclusion of the most likely trees in a minimum spanning network. Unobserved hypothetical 

nodes can be added to shorten the overall length and make it closer to the most parsimonious. The 

difficulties in determining the most parsimonious phylogeny might be also overwhelmed by assigning 

different relative weights to the mutations (Richards et al. 1998b, Helgason et al. 2000), associated to their 

occurrence rates, and essentially by a good level of resolution in the basal topology (Torroni et al. 1996, 

Macaulay et al. 1999b, Bandelt et al. 2000, Chen et al. 2000, Kivisild et al. 2002).  

A step-by-step guide to hand construction of median networks is given by Bandelt et al. (2000), 

in a pre- and post-processing parameterized strategy entitled “speedy construction and greedy 

reduction”. At the same time, the use of MJ after RM algorithm is advised, where RM reduces the 

homoplasy in the matrix and the reticulation in the network. The tree is built from “cliques”, sets that 

include all the pairwise compatible characters. The ancestral-derived states are taken from the median 

majority consensus, with priority defined by relative mutation rate of the sites. Its speedy construction 
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involves selection of extreme characters, as the terminal links and the ones that determine cubes. The 

initial central node contains all the sampled types, but with the analysis of a character, n sequences 

are popped out. The characters that could fit without additional recurrent evolutionary paths are placed 

at first. The shelling procedure amounts for collapsing peripherical types into the central node, by  
 

 
 

Figure 2 – Median-joining networks constructed from the data of the table with three different settings of the parameter 

ε; inferred sequence types U, V, W, X, Y, and Z are added to the growing network as median vectors. Adapted from 

Bandelt et al. (1999). 

 

 

partioning the characters, and ends when one it is not possible to discern any of the two states and a 

sequence remains as the median. “Greedy reduction” involves a final post-processing that undoes 

excessively recurrent cases by operating in non-peripherical clades, but not in cliques. 

 

 

1.1.1 - Determination of a phylogenetic root 

 

 In the unrooted trees given by NJ and MP tree-building methods, the ancestor is taken as 

unknown and no evolutionary relationships are assumed between members, thus having no relation to 

a timeline. On the other hand, a rooted phylogenetic tree is an evolutionary directed tree, with a unique 

taxa defined as the MRCA (Figure 3). The temporal stratification of branching events is possible since 

taxa are oriented with respect to evolutionary time, defining relationships from ancestral to descendant 

divergent nodes and leaves of the tree. The root is specified by means of an outgroup, known to have 

separated from the common phylogenetic lineage before the existence of the MRCA of the group 
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under study. In human DNA studies it is common to use chimpanzee (Pan troglodytes), gorilla (Gorilla 

gorilla) or Neanderthal sequences, or alternatively a subset of the intraspecific variation. If external 

evidence is not available, a node in the tree from which the distance to all terminal nodes is minimal, is 

specified as the midpoint (mid-point rooting approach), having as principal a constant evolutionary 

rate. 

 
Figure 3 - Unrooted and rooted trees generated from sequence A-D dataset. Adapted from Page and Holmes (1998). 

 
1.2 - Calibration of the molecular clock and coalescence estimates 

 

The introduction of molecular data with the advent of genetic markers made it possible to 

calculate divergence times, vital for reconstructing and interpreting the origin and demographic history 

of species. DNA studies reveal then an independent chronology for combining with non-genetic 

sources of evidence (as in Forster 2004). The molecular clocks, an abstraction of early observations on 

protein evolution (e.g. Gillespie 1991), are used with the purpose of contextualizing the molecular variation 

generated in time, by associating an absolute timescale to the sequence diversity. The mutation 

evolution is governed by a time-continuous Markov-chain which implies that new mutations are 

completely independent from those already existing in the system (see details in Bandelt et al. 2006). One of 

the crucial points is the calibration of the molecular clock for a particular genetic system, dependent on 

the mutation rate of the underlying polymorphisms. Several approaches take into account 

quantitatively checkable parameters, such as: 1) constant mutation rate of different lineages and; 2) 

neutrality of the phylogenetic markers. The clock calibration can be performed directly from familial 

and pedigree analysis or indirectly by determining the accumulation of mutations in a timescale, using 

historical records, palaeontological or archaeological evidences about the split between different 

population groups/species as a basis, although none is without controversy. 
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 Discordance of results given by familial/pedigree and evolutionary studies is well documented 
(Heyer et al. 1997, 2001; Macaulay et al. 1997; Pritchard et al. 1999; Forster et al. 2000; Kayser et al. 2000a; Holtkemper et al. 2001; Zhivotovsky et al. 

2004). These differences were nevertheless not unexpected since the approaches look at opposite ends 

of the evolutionary process. As a consequence, we can see that 1) the “slower” mutations are only 

detected in the evolutionary studies while the “fast” are relatively overexpressed in the others, 2) state 

reversions are identified at the population level but are treated  as new mutations in pedigrees and 3) 

the familial/pedigree analysis does not consider a non-uniform generation time through thousands of 

years of evolution, while in the latter variation is filtered by long-lasting natural selection (Howell et al. 2003a, 

Zhivotovsky et al. 2004). Under such circumstances, the mutation rates obtained by evolutionary studies on 

the basis of dated outgroups have been proved to be more suitable for evolutionary purposes, while 

the family/pedigree estimates are recommended for analysis of recent history, as it may possibly 

manifest itself at the tips of the phylogenetic trees (Pääbo 1996, Macaulay et al. 1997, Zhivotovsky et al. 2006).  

Once agreed upon a mutation rate, the coalescence calculations estimate the time of 

divergence of a closely-related set of lineages that share mutational motifs. The intra-clade frequency 

and diversity of the sampled variation is evaluated in a backwards sense, by accessing the sequence 

dissimilarities since they last shared a common ancestral haplotype. The correct specification of the 

phylogenetic topology is then essential, since branching lengths are proportional to the average 

number of mutational changes between the root/nodal haplotype and every individual haplotype in the 

network. A ρ statistic is applied for obtaining a mutational time (ρ=µt, where µ refers to mutation rate 

and t to time; Forster et al. 1996) and is then converted to absolute time by the use of the calibrated clock. 

As a “model-free” approach, ρ disregards the prehistoric demography and population structure 

affecting the molecular evolution. Nevertheless, until effective models have evolved, its use is more 

robust than models inaccurately characterizing the demography in the distant past (Bandelt et al. 2006). The 

ρ standard error is function of the structure and number of branches available for estimation (Saillard et al. 

2000), in theory only correctly estimated from the real genealogy (Bandelt et al. 2006). 

 

 

1.3 - DNA polymorphisms as molecular markers for phylogenetic studies 

 

The occurrence of mutations, mere changes in the nucleotidic sequence of the DNA molecule, 

is the basis of individual variation. Over evolutionary time, the accumulation of different allelic variants 

results in the genetic diversity characterizing extant human populations. The sources of mutation are 

multiple, both spontaneous when errors in DNA replication happen, and induced, by physical or 

chemical agents. For the mutations to be transmitted to the progeny they have to occur in the germline 

and should not be lethal. 
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For the use of molecular markers with phylogenetic purposes an extended knowledge on their 

mutational differences is crucial, namely in terms of rates and processes (see sections 2.3.3 and 3.4). 

In that sense, two classes of markers can be distinguished: 1) “slow-evolving” markers are essential 

for resolving basal branches of the phylogenetic tree, usually defining haplogroups; 2) the “fast-

evolving” markers are more useful for determining inner variation within a haplogroup, measured 

among the most recent branches of the phylogeny.  

Most of the evolutionary studies make use of Single Nucleotide Polymorphisms (SNPs) and 

Short Tandem Repeats (STRs or microsatellites) polymorphisms. The SNPs refer to the simplest 

difference between two homologous DNA sequences – a base substitution (transition/transversion) or 

insertion/deletion (indel) of one base pair. In a general sense, SNPs are responsible for more than 

90% of the genomic variants (Collins et al. 1997; ~7 millions of SNPs described in HapMap database). Due 

to pragmatic reasons their study has been standardized for Restriction Fragments Length 

Polymorphism (RFLPs) research, since many of those mutations are able to either prevent enzymatic 

hydrolysis of DNA by a (battery of) restriction enzyme at a known position of genome,  or to generate 

new restriction sites. 

The STR loci are repetitive elements of motifs of 3–7 bp in length (Fregeau and Fourney 1993, Smith 1995). 

These repeats are distributed throughout the human genome (except for mtDNA that does not contain 

and constitute a rich source of highly polymorphic markers, distinguished by the number of copies of 

the repeat unit (from 3 to 49 repeats/locus, de Knijff et al. 1997). The ancestral and derived states are then 

ascertained by comparison with a reference (provided and unambiguously identified). When combined 

with the binary SNP markers the “fast-evolving” STRs (or microsatellites) are able to discriminate the 

inner variety of basal branches. Notice however that the extra-nuclear and autonomous genome of 

mitochondria does not contain STRs. 

 

 

1.4 - Phylogeographic perspective of human uniparental genetic systems 

 

The phylogeographic approach for human genetic variation analyses the spatial distribution of 

clades within a phylogeny, in parallel to their accumulated frequency, diversity and age estimates (Avise 

et al. 1987, Avise 2000). By performing a systematic comparison of those variables, alternative interpretations 

are left open to integrate patterns of modern diversity with the probable regional sources of variation 

and migration routes, as well as cultural and climatic events that inevitably have strongly contributed to 

the shaping of the present-day gene pool.  

Due to their specific features, the human mtDNA and Y chromosome are the two genetic 

systems reflecting, respectively, a maternal and paternal perspective of the modern Homo sapiens 

origin and demographic processes throughout the world. Both systems manifestly tend to show 
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geographic and, often, also ethno-linguistic clustering patterns (e.g. Rosser et al. 2000; Underhill et al. 2000, 2001a; 

Pereira et al. 2001b; Richards et al. 2002; Salas et al. 2002; Semino et al. 2002, 2004; Destro-Bisol et al. 2004; Wood et al. 2005), presumably 

because mutations have accumulated along closely related radiating lineages. In general, the clines of 

paternal variation are much more evident than that in their maternal counterpart, suggesting that 

females have experienced higher rates of migration and gene flow compared to males and/or lower 

rates of genetic drift due to sex differences in effective population sizes (Perez-Lezaun et al. 1999, Oota et al. 2001, 

Fagundes et al. 2002, Dupanloup et al. 2003, Malyarchuk et al. 2004). Social habits can underline these differences, under 

sex-biased admixture (e.g. polygyny-monogamy transition in Dupanloup et al. 2003) and/or the phenomena of 

patrilocality, under which men are expected to live closer to their birthplaces while women move to 

their husband’s natal domicile (e.g. Kayser et al. 2003, Wen et al. 2004, Hamilton et al. 2005, Wood et al. 2005). Both 

phenomena are not mutually exclusive, either one might be true for different areas and periods of time. 

Surprisingly, the patrilocal pattern still represents ~70% of the cases of modern societies (Murdock 1967, 

Burton et al. 1996, Seielstad et al. 1998), with larger differences accumulating in between more distant parts of the 

globe. In that sense, sex-specific scenarios may rather diverge than converge because of differential 

demographic histories, with mtDNA expected to have lower differentiation with geographical distances 
(Seielstad et al. 1998, Jorde et al. 2000, Oota et al. 2001). Indeed geography rather than language seems to be a better 

predictor of Y chromosomal affinities in Europeans, Americans and Austronesians (Rosser et al. 2000, Hurles et 

al. 2002, Zegura et al. 2004). However these may not be straightforward, since there are evidences of spread of 

Y chromosomal lineages without evident mtDNA counterpart (e.g. haplogroup NO counter-clock route 

from inner Asia/southern Siberia to east Europe, Rootsi et al. 2007; YAP+ chromosomes in Asia, Tibet and 

Andaman islands from an African source, Underhill et al. 2000, Tajima et al. 2004, Wen et al. 2004, Hammer et al. 2006). In 

Africa, where the miscegenation system is mostly dictated by social constraints, the paternal variation 

is apportioned among both geographic and ethnolinguistic units (Destro-Bisol et al. 2004, Wood et al. 2005). 

 Under episodes of demographic expansion, some of the genetic types tend to become more 

frequent. If the conditions that allowed expansion persist (e.g. technological improvement or climatic 

stabilization), the next generation(s) will further increment their frequency and diversity until new 

mutations arise and the original variants start to decay. Starlike phylogenies are then formed and 

testify for the extent of the expansion and the timescale of its evolution (Forster 2004). On the other hand, 

for variants that have supposedly arrived in a new territory, a founder analysis (e.g. Forster et al. 1996, Richards 

et al. 2000) allows to identify a founder haplotype – an ancestral node which is present or phylogeneticaly 

reconstructed both in the source and in the destination area – and from there evaluate the 

accumulated variance. Ideally, the coalescence age to the founder(s) type(s) would reflect the arrival 

of the migrating group. However, if the population is small and does not disperse upon arrival, the 

coalescence times of the founder types may underestimate their entrance time. On the opposite, more 

massive migrations carry a considerable amount of variation, so that the extant variation is a sum of 
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different periods in their demographic history, and will therefore overestimate the dates. The strategy 

to be outlined requires then a deep phylogenetic analysis in a width of a relevant geographic scope. 

 

 

2 - Mitochondrial DNA phylogenetic analysis 

 

2.1 - Structure and organization of mtDNA 

 

Mitochondria are cytoplasmatic organelles responsible for the energy production of the cells. 

The energy-generating oxidative phosphorilation (OXPHOS) pathway physically takes place in the 

mitochondria, including fatty acid β-oxidation, the urea cycle and the common pathway for ATP 

production – the respiratory chain. These organelles also play a part in intracellular signalling and 

apoptosis, in intermediate metabolisms such as the Krebs or tricarboxylic acid cycles, and in the 

metabolism of amino acids, lipids, cholesterol, steroids and nucleotides (Chinnery 2006). Mitochondrial DNA 

– mtDNA - represents an extranuclear genome whose content and size varies in different living 

organisms. When compared to the conserved organization in metazoan organisms (Saccone et al. 1999) 

most of mtDNA genes have been lost in mammalians. The crucial set of genes for OXPHOS pathway, 

transcription and replication processes, have nevertheless been kept, with most of the molecules 

containing 12 to 20 protein-coding genes. The economically built human mtDNA genome is reflected in 

the almost lack of non-coding regions (Anderson et al. 1981). Nevertheless, nuclear genes also code for a 

much larger variety of mitochondrial peptides (Shoubridge 2001), synthesized in the cytoplasm with a 

mitochondrial targeting sequence. 

The number of mitochondria in human cells may vary largely according to the cell type and 

size. In energy-depending tissues, thousands of mitochondria can be found, each with two to ten 

mtDNA copies in its matrix. Somatic cells are estimated to host 1000 to 10000 mtDNA molecules 
(Lightowlers et al. 1997). In the case of germline cells, the mtDNA content of the mature oocytes averages the 

200,000 molecules (Chen et al. 1995a, Steuerwald et al. 2000, Reynier et al. 2001, Santos et al. 2006), with each mitochondrion 

containing a single DNA molecule (Piko and Matsumoto 1976, Piko and Taylor 1987), while sperm cells mid-piece 

counts with 50 to 75 mitochondria (50 to 1200 mtDNA molecules, Diez-Sanchez et al. 2003) in charge of their 

mobility. In Figure 4 the cellular content of mitochondria and the internal structure of these organelles 

are evidenced by fluorescence methods. 
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Figure 4 – Cellular location and internal structure of the mitochondria, revealed by fluorescent methods. In 

www.microscopy.fsu.edu/cells/ animals/mitochondria.html. 

  

The human mitochondrial genome is a circular double-stranded DNA molecule about 16.6 kb 

long, whose sequence was first fully described 26 years ago (Anderson et al. 1981). This particular sequence 

from a human tumour line is known as “Cambridge reference sequence”, in order to indicate that the 

sequence was resolved in MRC Laboratory for Molecular Biology, Cambridge, UK. For the revised 

version of human mtDNA “reference” sequence see Andrews et al. (1999). Most of its length comprises 

contiguous coding regions, encoding for 13 polypeptides involved in OXPHOS electron transport 

system (ETS), 22 tRNAs and 2 rRNAs, essential to protein synthesis (Figure 5a). The largest non-

coding region of human is the control region or D-loop segment (D standing for displacement), an 

extension of 1.1Kb comprised in-between np 16024 and np 576 with regulatory elements for the 

replication and transcription processes (Lightowlers et al. 1997). Three short segments here comprised and 

generally named hypervariable sequences – HVS-I, HVS-II AND HVS-III – have a highly variable 

sequence in comparison to the rest of the genome (Brandstatter et al. 2004a). The control region contains 

heavy- (H) and light- (L) strand promoters, the multiple origins of the H-strand replication (OHn), three 

conserved sequence blocks (CSBI, II and III) and the termination-associated sequences (TAS, see 

Figures 5a and 5b). The multiple origins of replication are known to relate with different modes of 

replication synthesis, namely mtDNA maintenance under stead-state conditions or as a response to 

physiological demands (e.g. Coskun et al. 2003). The mtDNA is intertwined, in punctuated structures of the 

matrix of the mitochondrial inner membrane called nucleoids, in close proximity to the ETS (Clayton 1992). 
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   a) 
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b) 

Figure 5 – Genomic map of human mtDNA. Schematic diagrams of a) the full molecule and b) the mtDNA control 

region. H and L stand for heavy and light strands respectively, given the asymmetric distribution of G and C nucleotides, 

with H being the G-rich one. The genes of the seven subunits of OXPHOS (ND1, 2, 3, 4L, 4, 5 and 6), one subunit of 

complex III (Cyt b), three subunits of complex IV (COI, COII AND COIII), two ribosomal RNAs (12SrRNA and 

16SrRNA), 22 tRNAs and D-loop regions are evidenced. Gene products encoded by the L-strand are shown in the inner 

complete circle while the products of the H-strand, are shown in the outer circle. The location of promoters (PL and PH) 

for transcription and replication origins (OH1, OH2, as in 
Coskun et al. 2003 are shown by arrows. In (b) the functional 

sequences are indicated with boxes. TAS, termination association sequence; CSB I, II, III, conserved sequence block I, 

II, and III; Tfam, Tfam binding sites. Adapted from MITOMAP and Coskun et al. (2003). 

 

 

2.2 - On the origin of mitochondria and mtDNA 

 

It is generally accepted that mitochondrion have originated about 1.5 x 109 years ago, as an 

endosymbiotic prokaryotic organism who chose an proto-eukaryotic cell as a host, providing extra 

energy in return for a safer environment (Margulis 1970, 1975). The establishment of this relationship is 

probably associated with a global disaster at two billion years ago, when atmospheric oxygen levels 

started to rise due to the cyanobacteria activity (Holland 1994). Under these conditions, anaerobic life forms 

that were unable to protect themselves from the toxicity of oxygen, or unable to find a suitable 

anaerobic microenvironment, probably became extinct. The mitochondrial traces resembling modern 

bacteria, such as the circular shape of the genome and the discrete origin of replication support the 

hypothesis of an endosymbiosis (Vellai et al. 1998). Molecular phylogenies have also provided evidence of a 

single and monophyletic bacterial origin for these modern cellular organelles (Gray et al. 1999), with mtDNA 

genes  having the closest link to those of the present-day alpha-proteobacteria (Gray et al. 1999, Karlberg et al. 

2000, Andersson et al. 2003).  

In this process of co-evolution, some of the mitochondrial genes have been transferred to the 

nucleus as orthologous though non-functional genes (Lopez et al. 1994). The analysis of the human nuclear 

genome has revealed more than 600 nuclear inserts of mtDNA (numts; Olson and Yoder 2002, Tourmen et al. 2002, 

Bensasson et al. 2003, Mishmar et al. 2004, Riccheti et al. 2004, Hazkani-Covo and Graur 2007) of variable length from ~40 bp nearly 

up to the whole mitochondrial genome. Their sequence homology to the mtDNA ranges from 78 to 

nearly 100%, thus they are supposed to result from temporarily different insertional events, where the 

lower level of identity means they have resided in the nucleus for a longer time. The integration of 



 26 

numts seems then to be an ongoing process that shapes nuclear genomes (Bensasson et al. 2001, Riccheti et al. 

2004). Furthermore, human-specific numts preferentially target coding or regulatory sequences and can 

therefore generate mutagenic alterations found to be associated with diseases in humans (e.g. 

thrombospondin homologous gene, an angiogenesis inhibitor that retards tumour growth; Bogdanov et al. 

1999, Borensztajn et al. 2002, Turner et al. 2003).  

On the other hand, a large number of mitochondrial proteins are imports coded by nuclear 

sequences. The modern mitochondrial proteome is then a result of both reductive and expansive 

processes, where many ancestral mitochondrial genes have been simply purged and lost when 

neutralized by the organism’s environment (Karlberg et al. 2000, Andersson et al. 2003), but the loss is supposedly 

tolerated by a compound uptake from the cytosol (Andersson et al. 1998, Berg and Kurland 2000).  

 

 

2.3 – Distinctive features of mtDNA 

 

2.3.1 – Maternal inheritance 

 

The maternal transmission constitutes the mtDNA hallmark, since it is inherited from the 

cytoplasm of the egg (Giles et al. 1980, Stoneking 1994, Stoneking and Soodyall 1996, Wallace et al. 1999). A mutation altering the 

mtDNA of a woman’s oocyte will henceforth characterize her descendants, what enables researchers 

to trace related lineages back through time without the confounding effects of biparental inheritance. At 

the time of fertilization the paternal mtDNA is comparatively low numbered (Michaels et al. 1982, Diez-Sanchez et al. 

2003), in a average proportion of 100 carried in the sperm’s tail to 104 in the oocytes, making paternal 

contribution highly unlikely. Moreover there is an active system that eliminates the spermal mtDNAs. It 

is believed to happen at early stages of the embryogenesis, by ubiquination of the mid-piece of the 

sperm cell (Hopkin 1999, Sutovsky et al. 2004). Although there can be leakage of paternal mtDNA in the case of 

poor quality oocytes (St John et al. 2004) or dysfunctions of the system of paternal mtDNA destruction (Schwartz 

and Vissing 2002), the populational genetics (Macaulay et al. 1999a) and pedigree studies (e.g. Bendall et al. 1996, Parsons et 

al. 1997, Soodyall et al. 1997, Jazin et al. 1998, Howell et al. 2003a) and further analysis of patients with mitochondrial 

myopathies (Davis et al. 1997, Taylor et al. 2003, Schwartz and Vissing 2004) showed no evidence this would happen in 

normal conditions, leaving the exclusive inheritance to the maternal component.  

 

 

2.3.2 - Non-recombining transmission and homoplasmy 

 

 The mammalian mtDNA does not recombine as nuclear chromosomes do (Olivo et al. 1983, Merriwether 

et al. 1991, Stoneking 1994, Stoneking and Soodyall 1996, Wallace et al. 1999), meaning allelic association for mitochondrial 

markers therein. Therefore, the genetic material acts as a single locus and allows the drawing of a 
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unique matrilinear genealogy, where all copies trace back to a common ancestor. As it represents one 

quarter of the effective population size of autosomal loci (three-fold less than X-chromosome), this 

genome is more prone to random fluctuations of allele frequencies under genetic drift, increasing its 

sensitivity to detect such phenomena. 

The lack of recombination in human mtDNA has been questioned for several times, 

endangering the interpretation of the human mtDNA variation. If to occur, recombination could be 

possible as the molecular machinery is present (Thyagarajan et al. 1996) although it is still unclear to what 

extent mitochondria within a cell are able to fuse and exchange contents (Ono et al. 2001, Legros et al. 2004). A 

statistical analysis of pairwise linkage disequilibrium, as function of distance between sites, suggested 

recombination since it declined with increasing markers distance (Awadalla et al. 1999). Similar hypothesis 

was proposed by a phylogenetic study of coding region homoplasies (Eyre-Walker et al. 1999) since their 

frequency at the same np was much higher than expected under a single rate of synonymous 

mutations. The quality of both data has however been questioned (Kivisild and Villems 2000, Kumar et al. 2000) and 

their reanalysis gave no significant results (Arctander 1999, Jorde and Bamshad 2000, Parsons and Irwin 2000). Other later 

studies found no evidence of recombination of the molecule (Ingman et al. 2000, Elson et al. 2001, Piganeau and Eyre-

Walker 2004). Recently, a case of observed recombination was reported in the only known human with 

maternal and paternal DNA (Schwartz and Vissing 2002, Kraytsberg et al. 2004). The patient’s muscle tissue contained 

approximately 0.7% of recombined types. Recombination is however a very rare phenomena, and if it 

would occur in homoplasmic cells mtDNAs will not differ from the original (Pakendorf and Stoneking 2005). 

 The presence of only one type of mtDNA throughout the tissues of an organism– homoplasmy 

– is thought to be essential to the normal functioning of mitochondria (Hirata et al. 2002), as it allows a 

coordinate gene expression of mitochondrial and nuclear genes. When a new mutation arises and 

there is a complete replacement of the existing mtDNA variant, the new homoplasic state guarantees 

the normal functioning of cellular respiration, unless the variant turns out to be deleterious. The state of 

heteroplasmy can nevertheless happen in cases of incomplete switch, so that in a generation time two 

or more variants become co-existent (Poulton et al. 1998 and references therein). But again, the mechanism 

of genetic bottleneck in the oogenesis, at first reducing the number of molecules (Hopkin 1999) and then 

increasing it in mature oocytes (Thorburn and Dahl 2001) seems to preserve homoplasmy. A more recent study 

proposes that the new type can clonally expand in the cell (Coskun et al. 2003), over what one can preclude 

that the pathway of energy production will be significantly altered. However, a mechanism of 

overproduction of mtDNA is initiated to deal with the chronic deficit, in cells where the mutant induced 

the deficiency. A selective amplification can occur and mutants may become predominant if they do 

not generate defective gene products. 
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2.3.3 – Mutations rate, homoplasy and multiple hits 

 

Human mtDNA mutation rate is about ten to hundred-fold faster than that of nuclear DNA (Brown 

et al. 1979, Cann et al. 1987, Pesole et al. 1999, Ingman and Gyllensten 2001) therefore providing more information on the 

phylogeny within the species than equivalent DNA segments in the nucleus. The main reasons for 

such rate are the lack of the sophisticated DNA repair mechanisms and perhaps the absence of 

protective histones (Bogenhagen 1999) like those of nuclear genome, plus the high exposure to free radicals 

as a result of the OXPHOS pathway that increases oxidative damage of DNA. 

Within the mtDNA molecule the mutation rates are long shown to vary widely between the 

regions and at nps within a region (Hasegawa et al. 1993, Wakeley 1994, Macaulay et al. 1997, Torroni et al. 1998, Macaulay et al. 

1999b, Finnilä et al. 2001, Mishmar et al. 2003, Kivisild et al. 2006b). The rate of substitution is higher for the control region, 

where transitions are generally much more frequent than transversions (Meyer et al. 1999 and references 

therein). In parallel, 1) synonymous nps in protein-coding genes and peripherical domains of the D-

loop evolve five to ten times faster than the remaining control region domains; 2) the rate of 

synonymous sites is quite uniform over the mitochondrial genome, whereas the rate of 

nonsynonymous sites differs considerably between genes (Pesole et al. 1999, Kivisild et al. 2006b); 3) 

synonymous sites and rRNA evolve ca. 20 times and tRNAs ca. 100 times more rapidly than the 

equivalents in nuclear genome (Pesole et al. 1999). A calculation based on the comparison of a migrant 

group and its source population estimated a rate of 1.8 x 10-7 for the control region segment nps 

16090-16365 (Forster et al. 1996, 2001). In the coding region the rate is quite uniform for transitions (3.5 x 10-

8/site/year) but not for transversions (2.1 x 10-9 and 4.1 x 10-10 substitutions/site/year for synonymous 

and tRNA mutations, respectively; Kivisild et al. 2006b). An excess of rRNA and nonsynonymous base 

substitutions among “hotspots” of recurrent mutations was observed, mostly involving guanine to 

adenine transitions. A distinct mutational pattern among and within the control region and protein-

coding region might have functional and structural underlying reasons (Tamura 2000, Kivisild et al. 2006b). For 

example, the physical structure of the D-loop formation, in which the H-strand is displaced by the 

nascent L-strand and made to be in a single-stranded state (Reyes et al. 1998), can be suggested as a 

causal factor; depurination, the most frequent spontaneous alteration that occurs in DNA under 

physiological conditions (Loeb and Preston 1986), might explain the higher mutability of purines in  the single-

stranded H, in addition to that a repairing mechanism works only for double-stranded DNA as it 

requires a complementary template.  

The inferences from control region can become problematic due to its high rate of mutation 

and because it is subject to saturation due to excess homoplasy (Tamura and Nei 1993, Bandelt et al. 2006). 

Mutations on the same sites can arise due to distinct and independent events, showing up as parallel 

mutations in different lineages, more frequently in the so-called “hotspots”. Multiple hits of recurrent  
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mutations can then create ambiguous interpretations of the phylogenetic analysis, and it is essential 

that these are correctly identified (Bandelt et al. 2006). However, the basal structure of the phylogeny (its 

“skeleton”) is not much affected by recurrent mutations, because the level of resolution between the 

branches is sufficient, usually on the account of slow-evolving diagnostic coding region sites (see 

section 2.6). In fact, phylogeneticaly more stable coding region mutations offer supplementary power 

to distinguish recurrent mutations, for example within HVS-I (Bandelt et al. 2006). 

 

 

2.4 – The role of selection in mtDNA genome 

 

According to the neutral theory of molecular evolution (Kimura 1968, 1983), the fixation of 

stochastically rising mutations depends primarily on random genetic drift. Thus, demographic history 

supposedly plays a determinant role in the accumulation of mutations along radiating female lineages 

and the role of positive selection is negligible. As the theory assumes that the rate of evolution 

depends solely on mutation rate, neutrality can be tested by estimating the fixation difference between 

synonymous (neutral) and non-synonymous mutations at intra and inter-species level (Graven et al. 1995, 

Nachman 1998, Nielsen and Weinreich 1999). Several studies have observed an excess of non-synonymous 

mutations in the more recent branches of the phylogeny (Excoffier and Yang 1999, Elson et al. 2004, Ruiz-Pesini et al. 2004, 

Kivisild et al. 2006b). The most straightforward interpretation of that phenomenon is that negative (purifying) 

selection has acted on the human mtDNA-encoded proteins during evolution (reviewed by Gerber et al. 

2001, Elson et al. 2004, Kivisild et al. 2006b), but has not yet purified the slightly deleterious mutations from the 

youngest offshoots of the phylogenetic tree that might have introduced into the mtDNA pool, in 

particular during the phases of fast expansion of populations (Excoffier 1990, Merriwether et al. 1991).  It might be 

the case in European mtDNA haplogroup J, characterized by mutations associated with LHON disease 
(Torroni et al. 1997; Carelli et al. 2002, 2006; Howell et al. 2003b) Non-recombining mtDNA acts as a single locus where 

neutral or slightly deleterious substitutions can “hitchhike” their frequencies up or down as they are in 

linkage with sites under strong selectional pressure. Therefore, these mutations contribute to the so-

called “Muller’s ratchet” (Muller 1964, Lynch 1996), a slow but inexorable accumulation of slightly deleterious 

mutations, made possible by the absence of recombination of this particular genome.  

Continental differences of mtDNA variation has been sometimes interpreted as shaped by 

climatic adaptations so that geographical distribution of particular mitochondrial haplogroups has been 

influenced by positive selection (Torroni et al. 1994a, Mishmar et al. 2003, Ruiz-Pesini et al. 2004). Many of the changes 

associated with the adaptations were found in the coding region like in ATP6 gene, even though it is 

believed to be one of the most conserved mtDNA proteins (Mishmar et al. 2003). However, Elson et al. (2004) 

and Kivisild et al. (2006b) found no significant differences in relating climate and the rate of non-

synonymous changes for mtDNA haplogroups. The former studies seem to have erroneously 
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compared region-specific haplogroups of different diversity levels e.g. older lineages of Africans and 

younger of the Artic populations, so that an excess of nonsynonymous mutations was predictable for 

the more recent variants (Elson et al. 2004, Kivisild et al. 2006b). To consider the neutrality of mtDNA markers is a 

crucial subject in order to use mtDNA phylogenetic system in interpreting human dispersals. As no 

significant differences were found for different mtDNA lineages, positive selection should be assumed 

not to play a significant role in shaping the present variation of mtDNA and mtDNA markers can be 

taken, at least overwhelmingly, as neutral. 

 

 

2.5 – Calibration of the mtDNA molecular clock   

 

Genetic dating, especially using uniparental markers such as mtDNA and the non-recombining 

portion of the Y chromosome, plays a crucial role for reconstructing the evolution and spread of 

modern humans. In evolutionary studies, the calibration of the molecular clock makes use of an 

outgroup, analysing the mean accumulated differences between equivalent sequences in the light of 

their distance to the MRCA (established independently from a different source, as a rule from fossil 

evidence or from known from archaeology events). Regions of known colonization time allow to 

calculate an average rate of human mtDNA divergence, in a founder analysis perspective in which the 

archaeological records provide the evidence for the initial settlement. The molecular diversity of the 

population “derived-by-migration” is compared to that of the source population and founder types are 

identified by their frequency and accumulated variance. This model assumes the present-day 

variability in the source population to be similar to the original one, and considers low level of back 

migrants and parallel mutations. The populations of New Guinea, Australia and America have been 

used for such calibrations: their specific mtDNA clusters estimate a 2-4% per my divergence rate for 

the complete mtDNA molecule (Wilson et al. 1985, Torroni et al. 1994b). The control region calibration based on the 

data of Beringian expansion (Forster et al. 1996, Saillard et al. 2000) obtained a corresponding value of 36% per 

my, later averaged and converted into one mutation every 20180 years (Forster et al. 2001) for the HVS-I 

segment nps 16090-16365. 

Analogous mtDNA sequences of chimpanzee (Vigilant et al. 1991, Ingman et al. 2000, Maca-Meyer et al. 2001, 

Mishmar et al. 2003, Gonder et al. 2006, Kivisild et al. 2006b) and Neanderthal (Krings et al. 1997, Ovchinnikov et al. 2000), as well as 

mtDNA segments inserted in the human nuclear genome (numts; e.g. Kivisild et al. 2006b), have been also 

used as outgroups serving the purposes of mtDNA phylogenetics. In brief, because of their location, 

numts evolve at a nuclear lower rate and appear to be “frozen” in comparison to their mitochondrial 

counterparts (Fukuda et al. 1985). Therefore, their application is wide: phylogenetic markers, if there is 

enough sequence divergence at the aimed inter- or intraspecific level; infer ancestral states or root 

mitochondrial phylogenies if paralogous and their derivates are known (Zischler et al. 1995); set the baseline 
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for the study of nuclear mutation on which other evolutionary factors operate; study mutagenic 

phenomenon responsible for a variety of genetic diseases. Returning to the calibration of the mtDNA 

molecular clock, different attempts have obtained slightly different estimates. For example, Ingman et 

al. (2000) and Mishmar et al. (2003) obtained respectively 1.7 x 10-8 and 1.26 x 10-8 substitutions/site/year 

for the average rate of sequence evolution of mtDNA coding region in Europeans (control region not 

considered due to higher probability of reverse mutations). The main difference between the studies 

resides in the age considered for the human-chimpanzee split (5 mya in Ingman et al. 2000, according to 
Andrews 1992, Kumar and Hedges 1998; 6.5 mya in Mishmar et al. 2003, with 500 ky of lineage sorting, over 6 my for the 

split following Goodman et al. 1998). Under the last estimate, which corresponds to 5140 years per 

substitution in the whole coding region, the age of the MRCA of human mtDNAs was inferred to be of 

198 ± 19 ky (Mishmar et al. 2003).  

It has been more recently noticed that the purifying selection has left its mark in the mtDNA 

phylogeny (Elson et al. 2004, Kivisild et al. 2006b). The deeper branches are relatively impoverished in non-

synonymous substitutions compared with synonymous ones, hinting for that the deleterious mutations 

can survive in the short term but are eventually weeded out in the long run. The kind and quantity of 

the decay of non-synonymous mutations is not yet clear but is rather represented by a sigmoid-like 

curve (Bandelt et al. 2006) than exponential (Ho et al. 2005). At first, the appropriateness of using the average 

molecular clock over all mtDNA sites in dating events in human population history seems to be 

undermined. Kivisild et al. (2006) pioneered in using solely the mutation rate of synonymous transitions 

for the calibration of the molecular clock, in which one mutation occurs within every 6764 ± 140 years. 

Not surprisingly, the ultimate coalescence age of ~160 ± 22 ky and the TMRCA for the many nodes in 

the tree are generally younger then when calculated based in both non-synonymous and synonymous 

transitions. Nevertheless, the phylogenetic approach for analyzing mtDNA sequence data at 

intraspecies level remains viable because reconstruction of the basic branches is robust and the 

excess of non-synonymous substitutions affects mainly the terminal branches of the tree (Kivisild et al. 

2006b).   

More direct approaches that do not require historical or outgroup data consider the 

familial/pedigree data. In those studies, the mutation rate is estimated from a defined genealogy, 

screening for new mutations in a scale of few generations. The given estimates of ~0.47 x 10-6 

substitutions/site/year are 10-fold higher than the calculated from the phylogenies (e.g. Howell et al. 1996, 

Parsons et al. 1997, Howell et al. 2003a) and at first, may question the accuracy of dating past divergences on the 

basis of phylogenetic rates (Pääbo 1996). Although other analysis have obtained comparable rates to 

those given by evolutionary studies (Macaulay et al. 1997, Soodyall et al. 1997, Jazin et al. 1998), pedigree rates should 

be of careful use because these include mildly deleterious mutations that will not be fixed by selection 
(Forster et al. 2002). The clue for understanding the discrepancy between phylogenetic and pedigree-based 

rates comes from the highly heterogeneous mutation rates, with the existence of mutational hotspots 
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(Richards et al. 1998b, Excoffier and Yang 1999, Meyer et al. 1999, Heyer et al. 2001). Furthermore, using pedigree rates for 

dating known historical demographic events such as peopling of different continents offers predictions 

clearly incompatible with reality (see Sigurgardottir et al. 2000 and Bandelt et al. 2006 for critical assessments). 

The clock-wise evolution of mtDNA has been questioned for several times, concerning either 

the control-region alone (Ingman et al. 2000) or particular mtDNA clades (Torroni et al. 2001a). While the former 

claim could be dismissed because of the reliability of the test and tools employed, the latter may 

constitute a one-off deviation, rather pointing to unsatisfactory models for mtDNA sequence evolution 
(Howell et al. 2004, Bandelt et al. 2006). The clock-like behaviour of the basal Eurasian mtDNA variation, evaluated 

in Macaulay et al. (2005), was found to adequately describe the data. Conversely, in the particular case 

of the African L2a clades, a complex demographic history with population subdivision might have 

produced the differences, since mutation and fixation rates are function of the effective population size 
(Salas et al. 2002, Howell et al. 2004). In the well-argumented opinion of Bandelt et al. (2006), occasional concerns 

that the molecular clock might be elusive and not tick regularly for human mtDNA should not hinder us 

from attempting on calibration. These authors envision that future recalibrations of the mutation rate 

might discard non-synonymous substitutions altogether but will embrace mutations at slowly evolving 

sites of the control region, in order that the two spectra of positional rates are somewhat comparable. 

Besides the interpretive gap between molecular evolution and prehistory of their carriers, 

pitfalls do exist in the confidence of the underlying topology and stipulation and calibration of the 

mtDNA molecular clock (Bandelt et al. 2003, reviewed in Bandelt et al. 2006). The phylogeny may suffer of low 

phylogenetic resolution, either on the account of small fragments of mtDNA, poor or misapplied 

phylogenetic method or even sequencing errors, compromising any estimation. The partial saturation 

at highly recurrent characters is also a main issue because it will swamp phylogenetic signals and 

eventually lead to a near total loss of meaningful inferences. For instance, hotspot sites in the control 

region account for partial saturation roughly after 60 kya (Bandelt et al. 2006). For the same reason, the 

calibration of the molecular clock using distant outgroup information is not fully satisfactory. Finally, the 

decay of non-synonymous mutations, occurring at a still unknown fashion, can also be overestimated, 

again because of partial saturation (Bandelt et al. 2006). 

 

 

2.6 – Phylogenetic classification and nomenclature of mtDNA haplogroups 

 

The research of mtDNA as a molecular marker was pioneered by Wesley Brown and Douglas 

Wallace in the late 1970s, with the intention of describing the origin of AMH (Brown 1980). Early studies of  

coding region polymorphisms, carried out in “low”- and “high”-resolution by analysing the “cutting” 

patterns of sets of 5-6 or 12-14 restriction enzymes (RFLPs) respectively, were found to be useful for 

the purposes of human population genetics by establishing the torso of the mtDNA tree (e.g. Denaro et al. 
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1981; Johnson et al. 1983; Cann et al. 1987; Scozzari et al. 1988; Soodyall and Jenkins 1992, 1993; Torroni et al. 1992; Chen et al. 1995b). The 

results suggested a radiating phylogeny of global variation, with a single central haplotype as a 

putative indication that modern human populations might have shared a common evolutionary history 

for a very long time. Soon after the analysis of mtDNA HVS-I proved to define a similar classification 

and to be more informative (Richards et al. 1996), and became of routine use in phylogenetic studies. 

Subsequent works adopted a synthesis of the two patterns of variation – that for HVS-I and of the 

coding region RFLPs (e.g. Macaulay et al. 1999b). The basal topology of an mtDNA network is 

overwhelmingly based on coding region SNPs, where homoplasy is rarer (lower mutation rate), having 

therefore minimal effects on the construction. The topology becomes more complex with the 

introduction of control region substitutions that define the internal variability of individual haplotypes. A 

most parsimonious phylogeny might be overwhelmed by assigning different relative weights to the 

mutations, associated to their occurrence rates, and essentially by a good level of resolution in the 

basal topology, ideally a combination of control and coding region data (Torroni et al. 1996, Macaulay et al. 1999b, 

Bandelt et al. 2000, Chen et al. 2000, Kivisild et al. 2002). 

Independent lineages in the phylogeny – haplotypes - are defined by the accumulation pattern 

of mutations, where the polymorphic sites are identified relative to a consensus sequence (Cambridge 

Reference Sequence CRS, Anderson et al. 1981; revised by Andrews et al. 1999). These haplotypic variants cluster 

in clades with common mutations – haplogroups - simplifying a hierarchical classification (see 

phylogeny scheme in Figure 6). Furthermore, the comparison of trees presented by different authors 

demanded a common (universal) nomenclature system to label the branches. The study of Native 

Americans by Torroni et al. (1993) initiated the currently accepted nomenclature, by describing four 

basal clusters in alphabetical order – haplogroups A, B, C and D. The classification has nevertheless 

become a continuous process were new data emerge within short periods of time, permitting frequent 

adjustments and a better resolution. To the capital letters representing the haplogroups, subclusters 

are attributed additional symbols (alternating letters and numbers, e.g. L0a1). The * symbol is used to 

refer to paragroups, different yet unidentified clades, that in principal can even be MRCAs. 

Despite the good correspondence of data on both HVS-I region and coding region RFLPs, the 

estimation of coalescence ages and network construction were made problematic because of 

inconsistencies of phylogenetic significance, namely the high and very variable substitution rate 

between sites (Howell et al. 1996, Excoffier and Yang 1999, Kivisild et al. 2006b) and the saturation due to excess 

homoplasy (Tamura and Nei 1993, Bandelt et al. 2006). From today’s perspective, one can conclude that the 

combined HVS – (limited) coding region information allowed to establish a robust general topology of 

the mtDNA tree, as far as its main branches and sub-branches were concerned. But it did not allow to 

go further. Most of the present work concerning the improvements of phylogeny and estimates of 

temporal layers make use of complete sequencing of mtDNA genomes, with more than 2000 

molecules fully described to date (Ingman et al. 2000, Finnilä et al. 2001, Maca-Meyer et al. 2001, Richards and Macaulay 2001, Torroni  
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Figure 6 – Skeleton of the global phylogeny of mtDNA. Colors denote haplogroups of specific distribution in: 

dark blue - West Eurasia; light blue – Near Oceania; green – Africa; pink – Indian sub-continent; red – East Eurasia. 

The clades in yellow refer to haplogroups found in East Eurasians and Americans. The Mn cluster comprises sub-

branches found in Indians, East Eurasians and Near Oceanians. The branching pattern near the root is as indicated in 

Mishmar et al. (2003), Macaulay et al. (2005), Torroni et al. (2006), using the two available complete mtDNA sequences from 

chimpanzees (Horai 1995). Based on data from Finnilä et al. (2001), Maca-Meyer et al. (2001), Herrnstadt et al. (2002), Kivisild et 

al. (2002), Kong et al. (2003), Palanichamy et al. (2004), Friedlaender et al. (2005), Macaulay et al. (2005), and Sun et al. (2006).
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et al. 2001a, Herrnstadt et al. 2002, Kivisild et al. 2002, Ingman and Gyllensten 2003, Kong et al. 2003, Mishmar et al. 2003, Achilli et al. 2004, 

Palanichamy et al. 2004, Tanaka et al. 2004, Achilli et al. 2005, Friedlaender et al. 2005, Macaulay et al. 2005, Merriwether et al. 2005, Thangaraj et al. 

2005, Accetturo et al. 2006, Gonder et al. 2006, Kivisild et al. 2006b, Olivieri et al. 2006, Underhill and Kivisild 2007). 

 Trees of complete mtDNA genomes allow defining more clearly the topology within clades, in 

particular nested sub-clades (e.g. U5 motif in Saami and North Africans, Achilli et al. 2005), and high- 

resolution dissection of earlier unresolvable haplogroups (e.g. the typically European haplogroup H;  
Achilli et al. 2004, Loogväli et al. 2004, Pereira et al. 2006, Roostalu et al. 2007). Furthermore, these allow unambiguous 

identification and phylogeographic cataloguing of true basal lineages, allowing inter alias, to trace the 

settlement process in Eurasia alongside the southern coast of the supercontinent to Melanesia and 

Australia (described in detail in section 2.7). Highly diverse African maternal lineages, and of high 

regional specificity have been disclosed in recent years by the use of high resolution studies and 

complete sequences. Re-rooting of the tree exposed L1 in its original definition as a paraphyletic 

clade. Haplogroup L0 turned out to be one of the earliest offshoots of the mtDNA variation, a sister 

clade of the branch that holds all other mtDNA haplogroups of extant AMHs (Mishmar et al. 2003, Kivisild et al. 

2004, Gonder et al. 2006, Torroni et al. 2006). The real complexity of the mutational pattern near the root only began 

to emerge in recent years (Kivisild et al. 2004, Bandelt et al. 2006, Kivisild et al. 2006b) but more elucidative studies are 

forthcoming (Behar MD, Villems R, et al. ms submitted). The previously named L1e in Salas et al. (2004), Stevanovitch 

et al. (2004) and Knight et al. (2003) was redefined as haplogroup L5 with a position intermediate relative 

to L1 and L2’L3 (Shen et al. 2004, Gonder et al. 2006). The derived allele at 3594 was before taken as the defining 

marker of L3 variation (Watson et al. 1997) but nowadays the coding region information distinguishes the L4 

earliest branch which also harbours the derived state (Kivisild et al. 2004). The same authors found as well 

that paragroup L3 includes sub-haplogroups L3h, L3i, L3x and L3w and that the previous L3g is 

indeed a sister-clade of L4a, then reclassified as L4g. Many recent studies focus on specific branches 

of the phylogeny (e.g. Achilli et al. 2004, 2005; Friedlaender et al. 2005; Macaulay et al. 2005; Kivisild et al. 2006a; Olivieri et al. 2006), 

therefore contributing partially to a broader understanding. Six coding region and a control region 

mutation further define L6, a sister-clade of L2 and L3’L4 variation (Kivisild et al. 2004). 

 

 

2.7 - Worldwide variation of modern human mtDNA uncovers origins and settling processes 

 

The analysis of mtDNA variation hitted the popular consciousness with the publicity given to 

the debate on modern human origins. In parallel to the technological improvements, the scientific 

community assisted to an exponential progress in the field since multiple hypotheses were to be 

tested. Two antagonistic models were initially in the highlights to explain the non-African variation: the 

“multiregionalism” versus the “recent Out-of-Africa”. Multiregionalists defended an independent and 

parallel evolution of AMH from archaic ancestors in the different parts of the world, largely based on 
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archaeological findings and anatomical features supposedly shared by ancient (here – Middle 

Palaeolithic) fossil crania and modern humans from the same geographical location (Weidenreich 1943, Wolpoff 

1989, Wolpoff and Caspari 1997). The “Out-of-Africa” hypothesis assumed AMH to have arisen in Africa, where 

evolution proceeded for 50-100 kya, and from where it spread over other regions completely replacing 

regionally different earlier humans (Lewin 1987; Stringer and Andrews 1988; Foley 1998; Stringer 2000, 2003). 

The root of the tree obtained by early mtDNA studies was found to be shared by a high 

number of individuals of worldwide distribution (Excoffier and Langaney 1989) and therefore sometimes disputed 

as a support for the multiregional model (Templeton 1992). Although initially targeted with strong criticism, 

Allan Wilson’s group was among the first to consistently suggest an African origin for all humankind 

maternal lineages, in studies of worldwide samples with the highest resolution to their date (Cann et al. 

1987, Vigilant et al. 1991). As it has been shown in these two papers, there is a basal deep split between a 

clearly exclusive African branch and the other one, encompassing the remaining African and non-

African types. Furthermore, it has been observed that mtDNA lineages had the highest diversity in 

Africa, implicating that the particular ancestral variant (“mitochondrial Eve”) has been present in Africa 

much earlier than elsewhere. The following mtDNA evidences indeed supported the “Out-of-Africa” 

scenario (e.g. Chen et al. 1995b, Horai et al. 1995, Jorde et al. 1995, Watson et al. 1997, Ingman et al. 2000). In sum, the molecular 

identity of the mtDNA that is the MRCA of the present-day global pool of all mtDNAs, i.e. of the 

“African Eve”,  is explained by coalescence theory,  while its extant diversity is the result of molecular 

evolution, shaped further by demographic history of AMHs, including multiple worldwide dispersals, 

regional expansions and contractions and other events (Torroni et al. 1994c; Macaulay et al. 1999b; Forster et al. 2001, 2002; 

Maca-Meyer et al. 2001; Salas et al. 2002; Kivisild et al. 2002). 

The maternal lineages of all living humans coalesce in a Southeast or East Africa cradle at 

about 160-200 kya (Figure 7a; RFLP and/or HVS-I analysis, Stoneking 1994, Horai et al. 1995, Watson et al. 1997, Kivisild 

et al. 1999a, Quintana-Murci et al. 1999, Stoneking 2000 and complete sequences, Ingman et al. 2000, Maca-Meyer et al. 2001, Gonder et 

al. 2006, Torroni et al. 2006), at a time frame coinciding with the palaeontological data, currently found for the 

emergence of early AMH (Day and Stringer 1982; Rightmire 1989, 2006; Grun et al. 1990; Rightmire and Deacon 2001; White et al. 2003; 

McDougall et al. 2005). As indicated by comparisons of complete human mtDNA sequences with the 

chimpanzee outgroup (Mishmar et al. 2003, Kivisild et al. 2006b, Torroni et al. 2006) the first emerging subsets of variation 

are haplogroup L0 and the branch common to all of the remaining variation. The next main 

diversification refers to the split between monophyletic L1 (includes haplogroups L1b and L1c) and its 

sister branch encompassing the African haplogroups L2’6 and all the non-African variation (see 

simplified schematic topology in section 2.7.1, Figure 8). It is widely accepted that the African 

environment was fragmented ca. 70 kya (Lahr and Foley 1994, 1998), at around the same time when material 

culture and personal decorations  testify for a rapid development of modern human behaviour in 

different parts of Africa (Henshilwood et al. 2002, Mellars 2002). The maternal component is believed to have 

acquired new variation during the periods of isolation, so that the diversity outside of Africa can be 
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 considered as a result of diversification within Africa 80-60 kya (Figure 7b; Forster 2004). 

 Haplogroup L3 arose, likely within the eastern African mtDNA pool, at about 65-75 kya and 

diverged into a multitude of subclades in situ (Figure 7b; Salas et al. 2002, Kivisild et al. 2004, Macaulay et al. 2005, Torroni 

et al. 2006, Kivisild et al. 2006b, Behar MD, Villems, R et al. ms submitted). Out of this plethora of African-specific L3 lineages 

just two – M and N (~60-65 kya; Forster et al. 2001, Kong et al. 2003, Mishmar et al. 2003, Macaulay et al. 2005) – have made 

their way out of Africa, giving rise to the mtDNA pool of all non-Africans. The basal N clade seems to 

have rapidly evolved into several branches, including haplogroup R (~60 kya, Figure 7c; Kivisild et al. 2003, 

Macaulay et al. 2005). As a consequence, all over Eurasia, America, Australia and Oceania autochthonous 

descendants of these three macrohaplogroups can be found (Richards et al. 1998a, 2000, 2003; Kivisild et al. 1999b; 

Macaulay et al. 1999b, 2005; Ingman and Gyllensten 2003; Kivisild et al. 2003; Metspalu et al. 2004, 2006; Friedlaender et al. 2005, 2007; Torroni et al. 

2006; Sun et al. 2006; Hudjashov et al. 2007). However, there is no clear hint where exactly the two macro-

haplogroups M and N de facto arose: so far not a single mtDNA lineage intermediate between basal 

L3, on one hand, and either basal M or basal N, on the other, has been sampled neither in Africa nor 

anywhere else, with both of the derived M and N haplogroups being quite distant from L3 node (four 

nucleotidic substitutions for M and five for N). An East African source might be considered, since a 

large and diverse population seems to have persisted in this area (Gonder et al. 2006), and, for instance, 

modern Ethiopians exhibit a highly variable pool of lineages around L3 node, when compared to other 

sub-Saharans (Kivisild et al. 2004). Alternatively, because there are no “pre-M” or “pre-N” lineages in 

Ethiopia, whereas South Asia is very rich in autochthonous basal sub-clades of both M and N 

(including R), one can argue that these lineages  arose outside Africa, on the way to, or already within, 

South Asia and elsewhere.  

 In the nowadays limelight of the debate are the questions about how many “Out-of-Africa” 

migrations have happened and which routes have been used. Two hypothetical independent routes 

are considered for the “Out-of-Africa” spread: i) over the Sinai Peninsula, through the Levant, with a 

further spread in the direction of Central Asia; ii) via Ethiopia and the Horn of Africa, by crossing the 

southern part of Red Sea around Bab-el-Mandeb, and further towards South Asia. In brief, the support 

for the southern route relies on archaeological artefacts of Middle Palaeolithic along a southern route 

to Australia (Lahr and Foley 1994; Stringer 2000, 2003; Bowler et al. 2003; Leavesley and Chappell 2004). The northern passage was 

favored by a theoretical historical link between the first Upper Palaeolithic stone blade technologies in 

the Levant (the “Aurignacian” period) and similar blade technologies in northern Africa (the “Dabban” 

sites, Bar-Yosef 2002), suggesting a movement at about 40 kya (Mellars 2004). Recent archaeological findings 

in the Kostenki sites, Russia, were found to be a of an early Upper Palaeolithic technocomplex, with no 

European analog and no obvious root in the local Russian Middle Palaeolithic and thus not 

“Aurignacian” nor transitional. Anikovich et al. (2007) argue that they represent a pioneering group of 

modern humans, implying that the first ones to colonize European Russia may not have spread from 

Levant via central Europe but instead came from interior western Asia via the Caucasus Mountains or



 38 

 

Figure 7 – Evolution, expansion and migration followed by mtDNA haplogroups across the world: a) 200-100 kya; b) 80-60 kya, c) 60-30 kya, d) 30-20 kya, e) 20-15 kya, f) 15-2 kya. The 

hypothetic scheme results from the analysis of the present-day mtDNA pool of local populations (redrawn from Forster 2004 with additional information from Kong et al. (2003), Metspalu et 

al. (2004), Palanichamy et al. (2004), Friedlaender et al. (2005), Macaulay et al. (2005), Merriwether et al. (2005), Kivisild et al. (2006b), Sun et al. (2006), and Hudjashov et al. (2007). In the considered 

geographic regions the extant pool is represented by haplogroups: Mx – M2-M6, M18, M25, M30-M40; Nx – N5; Rx – R5-R8, R30 and R31; Ux – U2a-U2c; My – M7-M12G and M13; Ny 

– N9; Ry – R9 and R11; Mz – M27-29 in Melanesia (M21 and M22 in New Guinea), and M42 in Australia; Nz – N12 ; Rz – R21 in New Guinea and P and R12 in Australia. The arrows 

indicate the direction of the migration, not the precise routes followed by the modern humans in the processes of “Out-of-Africa” and colonization of the several continents. 
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from further eastern or central Asia. 

 There is increasing genetic evidence corroborating for a single “Out-of-Africa” dispersal that 

has followed a coastal route towards southeast Asia, and has reached Australia 45-50 kya (Figure 7c). 

The fact that the basal variation of the L3-derived haplogroups M, N (and R) is still present among the 

ancestors of indigenous populations along the southern coast of Asia as well as those of Melanesia 

and Australia, became apparent from complete genome studies, revealing a plethora of independent 

basal lineages all over the area: among Aboriginal Australians (van Holst Pellekaan et al. 2006, Hudjashov et al. 2007), 

Melanesians (Merriwether et al. 2005, Friedlaender et al. 2007, Hudjashov et al. 2007 and references therein), island 

southeast Asia (Pierson et al. 2006, Hill et al. 2007), Papuans (Forster et al. 2001), Andaman islanders (Endicott et al. 2003, 

Thangaraj et al. 2005), the Orang Asli Malaysians (Macaulay et al. 2005, Hill et al. 2006), and in the Indian continent in 

particular (Kivisild et al. 1999b, 2003, 2006b; Metspalu et al. 2004, 2006; Palanichamy et al. 2004; Sun et al. 2006). Furthermore, since 

the three root types are distributed all over the southern route (Figure 7c-f) one may conclude that this 

pioneer migration, as well as the settlement of areas alongside the southern flanks of Eurasia and 

beyond, happened relatively rapidly (less than 5.2 ky according to Hudjashov et al. 2007). 

 The mtDNA lineages in southwestern Eurasia gained footholds and assisted to a range 

expansion further north into the inner parts of the continent, probably at about 45 kya, radiating into 

numerous region specific lineages (Figure 7c-d): South Asians harbour nowadays a panoply of M 

basal lineages (Metspalu et al. 2004, Sun et al. 2006, Chaubey et al. 2007), N5 (within N; Palanichamy et al. 2004), R5-R8, R30 

and R31 (within R, Kivisild et al. 1999a, 2003; Palanichamy et al. 2004; Quintana-Murci et al. 2004); haplogroups A and N9 

(including Y; within N), B’R11 and R9 (including F; within R) and several lineages assigned to 

macrohaplogroup M broadly characterize the northeastern Asians (Kong et al. 2003); haplogroups E and M7 

(within M) and B4a and R9 (within R) are of typical Southeast Asian distribution (Forster et al. 2001, Kivisild et al. 

2002, Merriwether et al. 2005) although substantial overlap exists. Other mtDNA types followed a fast coastal 

route and evolved by mutations to autochthonous haplogroups Q, S and P in Papua New Guinea (Forster 

et al. 2001) and into further subdivisions in Australia (Ingman and Gyllensten 2003, Friedlaender et al. 2005, Friedlaender et al. 2007, 

Hudjashov et al. 2007). New Guineans and Australians seem to share the same M and N founders, dating 

from the African exodus, and a furthermore characteristic variant not found elsewhere (Hudjashov et al. 2007). 

Taken together, the fact that the ancestral node is shared by Australians and Melanesians and the 

existence of specific branches, these authors argue for a single founder group settling the whole 

region, with posterior substantial isolation. The Asian A, B, C and D holders, actually the first ones to 

be described (Torroni et al. 1993, 1994c) have later crossed the Beringia Strait to populate the Americas (Forster et 

al. 1996), supposedly when the sea-level was substantially lower at about 14-37 kya allowing a wide land 

bridge (Figure 7d; Forster et al. 1996, Smith et al. 1999, Silva et al. 2002, Rubicz et al. 2003). 

An early offshoot of the pool carried “out-of-Africa” eventually led to the peopling of West 

Eurasia (Figure 7c). It likely experienced assisted to a lengthy pause until the climate improved and 

their ancestors were able to enter the Levant, Anatolia and Europe. Haplogroup R then radiated in the 
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Near and Middle East and West Eurasia, to give a plethora of sub-branches, starting perhaps as early 

as at the beginning of Upper Palaeolithic (Figure 7c). At present, the family of macro-haplogroup R in 

West Eurasia is represented by haplogroups R0 (previous pre-HV, Torroni et al. 2006), JT and U. In 

addition, three minor N1, N2 and X branches derive directly from the basal node of haplogroup N. 

Taken together, these variants make up 98% of the mtDNA pool characteristic of the extant Europeans 
(Torroni et al. 1996; Richards et al. 1998b, 2002; Macaulay et al. 1999b) and which is shared with Near Easterns. Here, it is 

important to notice that the mtDNA pool of western Eurasians, as far as the basal M, N variation is 

concerned, is quite narrow compared with that one observes further eastwards, in fact starting from 

the Indus Basin (Chaubey et al. 2007). It is best explained by a side role that the Near East (and 

subsequently Europe) have played during the pioneer phase of the “Out-of-Africa” settlement of 

Eurasia (Torroni et al. 2006).  

Ice Ages, in particular the last one, have played a major role in shaping human diversity (Forster 

2004). About 20 kya the Last Glacial Maximum (LGM) was reached, forcing humans to retreat 

southwards into refugia. As a result, genetic diversity was likely significantly reduced in the northern 

regions of Eurasia (Figure 7e). Distribution and age estimates of H1, H3, V and U5 support a 

repopulation of North Europe from the Franco-Cantabrian refuge after the LGM (Figure 7e; Torroni et al. 

1998, 2001b; Achilli et al. 2004, 2005; Loogväli et al. 2004; Pereira et al. 2005). The massive and rapid expansion is testified by 

the radiating phylogeny of H1 and H3 (Achilli et al. 2004) which dates are overlapping with the radiocarbon 

dates of the repeopling of north-western Europe ~16 ky (Gamble et al. 2004). 

It is not clear yet to what extent the genetic legacy of the Palaeolithic population is reflected in 

the present European mtDNA pool because later immigrations from the Near East could have replaced 

the descendants of the first settlers (Ammerman and Cavalli-Sforza 1984), whereas back migrations, from Europe 

to Anatolia and to the inner Near and Middle East, may have carried European acquired mtDNA 

variation to the Near East (Richards et al. 2000). Hot debate between geneticists led to a proposal that about 

three-quarters of the European maternal inheritance originate from the indigenous Mesolithic or 

Palaeolithic contributors, as opposed to the Neolithic newcomers (Richards et al. 1996, 1997, 2000; Cavalli-Sforza and 

Minch 1997; Richards and Sykes 1998). It is important to stress that this rough estimate is in fact close to the 

conclusions drawn from classical markers, using principal component analysis (Cavalli-Sforza et al. 1994), 

regardless of the fact that the latter does not offer time dimension. Therefore, most of researchers 

agree today that the genetic legacy of the Neolithic farmers that spread in Europe ~5-10 kya 

represents a minor share in the maternal heritage of the present-day Europeans. This conclusion is 

also supported by the Y chromosome system (Semino et al. 2000, Rootsi et al. 2004). Returning to mtDNA, it has 

been suggested that younger sub-haplogroups seem to have been carried by farmer migrants, in 

particular J1b1, J2a and T1a and perhaps the rarer R1, R2 and N1a (Figure 7f; Richards et al. 2000). The 

work of Haak et al. (2005) based on Neolithic remains proved that N1a was present in Europe at about 7 

kya, among the carriers of the typically Neolithic Central European Linear Pottery culture, at more than 
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a hundred times higher frequencies than observed today. This supports the idea that only a minor 

fraction of the Neolithic migrant genetic pool has reached the present-day, later excessively diluted by 

the genetic legacy of Mesolithic Europeans. However, the process of Neolithization in Europe may 

have used several routes and spread scenarios – including one alongside the Danube Basin, the other 

alongside the Mediterranean coast. 

 

 

2.7.1 – Phylogeography of the African mtDNA variation 

 

It has been shown that the genetic diversity of mtDNA in Africa is considerably greater than 

elsewhere, with the most prevalent haplogroups having variable distribution and sub-structuring when 

geography and ethnolinguistic affiliations are considered (Watson et al. 1997, Chen et al. 2000, Pereira et al. 2001b, Salas et 

al. 2002, Destro-Bisol et al. 2004). Nevertheless mtDNA variation seems to be more structured by geography, as 

it is the case of West Africa (Gonzalez et al. 2006). The latter authors even suggest that languages have 

spread within Africa mainly as a cultural imposition over an already genetically diverse landscape. The 

analysis of spatial distribution of lineages allowed to reveal and to better understand demographic 

changes within a Middle and Late Stone Age chronological frame up to the present day.  

The following intends to summarize the present-day knowledge about African mtDNA variation, 

with proposed origins and coalescence ages of the haplogroups and its subclusters. We describe as 

well the region/population specific clades and the more relevant migrational events that can be traced 

in a genetic basis. For convenience, the coding region and HVS-I positions defining the main clades of 

African variation are summarized in Figure 8 and Table 1, respectively. Note, however, that time 

estimates do not exactly parallel, especially if based on HVS-I against coding region, or even against 

the recently proposed calculation based solely on coding region synonymous mutations (Kivisild et al. 2006b). 

 

The human mtDNA phylogeny  coalesces in a time depth of about 150-200 kya (Horai et al. 1995, 

Ingman et al. 2000, Maca-Meyer et al. 2001, Gonder et al. 2006, Torroni et al. 2006). One of the earliest offshoot of the 

phylogenetic tree, haplogroup L0 further includes sub-haplogroups L0a, L0d, L0f and L0k (see Figure 

8; Mishmar et al. 2003, Salas et al. 2004, Gonder et al. 2006, Kivisild et al. 2006b, Torroni et al. 2006). As already indicated above, in 

order to avoid mis-interpretation of the earlier literature, it is important to note that these clades were 

previously reported as branches of the “original” L1 (Watson et al. 1997, Salas et al. 2002).   

 

L0d is the first individual sub-clade to derive from the L0 node. Its distribution appears to be 

restricted to Khoisan people in South Africa and to Tanzanian populations (Vigilant et al. 1991, Soodyall and Jenkins 

1992, Bandelt and Forster 1997, Wallace et al. 1999, Pereira et al. 2001b, Salas et al. 2002, Kivisild et al. 2004, Gonder et al. 2006). Sub-

haplogroup L0k, a branch of L0afk in Figure 8, is found exclusively among South African Khoisan (Chen 
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et al. 2000, Salas et al. 2002). More than a half of the extant mtDNA pool of Khoisan speakers is constituted by 

indigenous L0d and L0k lineages, possible relics of a widespread and ancient proto-Khoisan 

population (Bandelt and Forster 1997, Chen et al. 2000, Pereira et al. 2001b, Salas et al. 2002). Conversely, L0d presence in 

southeast Bantu may be due to assimilation or recurrent gene flow from Khoisan, though L0k is not so 

far sampled in Bantu-speaking populations. The present topology of haplogroup L0 allows to identify 

L0k as a sister clade to the one that included both L0f and L0a (Kivisild et al. 2006b). 

  

The marginally frequent lineages classified as L0f are more divergent and frequent only in East 

Africa, with their highest incidence in Tanzanians (Watson et al. 1997, Pereira et al. 2001b, Salas et al. 2002, Knight et al. 2003). 

L0a lineages are widely spread through eastern, central and southern Africa, encompassing almost a 

quarter of maternal lineages there (Soodyall and Jenkins 1992, 1993; Chen et al. 1995b; Watson et al. 1997; Macaulay et al. 1999b; 

Salas et al. 2002, 2004; Kivisild et al. 2004), while only single examples of L0a are found in the West Africans (Graven et 

al. 1995, Rosa et al. 2004). The L0a mtDNA variants coalesce back to a common node at Palaeolithic times in 

East Africa (Watson et al. 1997, Salas et al. 2002). The L0a1 subclade has an eastern and southeastern African 

distribution, with the root type coalescing at ~33 kya (HVS-I estimate, Salas et al. 2002). A 9-bp deletion in 

the COII-tRNALys intergenic region characterizes the L0a2 lineages, that are believed to represent the 

dispersal of the Bantu-speakers (Soodyall et al. 1996) from its source region nearby the Congo Basin (Soodyall et 

al. 1996, Chen et al. 2000). 

 

L1 variation was found to coalesce at about 140-150 kya (see Figure 8; Torroni et al. 2006, Behar MD, 

Villems R, et al. ms submitted) or at about 112 ky if calculations are according to Kivisild’s molecular clock (Kivisild 

et al. 2006b, Underhill and Kivisild 2007). One of its daughter clades, haplogroup L1b is concentrated in western 

Africa, particularly along the coastal areas (Graven et al. 1995, Mateu et al. 1997, Watson et al. 1997, Rando et al. 1998, Rosa et al. 

2004) and peaks also in Mauritania (~19%, Gonzalez et al. 2006) and Senegal (Graven et al. 1995, Rando et al. 1998). Its 

sister clade L1c is mainly found in Central and West Africa (Watson et al. 1997, Rando et al. 1998, Destro-Bisol et al. 2004, 

Rosa et al. 2004), with a subgroup common in Biaka Pygmies (Wallace et al. 1999). Both L1b and L1c have a 

proposed origin in Central Africa, therefore their presence in West Africa suggests a westwards 

expansion. The extant variation of L1b suggests much later expansion than that for its sister clade L1c 

(Table 1; Salas et al. 2002). The reason for that can be that earlier branches of L1b have not survived or 

have not been sampled yet, because it is very unlikely that the nodal L1 survived at a time depth of 30 

kya to give rise to an expansion. This is likely a clear-cut example were a large pattern of variation 

become extinct, leaving no other progeny except a clade that began expanding at about 30 kya (Behar 

MD, Villems R, et al. ms submitted). This bottleneck and re-expansion in West Africa seem to have shaped the 

evolution of L1b. Their spread to Northwest Africa was probably more recent, in the Neolithic or during 

the times of the slave trade (Rando et al. 1998). 
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Haplogroup L5 (Kivisild et al. 2004; previously referred to as L1e in Pereira et al. 2001b, Salas et al. 2002, 2004) 

has been observed at low frequency only in eastern Africa (Salas et al. 2002) and Egypt (Stevanovitch et al. 2004), 

with minor gene flow into the Mbuti Pygmies (Salas et al. 2002). The central African Pygmies-specific intra-

populational divergence in both L1c and L5 may signal a “relict” status, similar to that proposed for the 

Khoisan (Chen et al. 2000). 

 

Haplogroup L2 has a pan-African distribution and together with L3 comprises ~70% of the 

summary sub-Saharan variation of mtDNA (Chen et al. 1995b, 2000; Graven et al. 1995; Watson et al. 1997; Salas et al. 2002). 

Chen et al. (2000) and Torroni et al. (2001a) dissected haplogroup L2 into sub-clades L2a, L2b, L2c and 

L2d. Haplogroup L2a is the most frequent and widespread mtDNA cluster in Africa, making its 

geographic origin very difficult to identify. Furthermore, its structure represents a phylogenetic 

challenge, if to rely on HVS I variation only because of reticulation of mutations. Salas et al. (2002) 

identified sub-clusters of variation assuming the main reticulations on HVS-I nps 16189 and 16192, 

positions of rapid transition known to undergo forward and reverse mutations (Howell and Smejkal 2000). The 

clade appears to be further subdivided by a more stable HVS-I 16309 transition. Howell et al. (2004) 

considers the ancestral L2a already with 16309 A:G transition on the contrary of Salas et al. (2002), but 

precise comparisons are not possible as coding region information is lacking in the earlier work. The 

deepest types of this clade (L2a-α in Salas et al. 2002) are most common in East Africa and of putative 

origin at about 55 kya. However, the coalescence age and diversity of the L2a sub-clades in West 

Africa are similar to the ones in the East. A possible origin is then placed between East and West, 

followed by separate dispersals along the Sahel corridor after the LGM (main shared founder types 

~14 kya, Salas et al. 2002). Recent star-like demographic bursts in L2a1a and L2a2 and their expansion to 

southeast Africans is most likely associated with the expansion(s) of the Bantu-speaking populations 

during the sub-Saharan agricultural spread and later (Pereira et al. 2001b, Salas et al. 2002). 

 

 L2b-L2d haplotypes are largely confined to West and Central West Africa. L2b mtDNAs are 

absent in East Africa (Watson et al. 1997, Krings et al. 1999), rare in the southern populations of the continent  
(Vigilant et al. 1991, Chen et al. 2000, Pereira et al. 2001b) but common in Senegal (Chen et al. 1995b, Rando et al. 1998). L2c 

mtDNAs have a similar distribution and coalescence time as their sister clade L2b, being also 

dominant in West Africa. An expansion time in the scale of 18 ky (Chen et al. 2000), indicates possible 

expansion in West Africa together with L1b (Chen et al. 1995b, Rando et al. 1998). However, their predecessors 

might have been present in the area long before the expansion that gave rise to the present variation. 

At an approximate age of 120 kya (based on HVS-I calculation, see Table 1; Salas et al. 2002, Rosa et al. 2004) it 

seems unlikely that L2d have diverged in West Africa. Given the period of potential drift and extinction, 

the data are more consistent with its Central African origin. A single type of subclade L2d1 in the Bubi 

of Bioko and its absence in southeastern Africans may link to its origin (Mateu et al. 1997, Salas et al. 2002).  
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Figure 8 – A maximum-likelihood phylogeny of African mtDNA haplogroups, with a calibrated time-scale show in left (in years). The phylogeny shows the most 
parsimonious reconstruction of coding region mutation in the nps 577-16023 range from 25 entire mtDNAs (references in Torroni et al. 2006, using two chimpanzee 
sequences to root the whole tree (as described in Macaulay et al. 2005). Mutations are scored relative to the revised Cambridge Reference Sequence (rCRS; 
Andrews et al. 1999) and therefore variant nucleotides do not necessarily constitute derived states; the rCRS is shown by the dashed lines. Suffixes indicate 
transversions (to A, G, C or T) or indels (C, d); recurrent mutations are underlined. The branching nodes in the phylogeny are shown in yellow, with the mutations 
above the node being shared by the derived haplogroups. The naming of haplogroups follows the scheme of Richards et al. (1998b), opting for the most compact 
notation. L3a and L3c denoting novel L3 branches from this study should not to be confused with the obsolete definitions of ‘L3a’ and ‘L3c’ (=U6a) introduced by 
Watson et al. (1997). The ancestral motifs for the novel haplogroups L7 (corresponding to L4g in Kivisild et al. 2004), L3a, and L3c (in italics) have not been 
determined. However, note that L4 and L7 (L4g) were clustered together in Kivisild et al. (2004) because of their sharing of the (unstable) control-region mutation 
16362. In addition, observe that there are minor differences with Kivisild et al. (2006b) in characterizing the mutations for some haplogroups. MtDNA sequences in 
sky-blue colour boxes are from Ethiopian subjects, whereas those in white boxes are from Nigerian (sequences 13, 18 and 21) and Dominican (sequences 1–2, 5, 
14–16 and 22) subjects. Complete mtDNA sequences, including their control regions, are available in GenBank, accession numbers DQ341058–DQ341082. In 
Torroni et al. (2006). 



                            

 
 
 
Table 1 - HVS-I sequence motifs used for haplogroup classification and correspondent coalescence 

ages (as in Salas et al. 2002, 2004) 

 
 

Haplogroup TMRCA (ky) SE (ky)

L0a 129-148-172-187-188G-189-223-230-311-320 40,4 16,3

L0a1 129-148-168-172-187-188G-189-223-230-311-320 33,4 16,6

L0a2 148-172-187-188G-189-223-230-311-320 8,3 3,7

L0d 129-187-189-223-230-243-311 49,6 13,5

L1b 126-187-189-223-264-270-278-311 30,6 16,3

L1c 129-187-189-223-278-294-311-360 59,7 11,8

L2 223-278-390 70,1 15,3

L2a 223-278-294-390 55,2 19,4

L2b 114A-129-213-223-278-390 31,6 11,2

L2c nr 27,5 7,3

L2d 223-278-390-399 121,9 34,2

L3 223 61,3 11,7

L3b 124-223-278-362 21,6 6,9

L3d 124-223 30,3 8,5

L3e1 223-327 32,2 11,5

L3e2 223-320 37,4 18,4

L3e3 223-265T 14,2 4,5

L3e4 223-264 24,2 10,4

L3f 209-223-311 36,3 12,8

L3i b 153-223 nd nd

L3x b 169-223-311 68,6 21,5

L3w b 223-260-311 5,8 4,1

L3h c nr nd nd

L4a b 223-260 51,2 17,2

L4g d 223-293T-311-355-362 45,1 12,5

L5 e 129-148-166-187-189-223-311 83,0 24,9

L6 b 223-224-278-311 38,9 25,6

M1 f 129-189-249-311 36,8 7,1

U5b1b g 189-270 8,6 2,4

U6 f 172-219 37,5 4,3

HVS-I sequence a

 
a motif relative to rCRS minus 16000 bp; b newly described in Kivisild et al. (2004); c newly described in Rosa et al. (2004); d 

renamed in Kivisild et al. (2004), L3g in Salas et al. (2002); e misassigned as L1e in Salas et al. (2002, 2004); f Olivieri et al. 
(2006); g Achilli et al. (2005); nr - not recognizable from the closest paraphyletic cluster in the basis of HVS-I sequence; nd - 

not determined. 
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 The variation classified as haplogroup L6 is largely confined to and frequent in Yemenis 

(~12%). Its East African origin is likely, given its presence in Ethiopians and the fact that its sister 

clades are all diverse and frequent there (Kivisild et al. 2004). It is noteworthy that L6, has a very narrow 

phylogeography, although the ca. 110 ky coalescence with its L3’4 sister clades (Torroni et al. 2006). 

However, its own coalescence is only around 23 ky (Behar MD, Villems R, et al. ms submitted) presumably because 

the past variation was wiped out or actually never expanded thanks to drift in very small and isolated 

communities. In any case we may still be missing the homeland of L6, given large areas of missing 

sampling in East Africa, e.g. Somalia. 

 

 Haplogroup L4 is a sister clade of L3, typical for East and Northeast Africa although present at 

low frequencies (Watson et al. 1997, Krings et al. 1999, Kivisild et al. 2004). The L4a motif has been found in Sudan and 

Ethiopia though misclassified earlier as L3e4 in Salas et al. (2002). Following the review by Torroni et al. 
(2006), haplogroup L7 (corresponding to L4g in Kivisild et al. 2004) is also considered as a “sister clade” of L3 

and L4 (Figure 8), if to ignore shared by L4 and L7 transition at np 16362, taken as diagnostic by 

Kivisild et al. (2004). The sister clade L4g/L7 displays one particular motif quite frequent in Tanzania (Salas 

et al. 2002, Kivisild et al. 2004, Gonder et al. 2006). 

 

An East African origin at about 65-75 kya years ago is pointed out for superhaplogroup L3 (Salas 

et al. 2002, based on HVS-I information; Kivisild et al. 2006b, coding region using “synonymous clock”; Macaulay et 

al. 2005, Torroni et al. 2006 and Behar MD, Villems R, et al. ms submitted, using Mishmar’s clock), the cluster that further 

harbors all the non-Africans mtDNAs. It is widespread in Africa and provides evidence for a mainly 

sub-Saharan expansion of its sub-clades (Watson et al. 1997, Salas et al. 2002) with a gradient of decreasing 

frequency and diversity from East to West Africa. From 20% of L3* undefined eastern lineages in 

Salas et al. (2002), three novel L3 subclades (L3i, L3x and L3w, Kivisild et al. 2004) were described in Ethiopia 

and Yemeni samples, with another one - L3i - potentially recognized in the Sudanese of (Krings et al. 1999). 

 

Both L3b and L3d are prevalent in the West quadrant of sub-Saharan Africa and their split from 

a common node occurred at about 20-30 kya (Vigilant et al. 1991, Soodyall and Jenkins 1993, Watson et al. 1997, Rando et al. 

1998, Pereira et al. 2001b, Salas et al. 2002, Rosa et al. 2004). A subset of L3b with sequence motif 124-223-278 is 

common among Bantu speakers of southwestern Africa and thus is another possible marker of the 

Bantu expansion (Watson et al. 1997). The occurrence of a western African-specific subcluster of L3b, 

coalescing in a lineage with transitions at nps 124-223 (but not 278), may suggest that L3 has reached 

Western Africa by 30 kya (Watson et al. 1997). 

 

The L3e cluster has been subdivided into L3e1, L3e2, L3e3 and L3e4, based of HVS-I 

information (Bandelt et al. 2001). The oldest branches of L3e are thought to have arisen in areas 
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neighbouring Central Africa/Sudan ca. 45 kya, from where spread throughout sub-Saharan Africa, 

comprising  by now about one third of L3 types of these people (Bandelt et al. 2001, Salas et al. 2002). Although it 

probably arose in central areas of the continent, L3e1 became frequent in southeast Bantu-speakers. 

Again a link to an eastern Bantu route may justify its presence in Kenya and southern regions. Within 

L3e2, the L3e2b lineages constitute the most frequent and widespread type of L3e, primarily found in 

West Africa (range expansion ~9 kya, Salas et al. 2002). Together with L3e2a, these were supposedly 

successful hitchhikers of the population movement in the Sahara during the Great Wet Phase of the 

early Holocene and subsequently Wet Phase (Muzzolini 1993, Bandelt et al. 2001). Meanwhile, L3e4 is essentially 

restricted to Atlantic West Africa, signalling much later dispersals and local expansion events with the 

rise of food production and the iron smelting (see section 4).  

 

As in Salas et al. (2002), L3f retains all L3* lineages with HVS-I 16209 mutation. The spread 

zone of haplogroup L3f appears to be mostly in East Africa, being the most frequent L3 type in 

Ethiopia (Kivisild et al. 2004). The few matches to L3f1 founder lineages in Central and West Africa (Salas et al. 

2002, Rosa et al. 2004) point to an early rather than recent dispersal of the lineages  while in East Africa it 

supposedly started to expand ~10 kya (Kivisild et al. 2004). 

 

Although L3h lacks a distinctive HVS-I motif, it can be classified by the 9575 coding region 

substitution. The subset of variation with motif 16129-16223-16256A-16311-16362 was first reported in 

the context of the present Guinean survey (Rosa et al. 2004). Similar haplotypes are found in Cape Verde 

and Niger/Nigeria at low frequencies (~1%), but it reaches its highest known frequency in the Ejamat 

people in Guinea (8%, Rosa et al. 2004). Other close variants of this putative sub-clade are found in 

Ethiopian Amharans, though they lack substitutions at nps 16129 and16362 (Kivisild et al. 2004). 

 

The present distribution and coalescence ages for the deepest branches in the mtDNA tree 

testify for the early modern human presence in East and South Africa, probably the result of a 

moderate range expansion (Watson et al. 1997, Salas et al. 2002). The starlike phylogeny and wide distribution of 

many subclades within L2 and L3 testify for major demographic expansion(s) not earlier than 60 kya.  

The subsequent population fragmentation and re-expansion at Late Stone Age induced the clades to 

evolve into regional-specific clusters, and thus had a major impact on the modern sub-Saharan 

mitochondrial phylogeographic structuring. Haplogroups L1b, L3b and L3d suggest that West Africa 

has been occupied at least since ~20-30 kya (Salas et al. 2002).  

 

One has to consider as well that an earlier pattern of the distribution of mtDNA haplogroups 

may have been significantly altered by subsequent demographic processes. In this context, Salas and 

colleagues (2002) emphasize the role of the LGM conditions as well as the migrations of Bantu-speaking 
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people. In sub-Sahara, the “Last Glacial Aridity Maximum” (LGAM) climatic alterations culminated in 

the reduction of woodlands and savannas to a small fraction of the Congo basin at about 14.5 kya (see 

section 4.1; Adams and Faure 1997). These may have acted as a refuge area from which modern humans 

later dispersed: haplogroup L2a was fractioned east and westwards and L1b possibly expanded to the 

west.  

The Bantu migrations are among, if not the most important recent demographic upheavals in 

African history, supposed to have started at about 3kya or slightly earlier from a central source in the 

vicinity of Cross River Valley (western Central Africa; Huffman 1982, Phillipson 1993). The movement is 

associated with the transition of a hunter-gathering to agricultural lifestyle and the advent of iron-

smelting, therefore promoting a populational growth. Two main spread routes followed east- and 

westwards in direction to the south. There are genetic evidences from both mtDNA and Y 

chromosome systems that testify for the strong impact of the Bantu migrations on the gene pool of 

sub-Saharan Africa almost to the point of erasing the pre-existent one. It is likely that this expansion 

was the main mechanism explaining the spread of haplogroups L0a2 (Bandelt et al. 1995, Chen et al. 1995b) and 

L3b (Watson et al. 1997) and fragments of haplogroups L2, L3e and L5 (Alves-Silva et al. 2000, Bandelt et al. 2001, Pereira et 

al. 2001b) from West, Central, and East Africa towards the south. Such “Bantu-markers” are therefore 

helpful in specifying the routes and the pattern of admixture of their carriers with the local populations 

on their southward migrations. The more ancestral L0-L1 types eventually become a minority, except 

maybe in the ancestors of the Khoisan-speakers (Bushmen of South Africa) and the Biaka (West 

Pygmies in Central Africa; Vigilant et al. 1991, Watson et al. 1997, Chen et al. 2000), interpreted as the surviving 

footprints of the ancient variants. Overall, the African diversity observed nowadays combines levels of 

ancient population differentiation with that reflecting more recent gene flow episodes (Kivisild et al. 2006a). 

 

  A few non-L mtDNA haplogroups can be found in the African continent as well. Among them 

haplogroup M1 is mostly restricted to East Africa (Passarino et al. 1998, Quintana-Murci et al. 1999, Richards et al. 2003, Kivisild 

et al. 2004) despite occasional occurrences in West and Northwest Africa (Torroni et al. 1996, Rando et al. 1998, Rosa et 

al. 2004) and Nile Valley (Krings et al. 1999). The analysis of complete mtDNA sequences identified a basal 

split in the African M1 phylogeny, giving rise to M1a and M1b sister clades at about 28.8 and 23.4 kya, 

respectively (Olivieri et al. 2006), each encompassing several independent basal branches. While M1a 

ranges the entire geographical distribution of M1, the sub-haplogroup M1b (defined by a transition at 

16185, previously named M1c in Kivisild et al. 2004) virtually covers the haplogroup’s variation in 

Northwest Africa and the Near East. It is therefore difficult to interpret M1b as an East African derivate 

and it might be better explained as a branch that followed a trajectory in the southern basin of the 

Mediterraneum (Olivieri et al. 2006). An ancient arrival of M1 to Africa (or to its vicinity) is supported by the 

fact that none of the numerous M haplogroups in Asia harbour any of the M1-characteristic mutations 
(Kong et al. 2006, Sun et al. 2006, Chaubey et al. 2007) and by the lack of other Asian-specific clades within M in Africa, 
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as would be expected in case of more recent arrival. This ancient back migration from Asia to Africa 

had been already suggested by analysis of HVS-I lineages (Quintana-Murci et al. 1999, Richards et al. 2003, Forster 2004, 

Kivisild et al. 2004). 

 

Haplogroup U6 is said to be autochthonous of North Africans (Corte-Real et al. 1996, Macaulay et al. 1999b) 

but is also present in eastern Africans (Kivisild et al. 2004), a situation that parallels that of haplogroup M1. 

This haplogroup is seen as the first Palaeolithic return to Africa of ancient Caucasoid lineages (40-50 

kya, Rando et al. 1998, Olivieri et al. 2006). In fact, similar phylogenetic lineages have been sampled in Eurasia 

and the Near East (Di Rienzo and Wilson 1991) so that it has most likely migrated from the Near East-

Mediterranean area and dispersed to Northwest and East Africa. The most representative of its clades, 

U6a (~38 ky based on mtDNA complete sequences of Olivieri et al. (2006), displays an increasing 

frequency and diversity pattern towards Northwest Africa, supporting the idea of a local drift. The most 

frequent motif 16172-16189-16219-16278 is believed to have started to expand ~11 kya (Rando et al. 1998), 

with partial diffusion to the Sahel (Rando et al. 1998, Rosa et al. 2004, Coia et al. 2005). 

 

 The temporal overlap of haplogroups M1, U6 (Olivieri et al. 2006) and U5 (Richards et al. 2000, Achilli et al. 2005) 

with the events that led to the peopling of Europe by AMHs, raises the possibility that their molecular 

ancestors lived in the same broad geographical area of Southwest Asia (possibly in separate regional 

enclaves) and that they later expanded towards the Near East and through Levant (Olivieri et al. 2006). U6 

and M1 differentiated into their subclades while in the Mediterranean area, with the carriers of U6 and 

M1b mtDNA genomes inhabiting broadly the same geographic areas.  

 

The main radiation of U5 took place in Europe, where it reached in early Upper Palaeolithic, 

most probably from Middle East/Caucasus region (~40-50 kya, Richards et al. 2000). An unexpected finding 

linked the Saami of the Scandinavia to the Berbers of North Africa and the sub-Saharan Fulbe, in a 

relatively recent branch of U5b1b ~9 kya (Achilli et al. 2005). If we parallel the situation to that of H and V 

sub-haplogroups, which attain their highest diversity in Iberians and Moroccan Berbers as post-glacial 

signatures (Achilli et al. 2004), it might have happened that both haplogroups have crossed the Strait of 

Gibraltar. The Franco-Cantabrian refuge area is then seen as the source of late-glacial expansions of 

hunter-gatherers that repopulated northern Europe, which also contributed to the mtDNA pool of North 

Africans, likely including the ancestors of Berbers (Achilli et al. 2005). Specific sub-clades of U5b were found 

at very low frequencies across sub-Saharan West Africa (Rando et al. 1998, 1999; Rosa et al. 2004; Coia et al. 2005) 

giving support to the hypothesis of hitchhiking episodes of North Africans that have crossed the 

Sahara. 
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3 –Phylogenetic analysis of the Y chromosome 

 

3.1 - Structure and organization of the Y chromosome 

 

The Y chromosome represents a nuclear chromosome whose biological importance relies on 

the sex-determining (Ford et al. 1959, Jacobs and Strong 1959) and male fertility roles (e.g. Tiepolo and Zuffardi 1976, Levy and 

Burgoyne 1986, Ma et al. 1993, Vogt 1997, Wyckoff et al. 2000). As it is of haploid nature and has no homologous 

chromosome to recombine with, it is expected to be transmitted from father to son unchanged, defining 

paternal lineages. This is the case of 90% of its length – the Non-Recombining region of the Y 

chromosome (see NRY in Figure 9, also refer to as Male-Specific region - MSY). The remaining 

portion - the pseudoautosomal region (PAR) – is located in the telomeres and shows partial homology 

to the X-chromosome, being therefore prone to recombination (Cooke et al. 1985, Simmler et al. 1985, Freije et al. 1992, Li 

and Hamer 1995, Lien et al. 2000). The PAR is divided into two flanking segments of less than 3 Mb of its 

approximately 67 Mb total length (Figure 9). Throughout this text the term Y chromosome is many 

times used as synonymous of NRY, because molecular markers to be discussed are chosen from this 

region of the chromosome. 

 For a long time thought to contain a large amount of junk-DNA, and thus to be quite non-

polymorphic, the structural and functional features of the Y-chromosome started to be better explored 

in the last decade. Until recent years the nucleotidic composition was only accessed for the AZFa and 

AZFc portions (Figure 9; Sun et al. 2000, Kuroda-Kawaguchi et al. 2001), because of its medical interest, associated 

with male infertility (e.g. Vogt 1998, 2004, 2005; Lin et al. 2005). The first detailed physical map of Y chromosome 

was published by Tilford and collaborators in 2001. A couple of years later the sequence of 97% of the 

NRY roughly revealed about 160 transcription units, of which half encode for 27 proteins or protein 

families (12 expressed ubiquitously and 11 are testis-specific, Skaletsky et al. 2003). Many genes in NRY are 

Y-specific while others have known functional homologous in the X-chromosome, and therefore might 

have functions crucial in both sexes (see housekeeping genes in Figure 9; Lahn and Page 1997). The 

knowledge of its sequence provided a starting point for detailed study of Y chromosome diversity in 

humans, their implicit mutational processes and the role of such DNA portion in human disease. The 
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Figure 9 – Schematic representation of the human Y chromosome. a) Structure of the reference Y chromosome, based 

on sequence information that was largely derived from a haplogroup-R individual in Skaletsky et al. (2003). The scheme 

includes both short and long arms (Yp and Yq), the pseudoautosomal regions 1 and 2 (PAR1 and PAR2), centromere 

(Cen), heterochromatic and NRY regions. The potential structural variation in the NRY is emphasized, by the location of 

three classes of euchromatic sequences (X-degenerated, X-transposed and ampliconic), inverted repeats (IR) and 

palindromes (P). Deletion, duplication and inversion segments are identified (“del”, “dup” and “inv”, respectively). 

Approximate locations of the some genes are shown (in italic), selected according to the resolution of this map. Genes 

named at the top of the chromosome have active X-chromosome homologues whereas the ones in the bottom lack 

known X homologues. The genes in red are widely expressed housekeeping genes; genes in black are expressed in 

the testis only; and genes in green are expressed neither widely, nor testis specifically. With the exception of the SRY 

(sex-determining region Y) gene, all the testis-specific Y genes are multicopy. A 3-Mb bar indicates the scale of the 

diagram. b) Structural elements conserved between human and chimpanzee Y chromosomes are shown according to 

their position in the reference human Y chromosome. Adapted from schemes in Lahn et al. (2001), Jobling and Tyler-

Smith (2003), Skaletsky et al. (2003), and Repping et al. (2006). 

  

 

more recently sequenced Y chromosome in chimpanzees (Hughes et al. 2005, Kuroki et al. 2006) constitutes the 

second well characterized mammalian chromosome for comparative analysis. 

 The Y chromosome includes both heterochromatic and euchromatic portions, with the totality 

of genes located in the later. Besides the large block of heterochromatic sequences found in the 

centromeric region of each nuclear chromosome (Schueler et al. 2001; about 1Mb in the Y chromosome, Tyler-

Smith et al. 1993), the male-specific chromosome contains a block of approximately 40 Mb that roughly 
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comprises the bulk of the distal arm (Caspersson et al. 1970, Pearson et al. 1970). A third heterochromatic block 

demarks a region of approximately 400kb with 3000 tandem repeats of 125 bp, that interrupts the 

euchromatin in the proximal Yq (Skaletsky et al. 2003). The entire sequence of euchromatin comprises 14.5 

Mb in the Yq long arm and 8 Mb in the Yp short arm, plus two minor gaps of ~1.5 Mb. Three classes of 

Y chromosome elements are described: X-degenerated, X-transposed and ampliconic sequences 

(Figure 9). The X-degenerated elements, which are scattered with the X-transposed portions, are 

dotted with single-copy genes or pseudogene homologues of 27 different X-linked genes, registering a 

60-96% nucleotidic identity with those. These genes have been interpreted as surviving relics of 

ancient autosomes from where both sexual chromosomes co-evolved (Lahn and Page 1999). In half of the 

cases, the pseudogenes display sequence similarity to both exons and introns of the functional X 

homologue, while the remaining seem to be transcribed functional genes, that encode for very similar 

though not identical protein isoforms (Skaletsky et al. 2003). All the 12 ubiquitously expressed Y chromosome 

genes are located in the degenerated areas. On the other hand, only one of the genes expressed in 

the testis is X-degenerated (Skaletsky et al. 2003).  

 The X-Y transposition supposedly happen 3-4 mya, in a large-scale event after the human-

chimpanzee divergence (Page et al. 1984, Mumm et al. 1997, Schwartz et al. 1998, Rozen et al. 2003). The NRY X-transposed 

segments have a 99% homology with DNA sequences in the Xq21 long arm. However, the 

chromosome was likely targeted with a subsequent inversion of the male-specific region in short-arm 

that cleaved the X-blocks into two non-contiguous segments (Figure 9; Mumm et al. 1997, Schwartz et al. 1998). 

The X-transposed sequences do not participate in the X-Y crossing-over during male meiosis, 

distinguishing them from the PARs at the telomeric regions of the human X and Y chromosomes. In 

their combined length of 3.4Mb, only two genes were identified and a high prevalence of repeat 

elements was detected (Skaletsky et al. 2003), stating for the low informational density of the transposed 

regions. 

 The seven ampliconic segments are dispersed across the Yq arm and the proximal part of Yp, 

in a combined length of 10.2Mb (Figure 9). The long repeat units, designated as amplicons, display a 

marked sequence similarity within and between segments in both arms of the chromosome (as much 

as 99.9%; Rozen et al. 2003, Skaletsky et al. 2003). This class harbours the highest density of NRY genes, 

comprising nine distinct coding families of predominant or exclusive expression in the testis. The most 

pronounced structural features of the ampliconic regions of Yq are the eight palindromes of large 

extension (cumulatively ~5.7Mb, one quarter of the Y chromosome male-specific region; see Figure 9), 

where eight of the multi-copy gene families have members and six gene families are exclusively 

located (Skaletsky et al. 2003). In addition, the amplicons include five sets of more widely spaced inverted 

repeats (referred as IR; Schwartz et al. 1998, Tilford et al. 2001) and a variety of long tandem arrays, namely the 

proeminent NORF (no long open reading frame) and TSPY clusters. The first arrays owe their name to 
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a great diversity of spliced but apparently non-coding transcription units, while the latter encode for the 

TSPY protein (see Skaletsky et al. 2003 for further details).  

 

 

3.2 - Evolution of the Y chromosome 

 

 The sexual chromosomes, in mammals represented by the XY system, have as their putative 

ancestors a pair of autosomes (Figure 10; Ohno 1967, Bull 1983, Graves and Schmidt 1992) at an evolutionary 

timescale of 300 mya (Lahn and Page 1999, Lahn et al. 2001, Skaletsky et al. 2003). The latter studies on modern X-Y 

gene pairs have suggested those as surviving “fossils” where extensive sequence identity between 

ancestral X and Y chromosomes once existed. The differentiation of the two sex chromosomes 

supposedly started only when crossing-over between the chromosomes ceased, since there was a 

strong correlation between the age of individual X-Y gene pairs and the locations of their X members 

on the human X chromosome (Lahn and Page 1999). The first genes to diverge were probably the SRY 

(human sex-determining region Y) gene and its SOX3 homologue, which persists on the mammalian 

X-chromosome (Stevanovic et al. 1993, Foster and Graves 1994, Lahn and Page 1999). 

Four evolutionary events are believed to have contributed to the human sex chromosome 

evolution, the first at about 300 mya and the last at 30 mya (Lahn and Page 1999, Lahn et al. 2001). The sequential 

suppression of recombination and consequent extension of the non-recombining portions are reflected 

in the mentioned X chromosome stepwise age increase along its length and the existence of four 

‘evolutionary strata (Lahn and Page 1999).  In the case of X-degenerated genes and pseudogenes, a single 

molecular process is rather likely: the region-by-region suppression of crossing-over, probably 

because of sequence inversions in the Y chromosome (Graves 1996, Lahn and Page 1999, Stefansson et al. 2005). In the 

absence of recombination a monotonic functional decline was triggered and therefore the few coding 

genes in these regions appear as resistant in the absence of sexual recombination (Lahn et al. 2001, Skaletsky 

et al. 2003).  

On the other side, the ampliconic sequences arose from a handful of genomic sources and 

mechanisms (Figure 10; Skaletsky et al. 2003), although they represent almost identical copies in 

palindromes. Under a molecular reasoning, the near identity of the DAZ gene copies, residing 

exclusively on the arms of palindromes P1 and P2 may at first suggest that the gene amplification has 

occurred only within the last 200 ky (Agulnik et al. 1998). However, subsequent comparative sequence 

analysis of human and chimpanzee ampliconic sequences showed that the Y chromosome 

palindromes predate the speciation, with a series of autosomal transpositions and subsequent 

amplification having occurred during primate evolution (e.g. DAZ genes derive from DAZL autosomal 

transcription unit still present in chromosome 3; Saxena et al. 1996, Skaletsky et al. 2003). While the divergence 

between orthologous palindromes is owed to the accumulation of neutral mutations in separated 
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lineages of humans and chimpanzees (about 1.44%, Rozen et al. 2003), the little intraspecific arm-to-arm 

divergence (0.021-0.028%, Rozen et al. 2003) suggests that the paired arms of the palindromes evolved in 

concert. In fact, the nearly identical copies with remarkably uniform patterns of tissue expression might 

have gene conversion as the underlying mechanism: the Y chromosome itself repairs the mutations by 

non-reciprocal transfer of information between similar gene pairs in the male-specific portion (Rozen et al. 

2003, Bosch et al. 2004). The sequences displaying intrachromosomal identities of >99.9% represent a large 

and distinct subset of NRY euchromatin, that comprises the eight palindromes as well as large 

portions of the IR2 and IR3 inverted repeats, and where the gene conversion is supposedly engaged  

 

 

 
 

 

Figure 10 – Molecular evolutionary pathways and processes that gave rise to the genes in the three NRY sequence 

classes: X-degenerated genes (yellow) derive from an autosomal pair ancestral to both X and Y chromosomes (and 

enlarged by subsequent fusion with other autosomes or autosomal segments, Watson et al. 1991); X-transposed genes (in 

pink) derive from X-linked genes, by turn derived from the ancestral autosomal pair; Ampliconic genes (blue) originate 

from three converging processes, namely amplification of X-degenerated genes (e.g. RBMY, VCY), transposition and 

amplification of autosomal genes (DAZ) and retroposition and amplification of autosomal genes (CDY). The boxes 

enumerate dominant themes in gene evolution. The asterisk denotes that Y-Y gene conversion is apparently common 

in ampliconic sequences that exhibit intrachromosomal identities higher than 99.9% 
(Skaletsky et al. 2003, Rozen et al. 2003). In 

Skaletsky et al. (2003). 
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in a routine basis (Rozen et al. 2003, Skaletsky et al. 2003). Additional evidence for the process is detected in 

particular SNPs of the recent genealogy of human NRY. As for the X-transposed elements these seem 

to be of more recent acquisition, at approximately 3-4 mya (Rozen et al. 2003, Skaletsky et al. 2003). 

 Very many large-scale structural rearrangements in non-ampliconic portions of the human Y 

chromosome have accumulated since the humans and chimpanzees diverged (Hughes et al. 2005). 

However, none of these differences is polymorphic among extant human Y chromosomes (Repping et al. 

2006). On the other hand, there is little similarity between the ampliconic structure of the human and 

chimpanzee Y chromosomes (Repping et al. 2006), except for the conserved P6, P7, P8 palindromes and the 

centres of palindromes P1 and P2 (Rozen et al. 2003, Hughes et al. 2005). The examination of structural variation 

across a worldwide genealogical tree (Underhill et al. 2000, YCC 2002) better explained the mutational dynamics 

underlying the structural polymorphisms and showed that the high mutation rate of large-scale 

mutations in palindromic regions (2.3-4.4 x 10-4 mutations per father-to-son Y transmission) is the main 

force driving structural polymorphism among human Y chromosomes, The limited variation in Y-linked 

genes raises the possibility of selective constraints (Repping et al. 2006).  

 

 

3.3 – Distinctive features of Y chromosome 

 

3.3.1 - Haploidy and paternal inheritance 

 

In healthy men, the sex-defining Y chromosome appears in a single copy. The major structural 

rearrangements on its evolutionary history prevented pairing and recombination with the X 

chromosome in most of its length, and allowed the male-specific region to extend along the Y 

chromosome (Lahn and Page 1999, Lahn et al. 2001, reviewed in Skaletsky et al. 2003). The heritage process is by that 

restricted to men, characterizing paternal lineages where the descendants inherit the mutations. The 

single-locus behaviour is only altered by the accumulation of mutations over time and thus keeps a 

direct historical record, in contrast to autosomes, where biparental inheritance and recombination 

make it virtually impossible to reconstruct precise genealogical lineages of molecular descent. In a 

somewhat simplified way, one may assume that with a sex ratio of 1:1, the effective population size of 

Y chromosome in a population is one-quarter of the autosomes, a third of the X-chromosomes and 

equivalent to that of mtDNA. 
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3.3.2 - Absence of recombination on the NRY 

 

As mentioned, the NRY is passed intact over to the next male generation since it is assumed 

to escape close pairing and crossing-over with the X-chromosome in the meiotic process. The genetic 

markers are thus in perfect linkage originating haplotypes, this is particular combination of allelic 

states. There are nevertheless situations under which recombination could occur, as episodes of gene 

conversion between paralogues (Rozen et al. 2003). However, these are not considered under the 

conventional definition of recombination by crossing over. In the pathological situation (47, XYY) that 

incises 1/1000 men (Walzer and Gerald 1975) recombination is possible but since the copies are identical, 

there are no major consequences in the molecular sequence. In reality such males are able to 

eliminate one Y from the germline (Chevret et al. 1997). Y-like segments have been detected in autosomes, 

possible asymptomatic translocations that may recombine (Cooke and Noel 1979, Andersson et al. 1988). Fortunately 

such cases are recognized by a robust phylogeny. 

The non-recombining elements tend to decay rapidly because there is no obvious mechanism 

to regenerate or stop the accumulation of slightly deleterious mutations (caused by selective forces as 

“Muller’s ratchet”, and “hitchhiking” when linked to selectively favoured alleles; Muller 1964, Rice 1987). Once 

a region has become isolated by haploidy, it can no longer be repaired by piecing together unchanged 

parts of the homologous chromosome and is at the mercy of genetic drift. Provided that the X and the 

Y chromosomes were identical some 300 mya, one may assume that the Y chromosome has lost 

1393 of the supposed original 1438 genes, retaining about a half of a gene per Mb of its genome, 

compared to ca. 10 genes per Mb in the X chromosome (Graves 2004). However, the frequent occurrence 

of amplification within the chromosome it is likely to compensate for the inevitable decay, built into 

haploid genetic systems. The arrangement of nearly all genes essential for spermatogenesis (such as 

DAZ genes) in multiple copies of paralogous repeats has supposedly evolved to protect against 

harmful mutations, or at least retard the erosion, through beneficial Y-Y gene conversion (Rozen et al. 2003, 

Bosch et al. 2004). It might even be that the lack of crossing-over with a homologue makes such intra-

chromosomal events more frequent, resulting in a degree of identity among sequence pairs that rivals 

that of autosomal homologues chosen at random from the human populations (Jobling and Tyler-Smith 2003). 

Assuming a steady-state balance between new mutations, that create differences between arms, and 

gene conversion episodes that erase the differences, it is possible to estimate a rate of 2.2 x 10-4 

conversions per duplicated locus per 20-year human generation (Rozen et al. 2003). Graves (2004) has stated 

the existence of palindromic structures, able to make internal loops within the structure of a single Y 

chromosome, where gene conversion compensates the lack of recombination. The process can 

however resurrect inactive copies.  
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3.3.3 – The role of selection in the Y chromosome 

 

 Selection acts as a force shaping Y haplotypes’ diversity, in particular if the coding region is 

affected. The Y chromosome is then subject to purifying selection when, for example, the inactivation 

or loss of Y genes produces XY females and hermaphrodites or male infertility (e.g. Sun et al. 1999). When 

referring to this haploid system makes no sense to consider balancing selection, and frequency-

dependent selection has not been testified. The concern centres rather on the potential influence of 

positive selection, with advantageous changes becoming fixed in the population. Because of the lack 

or recombination any selection will affect the entire chromosome and produce an increment on 

frequency of a lineage more rapidly than would be expected by drift. One has to regard however past 

and present differential selection of Y lineages, with neutral variants becoming advantageous or 

disadvantageous within the timescale of evolution. The haplotypes used for evolutionary purposes 

were subject to association studies with those phenotypes suspiciously under selection (Jobling et al. 1998, 

Paracchini et al. 2000, Passarino et al. 2001, Quintana-Murci et al. 2001, McElreavey and Quintana-Murci 2003). Many of the studies 

showed no association or when found, often could not be reproduced (e.g. Kuroki et al. 1999; Carvalho et al. 2003, 

2004), or could be explained by population structure (Previdere et al. 1999), strengthening the idea about  the 

neutrality of the evolutionary markers employed. A few associations seem robust but can be explained 

by plausible mechanisms, not selective constraints. As an example, an inversion polymorphism in 

haplogroup P prevents the ectopic recombination between genes that produce many XX males (Jobling et 

al. 1998), resulting on a lower frequency of these males phylogeneticaly assigned to such haplogroup. 

 

 

3.4 - Calibration of the Y chromosome molecular clock 

 

 Because of the very slow molecular evolution of the Y chromosome (identical to that of 

autosomes, Nachman and Crowell 2000), the direct use of base substitutional mutations for introducing a 

temporal scale into the phylogenetic reconstructions, has been and still is largely impossible for a 

reason that AMH, as a species, is relatively young. Therefore, the methods widely and successfully 

used in interspecies studies are far beyond reach in calibrating the events within the human Y-

chromosomal phylogeny. Furthermore, the only reliable outgroup for such calibration – the 

chimpanzee – separated from humans about 6 mya (Goodman et al. 1998), a time interval tens of times larger 

than that of the existence of AMH, and which makes the calibration prone to large errors. On the other 

hand, the large size of the human Y chromosome permits, in theory, that enough mutations 

accumulate to construct a precise phylogenetic tree. Recent and future progress, principally of DNA 

sequencing techniques, may open new experimental approaches that would allow employing direct 

calibration of the molecular clock, by counting the accumulated single nucleotide changes in the Y 
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chromosome since the MRCA, making use of outgroups (great apes) or even demographic events that 

are known from the archaeological record. However, to the best of my knowledge there is so far no 

published paper in the Y chromosome literature, where the topology of the phylogenetic tree of it has 

been supplied with time scale, provided by SNP-based temporal calibration of the tree (see 

forthcoming review of Underhill and Kivisild (2007). 

Instead, temporal estimates are obtained using an entirely different genetic system that of the 

very rapidly evolving STRs. Unlike SNPs, which can be treated as unique events in the genealogy of 

such a young species as humans are, the accumulation of variation in STRs length is not unique, often 

taking place as parallel events in any of the sub-clusters of the Y chromosome phylogeny. The STR-

based polymorphisms have been detected already long ago in autosomal chromosomes and much of 

their basic characteristics, such as molecular mechanisms that create length change (gain or loss of 

repeat units by replication slippage), have been postulated using autosomal STRs as models (e.g. 
Kornberg et al. 1964, Levinson and Gutman 1987, McMurray 1995, Chakraborty et al. 1997, Kruglyak et al. 1998, Huang et al. 2002, Lai and Sun 2003; 

and other references in the review of Nikitina and Nazarenko 2004). Such mechanisms, as well as their 

frequencies (i.e. the rates of length changes) are apparently identical in autosomes and sex 

chromosomes, including the Y chromosome (e.g. Zhivotovsky et al. 1997, 2004; Brinkmann et al. 1998; Xu et al. 2000; 

International Human Genome Sequencing Consortium 2001; Subramanian et al. 2003).  

The calibration of the Y chromosome molecular clock then requires a reliable estimate of the 

evolutionary mutation rate of Y-STR loci. Different approaches and estimations have however been 

reported: deep rooting pedigrees (2.0x10-3 mutation/generation, Heyer et al. 1997); father/son pair analysis 

(2.6x10-4 or 2.8x10-3 mutation/generation; Forster et al. 2000 and Kayser et al. 2000b, respectively); sperm analysis 

(2x10-3 mutation/generation, Holtkemper et al. 2001); evolutionary studies (0.7x10-3, Pritchard et al. 1999; 0.69x10-3, 
Zhivotovsky et al. 2004). It soon become obvious that the clock rates offered by familial and pedigree studies 

differ rather profoundly from those calculated from evolutionary studies. In this respect the picture is 

analogous to that found for mtDNA, as it has been described before. A general unsatisfaction started 

to insurge, especially when a panoply of factors other than the scale of evolution could justify the 

deviation of estimates. The high mutation rates might arise from asymmetrical sister-chromatid 

exchange, or replication slippage facilitated by the secondary structure of the repeats. Alternatively, 

the lower estimates (Forster et al. 2000) can be achieved if only one-step mutation rate is considered, the 

“fast” microsatellite markers are neglected or a population with more ancient split is analysed (Zhivotovsky 

et al. 2004). In addition, the rarity of mutations leading to the large standard errors of father-son 

comparisons and the confusing factor of non-paternity in deep-rooting pedigrees, further contribute to 

the ambiguities of the estimators. 

Zhivotovsky et al. (2004) proposed a model of microsatellite evolution where multistate STR 

mutations are weighted in the effective mutation rate (Slatkin 1995, Zhivotovsky and Feldman 1995). The approach 

analysed the variation of ten tri- and tetra-STRs on Y chromosome and autosomes for the New 
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Zealand Maori and Bulgarian Gypsies, populations whose known divergence time was established by 

archaeological and historical data (Marushiakova and Popov 1997, Diamond and Bellwood 2003). Since the underlying 

mutational mechanism seems to be the same (Mountain et al. 2002), the averaging of both Y chromosome 

and autosomal STRs mutation rates supposedly decreases the random effects of sampling, and 

therefore an average estimate of 0.69 ± 0.13 x 10-3 mutations/25 years should represent an 

appropriate basis for dating populational events.  

Further uncertainty is introduced if to consider that the microsatellite diversity and mutation 

rate tend to be locus-specific (Kayser et al. 2000b) and vary also within the haplogroups (Carvalho-Silva et al. 1999, 

Dupuy et al. 2004), therefore affecting selectively the coalescence estimates. One can not exclude that 

mutation rates at a certain locus may vary among haplogroups due to differences in allele repeat 

scores, or that these are even population-specific (Zhivotovsky et al. 2004). However, the data of Dupuy et al. 
(2004) did not provide details on the way which STR-mutation rate increases as function of repeat score. 

A simulation by removing the loci under the “large allele-size argument” did not influenced significantly 

the previously estimated 0.69 x 10-3 (Zhivotovsky and Underhill 2005).  

A more accurate estimate should nevertheless combine the dynamics of haplogroups and the 

evolution of their microsatellite variation, such as the rapid extinction of newly arisen microsatellite 

alleles (Zhivotovsky et al. 2006). By definition, when a SNP mutation defines a new haplogroup, there is zero 

STR variation in it, but over time, different STR haplotypes accumulate and radiate from the central 

ancestor (Jobling and Tyler-Smith 2003, Figure 11). Meanwhile, the accumulated STR diversity is being 

continuously removed by genetic drift (mostly bottlenecks) during stochastic fluctuations in 

haplogroup’s frequency over generations. A mathematical modelling under these evolutionary 

assumptions resulted in that the rate of accumulation of microsatellite variation is about 3.6 times 

lower than those predicted from the germline mutation rate, and thus reflects the removal process  

 

 

 

 

Figure 11 – Network of microsatellite variation accumulation with time from a single ancestor. In Jobling and Tyler-Smith 
(2003). 
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 (Zhivotovsky et al. 2006). In that sense, each haplogroup has its own demographic history but that is not 

discernible from the current information. Several parameters can act to produce the inter-haplogroup 

differences, namely fluctuations in the effective population size, where fastly expanding populations 

tend to show a higher rate of variance increase. The average estimates do not reflect the true “state-

of-the-affairs” and are simplistic tools for the studies (Pakendorf and Stoneking 2005). Nevertheless, Zhivotovsky 

et al. (2006) concluded that germline mutation rate can be used for probability calculation in forensic and 

disease studies, whereas the evolutionary effective mutation rate are still the more appropriate for 

evolutionary studies.  

 

 

3.5 - Phylogeny and nomenclature of Y chromosome haplogroups 

 

The advances in mutation-detection technology and consequent increment of knowledge 

ended the established idea of low level of polymorphism in the Y chromosome (review in Jobling and Tyler-

Smith 2003). To the dozen of molecular markers initially known (Jobling et al. 1997) other tens were added (Underhill 

et al. 1997) by the analysis of populations from different regions on the globe. More than 300 well-

characterized SNPs are currently described for their use in Y-phylogenetics (Shen et al. 2000, Underhill et al. 2000, 

Hammer et al. 2001, YCC 2002, Jobling and Tyler-Smith 2003, Underhill 2003). Y-SNPs are considered to be of single 

evolutionary occurrence in the human history (Unique Event Polymorphisms, UEPs) and their low 

mutation rate (~2 x 10-8 per base per generation, Nachman and Crowell 2000) makes them a preferential choice 

for constructing unique basal phylogenies. The robust and developing phylogeny of Y chromosome is 

hierarchical and accepted to be unique, where the cumulative occurrence of SNPs defines the position 

of the haplogroups in the tree. To the level of resolution achieved in 2003 only five homoplasies were 

described (YCC 2002, Jobling and Tyler-Smith 2003) but these are easily identified by the disposition of adjacent 

markers. Indel length variants that do not result in a medical condition (AZF and DAZ3/4 loci; Vogt 1998, 

2005; Fernandes et al. 2002b, 2004; Repping et al. 2003, 2004) can also become frequent enough to be considered 

polymorphisms, as the 2kb deletion in marker 12f2 characterizing haplogroup J (Casanova et al. 1985). Newly 

found markers are continuously enhancing phylogenetic resolution of the tree.    

The mutation rate of Y-STRs is much higher than that of biallelic markers (~0.7 x 10-3 

mutations/generation, see references in section 3.4), making them useful to determine the 

intrahaplogroup diversity and to attribute molecular ages (de Knijff 2000). The Y chromosome multi-allelic 

markers, first used by Litt and Luty (1989), produce an haploid profile of male DNA and therefore are 

also informative for gene mapping, human identification in forensics (Jobling et al. 1997, Jones and Ardren 2003) and 

in paternity and kinship studies (Kimpton et al. 1993, Hammond et al. 1994, Kayser et al. 2004). 

 A bit less than a decade ago, several laboratories started to study, in parallel, many different 

populations from diverse regions and ethnic affiliations. As an outcome, a number of different 
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nomenclature systems were created and published in the literature (e.g. Su et al. 1999, Jobling and Tyler-Smith 2000, 

Semino et al. 2000, Underhill et al. 2000, Hammer et al. 2001, Karafet et al. 2001). At the same time, ambiguities remained in the 

phylogenetic position of many markers and the consequent haplogroup assignment. The need for a 

consensus nomenclature emerged, and after a couple of years of close attention in the subject, such a 

nomenclature was finally developed by the Y Chromosome Consortium (YCC) in 2002 (YCC 2002). In 

analogy to what was done for mtDNA trees, homologous NRY sequences of gorillas, chimpanzees 

and orangutangs provided  an outgroup for rooting of the tree and the emerging hierarchical tree 

allowed to determine the likely ancestral state (Underhill et al. 2000, Hammer et al. 2001).  The term “haplogroup”, 

applied to the Y-chromosomal phylogenetic tree, refers to NRY lineage defined by one or more SNPs. 

 Presented in Figure 12 is the phylogenetic tree of the human Y chromosome based on the 

state-of-art knowledge in 2003 (i.e. YCC2003 tree in Jobling and Tyler-Smith 2003), though it does not 

include all the details known to that moment (Underhill and Kivisild 2007). The phylogeny is split into major 

haplogroups from A to R with a total of 245 markers distributed among 153 branching subclusters. The 

refined typing adds numbers and small letters sequentially (e.g. A1b). The potentially paraphyletic 

lineages, interior nodes on the tree not included in the sub-clades of a clade, were named paragroups 

and assigned a “*” symbol by the YCC (2002), R1* for instance. A designation such as R(xR1a) indicates 

the partial typing of markers, in this case excludes those belonging to R1a. In this standardized 

nomenclature system most markers are designated with prefix (identifying laboratory, where the 

marker was first found), and quite often in the text the lineages are mentioned by haplogroup plus 

terminal mutation – e.g. R1-M173. The use of a mutation-based nomenclature, referring to the last 

defining marker is used for the sake of clarity in the comparisons. In terms of nomenclature the YCC 

proposal introduced many advantages: i) placed the haplogroups in an hierarchical order; ii) 

standardized haplogroup names and, therefore, allowed to discard of a large number of different, 

partially incompatible nomenclatures and haplogroup names ; iii) made it easier to include new 

markers when found. A year later Jobling and Tyler-Smith (2003) published corrections and minor 

changes to the original consensus. Nevertheless, a certain fraction of earlier published low resolution 

data became obsolete because of an inevitable ambiguity in their assignment into phylogenetically 

deeper topology, unless further refinement has been carried out. Comparison of YCC 2002 and YCC 

2003 topologies reveals a few differences, one of them with specific value to foresee the future 

changes. Namely, in YCC 2002 haplogroups N-LLY22g and O-M175 are depicted as independent 

basal clades, deriving from the central node defined by M9, while in YCC 2003 the novel M214 SNP 

was introduced, revealing that haplogroups O and N are sister clades within their ancestral clade NO. 

The topology of the Y chromosome tree (Figure 12) allows to see that, for example, the node defined 

my M89 (at our present knowledge = M213; =P14) gives rise to independent clades G-M201, H-

M52(=M69); I-M170 (=P19); J-12f2.1 and to paragroup F* and the branch defined by M9. Therefore, 

our current phylogenetic knowledge assumes multifurcation at the internal node defined by M89. 
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Figure 12 – Evolutionary tree of the major 18 haplogroups/paragroups and their continental distribution. The 

phylogenetic root is denoted by an arrow. The mutation events are label by the marker name. The size of the pie-charts 

represents their overall proportion, correspondent to the displayed frequency classes. The colored portions refer to the 

frequency in the geographic regions. Based on the total frequency of worldwide Y chromosomes in Hammer and 

Zegura (2002), and adapted with information from the YCC (2002) and Jobling & Tyler-Smith (2003). 
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However, it is quite likely that this multifurcation hides so far unknown internal bifurcations. Indeed, 

one such has been recently discovered, bringing together haplogroups I and J (Underhill and Kivisild 2007), and 

one may anticipate that in future, richer internal structuring of the Y chromosome tree will be available. 

From the phylogeographic point of view, such improvements are valuable in the reconstruction of 

ancient migration patterns. Indeed, the joint NO clade established by M214 marker allowed to suggest 

a major counter-clockwise spread of haplogroup N from East Asia to North Europe, based on 

phylogeography of rare NO* chromosomes (Rootsi et al. 2007). However, it would be incorrect to insist that 

the current topology of the Y chromosomal variation is erroneous: it is very likely correct, but it has a 

considerable potential to be further refined. 

 

 

3.6 - The origin and worldwide dispersal of Y chromosomes 

 

The global phylogeographic analysis of Y chromosomes shows their high geographic 

specificity and suggests an African, presumably East African, origin for the modern humans (e.g. 

Underhill et al. 2000, 2001a; Hammer et al. 2001; Ke et al. 2001). Under a model of constant population size, the 

coalescence time estimates to the oldest root in the phylogeny are considerably older then posterior 

estimates assuming exponential growth (147±51 kya Hammer et al. 1998 and 90.4±20.1 ky Hammer and Zegura 

2002 against 59 kya, 95% confidence interval 40-140 kya, Thomson et al. 2000 or STR-based 46-91 kya, 95% 

confidence interval 16-126 kya, Pritchard et al. 1999).   

It should be stressed that there is no theoretical need to expect that coalescence ages for 

maternally inherited mtDNA and paternally inherited Y chromosome should coincide. Nor should one 

expect that the coalescence ages of these two sex-related genetic systems should be even close to 

the palaeonthologically estimated emergence of AMH, based on fossil evidence. Note that the 

assumed split between the ancestor of modern humans and Neanderthals and the emergence of AMH 

(e.g. Lahr and Foley 2004) date much later than the coalescence of diversity present in autosomal 

chromosomes - about a half a million – million years ago (Fullerton et al. 1997).  

Haplogroups A-M91 and B-M60 are the two most profound clades of the Y chromosome 

phylogeny, with the root of the tree placed somewhere between them. Their present distribution is 

almost exclusive of sub-Saharan Africans, at low or moderate frequencies of about 6-7% (e.g. Underhill et 

al. 2000, Semino et al. 2002, Wood et al. 2005, Rosa et al. 2007). However, in the “relic” hunter-gatherers !Kung and Khwe 
(Scozzari et al. 1997, 1999; Knight et al. 2003; Wood et al. 2005) and Central African Pygmies (Underhill et al. 2000, Wood et al. 2005) 

these lineages comprise more than a half of the paternal genetic pool, what has been interpreted as 

the survival of the ancestral pool of modern humans (Underhill et al. 2001a). The phylogenetic position and 

accumulated variation of A-M91 and B-M60 lineages, when combined with the anthropological and 

archaeological data (Nurse et al. 1985), are suggestive of an early diversification and dispersal of human 
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populations within Africa, possibly main hitchhikers of the initial pan-continental dispersal(s) (Figure 

13). However, one needs to treat with certain caution the 5 years ago suggested coalescence time 

estimates of roughly 40 ky (Hammer and Zegura 2002), not the least because unpublished data of some 

laboratories suggest by far deeper split between haplogroups A and B (Underhill and Kivisild 2007). 

 Since the extant phylogenetic tree of NRY lineages and their phylogeographic distribution are 

assumed to shed light over the past evolutionary events, both those that have reshaped the initial 

phylogeographic pattern and those that occurred over a long time span, and are independent from 

historic and archaeological evidence, the Y chromosome research can assist in interpreting concurrent 

hypothesis on events affecting human variation (e.g. Quintana-Murci et al. 1999; Underhill et al. 2000, 2001a, 2003; Hammer et 

al. 2001; Cavalli-Sforza and Feldman 2003). The worldwide dispersal of modern Y chromosomes has been 

interpreted in the light of the “Out-of-Africa” (Cann et al. 1987, Stringer and Andrews 1988, Stringer 2003) and 

“multiregional” models (Excoffier and Langaney 1989, Wolpoff 1989, Templeton 1997). The father-son inherited portions 

elected the “Out-of-Africa” hypothesis, where the modern extant Y chromosomes trace their ancestry 

to a limited number of African forefathers who successfully left Africa relatively recently, and eventually 

replaced archaic lineages elsewhere in the world. The theory found support in the highest level of 

mean pairwise differences among haplotypes of African populations, while the remaining variation has 

arisen from multiple founder effects and subsequent episodes of bottlenecks and expansions (Calafell et al. 

1998, Hammer et al. 2001, Underhill et al. 2001a, Yu et al. 2002). The central node of the “Out-of-Africa” expansion is the 

marker M168 (=P9), basal to all clades found outside Africa (Figure 13). Lineages derived from M168 

chromosomes are frequent in Africa as well (for further discussion see chapter 3.6.1). Different ages 

are pointed for the last common ancestor of all non-African Y chromosomes (of about 45 ky, Thomson et al. 

2000, Underhill et al. 2000 or 69 ky Hammer and Zegura 2002), with the most recent estimate suggesting its split from 

haplogroup B at about 80 kya, with further rapid diversification at around 60 kya (Underhill and Kivisild 2007). 

For quite some time the debate has centred over the routes of dispersal of modern humans, in 

the long-lasting peopling process of Eurasia and other continents, and their corresponding chronology. 

As for the mtDNA genetic system, the distribution of Y-chromosomal lineages was interpreted 

considering: i) an early southern migration, perhaps following a coastal route around the northern edge 

of the Indian Ocean over the Horn of Africa before 50 kya (Lahr and Foley 1994; Stringer 2000, 2003; Bowler et al. 2003; 

Leavesley and Chappell 2004; Mellars 2006), ii) a later northern migration into Eurasia over Sinai via the Levantine 

corridor (Bar-Yosef et al. 1986, 2002). Despite many subsequent demographic changes, distinct remnants of 

early Y chromosome carriers and their phylogeography seem to favour the southern route, although 

more in-depth analyses are needed. A diverse set of basal C-RPS4Y, F-M89 and K-M9 founder 

lineages, that have likely arisen on the way to Asia after an earlier departure from Africa of their 

ancestral chromosomes, were shown to congregate along the southern Asian corridor of migration and 

to have further diverge towards Oceania and the Americas (Figure 13; Karafet et al. 1999, 2001, 2002; Kayser et al. 

2000a, 2003; Underhill et al. 2000, 2001b; Bamshad et al. 2001; Capelli et al. 2001; Hammer et al. 2001, 2006; Wells et al. 2001; Lell et al. 2002;
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Figure 13 – Schematic reconstruction of the origin and worldwide dispersal of Y chromosome superhaplogroup F-M89, 

with subsequent diversification of M9 lineages. The full line arrows do not indicate precise migration routes but the 

direction of the movement. Dashed arrows indicate subsequent movements of the clades. Adapted from Underhill (2003) 

and Rootsi (2004).  

 
Redd et al. 2002; Kivisild et al. 2003; Zegura et al. 2004; Scheinfeldt et al. 2006). For instance, the C-RPS4Y clade, considered 

among the oldest lineage in Asia and the Southwest Pacific was likely introduced with the first settlers 

perhaps as early as 50 ky (Underhill 2003). On the other hand, the package of Y chromosome founder 

lineages in West Eurasia is reduced to F-M89 and K-M9 (Rosser et al. 2000, Semino et al. 2000, Underhill et al. 2000, 

Hammer et al. 2001, Wells et al. 2001, Hammer and Zegura 2002, Kivisild et al. 2003), supporting the idea that the “Out-of-Africa” 

migration first reached Southwest Asia and from there dispersed both east and westwards, consistent 

with the single coastal route scenario. Further, a number of deep-rooting subclusters like C*-RPS4Y, 

F*-M89, H-M69, (within F), L-M20 (within K) and R2 are frequent and largely restricted to the Indian 

subcontinent (Bamshad et al. 2001, Kivisild et al. 2003), a region that seems to have played a pivotal role in late 

Pleistocene genetic differentiation of the western and eastern Eurasian gene pools. 

 After the initial settlement of Eurasia, its genetic composition, as far as the Y chromosome is 

concerned, did not remain constant. Small groups of modern humans, holders of the founders C, F 

and K clades, started to split into several isolated groups and developed region-specific variants 
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(reviewed in Underhill 2003). Haplogroup C, with a patchy distribution, is represented in the Indian 

subcontinent only by the C* lineages (Bamshad et al. 2001, Kivisild et al. 2003) while in southeast Asia, C* 

chromosomes are in combination with C3-M217 (actually the only C lineage in inland Asia and Native 

Americans; Karafet et al. 1999, 2001, 2002; Underhill et al. 2000; Hammer et al. 2001, 2006; Wells et al. 2001; Hammer and Zegura 2002; Lell et al. 

2002; Kayser et al. 2003; Zegura et al. 2004) and in East Indonesia, Melanesia and Polynesia are together with the 

native C2-M38 (Underhill et al. 2000; Kayser et al. 2000a, 2003; Hammer et al. 2001, 2006; Redd et al. 2002; Scheinfeldt et al. 2006).  

Superhaplogroup F, characterized by M89 derived state, comprises the subsequent diversity of 

the phylogenetic tree, with many region-specific derivatives (e.g. the Near and Middle Eastern 

haplogroups J-12f2.1 and G-M201 and the European haplogroup I-M170; Figure 13). The 

superhaplogroup K-M9 harbors numerous branches that have followed different trajectories and gave 

rise to more specific subdivisions: haplogroup L-M20 in Southwest Asia and K*-M9, K5-M230 and M-

M4 types in Oceania and New Guinea (Underhill et al. 2000; Kayser et al. 2000a, 2003; Capelli et al. 2001; Hammer and Zegura 2002; 

Jobling and Tyler-Smith 2003; Hammer et al. 2006; Scheinfeldt et al. 2006); O-M175 lineages are of ubiquitous distribution from 

southeastern and eastern Asia up to Siberia (Underhill et al. 2000, 2003; Capelli et al. 2001; Karafet et al. 2001, 2002, 2005; Kayser 

et al. 2003; Hammer et al. 2006; Rootsi et al. 2007) but rather unfrequent in Polynesia and Melanesia; the Central Asian 

haplogroups P-92R7 and Q-PN36 are typical of Siberians, with Q* and Q3 lineages particularly found 

in Amerinds (Karafet et al. 1999, 2002; Underhill et al. 2000, 2001a; Wells et al. 2001; Hammer and Zegura 2002, Lell et al. 2002, Zegura et al. 

2004, Hammer et al. 2006); R1a is in general common in Central and South Asia (Karafet et al. 1999, 2001, 2002; Underhill et 

al. 2000; Hammer et al. 2001, 2006; Wells et al. 2001; Kayser et al. 2003, Kivisild et al. 2003) but can also represent nearly half of the 

pool of some East European populations (Karafet et al. 1999, Rosser et al. 2000, Semino et al. 2000). The K*-M9 is 

among the most common macrohaplogroups in Australians and Melasians (e.g. Kayser et al. 2003, Hammer et al. 

2006), comprising in the later a considerable heterozigosity of local clades, detected only recently when 

adding new binary markers (K6-P79, K7-P117, M2-P87 and M2a-P22; Scheinfeldt et al. 2006). Actually, all the 

native Near Oceanic haplogroups seem to have developed in situ at about 30-45 kya, at a comparable 

date to the predicted for ancient mtDNA expansions (Friedlaender et al. 2005, Merriwether et al. 2005) and the earliest 

settlements in the region at approximately 40 – 50 kya (e.g. Leavesley and Chappell 2004). 

 The haplogroup D lineages, that have accumulated M174 mutation in a YAP+ background, are 

nowadays confined predominantly to Japanese and, to lesser extent, Tibetans (Hammer and Horai 1995; Karafet 

et al. 1999, 2001; Underhill et al. 2000; Wells et al. 2001; Hammer et al. 2006). Curiously, their presence in Andaman islanders 

suggest that their earliest (perhaps Palaeolithic) phylogeography in Asia might have been considerably 

wider than it is at the present and state for a founder effect that has been lost (Su et al. 1999, 2000; Tajima et al. 

2004; Wen et al. 2004). The newly identified P47 mutation (Hammer et al. 2006) establishes a fourth Asian D lineage 

that marks most chromosomes that were previously ancestral D*-M174 from Central Asia (e.g. Karafet et 

al. 2001). 

 Together with genetic drift that has operated over the ancestral variation, several later 

episodes of gene flows further shaped the Y chromosome diversity. For example, haplogroup J-12f2.1 



 67 

in India (Kivisild et al. 2003) represents a more recent arrival from Near/Middle East chromosomes (Nebel et al. 

2001, Underhill et al. 2001a, Semino et al. 2004). Separate and distinct genetic contributions to modern Japanese are 

evident in the coalescent analysis the short tandem repeat accumulated diversity: haplogroups D and 

C seem to have begun their expansion in Japan at about 20 and 12 kya, respectively, while 

haplogroup O2b1-M47z began its expansion only after 4 kya (Hammer et al. 2006). Another surprising link 

has been established between the diverse southern India/Sry Lanka C* lineages and those of the 

Australian aborigines, where these represent nearly half of the paternal pool (Karafet et al. 1999, Kayser et al. 

2001): the aboriginal microsatellite diversity forms a tight subcluster, possibly affiliated with a subset of 

the diverse Indian chromosomes (Redd et al. 2002). However, the recent work by Hudjashov et al. (2007) 

identified a new Y marker M347, which distinguishes all Australian C types from Indian or other Asian 

C types. Together with no affinities found for other lineages of the paternal variation, this adds weight 

to the rejection of the Huxley’s hypothesis of Indian-Australian connection (Huxley 1870). 

The reduction of the Y chromosome genetic package to the F-M89 and K-M9 founder lineages, 

most likely occurred during the westward migration to West Eurasia and Europe. The lineages found in 

the present-day pool although not participants of the initial migrations likely reflect the dispersal of their 

precursors, particularly those of the most frequent haplogroups I-M170, J-12f2.1 (within F) and R-

M207 (within K, Figure 13; Rosser et al. 2000; Semino et al. 2000, 2004; Underhill et al. 2000, 2003; Hammer et al. 2001, Wells et al. 2001, 

Bosch et al. 2001, Hammer and Zegura 2002). From the Central Asian P node, the Eurasian R-M207 supposedly 

expanded westwards and further developed its specific branches (Figure 13). Therefore, the M173-

bearing chromosomes in Europe are considered to delineate an ancient expansion from Asia during 

the Upper Palaeolithic ~30kya (Semino et al. 2000, Underhill et al. 2001a, Wells et al. 2001,). Both R1b3-M269 and R1a1-

M17 became very common in West Eurasia although harboring opposite clines (Scozzari et al. 2001). A 

male-mediated counter-clockwise migratory route from Southeast Asia towards Northwestern Europe 

in the Late Pleistocene-Holocene, and thus more recent, is testified in haplogroup N-M231 (Rootsi et al. 

2007). 

Thought drastically reduced and remaining limited in size throughout the LGM, the populations 

experienced a subsequent size expansion, as indicated by the starlike genealogy of the surviving 

paternal lineages (Underhill et al. 2000). From the refugia, the contracted groups of AMH started to spread 

with the warmer and more humid and stable climate of late Pleistocene and Holocene. As shown in 

Rootsi et al. (2004) haplogroup I, a “genuine European” variant of the Y chromosome divides into 

different subclades that have likely participated in the recolonization of Europe, from refugia in 

Francocantabria and East Europe and/or Balkans. The advent of Neolithization starting about 10-12 

kya in the Near East, was another main impellor of demographic expansion. It has been suggested 

that farming societies, usually large and settled, exhibited changes in haplogroup frequencies owing to 

drift. These were supposedly slow processes and led to clinal structures, a possible scenario for China 

and Eurasia in the Holocene (Rosser et al. 2000, Jobling and Tyler-Smith 2003, Quintana-Murci et al. 2004). The spread of 



 68 

agriculture was not likely caused by a complete population replacement, or solely by cultural 

transmission, meaning that neither clines of particular lineages, nor relatively deep branches in Europe 

allow to directly estimate its contribution (Barbujani and Goldstein 2004). The extant population is then regarded 

as a hybrid among past contributions. The estimated Near Eastern, and thus taken as the Neolithic 

contribution is, according to some authors, large and decreases as one moves from east to west (from 

nearly 80% in the Balkans lowering down to a minimum of 15-34% in Iberia and other Western Europe 

regions; Chikhi et al. 2002, Dupanloup et al. 2004). These values might be somewhat overestimated for different 

reasons, but as a tendency, they reflect the likely scenario, put forward already some time ago (for a  

comprehensive overview see Cavalli-Sforza et al. (1994).  

 

 

3.6.1 - Phylogeography of the African paternal variation 

 

Since the earlier studies, populations in the African continent have shown to have the deepest 

clades of Y chromosome phylogeny (Scozzari et al. 1997, 1999; Underhill et al. 2000; Hammer et al. 2001; Cruciani et al. 2002; 

Hammer and Zegura 2002; Semino et al. 2002; Knight et al. 2003; Weale et al. 2003; Luis et al. 2004; Wood et al. 2005; Rosa et al. 2007). Sub-

Saharans are today characterized by the presence of haplogroups A-M91, B-M60 and the 

predominant haplogroup E-SRY4064, all clusters sharing the ancestral state relative to the M89 

molecular marker (phylogeny depicted in Figure 14).  

 

The deep A-M91 branch is frequent among East and South Africa people, with its Khoisan-

specific sub-clades, in a way similar to that of the matrilinear ancestry of this hunter-gatherers that 

includes the haplogroup  L0a, a deep branch in mtDNA phylogeny (Chen et al. 1995b, 2000; Knight et al. 2003; Destro-

Bisol et al. 2004). Within haplogroup A, the most widespread and common variant is A3-M32, of typical 

assignment in Sudanese and Ethiopians (Underhill et al. 2000, Semino et al. 2002). Its sub-haplogroup A3b1-M51 is 

represented in South Africa Khoisan (Scozzari et al. 1997, 1999; Underhill et al. 2000; Wood et al. 2005) while A3b2-M13 is 

found at high proportion in East Africa and at low frequency in Cameroonians (Cruciani et al. 2002). On the 

opposite, the A1-M31 lineages have showed a patchy distribution in rather different geographic 

regions: Mali (Underhill et al. 2000), Guinea-Bissau (Rosa et al. 2007), Bakola Pygmies (Wood et al. 2005) and Moroccan 

Berbers (Scozzari et al. 2001). The frequency of A2-M14 lineages is of approximately 15% in the Kung and 

mixed Khoisan (Scozzari et al. 1997, 1999; Underhill et al. 2000; Wood et al. 2005). 

 

Haplogroup B-M60, another deep-coalescing branch in the tree, is found throughout sub-

Sahara at marginal proportions (Scozzari et al. 1997, 1999; Underhill et al. 2000, 2001a; Semino et al. 2002; Arredi et al. 2004; Wood et 

al. 2005). The B2b-M112 cluster, almost Pygmy-specific, defines the clear-cut difference of these people 

and all the other Africans (Underhill et al. 2000, Cruciani et al. 2002, Wood et al. 2005). The molecular ages for Y 
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chromosome A and B lineages differentiation are according to some authors of about 42.8 ± 23.0 and 

36.8 ± 13.6 ky, respectively (Hammer and Zegura 2002) supporting their ancestrality back to the first spreading 

events of modern human in Africa, and having survived throughout subsequent major expansions. 

However, as already mentioned above, these time estimates should be taken with caution and more 

recent estimates offer considerably earlier primary bifurcation within human Y chromosomal lineages 

still in circulation (Underhill and Kivisild 2007). 

 

The lineages that have acquired an Alu element (known as YAP marker) divide into a pair of 

sister haplogroups: haplogroup E-SRY4064 and haplogroup D-M174 (phylogeny in Figure 14), the first 

that has remained mainly within Africa and diversified for the last 50 ky (Bosch et al. 2001, Hammer et al. 2001, 

Underhill et al. 2001a) and the latter of an exclusive Asian assignment (Hammer and Horai 1995, Su et al. 2000, Tajima et al. 

2004, Wen et al. 2004). The E-SRY4064 cluster has a non-homogeneous distribution in Africa and the 

Mediterranean area (Figure 14a) and is actually the most frequent clade in sub-Saharan Africa, where 

it likely spread from East to West at about 50 kya, and posteriorly to the other quadrants (Scozzari et al. 1999, 

Underhill et al. 2000, Bosch et al. 2001).  

 

The E*-SRY4064 refers to a paragroup that gathers a variety of “unspecified-by-SNPs” 

SRY4064 derivatives. This fraction of chromosomes has been considerably diminished by now, thanks 

to the new phylogenetically informative markers found. The E1-M33 haplotypes are of low and spotty 

distribution over the continent, with a pattern suggesting its West-Central African origin (Figure 14b) 

and subsequent introgression in other populational groups: in the Mali people represents 33% of the Y 

chromosomes (Underhill et al. 2000) while in the Burkina-Faso region sums 10% of the pool (Scozzari et al. 1997, 

1999); exceptionally in the Cameroonian Fulbe the E1-M33 chromosomes peak at 53% (Scozzari et al. 1997, 

1999); a proportion between 0.7 to 3% traduces the reality for Northwest Arabs and Berbers (Scozzari et al. 

1997, 1999; Bosch et al. 2001; Arredi et al. 2004); in Sudan the frequency reaches the 3% (Underhill et al. 2000). The E2-M75 

types are reported in sample sets of Sudanese and Ethiopians (Underhill et al. 2000) and are again frequent 

in the Burkina-Faso Rimaibe people (Scozzari et al. 1997, 1999), the North Cameroonian (Cruciani et al. 2002), the 

Central African Mbuty (Underhill et al. 2000, Wood et al. 2005), and the South African Bantu and Khoisan-speakers 
(Underhill et al. 2000, Cruciani et al. 2002, Wood et al. 2005). Its distribution pattern in North and Equatorial Africa is 

depicted in Figure 14c. 
 

The P2 transition (Hammer et al. 1997) further clusters the Y chromosome variation into haplogroup 

E3a-M2 in sub-Saharan Africans and haplogroup E3b-M35 in North and East Africa, Mediterranean 

basin and Middle East (Figure 14d-g; Underhill et al. 2000; Semino et al. 2002, 2004; Cruciani et al. 2004). The 

chromosomes with no further defining marker are placed in paragroup E3*, reported for East and West 

African people (Scozzari et al. 1997, 1999; Semino et al. 2002; Wood et al. 2005; Rosa et al. 2007). 
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Figure 14 - Phylogeny and frequency distributions of haplogroup E and its main subclades. The numbering of mutations 

is according to the YCC (YCC 2002; Jobling and Tyler-Smith 2003). Haplogroup-frequency surfaces (individual scales shown in the 

left of each panel) were graphically reconstructed as described in Semino et al. (2004), using population datasets of 

references therein. In Semino et al. (2004). 
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The haplogroup E3a-M2 has been proposed to have dispersed widely and rather recently 

through subequatorial Africa, and is likely to signal Bantu dispersals (Passarino et al. 1998, Underhill et al. 2001a) 

though its older existence (approximately 19 ky, Semino et al. 2004). It comprises more than 65% of the 

West African paternal pool, peaking at 80-90% in Senegal Mandenka, Burkina-Faso Fulbe (Scozzari et al. 

1997, 1999; Semino et al. 2002; Wood et al. 2005) and a few Central African groups (Scozzari et al. 1999). The eastwards 

movement(s) of people in the Sahelian region are reflected in a clinal decrease of E3a-M2 frequency, 

with the Kenyan Bantu representing a linguistic boundary relative to Ethiopians and Sudanese since 

the E3a-M2 frequency drops from nearly 50% in the first to zero in the latter (Underhill et al. 2000, Semino et al. 

2002, Wood et al. 2005). More than a half of the NRY lineages in South Africa Bantu speakers are classified 

as E3a-M2, also with a significant introgression into the pool of Khoisan hunter–gatherers (45-58%; 

Underhill et al. 2000, Cruciani et al. 2002). Interestingly, a direct link to South Cameroonians is based on exact 

matches of two particular microsatellite haplotypes (Underhill et al. 2001a, Cruciani et al. 2002). An expansion time of 

3-5 ky has been estimated on the basis of five microsatellites (Thomas et al. 2000) for an event that has 

shaped the genetic landscape below the desert and almost erased the Paleolithic imprints, thus 

making haplogroups A and B to be rare (Underhill et al. 2001a, Semino et al. 2002). On the extensively analysed 

Bantu dispersals there seems to have been a higher male than female line drift, resulting in a reduced 

incoming paternal variability (Salas et al. 2002). The cause may partially be the higher assimilation of 

females (and thus of mtDNA lineages) in the indigenous populations along the Bantu migration routes, 

larger effective population size for men in the dispersing groups, or the socio-cultural patterns of 

admixture (Salas et al. 2002). Further refinement of E3a-M2 phylogeny would be certainly helpful. In this 

respect, one clarifying cluster to unveil population sub-structuring is haplogroup E3a7-M191. Given its 

clinal distribution, opposite to that of E3a-M2 (from 23% in Cameroon to 1% in Senegal pool; in the 

case of the Pygmies 40% of the M2 members; Underhill et al. 2001a, Cruciani et al. 2002, Semino et al. 2002), a Central-

Western Africa origin and a later demic expansion to West Africa have been hypothesized (Cruciani et al. 

2002). 

 

 Contrary to E3a-M2, the E3b-M35 chromosomes are more common in East Africans, and also 

present in North Africans and the South African Khoisan (Figure 14d, distribution in South African 

populations not shown; Underhill et al. 2000, Cruciani et al. 2002, Wood et al. 2005). Haplogroup E3b has probably arisen 

in eastern sub-Saharan Africa 30 kya as indicated their highest microsatellite diversity and a variety of 

undifferentiated E3b* lineages in the East (Bosch et al. 2001, Cruciani et al. 2004). The later expansion to the Near 

East and northern Africa happened most likely at the end of the Pleistocene (Underhill et al. 2001a). The 

E3b*-M35 lineages appear to be confined almost exclusively to the sub-Saharan populations, with 

their highest levels in the Kenya Massai, ethnic groups in the Democratic Republic of Congo (Wood et al. 

2005) and the !Kung (Cruciani et al. 2002, Luis et al. 2004), the people that also harbor the highest STR variability of 

the paragroup (Cruciani et al. 2004). Its several derived states have a patchy pattern of distribution, indicating 
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independent phenomena of local genetic drift, possibly including founder effects. The following can be 

mentioned: 

 

- E3b1-M78 occurs commonly in northern and eastern Africans, western Asians and many 

populations in Europe, mostly Mediterraneans (Figure 14e; Underhill et al. 2000; Bosch et al. 2001; Cruciani et al. 

2002, 2004; Semino et al. 2002, 2004; Arredi et al. 2004). Single occurrences are reported in Senegalese (Semino et al. 

2002, Wood et al. 2005) and Kenyans but the lineages seem not to have diffused further south (Cruciani et al. 

2004, Wood et al. 2005). The geographically broad distribution suggests that haplogroup E3b1-M78 

encompasses a collection of sub-haplogroups with very different evolutionary histories, which 

nevertheless coalesce back to a putative East African root at about 23 kya (Cruciani et al. 2004). On the 

basis of Y-STR particular alleles, these authors found the internal diversification of E3b1-M78 to 

diagnose population substructuring: i) cluster E3b1-α, characterized by the rare nine-repeat allele 

at A7.1, is very common in the Balkans and declines west towards Iberia. It was most likely carried 

by the Neolithic or the post-Neolithic migrants from the Balkans at about 8 kya; ii) cluster β is 

characterized by the DYS413*23/21 form and the rare 10-repeat allele at DYS439, being common 

and probably autochthonous of Northwest Africans (approximately 14% of their pool, more than 

80% of the E-M78 local variation). The estimated TMRCA for E3b1-β is of about 5 ky; iii) the 

cluster E3b1-γ is identified by the short DYS19*11 repeat allele and is of East African prevalence, 

coalescing at the basal node of E3b1 at about 10 kya. Outside of this area it has been observed 

only in Egyptians and Moroccan Arabs; iv) the residual haplotypes have been defined as cluster 

E3b1-δ, widespread throughout all regions of M35 distribution, albeit at very low frequencies. The 

lineages here included were supposedly involved in the first dispersals of M78 chromosomes from 

a putative East African source to North Africa and the Near East regions, at about 15 kya. More 

recently, the molecular dissecation of E3b1-M78 cluster, by analyzing about 60 kb of the NRY 

portion of chromosomes on each of the four STR-based clades, allowed the identification of six 

novel SNPs and six new clusters (Cruciani et al. 2006). The UEPs showed a striking correspondence with 

the microsatellite clusters γ and δ (markers E-V32 and E-V13, respectively). Conversely, the 

evidence on E3b1-α and E3b1-β confirmed those as monophyletic clusters but their defining binary 

markers yet to be discovered. The better defined phylogenetic context offers the opportunity to 

explore the origin and distribution of the chromosomes, in addition to the previously defined but 

rather uninformative M148 and M224 (Underhill et al. 2000, 2001a; Arredi et al. 2004; Shen et al. 2004). As a 

consequence of the continuing refinement of the Y chromosome genealogy, most of the terminal 

haplogroups in the tree are found to be restricted to a specific population and/or geographic 

region. 
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- E3b2-M81 is exclusive of and excessive in North Africans, comprising 33 to 76% of their Y-

chromosomal pool (Figure 14f; Scozzari et al. 1999, 2001; Bosch et al. 2001; Cruciani et al. 2002, 2004; Semino et al. 2004; Wood 

et al. 2005). Interestingly, the area of its distribution matches the present area of the Berber-speaking 

populations, with representatives in Mali, Senegal and Sudan (Underhill et al. 2000, Semino et al. 2002) 

corroborating for a close haplogroup-ethnic group parallelism. The E3b2 origin in North West 

Africa is estimated at 5.6 kya, with a possibly expansion to East Africa on the last 2 kya (Cruciani et al. 

2004). A recent gene flow to Iberia has also been testified, a minor contribution of the Arab conquest 

and long-time presence in the Peninsula (Bosch et al. 2001, Cruciani et al. 2004). 

 

- E3b3-M123 lineages are found in Ethiopians, North Africans, Near Easterns and some European 

populations (Figure 14g; Underhill et al. 2000; Semino et al. 2002, 2004; Cinnioglu et al. 2004; Cruciani et al. 2004; Wood et al. 2005). 

Although their origin remains unclear, the Near East has been hypothesized as the source of 

variation, since the East African distribution of E3b3 is basically restricted to Ethiopia, and these 

lineages have been found in the large majority of the Near Eastern datasets, where they display a 

higher variance (Underhill et al. 2000, Cinnioglu et al. 2004, Cruciani et al. 2004, Semino et al. 2004).  

 

- Solely in Ethiopians, haplogroup E3b4-M281 encompasses 38% of the YAP+ variation of the 

sample set of Semino et al. (2002), whilst M2 lineages are virtually absent.  

 

 Cruciani et al. (2002) hypothesized on a signature of backflow from Eurasia into North 

Cameroon, exemplified by a derived form of haplogroup R. These lineages harbour the SNP derived 

allele at M173, characteristic to and defining haplogroups R1a and R1b, but not the SRY10831.2 or 

M269 widely present among West Eurasians (Semino et al. 2000, Underhill et al. 2000, Bosch et al. 2001, Wells et al. 2001). 

Representatives of this cluster classified as R1*, were later identified in the Bantu of southern 

Cameroon, the Rwanda Hutu and people in Oman and Egypt (Scozzari et al. 1999, Luis et al. 2004). However, 

since a set of lineages, labeled as “star”, is not necessarily phylogenetically cladistic (i.e. with their 

unique joint MRCA), then one should be careful in speculate further on its spotty phylogeography. The 

Asian origin is anyway quite plausible as the putative source of both European and Cameroonian 

M173, since most of the M9 variation is Asian (Cruciani et al. 2002). Salas et al. (2002) have suggested an 

association of R1* Y chromosomes with the Eurasian mtDNA haplogroups U6 and H, found in the 

Fulbe population of Nigeria (Salas et al. 2002). A recent North African flow into North Cameroon mediated by 

Fulbe or other pastoralists could explain the presence of two ancient West Eurasian haplogroups in a 

restricted region, even prior to 4 kya, On the other hand, such timescale seems unlikely to Cruciani et 

al. (2002) because the nowadays frequent West Eurasian M269 or M173 variants where not found 

among the North Cameroonians, neither the post-LGM or Neolithic types. The African M173 Y 
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chromosomes may then be relics of an ancient back migration from Asia to Africa, of some branches 

of an Upper Paleolithic clade that has emerged ~30 kya (Underhill et al. 2001a).  

 

According to Semino et al. (2002), other M89 haplogroups within super-haplogroup F that were 

found in their Ethiopian dataset can signal “back-to-Africa” migrations. The haplogroups G-M201 and 

J-12f2.1, common in Central Europe and of Middle Eastern distribution have been more specifically 

associated to the Neolithic expansion (Semino et al. 1996, Rosser et al. 2000, Semino et al. 2000). Their presence in 

North Africa, especially in Egypt was interpreted as a southern branch of the Neolithic demic diffusion, 

originating from the Near East (Luis et al. 2004).  Yet, apart from the Ethiopian exception the two mentioned 

clusters appear to be absent in sub-Saharans (Underhill et al. 2000, Cruciani et al. 2002). In the same context, it is 

worth to indicate that the Ethiopians and Cameroon Fulbe carry also K2-M70 chromosomes in their 

paternal pool, a rather minor clade but that according to the present understanding of the phylogeny, 

derives directly from the M9 central node  (Cruciani et al. 2002, Luis et al. 2004). 

 

For widely distributed haplogroups, further phylogenetic relationships can be analyzed by the 

microsatellite typing, which allows associating particular haplotypes to geographic regions, and 

defining the coalescence time of the cluster’s variation. For instance in African variants, haplogroup 

A3-M32 shows no haplotype sharing across Cameroonian and Ethiopian populations, E3b-M35 are 

distinct in Ethiopia and South Africa and B2-M182 haplotypes found in Pygmies are not common 

among the Khoisan (Cruciani et al. 2002). Therefore, though a shared haplogroup is virtually an unambiguous 

proof of a common MRCA for two or more populations, enough time has passed to generate the 

further variation characteristic of the extant populations, by molecular evolution of STRs (repeat gain 

and loss), probably associated by distinct founder events  and random genetic drift in general. In the 

cases of differences generated by drift, these may arise fast provided that influential demographic 

factors like bottlenecks/founder effects are involved. The Y-STR analysis has also shown that the 

differences among non-Africans are mostly intrapopulational, whereas the Africans exhibit the highest 

interpopulation variability (e.g. Jorde et al. 2000). 

 

 Unfortunately, one must accept that several areas of the continent are not yet covered by 

sampling and analysis, or are only superficially investigated, including a large portion of the 

Saharan/Sahelian belt, North Africa from Tunisia to Egypt and South African regions. Clearly, 

additional studies are necessary for a better understanding of the origin and distribution of many 

interesting lineages, only partially known thus far. The haplotypes observed at low frequency could 

represent important signatures of pre-agricultural settlements that have been overwhelmed by the 

strong demographic impact of the farmers. 

 



 75 

 Y chromosome studies among European (Semino et al. 1996, Rosser et al. 2000, Semino et al. 2000, Chikhi et al. 

2002, Quintana-Murci et al. 2004), American (Zegura et al. 2004) and Austronesian (Hurles et al. 2002) people have in 

general showed that geographic distances correlate better with their genetic component than with 

their linguistic affiliation. Yet, it may not be a common rule, because for instance in Siberians, the 

opposite has been observed (Karafet et al. 2002). However, Siberia is a rather specific case because of 

its wide area, contrasting with very low populational density throughout tens of thousands of 

years. According to some authors, when African populations are tested for associations between 

genetics, linguistics and geography, the genetic diversity is apportioned among both variables 
(Poloni et al. 1997, Scozzari et al. 1999, Salas et al. 2002). Others found the Y–chromosome genetic variation to better 

correlate with linguistics while the mtDNA component is weakly correlated with both linguistics 

and geography (Wood et al. 2005). However, if the Bantu speakers are taken out of the picture, the Y 

chromosome-linguistics “link” seems to fade, while it strengthens for mtDNA (Wood et al. 2005). These 

data suggest that patterns of differentiation and gene flow in Africa have differed for men and 

women in the recent evolutionary past. Sex-biased rates of admixture and migration and/or 

language borrowing between expanding farmers and local hunter-gatherers might have played 

then a striking role in influencing the patterns of genetic variation (Destro-Bisol et al. 2004). In fact, 

although the Bantu people occupy a wide region, some are genetically closer to each other 

irrespective of geography, than geographically restricted language groups are. On the other hand, 

very close genetic similarities can be also found in linguistically different groups that inhabit the 

same area, suggesting gene exchange without language change (Rando et al. 1998, Scozzari et al. 1999, Cerny et 

al. 2004). Furthermore, the role of polygyny and patrilocality is sustained by the evidence of a 

differential pressure of genetic drift and gene flow on maternal and paternal lineages (Destro-Bisol et al. 

2004, Wood et al. 2005). As a consequence, local differentiation of the Y chromosomes is enhanced and 

by contrast, mtDNA is expected to show lower geographical clustering (Jobling and Tyler-Smith 2003). In that 

sense, the groups of people targeted in the studies are largely defined by cultural and historical 

aspects. Since demographic differences in relation to gender may modulate disparities in the 

uniparental inherited genetic systems, their combined analysis is essential. 
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4 – Complementary sources of evidence 

 

In order to fulfil the natural curiosity about our origins we have to consider many different and 

independent sources of evidence, from a full range of disciplines. Such diverse approaches and 

records contribute with complementary and independent interpretations, concordant or not, or even 

new hypothesis, for strengthening the credibility of the conclusions (Harpending et al. 1998, Underhill et al. 2001b, 

Cavalli-Sforza and Feldman 2003). Although the rooted phylogenies from molecular genetics studies provide in 

theory an absolute chronology for the events, related to the branching pattern of phylogenetic trees, 

the challenge is in integrating data with the chronology obtained from disciplines such as archaeology 

and the dynamics of palaeovegetation and palaeoclimatology, where radioisotopes and several other 

physical methods are accurately quantifiable, though not always universal and applicable (Beck et al. 2001). 

A cross reference between records permits a placing in time so that we can relate, for instance, a 

population fluctuation with a climatic change and/or a technological innovation. The following topics try 

to gather the most relevant information for the purpose of Guinea-Bissau population genetics. 

To geographically contextualize Guinea-Bissau it is worth to briefly mention some 

considerations. The Republic is located in the West African coast, in a territory of 36 thousand square 

kilometres, surrounded by Senegal at its North and Guinea at East and Southeast. The country also 

integrates more than 40 islands that constitute the archipelago of Bijagós. The territory is in close 

proximity to the so-called Sudanese belt (an almost uninterrupted strip of land of sparsely forested 

savannas south of the Sahara, from the Atlantic Ocean to the Red Sea) and the Sahel (a narrow strip 

of arid land at the most northern region of the belt). The Senegambia region has an historical 

connotation to geography, to specify the territory extending from Senegal to Gambia. 

 

 

4.1 - Environmental records 

 

Ancient African migrations are complex, owing to historical fluctuations in geology, ecology and 

climate, that have affected population expansions and contractions (Lahr and Foley 1998). During the life 

span of Homo sapiens as a species, the African climate has been profoundly influenced by the Sahara 

desert, the largest in the world, which covers one quarter of Africa and counts only with few oasis 

inhabitants at the present. With the latitudinal increase of humidity, the vegetation at both its north and 

south boundaries changes from desert and subdesert scrubs to grasslands and xeric trees like acacias 

and baobabs. Then the wooded savannas, on which Guinea-Bissau is included nowadays, give place 

to the tropical rain forest, with a usual sharp boundary (Figure 15a, based on reconstruction of Adams and 

Faure 1997). 
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The Sahelian zone in West Africa has been ever since affected by major climatic alterations 

and these changes had an important impact on the peopling of the area. Palaeovegetational studies 

have demonstrated that in-between 20-13 14C kya (about 23-14.5 calendar kya) the continent was 

extremely arid, with the desert at its widest (Adams 1997). At this so-called Last Glacial Aridity Maximum, 

the Sahara reached hundreds of kilometres further south (Figure 15b), according to ancient sand dune 

distributions. A belt of semi-desert appeared to the south of the present-day desert margin (Hooghiemstra et 

al. 1992) and there was a rainforest retreat in the entire equatorial zone, replaced by savanna and 

grasslands (Hamilton 1988, Jahns 1995). The rainforests were reduced in much of the Congo basin, confined to 

“pockets” in close proximity to rivers, namely in Nigeria and Sierra Leone. These may have acted as 

refugia, from where people have later dispersed. However, the position and extent of forested refugial 

areas is controversial due to the sparsity of evidence. Nevertheless, tropical rainforest “pockets” have 

probably existed quite near to the Guinea-Bissau grassland area. 

 

 

 

Figure 15 – Distribution of vegetation zones in the African continent at several time intervals, based on reconstruction 

by Adams (1997). a) present-day potential vegetation; b) putative distribution 20-16 14C kya; c) putative distribution 8-7 
14C kya. Based in reconstruction from Adams and Faure (1997).  
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A slight moistening of the climate and temperature rise has been noticed in the pollen records 

of Central and East Africa around 14 14C kya (Hamilton 1988). Forest remnants in the northern parts of the 

Gulf of Guinea and in several mountainous areas indicate that the tropical rainforest today 

concentrated in the lowlands, has extended more widely. Around 7-8 14C (9 kya) the Sahara went 

through a period of maximum wetness (Aumassip et al. 1994; Figure 15c), becoming habitable with 

savannah, grassland rivers and large lakes. At that time, a border savannah- rainforest is supposed to 

have existed in the location of Guinea-Bissau. A posterior progressive desertification ~4kya, that drove 

to the nowadays distribution of climatic and ecological zones, forced the pastoralists in the desert to 

move northwards, to the Maghreb), and southwards to the Sahel and the savannahs (Clark 1980). 

 

 

4.2 - Archaeology and anthropology of the pre-history 

 

The Middle Stone Age 

 

The fossil and artefact evidence in Africa are unfortunately weak on a scarce material 

background as the soil chemical and physical characteristics are unfavourable to preserve skeletons 

(e.g. no remains in Zaire) or conserve human-shaped objects and landscapes. Recent findings of 

Homo sapiens sapiens fossils unearthed near the Ethiopian village of Herto fill a gap in the record of 

our direct ancestors, by dating between 154-160 kya (White et al. 2003). Before, fossils with modern human 

morphology have been found in Omo-Kibish (Ethiopia), with a suggested age of 130 ky determined by 

associated shells (Butzer et al. 1969), and there was also evidence of a AMH marine diet at ca. 125 ky in 

East Africa (Stringer 2000). However, in February 2005 a re-dating of 195 ky (± 5ky) for Omo I and Omo II 

skulls was proposed, based on geological testimonies of Kibish deposit rocks (McDougall et al. 2005). Thus 

far, these fossils are considered as being the oldest links of the emergence of AMHs. Other important 

sites include the Border caves and the Klasies River Mouth (South Africa) dated at the earliest of 100-

110 kya (Grun et al. 1990, Rightmire and Deacon 2001).  

The Middle Stone Age industries, named after tool assemblages, seem to have begun 

considerable earlier in Africa than elsewhere and to have had here a more consistent technological 

sophistication (Tattersall et al. 2000). Fossil remains from that time indicate three major human groups in 

Africa: i) the ancestral Khoisanids Bushmen and Hottentots, that once extended to East Africa (Huffman 

1982, Newman 1995); ii) the ancestral Negroid in West Africa, who today live in tropical areas and much of 

East and South Africa (Tattersall et al. 2000); iii) the ancestral Caucasoid-related groups in North Africa (Camps 

1974). Archaeological discoveries in southern and eastern Africa suggest that, at approximately 80-60 

kya, certain African groups assisted to a major increase in the complexity of their technological, 

economic, social and cognitive behaviour. For instance, signs of modern behaviour like geometric 
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notches in bone (Henshilwood et al. 2002) date ca. 80 kya in the South of the continent. Major demographic 

expansions are believed to have happened at the time, probably triggered by the innovative 

technology and environmental changes and eventually lead to the “Out-of-Africa” expansion (Mellars 2006). 

The Hofmeyer’s skull that has been deposited in South Africa for 36 ky is morphometrically more 

similar to modern humans of European Upper Palaeolithic than to recent South Africans or Europeans 
Grine et al. 2007. Thus, it seems that modern sub-Saharans and Europeans share a relatively recent 

common ancestor that has likely expanded out of  East Africa 60 kya (Mellars 2006).   

 

The Late Stone Age 

 

Until recently the presence of modern humans in North West Africa was only evident from 40 

kya onwards (Alimen H 1987). New evidence of personal decorations suggests that people with “modern 

behaviour” existed in NW Africa about 100 kya (Vanhaereny et al. 2006, Bouzouggar et al. 2007), though not much 

more is known. Industrial sites of the Late Stone Age period (ca. 25ky) were discovered in Maghreb 

with important assemblages related to the Iberomarusian culture (22-9 kya, Camps 1974). An equally large 

number of sites were associated to the Epipalaeolithic (microlithic) complex that suppressed the 

Iberomarusian – the Capsian. This pre-agricultural culture evolved locally or through diffusion from the 

Near East (Camps-Fabrer 1989) and was centred on the eastern parts of the Atlas plateau (Camps 1974, Lubell 1975). 

The human activity in the African equatorial belt is manifested in rock shelters of about 35 kya 

in Cameroon and Equatorial Guinea (Mercader and Martí 2003). Although less well dated, Late Stone Age 

industries appeared throughout the sub-Sahara, possibly as early as 50 kya (Foley and Lahr 1997). Other few 

though undated sites in Ghana, Nigeria and Burkina-Faso all produced microlithic industries but little is 

known about the economies and the Late Pleistocene sequence of events in the West Africa 

savannahs and rain forests (Clark 1994). The archaeological sequence in Ounjougou (Mali) is quite 

exceptional for sub-Saharan West Africa. Analysis of lithic elements seems to point for an almost 

continuous occupation of the area from 70 kya until 20 kya (Phillipson 1993, Newman 1995, Cornelissen 2002, Rasse et al. 

2004). A cultural flow, from the southeast of sub-Saharan Africa and to the Sahara, could explain the 

diffusion of the microlithic industries all the way through West Africa. Sites are initially observed in 

Cameroon at Shum Laka (~31-33 kya), then at the Ivory Coast in Bingerville (~15-16 kya), in Nigeria in 

Iwo Eleru (~13 kya), and finally in Northern Mali (~12 kya, Ounanian culture; Clark 1994). The 

repopulation of the area seemed to have happened only in Early Holocene ~9kya. It has been 

considered as an early agricultural occupation, where pottery and seed grinding implements date at 

least since the eighth millennium BC, and are the oldest artefacts of this type known at present in sub-

Saharan Africa (Clark 1994). 
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Introduction of agriculture 

 

 The post-LGAM reoccupation of the Sahara by animals and humans happened about 9 kya. 

These were however rare and widely dispersed, mainly in close proximity to oases (Camps 1974) perhaps 

indicating sparseness of human presence during the reoccupation phase. The Sahara’s “wet phase” at 

9-8 kya is also coincident with hunter’s rock engravings (Mori 1974, Hassan 1978) that state for a non-arid 

climate, under which several “Neolithic”1 cultures started to flourished. The Near East was the earliest  

and better characterized  region  of  the  agricultural  origin  for  the  spread  into  Egypt  9.5-7 kya, 

where Caucasoid and Negroid people seem to have coexisted (Dutour et al. 1988). The already 

domesticated cereals found a similar climate in the Nile Valley proximity and together with cattle 

created the foundations for a food-producing economy that supplanted the hunter-gathering lifestyle. 

The shift to agriculture supported a larger number of people, with a better nutrition, ensuring higher life 

expectancy and increased fertility (Diamond 2002). The numerical growth drove ultimately to waves of 

migrations, believed to be the responsible for the spread of the agricultural knowledge, in sub-Saharan 

Africa in particular. 

The Middle Eastern “agricultural package” did not succeed under the sub-Saharan climatic 

conditions, thus delaying the shift to full-scale food production economy. The Late Stone Age 

microlithic cultures continued until new cultural elements replaced the hunting and gathering economy 
(Clark 1994). As mentioned before, this author hypothesized on an early agricultural occupation since 10 

kya on the basis of archaeological evidence. Other authors point to more recent time, though not later 

than 6 kya since pottery and ground stone artefacts started to occur in likely small and isolated 

communities in Nigeria, Sierra Leone, Burkina-Faso and Ghana (Atherton 1972). Their direct association to 

agricultural practices remains to be proved (Calvocoressi and David 1979, Phillipson 1993). However, at around the 

same time, centres at the Sahel zone were cultivating specific packages of crops: besides the 

predominant sorghum, finger and pearl millets, the savannah complex included cowpea, gourd and 

baobab (Figure 16). At the West African forest margin African rice, oil palm and tuber yams were the 

major crops, the latter known from ~3.5 ky (e.g. Kintampo culture in Ghana, Stahl 1985). 

 The coastal resources of West and Equatorial Africa, namely in Mauritania and Senegal have 

been likely exploited already at 4 kya (Sutton 1982). A clear sign of domesticated cattle in evident in figures  

dating of the Bovidian period ~5.5 kya, where human Negroids of morphological and cultural Fulani 

resemblance are also represented (Smith 1982, Dupuy 1999). The progressive desertification forced a retreat 

 
 

1 
The term Neolithic is generally used to refer to the advent of agriculture associated to the change in tool usage, pottery manufacture 

and increased human sedentism. As it proved difficult to identify the beginning and end of the cultural phases in the African 

archaeological record, the rejection of the term has been adopted by some archaeologists 
(Sinclair et al. 1993) and geneticists (Jobling et al. 2004). 
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of the domestic animals to the south, to the savannas of the Sudanese belt, their presence in West 

Africa and Ethiopia dating at about 3.5 and 3 kya (Shaw 1980). 

 

 

 

 

 

 

 

 

Figure 16 – Cultivated local plants in African 

Neolithic (Shaw 1980). Arrows refer to the 

introductory movement of the domesticated 

cultivars. The squares indicate the archaeological 

sites and early AMH remains, referred to in text. 

Adapted from Cavalli-Sforza et al. (1994). 

 

 

 

 

Iron Age 

 

Elsewhere in Equatorial Africa the hunting and gathering continued up to the coming Iron Age. The 

iron smelting techniques, which were developed in West Asia ~3.5 kya, reached Egypt and Nubia with 

the Assyrians ~2.7 kya and quickly supplanted stone, copper and bronze material for the tool-making 
(Phillipson 1993). In the nowadays territory of Nok (Nigeria) is situated the earliest large iron-smelting centre 

(~2.5 kya) in sub-Saharan Africa. Soon many others flourished in sub-Saharan East Africa but only a 

few sites are documented in the western quadrant (e.g. Kissi Burkina-Faso ca. 2.1-2.7 kya and Fiko at 

Mali’s Dogon Plateau ca. 2 kya (Huysecom 2002, Magnavita 2003, Serneels 2005, Robion-Brunner et al. 2006). With the advent 

of both agriculture and iron-smelting, farming economies spread further and centralised political 

systems emerged ~1.5 kya giving rise to the Late Iron Age expansion. Though biological and 

archaeological evidences show that there were major expansions towards South and Central Africa 

before the Iron Age, the main impulse for the Bantu movements was most likely the art of iron 

production at this time (Cavalli-Sforza et al. 1994). 
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4.3 - Historical and ethnical background 

 

The historical records that have reached our days state that in the last two millennia early 

states began to develop in sub-Saharan Africa. For instance, the Ghana Empire in between Southeast 

Mauritania and Mali, constituted by Mande farmers (the vast group on which Mandenka are included) 

and Berber pastoralists, is the oldest known occidental African Kingdom (since the 8thcentury). Soon 

after, around the 12th century, the Ghanian state was destroyed by the Arabs and the region assisted 

to the urge of the Mali and the Songhai “Black Kingdoms” from the 14th to the 16th century. The Mali 

Empire insurged from the revolt of the Mandenka over the Sussu people. The Songhai state was also 

under rule of a Mande emperor that brought conquests and political reforms. The Sahel was then 

integrated in a context of commercial reasons, with a route corridor along Mauritania, Mali, Burkina-

Faso and Niger, up to Sudan (Almada, 1964). The main objects of the trans-Saharan trade were gold 

(mined in the Sudan), copper, ivory and salt for North African and Middle Eastern manufactured goods 
(Cavalli-Sforza et al. 1994). 

 

One of the earliest documented inputs of people to Senegambia refers to the massive arrival of 

Fulbe in Futa-Toro on the 8th century (Carreira and Meireles 1959) from a Central African epicentre. Other 

parallel Fulbe migrations occurred at that time, namely to Sudan, Upper Niger and North Nigeria. The 

Fulani are nowadays mostly nomadic pastoral communities that nevertheless keep somewhat 

separate of the local agricultural populations. Exceptions were made in order to freely circulate in 

other’s people territory, where cattle and women were paid as a tribute (Almada 1964).  From the 12th 

century on, these people started to expand to Mali and by the 15th reached Upper Senegal, Upper 

Gambia and Guinea-Bissau Beafada territory, up to Sierra Leone. Some of them miscigenized with the 

Serer from Senegal giving rise to today’s Toucoulers. On the 16th century Pastoral Fulbe arrived again 

slowly but en masse, from Futa Toro and Sahel, dominating the region.  

 

Together with Fulbe, the Mandenka arrived to Guinea-Bissau on the 16th century. Both with a 

broad distribution in the Sahel, and presumed to be of non-Bantu origin (Teixeira da Mota 1954) became the 

most prevalent groups in the territory. The Mandenka are a Mande people physically and culturally 

descendent from the Mali Empire which controlled the trans-Saharan trade from the Middle East to 

West Africa. Later in the 19th century their occupation on Western Africa continued with the aims of 

conquering new territories and propagating Maomet religion, after being islamized by the Fulbe. In 

fact, the Futa-Djalon state located in between Guinea-Bissau and Sierra Leone was born in the 

previous century when Fulani Muslins rose against the non-Muslims. 
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The denomination “Brame” is mainly used for the Papel, the Manjaco and the Mancanha. 

Thought to have been one single people, on the 15th century were know by separate names. Their 

languages show high affinities and all share religious beliefs and even ceremonies (Carreira and Quintino 1964). 

In a broader sense the “Brames” can also include the Balanta, the Djolas and the Beafada. 

 

The Balanta are among the today’s most numerous groups and have quickly spread over 

other ethnic group territories in the first quarter of the 20th century, especially in the southern part of 

the country. Their origin is uncertain, apart from the suggestion of “Sudanese” sensu latu and even 

Bantu affinities. From the cultural and somatic point of view the Balanta are probably closer to Bantu-

speakers than to the Sudanese family (see next chapter, Quintino 1969). Moreover, there are language 

affinities between the Balanta and most of the Bantu languages and, as the Bantu, can be the result of 

Camite invaders from Asia admixture with local North Africans at the end of the Pleistocene.  

 

The Felupe, the Djola and the Baiotes are in truth all Djolas, with the Europeans being the 

responsible on giving the names that are today known. According to oral tradition these people came 

from Sudan in the 15th or 16th centuries. The Beafada also call themselves Djolas though the rather 

heterogeneous group has an oral tradition of Mali origins (Lopes 1999).  

 

Teixeira da Mota (1954) considers Nalú as the autochthonous population of the region they 

occupy today, being there much before the 15th century.  

 

The Bijagós, inhabitants of the archipelago with the same name, can represent a separate 

branch of Djolas but can also relate with Papel or Nalú. Quintino (1964) proposes strong cultural 

resemblances with Egyptians but research has so far reached low scientific resolution, their origin 

being extremely uncertain. 

 

The admixture of Berbers with native populations of West Africa dates back at least to the 8th 

century A.D. by the times of the Ghanian Empire. In 1086 Omníade hordes conquered North-Western 

Africa and again pushed the Berber Almoravids from South Morocco and Mauritania to the Senegal 

region (Moreira 1964). By the 15th century the Portuguese arrived to Guinea-Bissau and found the 

nowadays known ethnic groups already settled. The European occupation brought down many of the 

ethnic barriers, upcoming an intense cultural contact and higher level of miscegenation. However, the 

Portuguese constitute a very small portion of the nowadays inhabitants, caused by the exodus of 

Portuguese settlers that took place after Guinea-Bissau gained independence. 
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The tribes are often endogamous, and therefore their genetic pool is mostly determined by 

cultural factors. However, the geographical distances can here play an important part. For example, 

although belonging to the same great group of Fulbe, the Senegalese Peul and Nigeria Fulani have 

distinct genetic pools (Cavalli-Sforza et al. 1994). There are nevertheless indications of frequent miscegenation 

of  the numerically superior Fula and Mandenka men with Balanta, Manjaco and Papel women, where 

offsprings are included in the father’s lineage (Carreira and Meireles 1959), in a cultural expansion of islamized 

people called “Sudanization”. The process of ‘Balantization’ of Papel started about 100 years ago 
(Carreira and Meireles 1959), with the matting of Papel men and Balanta women the most frequent. 

 

Frequent movements, specially pressing the populations to coastal areas have been registered 

even in a limited territory as Guinea-Bissau. The internal wars between ethnic groups for land 

conquering, the slave capture purposes and the spread of the religious beliefs were since ever the 

main responsible. The animists have initiated migrations for demographic expansion, not for cultural 

diffusion purposes but because of the fall of the socio-political organization (as a consequence of the 

European administrative system) and the limitations of the natural resources. On the 19th-20th 

centuries the Balanta and the Fulbe moved from northern parts to Guinea-Bissau coast due to climate 

changes (Teixeira da Mota 1954). Demographic data from 1950 indicates an increase of Balanta and Brame 

migration against a decrease of Fula and Mandenka people mobility. Due to their complex history the 

major ethnic groups in Guinea-Bissau do not follow a clear present-day settlement pattern but maintain 

a certain degree of identity (Figure 17). 
 

 
Figure 17 – Present-day settlement pattern of the main Guinea-Bissau ethnic groups considered in this study. To note 

that the boundaries may not entirely correspond to the precise distribution as overlapping areas do exist. Based on 

information from Moreira (1964). 
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Further data on ethnic groups, including their religious affiliations are presented in Table 1 in 

Rosa et al. (2004). Most people are farmers with traditional religious beliefs (animism); 45% are Muslim, 

principally the Fulbe and Mandenka peoples; and less than 8% are Christian, most of whom are 

Roman Catholic. Today’s perspective shows a clear pattern of increasing number of Fulbe and 

Mandenka, while Felupe-Djola, Baiote, Cassanga and Beafada tend to decrease (2002 official census; 

information on Gordon and Raymond 2005). 

 

 

4.4 - Linguistic affiliation 

 

  The deepest ancestral relationships of languages spoken in Africa are probably beyond 

linguistic reconstruction as languages evolve much faster than genes and can, after all, be replaced by 

entirely different ones in few generations. Moreover, linguistic barriers may strengthen the genetic 

isolation between groups speaking different languages. Furthermore, even if the gene flow between 

populations does exist, it does not have to be accompanied by language replacement,  

Greenberg (1963) proposed a classification system for the present-day autochthonous African 

languages, subdivided in four major phyla: Niger-Kordofanian, Nilo-Saharan, Afro-Asiatic and Khoisan 

(see distribution pattern in Figure 18). The sub-Saharan linguistic families are supposed to have arisen  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 18 – Distribution of major linguistic families in 

Africa (according to classification of Greenberg 1963). 

Based on illustration from African languages: an 

introduction (2000), Heine et al. (eds). 



                            

between the Sahara and the Equatorial forest (Blench 1993), with Niger-Congo and Nilo-Saharan sharing a 

common ancestor (Phillipson 1993). The branch of Niger-Kordofanians comprises the Kordofanian 

languages spoken in Sudan and the diverse Niger-Congo phylum, with more than a thousand 

languages and over 180 million geographically dispersed speakers. The wide distribution can be owed 

to the expansion of iron-working agriculturalists (Diamond and Bellwood 2003) over hunter-gatherers found in 

their path, what would lead to correlation of linguistics and genetics. The most outstanding diversity is 

stated for the Niger-Congo region, the putative cradle of Bantoid languages (Johnston 1919, Greenberg 1974). 

Interestingly, the two main sub-groups of Bantu language correspond to the western and eastern 

dispersal routes (Vansina 1994), so that the linguistic term covers the biological reality. The likely 

homelands of the largest language families appear to be near the centers of agricultural innovation, 

from where they could have moved along with the culture (Renfrew 1987, Bellwood 2001). 

 In Guinea-Bissau population, the indigenous languages Balanta, Fulbe, Manjaco, Mandenka 

and Papel count with the higher number of speakers. In contrast, the Portuguese official language, the 

Kriol (a Portuguese-based creole language) and other European languages are spoken by only 14%. 

The autochthonous languages are within the Niger-Congo Atlantic (the scheme in Figure 19 elucidates 

for the inner subdivisions and relative proximity of the ethnicities, based on information from Gordon and 

Raymond 2005). To note however that the subdivisions have no linear levels of classification and hierarchy 

that may define a consistent cladogram. Tracing back the common nodes of languages, the majority of 

the tribes in Guinea-Bissau are thought to be related to “Sudanese” or even Ethiopian ancestors. 

The present-day distribution of the “Sudanese” family goes from river Senegal and Niger to 

Upper Nile (Quintino 1967). According to Stuhlmann (1910), this family derives from a Bantu branch, 

separated in the Pleistocene near the Nile. For the movement contributed the arrival of Camite hordes 

from Asia in successive waves, expelling the natives. Mandenka, Fulbe, Manjaco, Papel and Beafadas 

are considered members of the occidental Sudanese family. For Felupe-Djola and Baiotes, oral 

sources even say they come from Sudan on the 15th and 16th centuries, showing affinities with Bijagós 

and Papel. The proposed affinities of Balanta with Sudanese go back 2 ky, separated with the first 

spread of Camite hordes (Quintino 1969). The Fulani languages, that include the Fulbe speakers, are the 

tongue of several million people inhabiting an area from Senegal to a region East of Lake Chad. The 

Fula show the typical “glottal catch” which characterizes the whole group. The Mande group consists 

of languages prevalent in the Niger valley, Liberia, and Sierra Leone, such as Mende in Liberia and 

Malinke in Mali. The approaches to group Manding languages summed four to five million speakers in 

nine West African countries, the Bambara dialect prevalent in the east and the Mandinka in western 

Senegal, Gambia and Guinea-Bissau (Sullivan 2004). Galtier (1981) includes Sussu with Mandenka based on 

his lexico-statistic calculations. 
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Figure 19 – Linguistic affiliation of Guinea-Bissau ethnic groups. The subdivisions do not correspond to a precise tree of 

languages; the linguistic families are according to information in Gordon and Raymond (2005). 

 

 

 

4.5 - Records of autosomal genetic systems 

 

In a chapter dedicated to Africa, Cavalli-Sforza and colleagues (1994) gathered data on classical 

genetic markers of worldwide populations (see publication for details on populations, genetic loci and 

references). The phylogenetic NJ tree suggests that the most important genetic gradient in Africa is a 

North vs. South axis (Cavalli-Sforza et al. 1994). The major cluster of sub-Saharan populations reveals as 

outliers the Pygmies, the Khoisanids, the Chadic Sara and the Senegalese Serer, Wolof and Peul. In a 

parallel Principal Component Analysis two major clusters of Central-South Bantu-Nilotic and West 

African populations are evidenced. The Bantu are clustered together while West Africans appear more 

dispersed. Surprisingly, the Senegalese Peul are outliers while the Nigeria Fulani, all Fulbe speakers, 
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join the West African cluster together with Mande. The major West African cluster in the tree may be 

the outcome of a single agricultural expansion earlier than the Bantu expansion. 

Synthetic maps of several genes define a Sahelian strip and a trans-Saharan connection up to 

Egypt, reinforcing the hypothesis of a West African ancestry to all agricultural expansion in Central-

South Africa ~5-4 kya (Cavalli-Sforza et al. 1994). To the authors West Africa seemed to be the first part of the 

continent to experience population increase related to farming. The genetic data support two 

independent populational expansions: one in West Senegal and one in Nigeria/Mali/Burkina-Faso, the 

latter giving rise to Mande. The supposedly pre-Bantu agricultural expansion in West Africa is reflected 

in particular pools of unexpected high or low gene frequencies: HLA-A*28 and HLA-B*7 have peak 

regions in Burkina-Faso, HLA-B*17 shows high frequency in all sub-Saharans while HLA-B*35 highest 

proportion is found in  West Africa; the PhosphoGlucoMutase PGM2*1 has a suggestive distribution, of 

a western stream of the Bantu spread; the transferrin TF allele D is frequent among West Africa and 

Bantu western stream, and is of probable local origin (see references in Cavalli-Sforza et al. 1994).  

Studies of other single genes reveal particularities by representing signatures of farming-

imposed diseases, mostly infectious ones due to sedentism and animal hosts (zoonoses, Cockburn 1971) 

and transmittion by vectors attracted by waste (e.g. malaria and cholera). The emergence of 

Plasmodium falciparum as a major human pathogen is actually coincident with the beginning of 

agriculture (Coluzzi et al. 2002). Malaria is then the strongest known force for evolutionary selection in the 

recent history of the human genome that induces a remarkable wide range of erythrocyte variants 
(Kwiatkowski 2005). Favorable forms of genes under natural selection to malaria were shown to be peaking 

in West and tropical Africa: ACP1-B, hemoglobin C (Agarwal et al. 2000), FY*O allele of the Duffy blood-

group system (Miller et al. 1976, Hamblin and Di Rienzo 2000, Hamblin et al. 2002); G6PD-A (Tishkoff et al. 2001, Sabeti et al. 2002). 

Their amplified frequencies in regions where Plasmodium vivax and Plasmodium falciparium are 

nowadays absent is indicative of an ancient presence, as the malarial vectors evolve in agricultural 

centers but humans were selected for not to be intermediate hosts of the sexual cycle of the parasite. 

Kwiatkowski (2005) and colleagues believe that there are even ethnic differences in susceptibility to the 

disease, with different people developing different genetic variation for protection. Studies in Fulani in 

Burkina Faso (Modiano et al. 1996) and Mali (Dolo et al. 2005) have documented lower prevalence of the 

parasitemia and fewer clinical attacks in these people than in the neighbor groups. The differences are 

primarily genetic, with their higher levels of antimalarial antibodies (Modiano et al. 1998, 1999) and fewer 

protective globin variants (Modiano et al. 2001).  

It is expected that natural selection has had a role in determining the frequencies of “lactase 

persistence” (the ability to digest milk in the adulthood), specially in the descendants of those 

populations that have traditionally practiced cattle domestication. Such lactose tolerance has shown to 

be low in African non-pastoralists (~5-20%) but common in pastoralists as the Tutsi and the Fulani 

(~90% and ~50%, respectively; Durham 1992, Swallow 2003). A recent study of Tishkoff et al. (2007) found a 

positive phenotypic association to three SNPs in LCT gene of East and South Africans. 
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Chapter Three 

 

Aims of the study 

 

 

With the present study we intend to: 

 

1) Improve the knowledge about mtDNA and Y-chromosome haplogroup variation in the present-

day Guinea-Bissau ethnic groups. Many genetic studies have been biased towards 

economically more advanced African countries that have their own research and medical 

centers, while populations from politically unstable regions remain under sampled. By filling the 

gaps in the datasets, we look forward to contribute for deeper and integrative phylogenetic 

studies; 

 

2) Analyse the inter-ethnic genetic variation to learn more about the genetic relation within 

populations, in the West African landscape. When surveying African populations it makes 

particular sense to evaluate the genetic pool in ethnic populational units on the light of their 

social, linguistic and religious constraints; 

 

3) Unveil traces of the colonizing genetic variation and the reshaping effects of the “Last 

Maximum Aridity” climatic period and the advent of agriculture, this last on the putative account 

of a large West African agricultural centre; 

 

4) Apply a phylogeographic approach to reconstruct long distance gene flows in space in time, for 

to evaluate the culturally proposed origins in East African progenitors and North Africa trans-

Saharan migrants; 

 

 In addition we aimed to investigate whether we can identify gender differences in the 

migrational inputs and the social patterns of admixture, with particular attention to the phenomena of 

“Balantization” and “Sudanization”. 
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Chapter Four 

 

Material and Methods 

 

5 – Sampling procedure 

 

The sampling procedure took place in Guinea-Bissau military camps and villages throughout 

the country, with the permission of the Chairman of the Joint Chiefs of Staff and the field intervention 

and support of the Guinea-Bissau Ministry of Health. A detailed explanation of the project, followed by 

a brief and individual interview, aimed the informed consent of the participants and the ascertainment 

of their ethnic background. The classification on ethnicities was based on information on both parental 

sides, whose ancestors were known to belong exclusively to a specific ethnic group for the last three 

generations. 

A total of 372 unrelated male individuals of Guinea-Bissau constitute the sample group for the 

present study. Their distribution by ethnic group is as follows: 62 Balanta (BLE), 6 Baiote (BDA), 1 

Banhú (BAB), 19 Beafada (BIF), 22 Bijagó (BJG), 8 Brame (BRA), 6 Cassanga (CCJ), 18 Djola (EJA), 

38 Fula (FUL), 19 Fula-Preto/Forro (FUC), 19 Futa-Fula (FUF), 1 Fula-Toranca (FUT), 1 Jancanca 

(JAD), 1 Landoma (LAN), 19 Mancanha (MAN), 30 Mandenka (MNK), 27 Manjaco (MFV), 18 

Mansonca (MSW), 26 Nalú (NAJ), 23 Papel (PBO) and 8 Sussu (SUD). All samples were typed for the 

mitochondrial lineages (see Table S1). A subset of 282 individuals, representative of the major groups 

was used for Y chromosome SNP analysis. Of those, 215 were analyzed for the Y-STRs (see Table 

S9).  

Five ml of blood were collected by venipuncture and conserved in EDTA (K2) vacutainer tubes 

(Venoject II - Terumo®) at 4ºC, until shipped to the Human Genetics Laboratory (LGH) - University of 

Madeira for further analysis. The chemical components of the tubes avoid the coagulation and assured 

the conditions for no degradation of nucleic acids. 

 

 

6 – DNA typing 

 

6.1 - DNA extraction 

 

At the facilities of the LGH, blood samples were separated into cellular fractions by low-speed 

centrifugation (1000 and 3000 rpm) using a Biofuge 13 centrifuge (Heraeus Instruments). DNA 

extraction was done from the leukocitary fraction of whole blood using Chelex®-100 resin extraction 
(Lareu et al. 1994). The procedure aims to remove non-wanted cellular components, by alternating steps of 

temperature change and centrifuging. The cellular lysis is promoted by thermal shock, while the resin 
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binds to DNA-inhibitors (metal ions as haemoglobin iron, catalases, among others; Walsh et al. 1991), 

stabilized by the addition of a buffer. The 200µl aliquots were conserved at -20ºC, for later use. By 

measuring the absorbance at 260nm in GeneQuant II (Pharmacia Biotech) the amount of extracted 

DNA was estimated to be of 90-100 ng/µl. 

 

 

6.2 - PCR amplification 

 

The Polymerase Chain Reaction (PCR; Saiki et al. 1988) is an in vitro procedure where the amount 

of segment of interest of DNA is exponentially increased by the action of a DNA polymerase, given 

that the in vivo conditions of replication are simulated (Mullis et al. 1992). The enzyme promotes the 

synthesis of a DNA strand using the complementary strand as a template. 

The mtDNA hypervariable segment I (HVS-I) of the control region was amplified by PCR using 

primer pair F15907 (light-strand np 15907-15928) and R16547 (heavy-strand np 16525-16547; 

designed in EBC). The reaction mix consisted of 1X reaction buffer (75 mM Tris-HCl pH 8.8 at 25ºC, 

20mM (NH)2SO4, 0.01% Triton X-100, 0.5% Ficoll 400, 1mM Tartrazine), 2.5mM MgCl2 (Solis 

Biodyne), 0.2pmol each primer (DNA Technology A/S and EuroGentec), 0.1mM each dNTP 

(Promega), 0.75U FIREPol Taq DNA Polymerase (Solis Biodyne) and 2 to 3µl (~100ng) of extracted 

DNA. The PCRs were carried out in a ‘’Biometra UNO II’’ thermocycler with the following temperature 

profile: initial denaturation step of 94ºC for 3 min, 36 cycles of amplification with denaturation at 94ºC 

for 15 s, annealing at 52ºC for 20 s, extension at 72ºC for 50 s, and a final extension of 72ºC for 5 min. 

Primers and PCR conditions for HVS-II and coding region sites (to be determined by RFLPs or 

sequencing) are also described in Appendix 1, with extension time adjusted to the fragment size. The 

reagents on the PCR mixes followed the proportions described above. A few samples were selected 

for full sequencing of the 16.6kb molecule, with the aim of clarifying their phylogeny, but the typing is 

still ongoing. The primers for those are described in Rieder et al. (1998) to which temperature profile had 

to be optimized.  

The typing of Y chromosome made use of NRY SNP-markers, and their hierarchical 

classification in the YCC phylogeny (YCC 2002). The polymorphisms surveyed were: YAP (Hammer and Horai 

1995), 92R7 (Mathias et al. 1994), SRY4064, SRY10831 (Whitfield et al. 1995), PN2 (Hammer 1995), P25 (Hammer et al. 2000), 

M40 (Hammer et al. 1998), M2, M9, M10, M13, M14, M31, M32, M33, M35, M44, M60, M75, M78, M81, M89, 

M91, M116, M123, M130, M155, M168, M173, M174 and M191 (Underhill et al. 2000, 2001a). The reaction mix 

included the same reagents in the same proportions as for mtDNA PCR reaction. The temperature 

variation occurred in a “Biometra UNO II’’ thermocycler, with different profiles according to the Y 

chromosome SNP markers (see Appendix 2). 

 As for the Y-STRs, a multiplex reaction for eleven markers (DYS19, DYS389I-II, DYS390, 

DYS391, DYS392, DYS393, DYS385, DYS437, DYS438 and DYS439; Appendix 3) was carried out 
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with Powerplex® Y-System (Promega) as described in the manufacturer’s instructions. A mix of 

nuclease-free water, Gold ST�R 1X Buffer (50mM KCl, 10mM Tris-HCl pH 8.3 – 25ºC, 1.5mM MgCl2, 

0.1% Triton® X-100, 0.2mM each dNTP, 0.16mg/ml BSA), PowerPlex® Y 1X Primer Pair Mix and 

AmpliTaq Gold® DNA polymerase 2.75U was made, and that volume added to 2.5µl (~100ng) of 

template DNA. The temperature profile was as follows: 95ºC 1 min - 96ºC 2 min (94ºC 1 min - 60ºC 1 

min - 70ºC 1.5 min) for 10 cycles, (90ºC 1 min – 58ºC 1 min – 70 ºC 1.5 min) for 22 cycles, and final 

extension of 60ºC 30 min. For some samples (haplotypes H168 to H220, Table S9), markers were 

typed individually with published primers and conditions: DYS19, DYS389I/II, DYS390, DYS391, 

DYS392 and DYS393 (Kayser et al. 1997), DYS385 (Schneider et al. 1998) and DYS439 (Ayub et al. 2000; further details 

in Appendix 3). Additional GATA STR A7.1 (DYS460, White et al. 1999) was surveyed in E3b1 Y 

chromosomes.  

 

 

6.3 – Electrophoresis on agarose and polyacrylamide gels 

  

 The assumption of electrophoretic analysis relies on the migration of a molecule when a 

voltage gradient is applied, given its electric properties. In the case of DNA the phosphate group is 

negatively charged and thus makes the molecule to be attracted to the cathode. The progression state 

is inversely proportional to the fragment size. 

The quality of the amplified fragments was visually estimated in 2% agarose gels with ethidium 

bromide staining (0.5 µg/ml) in a UV-Transilluminator and subsequently photographed (Grab-IT 

Annotating Grabber 2.53, UVP). Due to the higher level of accuracy in separating DNA fragments by 

their size, 9% polyacrylamide gels with silver staining (Luis and Caeiro 1995) were used to access the RFLP 

state of markers indicated in Appendixes 3 and 4. The electrophoretic runs varied between 30 min to 

1h 30 min, and 80-100V in agarose and 180-200V for acrylamide gels. For the case of Y chromosome 

YAP marker, referring to an insertion polymorphism, the molecular allele could be directly aferred from 

the gel. 

 

 

6.4 – Purification of PCR products 

 

The amplified fragments to be sequenced were submitted to a purifying treatment with 1U 

Shrimp Alkaline Phosphatase (SAP) and 1U Exonuclease I (ExoI, Werle et al. 1994),  following the 

conditions indicated by the manufacturer (Tested User Friendly TM USB; 37ºC 20 min, 80ºC 15 min). 

This step intends to eliminate from the mix components that may interfere in the next procedures, 

namely non-binded dNTPs and oligonucleotidic primers. 
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6.5 – Automatic sequencing 

 

Depending on the quality of the PCR product, a suitable amount varying from 2 to 5µl was 

used as template for the sequencing reaction, with the DYEnamic ET* Terminator Cycle Sequencing 

Kit (Amersham Biosciences). For mtDNA HVS-I, forward and/or reverse primers were used (nps 

15975 and 16494 np, respectively, 5pM). The manufacturer conditions were followed: 96ºC 4 min – 

(96ºC 10 s – 50ºC 5 s – 60ºC 4 s) x 30 cycles – 60ºC 10 min. For all sequences that presented a 

homopolymeric cytosine stretch at HVS-I nps 16184-16193, an additional reaction was performed on 

both strands. The typing of mtDNA coding region sites was done using the primers described in 

Appendix 4. For the Y-SNPs the strand to be sequenced was selected according to the positionment 

of the primer relative to the mutation (see Appendix 5). 

An ethanol precipitation protocol with sodium acetate/EDTA buffer, dextran and ethanol on 

various concentrations (90 and 70% v/v; Sambrook et al. 1989), aimed a subsequent purification of the 

product of the sequencing reaction. Alternatively, GFX purification columns (Pharmacia) with 

Sephadex G-50 (Amersham Biosciences) were used for cleansing. After addition of formamide, the 

samples were loaded into a polymeric gel and the capillary electrophoresis was held in automatic 

sequencers ABI PRISMTM 310 Genetic Analyser (Applied Biosystems) and MegaBACE 1000 

(Amersham Biosciences). 

 The sequences on both control and coding regions were aligned with the Cambridge 

Reference Sequence (CRS; Anderson et al. 1981, revised in Andrews et al. 1999), using the software Wisconsin 

Package Version 10.0 (Genetics Computer Group (GCG) 2005). HVS-I nps 16024-16365 was unambiguously 

accessed for the totality of the samples, with mutation recorded by their positions in the CRS minus 

16000 bp. When informative, HVS-II nps 150-330 were sequenced (for haplotypes in Table S1a). Y 

chromosome biallelic polymorphisms not accessible by means of enzymatic restriction were 

determined by sequencing (as indicated in Appendix 2) and then compared to the ancestral/derived 

allelic state (YCC 2002).  

 

 

6.6 – Typing of Y chromosome microsatellites  

 

The genotyping of Y-STRs was carried out in ABI PRISMTM 310 Genetic Analyser along with 

Genescan 2.1 analysis software (Applied Biosystems). The PCR products were directly loaded into the 

gel, together with formamide and ILS600 size standard. The fluorescent labels allowed accessing the 

relative size of the fragment, allowing the assignment of alleles (Appendix 3). The typing followed the 

International Society of Forensic Genetics - ISFG guidelines for Y-STR analysis (Gill et al. 2001).  
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6.7 - Typing of Restriction Fragment Length Polymorphisms - RFLPs 

 

Most of the mtDNA HVS-I sequence data had a motif that allowed the unequivocal assignment 

of the samples to a specific haplogroup. However, when the data led to inconsistent definition of the 

haplogroup and/or its subclusters, the putative members were screened for further diagnostic markers 

in the coding region, mostly by RFLP assays with the appropriate restriction enzymes. In such cases, 

the nucleotidic substitution determines the loss or gain of a restriction site, by altering the palindromic 

sequence recognized by the enzyme. 

 The restriction of amplified products was done according to the manufacturer’s instructions 

(Fermentas and New England BioLabs). The fragments were resolved in agarose and acrilamide gels, 

with different polymeric percentages depending on their size. The following mtDNA polymorphic 

restriction sites were screened: 323 HaeIII, 1715 DdeI, 2348 MboI, 2759 RsaI, 3594 HpaI, 3693 MboI, 

4158 AluI, 4686 AluI, 5585 AluI, 5656 NheI, 7056 AluI, 8615 MboI, 10084 TaqI, 10321 AluI, 10394 

DdeI, 10398 AluI, 10806 HinfI, 11438 MboI, 11641 HaeIII, 12308 HinfI, 13804 HaeIII, 13958 HaeIII, 

14766 MseI and 14868 MboI (further details on Appendixes 1 and 4). The state of the NRY markers 

92R7, M2, M9, M13, M31, M33, M35, M40, M81, M130, M168 and M174 was assigned by RFLP 

analysis with appropriate restriction endonucleases (Appendixes 2 and 5). 

 

 

7 - Data analysis 

 

7.1 - Phylogenetic assignment 

 

All mtDNA sequences were first classified on the basis of HVS-I motifs relative to rCRS. 

Whenever necessary HVS-II typing or RFLP data were added for clarifying the assignment. The 

haplogroup classification was based on the phylogenetic analyses and nomenclature of African and 

European mtDNAs as in Chen et al. (1995b, 2000), Torroni et al. (1997, 2001a), Watson et al. (1997), Rando et al. 
(1998, 1999), Macaulay et al. (1999b), Quintana-Murci et al. (1999), Alves-Silva et al. (2000), Richards et al. (2000), 

Bandelt et al. (2001), Pereira et al. (2001b), Richards and Macaulay (2001), Salas et al. (2002), Mishmar et al. 
(2003), Rosa et al. (2004), Bandelt et al. (2006), Gonder et al. (2006) and Kivisild et al. (2006b). Regarding the Y 

chromosome system, the nomenclature and phylogenetic relationships of SNP-lineages followed the 

recommendations of YCC (2002). The Y-STRs were designated according to the number of repeated 

units (as proposed by Kayser et al. 1997 and de Knijff et al. 1997, with the exception of locus DYS389 as in Roewer et 

al. 2000). 
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7.2 - Definition of populational units 

 

 The populational units of many genetic studies are usually identified by their country of 

residence or linguistic group. We believe however that the genetic basis was defined long before the 

present political boundaries. Therefore, in the present work we chose to define a prime role to 

ethnicities, which is in much associated to linguistics and dictates the social pattern of miscegenation. 

In order to have a dealable number of units with reasonable size, some ethnic groups were 

clustered when anthropological and linguistics affinities allowed it (following Almeida 1939, 1964; Barros 1947, 

Carreira 1962, 1983; Carreira and Quintino 1964; Hair 1967; Quintino 1967, 1969; Diallo 1972 and Lopes 1999). Seven units were formed, 

as shown in the Results and Discussion section. Some groups were left unpooled: the Balanta for 

whom a Sudanese origin has been suggested and the Bijagós mainly due to their particular 

geographical location. Data on several other African populations were taken from the literature for 

comparison with the maternal and paternal Guinean lineages (Tables S2, S3, S10 and S11). This 

selection was based on the level of resolution, if possible including as many typed markers as in our 

analysis.  

 

 

7.3 - Phylogenetic networks 

 

Extensively described in section 1.1, networks of mtDNA lineages were built by hand, checked 

with the software Network 4.1.1.2 (Fluxus Technology Ltd.), with a combined setting of RM and NJ 

algorithms (Bandelt et al. 1995, 2000) and then drawn in NetViz 6.5 (NetViz Corporation). To note that networks 

were first constructed for each haplogroup separately and then combined to show the overall topology. 

Phylogenetic relationships departed from the most parsimonious HVS-I nucleotide variation, assigning 

higher priority to the coding-region information. Reticulations were resolved based on parsimony and 

frequency criteria, by successive cleansing of uninformative sites, and subsequently collapsing and 

decomposing steps (as described earlier in Bandelt et al. 1995). Further resolution was achieved by 

assigning information on the mutability of the different sites (Hasegawa et al. 1998, Richards et al. 1998b), 

transversions and indels requiring further processing: HVS-I nucleotidic positions 16129, 16189, 

16223, 16278, 16294, 16311 and 16362 were down weighted in the general analysis (in particular nps 

16093 and 16274 for L1c and nps 16093, 16230, 16274, 16292, 16309, 16319 and 16355 for L2a), in 

order to solve reticulations. Transversions from A to C at np 16183 were disregarded. Although the 

built phylogenies had no outgroup for rooting, their construction was based in the structure of 

published networks in relation to non-human primate mtDNA sequences (e.g. Mishmar et al. 2003, Kivisild et al. 

2006b). 

 The network of biallelic polymorphisms in NRY followed the hierarchical topology of YCC 2002. 

For the Y chromosome microsatellites, the intra-haplogroup variation was best represented by 
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networks of microsatellite haplotypes, built with Network 4.1.1.1 (Fluxus Engineering). Reduce median 

and median joining algorithms were sequentially applied to 7 loci haplotypes (DYS19, DYS389I, 

DYS389II, DYS390, DYS391, DYS392 and DYS393) as described in Bandelt et al. (1995, 1999), to 

achieve the most parsimonious topology. Singletons were excluded from the analysis of E3a*-M2 and 

the threshold level of 2 was set. STR weighting was done according to Helgason et al. (2000).  

 

 

7.4 - Coalescence time estimates 

 

The networks in section 8 constitute the raw material for the coalescence estimates of mtDNA 

haplogroups. Therefore, the accuracy of their topology (adequately reconstructing the founder lineages 

and pathways of evolution) defines the reliability of the dating. The coalescence ages were calculated 

within several monophyletic clades as described in Forster et al. (1996) and Saillard et al. (2000). In a 

genealogy of n sequences with a specific root and k links, the li number of observed mutations along 

the ith link is taken as an age estimator. The links are scaled to time and each interior node 

corresponds to a coalescence event. The average distance to the likely founder haplotype is for that 

represented as ρ = (n1l1 + n2l2 + … + nklk)/n. The conversion of ρ into absolute time assumes that a 

transition within HVS-I 16090-16365 np corresponds to 20180 years, with a generation time of 25 

years (Forster et al. 1996, 2001). Transitions, transversions or indels outside this frame and length 

polymorphisms in the C-run (np 16183-16194) were disregarded. Saillard et al. (2000) denotes σ2 

standard deviation index of the phylogeny-based ρ (σ2= (n21l1 + n
2
2l2 + … n

2
mlm)/n

2; ni and li are 

respectively the number of individuals and the number of observed mutations along the ith link). The 

coalescence time is given by ρ ± σ, being σ of relevant importance in cases where large time intervals 

do not allow a discrimination of temporal events. 

The coalescence age of Y chromosome haplogroups was estimated from the proportion of 

microsatellite variability within each clade. The TMRCA of haplogroups A1, E1*, E3a*, E3b1 and E3b2 

was estimated under a stepwise mutation model, by calculating the average squared distance (ASD), 

a measure linearly related to coalescence time (Slatkin 1995, Goldstein et al. 1995). For a set of 10 Y-STRs (the 

included in the multiplex kit, except DYS385), the squared difference of allele lengths for each 

microsatellite was determined between each individual haplotype and the one assumed to be the 

modal haplotype. To note that modal haplotype is built up with the most frequent allele of each 

microsatellite. For Y chromosomes belonging to the same haplogroup, the mean values were then 

averaged over the loci and divided by effective mutation rate (6.9 ± 1.3 x 10-4 mutations per locus per 

generation of 25 years (Zhivotovsky et al. 2004). Confidence intervals were calculated according to the 

methodology outlined in Thomas et al. (1998). 
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7.5 – Haplotype exact matches 

 

A match was determined by the number of times similar haplotypes occurred in datasets of 

unrelated individuals. A compilation of more than 20,000 HVS-I sequences done by Professor R. 

Villems’s working team at the Estonian Biocentre was used for the search of individuals harbouring the 

same mtDNA HVS-I profile as the Guinean haplotypes. It contains a worldwide random collection of 

unrelated individuals on various ethnic backgrounds, taken from the available scientific literature and 

unpublished works. The populations included in public databases where not of interest for the purpose 

of our analysis. Similarly, Y-STRs haplotypes were surveyed for exact matches in YHRD 

(www.yhrd.org, Willuweit and Roewer 2007), a curated and frequently updated database containing more than 

51,253 haplotypes in 447 worldwide populations (as of July 2007), plus additional searches in 

published literature. The allelic state of both 8 and 10 STRs (respectively “minimal” and “extended” 

haplotypes) were surveyed for exact matches.  

 

 

7.6 - Statistical parameters 

 

By the use of statistical tests the data is summarized in a standardized way which facilitates 

the interpretation. Inevitably some information is lost, but it is among the commonest ways of 

comparing both populations and loci. Data needs to be handled with care to avoid the drawing of 

unwarranted conclusions, in what concerns exploratory methods. As observed data have usually some 

deviations from the expected one, either due to chance fluctuation or wrong hypothesis, a bias 

ascertainment is most of the times needed. The size of the deviations defines then the point where to 

start doubting the hypothesis. For testing reliabilities, probabilities P play a major role by establishing 

the 0.05 limit for mere chances.  

Although not without controversy, the parameters described below better represent the genetic 

systems and have proved to be more informative. Most of the statistical analysis was performed with 

the software Arlequin 2.000 (Schneider et al. 2000). 

 

 

7.6.1 - Frequency calculation 

 

Frequency is estimated by the xi observed times of i alleles/haplotypes in a sample of n gene 

copies. Not normally distributed, the frequency depends on the sample size and is associated to a 

certain group of people at a defined time. Methods based on frequency comparisons are built up after 

a matrix of correlation inferred with binomial variances and covariances for alleles of the same gene, 

and setting to zero all correlations between alleles of different unlinked genes. For the populations to 
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use in comparisons the average allele/haplotype/haplogroup frequency within the same geographic 

location was weighted by sample size for a cluster of s populations. 

 

 

7.6.2 - Genetic diversity  

 

 Nei’s gene diversity H (also called as heterozigosity for diploid loci; Nei 1987) defines the 

probability of two sequences, chosen at random from a population, being distinct. The index and its 

associated variance were similarly calculated for different levels from mitochondrial DNA sequence 

and Y-STR alleles to haplogroup data on both mtDNA and Y chromosome systems as follows: 
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H varies from zero to one, reaching the last when there is a high degree of polymorphism and almost 

all types are different from each other. Under neutral evolution, the level of diversity can reach 

mutation-drift equilibrium, where new alleles formed by mutation are balanced by the ones eliminated 

by drift. If selection is absent the H parameter becomes equivalent to the mean nucleotide diversity 
(Tajima 1983, Nei 1987). 

 

 

7.6.3 – FST statistics 

  

The underlying molecular basis of the polymorphisms makes possible to determine 

evolutionary distances based on the number of differences. The simplest genetic distance between 

two populations for one biallelic gene would be the difference of the allelic frequencies pi and pj (Nei 

1987). In this study the evolutionary relatedness of population units, in terms of their genetic structure, 

was measured with FST statistic, pairwise comparisons also known as coancestry coefficients. The 

genetic distance evaluates the average gene frequency and its associated variance and may 

incorporate the molecular distances among haplogroups (matrix of defining mutations; Slatkin’s 

linearized FST). The FST index varies from zero to one, where larger values indicate greater 

evolutionary distance and lower ones suggest lower distance (possibly with considerable gene flow 

between populational units). Therefore, an obtained value of 0.3 means 30% of the allelic frequency is 

attributed to the interpopulational differences, while the remaining variation is found within the 

population. Again, the null hypothesis is of no difference between the units. The distribution of pairwise 



 100 

FST is obtained by permutation tests and P significance level is the proportion of permutations with a 

larger or equal value of the observed FST (P<0.05 reject the hypothesis).  

For the pairwise comparison, either of populations or allele-by-allele locus analysis, the FST 

index equals distance values, though a linearization to divergence time has to be performed (Slatkin 1995). 

Reynolds and collaborators concluded that FST is more satisfactory than Nei’s distance when only a 

few new mutations emerge in the evolutionary time period examined, as it is the situation for the 

evolution of modern humans (Reynolds et al. 1983). 

 

 

7.6.4 - Exact test of population differentiation 

 

 Population haplogroup frequencies were compared in permutating pairs using the exact tests 

of population differentiation, to test the null hypothesis of identical haplogroup frequencies in the units 

under comparison. A random distribution of k different haplotypes/haplogroups frequencies among r 

populations is tested as in Raymond and Rousset (1995), in a Fisher’s-type r x k contingency table. P-

values based on 10,000 Markov steps are reported. The Markov chain sequential steps explore all 

potential states of the observed table and estimate the probability of obtaining a less or equally likely 

table, under the null hypothesis of panmixia. 

 

 

7.6.5 – Graphical display of results – PCA 

 

The genetic information can be displayed in a more comprehensible manner by graphical 

means. The Principal Component Analysis is a dimension-reduction method which seeks to explain 

the variance of multivariate data by a smaller number of variables - the principal components (PCs). 

Individual axes are sequentially extracted and associated to a percentage of variation, as linear 

functions of the original measurement data, in this case built from the haplogroup frequencies. After 

reducing the variables to PCs the coordinates are plotted in a dimensional graphic representing the 

genetic landscape. For n populations, n-1 dimensions are required to fully represent their pairwise 

distances with a reduced loss of information. Usually the two-dimensional Cartesian diagram exhibits a 

good display of the relative genetic similarities, satisfactory when the percentages of retained variance 

are around 60-75%. The addition of a third PC is graphically possible but never as clear as the two-

dimensional map. The PCAs tend to show the same inferences as the clustering trees though cannot 

be taken as independent methods of analysis.  

In the present work bi-axial PCAs were constructed from the relative frequency vectors of 

mtDNA and Y chromosome haplogroup composition with the software MVSP Version 3.13m (Kovach 
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Computing Services), for both Guinea-Bissau ethnic clusters and to compare our Guinean sample with 

other African data. 

 

 

7.6.6 - Analysis of Molecular Variance (AMOVA) 

 

In the AMOVA test a genetic structure of groups of populations is tested by an analysis of gene 

frequency variance (Excoffier et al. 1992), that takes into account the molecular relationship of the 

alleles/haplotypes (Long 1986). The total variance is hierarchically partitioned into σ covariance 

components due to intergroup σ2a, inter-population σ
2
b and intra-population σ

2
c differences 

(Weir 1996, 

Excoffier 2000). An algorithm leads to a fixation index FST, identical to F-statistics weighted over loci 
(Weir and 

Cockerham 1984) and that can be seen as correlation coefficient. The significance of the fixation is tested 

using a non-parametric permutation approach described in Excoffier et al. (1992), consisting in 

permuting haplotypes, individuals or populations (in this study 1000 permutations were set). The 

expectation of the estimator is zero but can result, by chance, in slightly negative values due to the 

absence of genetic structure. A grouping strategy using geographic, linguistic and religious criteria was 

used for AMOVA tests of our data and other compiled from the literature. 

 

 

7.6.7 – Mismatch distribution 

 

The mismatch distribution (MD) refers to the nucleotide pairwise differences between 

individuals (Tajima 1983, 1993), useful when dealing with discrete data as SNPs, RFLPs or STRs. Easily 

determined in mtDNA sequences, MD reflects the sequence diversity within the sample and its shape 

of distribution might reveal demographic episodes. It is usually multimodal in populations at 

demographic equilibrium, reflecting the stochastic shape of the network, but it can assume a unimodal 

bell-shaped curve in populations that have had recent populational expansion (Slatkin and Hudson 1991, Rogers 

and Harpending 1992). Demographic inferences from mismatch analysis have to consider time of expansion, 

size before expansion, gene flow and sub-structuring of populations. Deviations from unimodal shapes 

may reflect the significant role of one or more of those factors over a population (Marjoram and Donnelly 1994). 

We have determined the MD for each mitochondrial haplogroup. Irregularities of the mismatch 

distribution were tested by the significance of raggedness index (Harpending 1994).  

 

 

7.6.8 - Neutrality tests 

 

 The Tajima’s test of selective neutrality is based on the infinite-site model of mutational 

occurrence without recombination, and it is to be applied in short DNA sequences or haplotypes, to 
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infer about natural selection. Two estimators of the mutation parameter are compared in a D statistics, 

relating nucleotide diversity π and the number of segregating sites S (Tajima 1989). The significance of the 

test is done by randomizing the samples under the null hypothesis of selective neutrality and 

population equilibrium. The P value is ascertained as the portion of random F-statistics less or equal to 

the observed. In the case of selectively neutral genetic systems, significant values of D can be 

generated by expansion, bottleneck or heterogeneity of mutation rates among DNA sequences (Tajima 

1993, Tajima 1996). The Fu’s FS test captures other facets of the data, analyzing the null hypothesis of 

constant population size in equilibrium of drift and mutation (Fu 1997). 
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Chapter Five 

 

Results and Discussion 

 

 

8 - MtDNA analysis in the population of Guinea-Bissau – a phylogenetic approach 

  

 The presence of the most prevalent sub-Saharan African mitochondrial haplogroups and sub-

haplogroups within L0-L3 was revealed for Guinea-Bissau (93.8%) while the minor variants were 

distributed among non-L clusters, namely M1b1 (1.3%), U5b1b (2.7%) and U6a (2.2%). The profile of 

haplotypes for each ethnic group is presented in Supplementary Material – Table S1, while the 

frequency of the classes is shown in Table S3 and in Rosa et al. (2004) (Table 2). Due to the large size 

of the dataset, the referred article included only the skeletons of phylogenetic trees of the haplogroups. 

Here we show a phylogenetic network of clades defined by HVS-I and partial coding region RFLP 

data, together with the ethnic affiliation of the 372 individuals (Figure 20). A meta-analysis was 

performed with the purpose of integrating the findings, by comparing the populations used by Rosa et 

al. (2004) with meanwhile published individual studies (see populational units in Supplementary Material 

– Table S2 and Figure S1 - and respective haplogroup frequencies in Table S3). By choosing to 

deepen the phylogenetic analysis several points are of interest to outstand: 

 

 Haplogroup L0a1 is the only subclade of L0 in Guinea-Bissau, inserted in a context of West 

Africans L0a1 lineages with rather low frequencies (below 5%; Rando et al. 1998, Brehm et al. 2002, Rosa et al. 2004, 

Jackson et al. 2005, Cerny et al. 2006, Ely et al. 2006). The geographic range of L0a spans East Africa from Egypt to 

Kenya (3-19%, Table S3; Watson et al. 1997, Brandstatter et al. 2004b, Kivisild et al. 2004), and has further frequency 

peaks in the Bantu people of Cameroon (Destro-Bisol et al. 2004), Central Africa Chadic-speakers (up to ~22% 

in Chadic Mafa, Cerny et al. 2004), and in Mozambicans (15-29%; Pereira et al. 2001b, Salas et al. 2002). It is interesting 

to note that in our dataset only the Balanta, the group that claims a Sudanese origin (Quintino 1969), shows 

an increased frequency of this clade (11%). In case of L0a1, we are dealing with a rather ancient 

daughter group that has derived from L0a in Palaeolithic times ~33kya (Salas et al. 2002). However, the 

relatively young coalescent age of L0a1 in Guineans (6.4±2.6 ky, Table S4) suggests that only a small 

subset of such variation reached Guinea-Bissau during the Holocene, probably at the post-LGAM with 

the more favorable conditions for migration. Their lineages are shared with other African regions but 

surprisingly only at the level of the founder type. Several exact matches of the Guinean GB4 HVS-I 

motif, detected in eight East African populations, Chad and West African Cape Verde, Senegal 

Mandenka, Sierra Leone and Mali (see Table S5) may represent a possible route of migration of 
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Figure 20 - MtDNA median network of Guinea-Bissau haplogroups based on HVS-I (minus 16000 bp) and partial coding-region RFLP information. Numbers along the links indicate transitions, transversions (with suffixes), state reversions (letter “a”) or RFLP site changes 
(in italic) so that the rCRS derived states are indicated. Recurrent mutations relative to each haplogroup are underlined. Mutations are placed on a hierarchical level where the basal define haplogroups (bold links and letters) and the ones at the endings refer to individual 
haplotypes. Sub-clades are signalled with bold letters with lower size font. The codes and numbers in the circles represent respectively the ethnic group (as in section 5 and Table S2) and the number of individuals harbouring the particular haplotypes, with correspondent 
colour to the ethnic assignment. Length polymorphisms in the C-run (16184-16193) and 16183 A to C transversion were disregarded for the network construction. In the present network the following typographic errors in Rosa et al. (2004) were correct: in L1b 187A should 
be 187a; the L2a* lineage 182-189-362 lacks 270; in L2a1, 317 should be 317T and the node 213-264A is indeed 213-294; in L2c the lineages 261-318 and 093-126-274 include two individuals; L2d basal sample is in fact included in L2d. L1c haplotypes are described in 
detail in Figure 22. 



                            

L0a1 from East to West Africa. The spread probably happened in a short timeframe since no 

further sharing was detected for the lineages radiating in several populations. In the context 

of mtDNA lineages we will refer to exact matches as lineages harboring the same HVS-I 

motif. Back to L0a1 variation, the accumulated diversity and associated coalescence time in 

Guinea-Bissau are most likely a reflection of the arrival of the eastern founders. Alternatively, 

we can hypothesize on a prior existence of L0a1 in West Africa, with limited spread and a 

reduction of diversity through a bottleneck, and later expansion in the Holocene. The first 

hypothesis of a more recent founder effect seems more likely, as otherwise common 

lineages would have been sampled in a wider geographic range. The doubt remains if the 

Guinea-Bissau L0a lineages represent a post-LGAM recovery of people or if it otherwise 

relates to the agriculture-promoted expansions. The lack of the L0a2 clade, associated with 

the 9bp deletion, characteristic of the widespread Bantu speaking populations (Soodyall et al. 1996) 

suggests that L0a has at least two distinct phylogeographic patterns in Central and West 

Africa. 

 

 The West African L1b is represented by its basal founder type, a deriving branch 

found in Balanta, Nalú and Fulbe, with HVS-I transitions 16111-16239 and state reversion at 

np 16264, and the L1b1 daughter-clade defined by additional HVS-I mutation in 16293 

(Figure 20). The L1b1 sub-branch with mutations at nps 16114A and 16274 is common in 

Senegalese Mandenka and Wolof (Graven et al. 1995, Rando et al. 1998, Salas et al. 2002) and frequent in 

Balanta and Papel. The proposed origin of expansion of L1b in Central Africa ~30.5 kya (Salas 

et al. 2002) implies its westward spread to West Africa. Some scholars hypothesize on a later 

bottleneck and re-expansion to West Africa ~17 kya that has reshaped the earlier 

phylogenetic pattern (Chen et al. 1995b, Rando et al. 1998), at a time coincident with the gradual return to 

wetter climatic conditions (Burke et al. 1971). The coalescence estimate of L1b lineages in Guinea-

Bissau (Table S4) corroborates for its early presence in West Africa, even prior to lineages 

present in Central Africans. On the other hand, if we pay attention to the L1b1 founder node - 

first central one excluding the lineages with np 16114A-16274 (Table S4, TMRCA~16ky) - 

this could have been among the movements triggered by the climatic improvement. The 

suggestion is bolstered by that the few matches of the basal L1b variation are restricted to 

West Africa (GB11 and GB24, the latter found in Fulbe) and identical haplotypes in cluster 

16114A-16274 are found mostly in Senegalese Mandenka, while L1b1 haplotypes lacking 

motif 16114A-16274 match in both Central and West Africa (Table S5). The proportion of 

L1b lineages among  Fulbe  is  not  surprising  given  their  high  prevalence  in  other Fulani 
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Figure 21 - Network of the L1b haplotypes in Fulani people of West and Central Africa. The * denotes the 

MRCA of the variation defined by mutations at nps 16126, 16187, 16189, 16223, 16264, 16270, 16278, and 

16311. The abbreviations are as follows: BA - Fulani from Banfora; BO - Fulani from Bongor; CE - Fulani 

from Tcheboua; TI - Fulani from Tindangou; FUL and FUC – Fulani from Guinea-Bissau. The number 

following the abbreviations corresponds to the number of cases. Circle sizes are proportional to the 

haplotype frequency. Adapted from Cerny et al. (2006). 

 

populations (Watson et al. 1996, Cerny et al. 2006). It is here interesting to note the similarities displayed 

by the Fulani people living in different territories in West and Central Africa (Figure 21). 

Three of the L1b haplotypes were found to be exclusive of Fulani (GB7, GB8 and GB20; 

Table S5). Most of the matches have a West African distribution: Senegalese Mandenka 

registered the highest number of lineages in common with Balanta (GB13, GB14 and GB21); 

Bijagós match one Wolof type (GB17); Sierra Leone people share one lineage with Felupe-

Djola and Papel (GB21). The more basal GB23 and GB24 lineages are pan-African and also 

of non-African distribution, and represent central nodes of regional diversity.  

 

 Haplogroup L1c is among the mitochondrial lineages that can make use of larger and 

tailor-made datasets and increased level of resolution to shed light on its origin and 

processes underlying its present distribution. This clade is characterized by a high internal 

diversity, and since its first description by Rando et al. (1998) has been targeted with 

substantial revision of its phylogeny, based on control-region (Salas et al. 2002, Destro-Bisol et al. 2004, 

Batini et al. 2007) or coding-region analysis (Gonder et al. 2006, Gonzalez et al. 2006, Kivisild et al. 2006b). The 
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network in Rosa et al. (2004) was further resolved using additional information on sites of 

phylogenetic importance (see Figure 22). The classification of L1c and its subclades L1c1, 

L1c1a and L1c3 as in Salas et al. (2002), and L1c3a1 and L1c3b1 as in González et al. (2006). 

Our phylogeny is consistent with basal branches determined by full-sequencing studies of 

the molecule, except for Guinea-Bissau L1c1* and L1c1a mtDNAs which harbor the 

substitution at np 14148 but lack the one at np 11899 (Bandelt et al. 2006, Gonder et al. 2006, Kivisild et al. 

2006b). The available data does not consistently elucidate the phylogenetics, but the subject 

surely deserves further attention, for instance in a particular substitution at np 12879, to our 

knowledge not described to date. For details on complete sequences of 2 L1c Guinean 

mtDNAs see forthcoming work of Behar MD, Villems R, et al. (ms submitted). 

 The highest frequencies of mtDNA haplogroup L1c are among Cameroon, Central 

African Republic and Republic of Congo people (up to 96% in Mbenzele Pygmies; see Table 

S3; Cerny et al. 2004, Destro-Bisol et al. 2004, Batini et al. 2007) whereas is less frequent in other quadrants of 

the continent (Watson et al. 1997, Rando et al. 1998, Salas et al. 2002, Destro-Bisol et al. 2004, Plaza et al. 2004, Rosa et al. 2004, 

Coia et al. 2005, Jackson et al. 2005, Gonzalez et al. 2006). The Central African origin has been proposed, 

possibly retaining indigenous signatures of a phase common to the ancestors of Western 

Pygmies and Bantu people, while more specific sub-clades mark their divergence (Salas et al. 

2002, Batini et al. 2007). Except for the Loko people, where L1c peaks at about 13% of L1c* 

lineages (Jackson et al. 2005), haplogroup L1c in West Africa averages the 5-8% (Table S3; e.g. 

Guinea-Bissau Nalú, Balanta and Fulbe, Rosa et al. 2004; Sierra Leone Temne and Limba, Jackson 

et al. 2005; Senegalese Serer, Rando et al. 1998; Cape Verdians, Brehm et al. 2002; and Mauritanians, 
Gonzalez et al. 2006).  

 Although not without controversy, the distinct L1c lineages seem to tell different 

evolutionary histories. Considered to be of Western Pygmy origin and posteriorly transmitted 

to non-Pygmy groups (mostly Volta-Congo speakers; Destro-Bisol et al. 2004, Gonzalez et al. 2006), L1c1a 

mtDNAs were found in a Guinean Balanta and a Papel (Table S1, GB37) and  are also 

represented in Mali (Gonzalez et al. 2006). Sub-haplogroup L1c3 seems to be ubiquitously 

distributed from Senegal to Cameroon (Salas et al. 2002, references in Gonzalez et al. 2006) and is 

shown by all Guineans, with the exception of Bijagós and Nalú. Other than in Felupe-Djola 

and Papel, the HVS-I GB30 and GB36 motifs (respectively; see Table S5) have been 

sampled in Bambara, curiously a Mande group. The L1c3a1 haplotypes found in the 

Guinean Bak-speakers are also common among Yoruba, Hausa and other Afro-Asiatic 

speakers (Gonzalez et al. 2006). The L1c3b1 lineage in Mandenka probably matches a lineage in 

Yoruba, African-Brazilian and Dominican, though classified in Salas et al. (2002) as L1c1*. 

None of the allegedly Bantu L1c1b, L1c1c or L1c2 Batini et al. 2007 were found in our sample set. 

The variation of our Guinean L1c dataset coalesces at 108.3 kya (±21.9) which is consistent 
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Figure 22 – Median network of the L1c haplotypes in Guinea-Bissau people, based on HVS-I, HVS-II and 
partial coding region information. Substitutions are shown along the links, with suffixes indicating 
transversions, “a” state reversions and italicized coding-region changes, relative to rCRS. Recurrent 
mutations within the L1c clade are underlined. The root is designated by “*”. The abbreviation and color 
code of ethnic groups codes are as in Figure 20. Length polymorphisms in the C-run (16184-16193) and 
16183 A to C transversion were disregarded for the network construction. 
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with the timeframe in Gonder et al. (2006), Kivisild et al. (2006b), Batini et al. (2007) but 

considerably older than previous estimates on smaller datasets (Salas et al. 2002). The absence of 

basal L1c types in our dataset leads us to hypothesize on the westwards expansion of the 

lineages relatively late in the evolution of the haplogroup. The suggestion is further 

corroborated by the Central-West distribution and a relatively recent coalescence age of the 

L1c3 subclade (Salas et al. 2002).  

 

 The wide continental spread of L2a justifies why the lineages in Fulbe, Felupe-Djola 

and Bijagós (GB57, GB62 and GB76) have matches in a broad geographical range (Tables 

S3 and S5). The Mandenka L2a haplotypes are common not only to Senegalese and 

Senegalese Mandenka (GB71, GB80) but to other geographically close Mande populations 

(Malinke, GB53) and Mozabites (GB71). Other than in Balanta, the L2a-α3 GB44 motif 

traces a corridor of exact matches from Sudan and Somalia through Central areas until West 

African Malinke and Sierra Leonese Limba and Temne. In parallel, the Balanta GB59 is 

present in a Moroccan Arab, stating for the relationship of North Africans and these sub-

Saharans. Here again multiple matches of Fulbe lineages (L2a1-β3 GB57, Table S5) tell of 

their populational history with contacts with various people and inputs at various timescales. 

Other L2a1-β3 matches are restricted to West Africa (B56 and GB58). Haplotype GB39 L2a-

α2 appears as unspecific to other West Africans when matching only with eastern people in 

Lake Turkana, Tuareg, Nubian, and a Saudi Arabian (Table S5). The Fulbe L2a proportion of 

22% contrasts with the frequency of other Fulani people in West-Central areas (not sampled 

to 13%, Cerny et al. 2006 but nevertheless three mtDNA lineages are exactly alike haplotypes in 

Central Africa (Table S5, L2a-α1 GB50, L2a1d GB68 and GB70 and L2a1- β1 GB75), some 

even shared with Fulani people. 

 

 The distribution of L2c demonstrates a clear West African cluster with localized 

expansion, where the highest frequency (39.1% in Senegal Mandenka and 22.4% in 

Guinean Mandenka, Table S3; Graven et al. 1995, Rosa et al. 2004) and extent of shared lineages are 

not unexpected: the largest number of matches is with Cape Verdians; three haplotypes in 

L2c are common to Felupe-Djola and Sierra Leone Temne (GB94, GB107, GB114; Table 

S5); Balanta and Fulbe share lineages with Mali and Senegal Mandenka (GB92 and GB110); 

GB117 is very common and spread over multiple people - all West African residents, Chad’s 

Masa, and Northwest Saharans and Mauritanians; Mande in Senegal have matches with 

Papel, Fulbe and Mandenka of Guinea-Bissau (GB111, GB112). Several one-step lineages 

from the central type are interestingly shown by Felupe-Djola and Papel (Figure 20), the 

members of supposedly “late” eastern arrivals that have most likely acquired these lineages 

in West Africa or on their way westwards, given its absence in the East. 
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 The diverse set of haplogroups L2a and L2c sequences constitute the most frequent 

types in our sample but with different distribution within ethnolinguistic groups (26% in 

Bijagós and Balanta to 38% in Fulbe and Mandenka; Table S3). The almost starlike 

phylogeny of L2c and the many one-step derivates in L2a1 sub-clades may reveal signatures 

of expansion, from a limited number of founder haplotypes shared by groups of different 

linguistic affiliations (Figure 20). These could have been protagonists of expansions 

coinciding with the gradual climatic amelioration and even participated in the dispersal of L2a 

clades ~14kya from a source in between East and West Africa (Salas et al. 2002), although being 

priory frequent and having a previously defined diversity (e.g. L2a1-β1 TMRCA ~30 ky, L2c 

TMRCA ~20 ky; Table S4). In fact, unless a drastic founder effect occurred, the age of a 

clade predates, sometimes considerably, the age of the ethnically defined population where 

it is found. Because ethnic definitions almost always include linguistic aspect, such 

definitions do not go usually deeper than 10-15 ky, due to the limitations in reconstructing 

deep-rooted language trees.  

 

 Guineans retain one of the highest proportions of L2b, a cluster largely restricted to 

West Africa (Table S3; Chen et al. 1995b, Rando et al. 1998, Salas et al. 2002). Among the best represented 

are the Nalú, the Felupe-Djola and the Papel, these last curiously harbouring both the basal 

and the more derived lineages (Figure 20). The Guinean haplotypes coalesce at 

approximately 39 kya, while the expansion of L2b1 begun more recently at about 9 kya 

(Table S4). On the light of the theory about an eastern homeland of Papel and Djola, and in 

parallel to that suggested for L2c lineages, it is more likely that the L2b mtDNAs were 

acquired on the way to, or in West Africa, as these are absent in eastern people. We note 

that L2b is absent in Fulbe of Guinea-Bissau though quite frequent in other Fulani and 

therefore defines a certain degree of “inter-Fulani” distinctiveness (Table S3). Most matches 

in L2b are with Cape Verde, Senegal, Mali and Wolof not to mention the particular links of 

Mandenka to Ethiopians (Table S5, GB83). 

 

 Haplotypes belonging to haplogroup L2d are represented by single individuals 

(except GB120) and do not show a common founder sequence (Figure 20). The L2d 

lineages are more common in Central and West Africa (Table S3) coalescing at a common 

node ~120 kya, probably in Central Africa (Salas et al. 2002). The distantly separated clades in 

Guinea-Bissau coalesce at about the same time and thus tell of their ancestral survival 

through episodes of genetic drift (Table S4). Other than Balanta and Mandenka, the L2d2 

GB120 haplotype matches in Mende and Temne sample sets (Jackson et al. 2005), while L2d1 

GB123 motif was found in a Guinean Fulbe and Saharawis (Rando et al. 1998; Table S5). 
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 Both L3b and L3d are most frequent in the western-central part of the continent 

(Table S3). Haplogroup L3b is expressive in Bijagós, Fulbe and Felupe-Djola pools (10-14%) 

inserted in an average panorama of 10% in West Africans. Their near absence in Felupe-

Djola’s homeland makes us believe in a local amplification of frequency in a small founder 

group. GB127 and GB134 are particular links of Guinean Balanta to Northwest African 

Mozabites and Moroccan (Table S5), suggesting together with exact matches in L2a and L2b  

for the relationships of these people. Felupe-Djola and Mandenka have an intriguing lineage 

motif of Fulani prevalence (GB129), which is actually the only L3b1 lineage matching both in 

West and Central Africa. Other L3b mtDNAs are found only in western people, except for the 

widespread central haplotype of variation (GB137, Figure 20). L3d lineages are in turn 

restricted to sub-Sahara, with a range of 5-13% in West-Central Africa and occasional peaks 

in Central Mafa and Fulani (~20%, Table S3). The estimated coalescence of about 30 kya 

(±8.5; Watson et al. 1997, Rando et al. 1998) overlaps with our estimate of 42.7±10.8 ky for the L3d 

diversity in Guinea-Bissau (Table S4). The unsolved reticulations wait however for further 

phylogenetic resolution. We note that the lineages with longer evolutionary time are present 

in Balanta and Nalú, the Guineans groups who also have higher frequency of this clade. 

Geography is the main denominator of matches with few particular lineages found elsewhere 

(Table S5), e.g. L3d1 GB157 in Mandenka similar to lineages in Central Fulbe and 

Ethiopians. The vast majority of lineages are matching within West Africa corner, with GB159 

being particularly frequent in Sierra Leonese (Jackson et al. 2005). 

 

 L3e4 is observed predominantly in Atlantic West Africa and thought to be a 

protagonist of local expansion events with the rise of food production and the iron-smelting 
(Bandelt et al. 2001). In Guinea-Bissau moderate frequencies of L3e4 are found in Balanta and 

Felupe-Djola (8% and 4% respectively, Table S3), with the more derived lines shared by 

Balanta and Mandenka (Figure 20). As its founder type is shared by 7 individuals and only a 

few lineages emerge, L3e4 is placed among the haplogroups of more recent presence in 

Guinea-Bissau (Table S4, TMRCA of 11.0±5.2 ky). Curiously, the GB170 basal cluster is not 

only shared with West Africans but also with inhabitants of Mozambique and Sudan (Table 

S5). The L3e2b cluster is the most widespread type of L3e, and together with L3e2a are 

considered successful hitchhikers of the population movement in the Sahara during the 

Great Wet Phase (early Holocene) and subsequent Wet Phase (Muzzolini 1993, Bandelt et al. 2001). 

The haplogroups L0a1 and L3h could have also participated in such movement. In fact, 

Guinea-Bissau L3e2a GB162 and L3e3b GB166 motifs match widely in the continent. For 

L3e2a, the more ancient mtDNA lineages are shown by Mandenka and Balanta while L3e2b 

is mainly a Felupe-Djola and Papel cluster (Figure 20) with probable links to their homeland 

mirrored in East African similar lineages (Table S5). 
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  The distribution of the haplogroup L3f comprises all East Africa (1-33%, Table S3; 
Watson et al. 1996, 1997; Krings et al. 1999; Brandstatter et al. 2004b; Kivisild et al. 2004) and again is present in 

particular groups of people of Chad and Cameroon (up to 39% in Chad Kotoko). The 

proportions in Guinea-Bissau average the 2% (maximum 6% in Felupe-Djola) while in the 

neighbouring Senegal, Mali and Sierra Leone ranges 6-11% (Rando et al. 1998, Jackson et al. 2005, Ely et 

al. 2006). The lineages tell of an ancient migration from East Africa to more central areas of the 

continent. For instance, one Fulbe lineage (GB178) shows exact matches with sequences 

from a wide range of East-African populations in Somalia (Table S5, Watson et al. 1996, Watson et al. 

1997), Ethiopia (Kivisild et al. 2004), Egypt (unpublished) and a Peul in Mali (Gonzalez et al. 2006) that 

testify for their wide territory in the Sahel, although in the Fulani “world” L3f is just 

represented in the Tcheboua of South Cameroon (Table S3, Cerny et al. 2006). The coalescence 

49.4±16.2 ky determined for Guinea-Bissau cluster (Table S4) is within the previously 

estimated error range of 39.4±10.4 ky (Salas et al. 2002). 

 

 The proportion of haplogroup L3h in Felupe-Djola is among the highest found (8%, 

Table S3; Watson et al. 1996, 1997; Brehm et al. 2002; Rosa et al. 2004). This very rare cluster has been shown 

to be present in East Africa (although lacking nps 16129-16362, Kivisild et al. 2004) and 

Niger/Nigeria (HVS-I motif in Watson et al. 1997 allowed to classify it into L3h) but not in West 

Africans. The L3h lineages in Guinea-Bissau may then represent an input of an eastern 

subset that has derived in isolation from its original types, since no matches or common 

founders are traceable. The high percentages among Felupe-Djola and Papel are according 

to their tradition of East African descendants (though not exactly establishing a direct link 

with Sudan). However, it is hard to interpret its association to the proposed very recent 

arrival of the Felupe-Djola in the 15th century, since Guinean L3h extant lineages are shared 

by people of different ethnolinguistic affiliation and show no common types in East Africa. 

Nevertheless, the coalescence age of 14.1±8.4 ky (Table S4) does not necessarily reflect 

their arrival, since a certain level of diversity could have been present already among the 

migrants. No exact matches were found except in Cape Verde (GB184, Table S5) which is 

most probably of Guinean descendants. As the haplogroup L3h is in general very rare, it 

could have escaped sampling in West Africa, or it can otherwise represent a direct input from 

eastern people. 

 

 None of the Bantu-associated markers L0a2 9bp-del CoII/tRNALys (Soodyall et al. 1996), the 

L2a1 HVS-I motif 16192 (Pereira et al. 2001b), the haplotype 16124-16223-16278 in L3b (Watson et al. 

1997), the L3e1a characterized by mutation 16185 (Bandelt et al. 2001) and L5 (previously L1e in 

Pereira et al. 2001, renamed in Kivisild et al. 2004) were found in the Guinean sample. This 

suggests that either Bantu migrations contributed very little to the gene pool of Guineans or 
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that they had a distinct gene pool from that associated with the southwards migrants. The 

lack of Bantu branches of the Niger-Congo linguistic family, among a plethora of languages 

spoken in Guinea-Bissau, is more congruent with the first hypothesis. 

 

 The M1 lineages relate again only the Balanta and the Felupe-Djola with a 

predominantly East African clade (Figure 20 and Table S3). The haplotypes match however 

with those of one Iranian (Metspalu et al. 2004), two Saudi Arabians (Metspalu et al., unp data), one West 

Saharan (Rando et al. 1998) and two Mozabites (Corte-Real et al. 1996), which is not surprising given the 

occasional occurrences of M1 in West and Northwest Africa (Torroni et al. 1996, Rando et al. 1998). We 

have reassigned our samples as M1b defined by Olivieri et al. 2006 (previously M1c in Kivisild 

et al. 2004), on the basis of a np16185 mutation present only in Morocco and Northwest Africa 
(Plaza et al. 2003, Olivieri et al. 2006) and several coding regions posteriorly typed (GB185 with the 

mtDNA molecule completely sequence, unpublished data). The M1b is a North African 

branch that has followed a trajectory on the southern coast of the Mediterranean, from the 

Near East to North West Africa namely to Morocco. The trans-Saharan spread is not likely a 

product of recent gene flow since a random assortment of other North West African mtDNAs 

would have likely been carried by the migrants as well. We have to bear in mind that 

Mauritania/Senegal and Mali border seems to be an important barrier to southward gene flow 

of the North African Euroasiatic haplogroups to sub-Sahara (Gonzalez et al. 2006). It is nevertheless 

intriguingly found in Guinean groups who harbour eastern African mtDNA variants. 

 

 Haplogroup U6 is seen as the first Palaeolithic return to Africa of ancient Caucasoid 

lineages from a Near-Eastern/ Mediterranean area (40-50 kya; Rando et al. 1998, Olivieri et al. 2006). 

The increasing frequency and diversity of its most representative clade U6a towards 

Northwest Africa supports the idea of a local expansion, with rather frequent distribution in 

Algerian Berbers, Moroccans and Mauritanians (Table S3; Corte-Real et al. 1996, Rando et al. 1998, 

Macaulay et al. 1999b, Plaza et al. 2003).The most frequent motif 172-189-219-278 is believed to have 

registered a partial diffusion to Sahel ~11kya (Rando et al. 1998, Coia et al. 2005) and was observed in 

three different haplotypes in Fulbe, Mandenka and Manjaco (Papel related group, Figure 20). 

The basal haplotype GB191 matches widely in Africa suggesting a relation to an ancient 

Berber expansion (Table S5). The particular contact of North Africans with Guinean 

neighbours has been historically documented (Moreira 1964) and hypothesized based on exact 

matches of other haplogroups above mentioned. 

 Nine Fulbe and a Papel mtDNAs fall into two haplotypes of haplogroup U5b, which 

otherwise exhibits the main radiation in Europe (Richards et al. 2000). The U5b1b lineage with HVS-

I-motif 16189-16192-16270-16320 and nps 7385 and 10927 (additionally typed to the 

markers in Rosa et al. 2004) is one or few steps away from a common and widespread type in 
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Europe, but also among Moroccans, Saharawis and Tunisians (Figure 23; Plaza et al. 2003, Tambets 

et al. 2004, Achilli et al. 2005) though none exact match was registered with these populations. A 

recent sizable European admixture by the time of the slavetrade is highly unlikely as other 

frequent Europeans variants are absent. A recent finding linked the Saami U5 in Scandinavia 

to that found on North African Berbers and a sub-Saharan Fulbe by the extremely young 

branch of U5b1b ~9kya (Achilli et al. 2005), emphasizing the great importance of post-glacial 

expansions in shaping the genetic diversity of modern humans, in this case from the Franco-

Cantabrian refuge. These post-glacial signatures most likely have crossed the Strait of 

Gibraltar and further derived into local clusters. The main evidence for that is that the 

Guinean GB188 haplotype appears in the datasets of Wolof and Serer (Table S5; Rando et al. 

1998), Malinke (Ely et al. 2006), Fulani in Burkina-Faso and Chad (Cerny et al. 2006), Moroccans (Pennarun 

E et al., unp data) and North Cameroonians (Coia et al. 2005) indicative of a founder lineage in West 

Africa. The one-step derivatives in North Africa make it a more likely source for the episodes 

crossing the Sahara. Again, as in haplogroup U6, the linguistic correlation suggests that the 

spread of the haplotype in Senegambia might be related to the movement of Berber or Fulani 

populations (Achilli et al. 2005). A link to Fulani carriers is also likely under the suggestion of their 

ancient origin in the more northerly mountain massifs of the Central Sahara (Dupuy 1999). This 

suggestion corroborates to a certain extent with Cruciani et al. hypothesis of Eurasian 

influence to West Sub-Saharan Africa (based on Y chromosome evidence but with no 

detected analogy in mtDNA, Cruciani et al. 2002, Coia et al. 2005). 

 

 The L1b lineages shared between Papel and Balanta (see Figure 20) may at the first 

glance call our attention to the ‘Balantization’ process (Carreira and Meireles 1959), in which Balanta 

mtDNAs are integrated in the Papel father’s ethnic group. In such line of thought, the 

‘Balantization’ could have contributed to mask any existent East African lineages. Other 

shared lineages in L2a1-β2 (np 16264), L2a1-β1 (np 16355) L2c (np 16234, np 16264 and 

np 16390) and L3d could testify for recent influence of the Balanta and Papel women over 

Mandenka and Fulbe ethnic groups, known as “Sudanization” (Carreira and Meireles 1959). However, 

since these processes occurred in a very recent timescale (the last 4-5 generations), they 

would have only become evident in the present-day gene pool if there were a sizable influx 

of very distinct pools of maternal variability. These lineages are of West African prevalence, 

and therefore may probably be part of a largely common ancestral maternal pool, outlined 

before the definition of most of the presently known ethnolinguistic groups and certainly 

much before the beginning of the social processes discussed above. This is also evident in 

the inter-ethnically shared lineages at the basal level of many haplogroups. 
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Figure 23 - Phylogenetic network of U5b1b lineages based on HVS-I sequences and their position in the 

phylogeny of haplogroup U (adapted from figure 3A in Tambets et al. (2004)). Sequence information from 

Finnilä et al. (2001) and Herrnstadt et al. (2002) has been used for the coding region and HVS-II. The nucleotide 

positions at which the nodes differ from rCRS (Anderson et al. 1981; Andrews et al. 1999) are listed along links. Suffixes 

are specific only for transversions and “+” indicates an insertion. U5b1b1 haplotypes include the labeled 

“Saami motif” whose further refined in Tambets et al. (2004) (Figure 3, panel B). The population codes are as 

follows:, Cr - Croats, Cz - Czechs, Es - Estonians, Fr - French, La - Latvians, Mc - Moroccans, Ng - Nogays, 

Ru - Russians, Si - Sicilians, Sw – Swedes, Ta - Tatars, Uk – Ukrainians (denoted in black, Tambets et al. 

2004); It - Italy, Sp - Spain, Sam - Saami, Yak - Yakut, Sen - Senegal, Ber – Berber (Achilli et al. 2005), denoted in 

orange); FUL, FUC - Guinea-Bissau Fulbe, PBO – Guinea-Bissau Papel (Rosa et al. 2004, denoted in blue). 
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8.1 - Principal Component Analysis 

 

 In order to place Guinea-Bissau maternal lineages in a continental context of mtDNA 

variation, the haplogroup frequencies of African populations mentioned in the literature 

(Table S3) were submitted to a PC analysis. A vast analysis of the main West African ethnic 

groups has been carried by González et al. (2006), where the authors concluded that it is 

difficult to distinguish between a geographic and a linguistic component underlying the 

genetic differentiation of groups. In that sense, and as our main focus is towards West 

Africans, we here chose to consider the genetic differentiation among ethnolinguistic units.  

 The resolution of the graphic display for the gathered 64 populations is however not 

the most adequate since very tight clusters are formed by the West African and Central/East 

African units (Supplementary material - Figure S2). We then selectively excluded populations 

with particular haplogroup composition, very different from others because of their outlying 

position compared to the rest of Africans (Khoisan-speakers) or due to the influx of lineages 

from other continents (North Africans), to better understand Guinea-Bissau affinities. Left 

with 46 populational units, the 1st PC establishes a clear-cut between West Africans and  
 

 

 

Figure 24 – Principal Component Analysis of sub-Saharan populations based on mtDNA haplogroup 

frequencies. Calculations based on the frequencies of 17 haplogroups for 46 populational units. The 1st PC 

and 2nd PC retain 34.1% and 14.0% of the variance, respectively. Population codes are as in Table S2.  
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other sub-Saharans, except for the Central African Fulani groups that show more (though 

vague) similarities to the West on the main account of their high frequency of haplogroups 

L1b and L3d (Figure 24). On the responsibility of L0a, L3*, L3f and L3e the East African 

Nairobi and Kikuyu are placed together with Central Africans. Neither linguistics nor 

geography are good predictors for the placement of Central and South African populations: 

Chad’s Chadic speakers Hide, Mafa, Kotoko and Masa show a sparse distribution in the plot; 

North Cameroonians and Chad Chadic speakers seem to be most closely related with 

Ewondo and Bassa Bantu people. All Bantu and Adamawa speakers (labeled as Volta-

Congo speakers in (Gonzalez et al. 2006) are placed apart in the PC plot, among various Afro-

Asiatic speakers. Although inhabitants of North and South Cameroon, three pairs of ethnic 

groups display curious affinities: i) Bakaka and Tupuri, ii) Bamileke and Fali (also close to 

Mozambique Bantu), iii) Ewondo, Tali and Bassa. The South Cameroon Bamileke affinities 

with North Cameroon Fali and Mozambique Bantu can actually represent Bantu both 

because of the genetic legacies in situ and due to the Bantu migrations. As already stated in 
(Gonzalez et al. 2006), the Afro-Asiatic Tuareg, Hausa and Yoruba in Niger-Nigeria are genetically 

closer to the West Atlantic-Mande than to their linguistic counterparts. Samples from Guinea-

Bissau seem to be genetically related to their geographic neighbors in Senegal. All the 

Guinea-Bissau ethnic groups form a cluster linked by short distances: Bijagós are curiously 

close to the Bambara, a Mande-speaking group, at the first glance excluding their claimed 

connections to the Djola, Papel or Nalú mothers; both Papel and Mandenka display 

similarities with the nearby Senegal Serer and Wolof driven by the L2c proportion, with the 

latter also in close proximity to Mende of Sierra Leone. The Balanta, Felupe-Djola and Nalú 

are close to Senegalese (mixed) and Temne. In our analysis, the Bambara Mande-speakers 

cluster together with Sierra Leone Mende and Guinea Bissau Mandenka. The Fulbe of 

Guinea-Bissau are distinct of both the Cerny et al. (2006) nomads and the Cameroonian Fulbe 
(Destro-Bisol et al. 2004), driven by the proportion of L2c to the nearness of Sierra Leone’s Loko, 

curiously Mande speakers, while other Fulani are shown as “outliers” under the influence of 

their high L1b proportion. This finding is in agreement with the non-differentiation among the 

nomad Fulani but from all the other settled Fulani (Cerny et al. 2006). The Niger/Nigeria Fulbe 
(Watson et al. 1996) are nevertheless more related to Guinea-Bissau by their maternal pool. 

Although the Fulani spring from an originally nomadic population, differences may have 

accumulated with changes in the lifestyle and mobility of these people, nowadays mostly 

settled agriculturalists but also some cattle herders’ nomads. 

 By plotting the Guinean ethnic groups alone, their relative positions change 

considerably as the effect of other populations is annulled (Figure 25). The distinct 

coordinates of these people are influenced by various mtDNA types: the Nalú reflect 

relatively high proportion of L2b and L3d; the Fulbe harbor higher frequency of Eurasian  
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Figure 25 – Principal Component Analysis of Guinea-Bissau ethnic groups based on mtDNA haplogroup 

frequencies. The 1st PC and 2nd PC retain 43.82% and 23.91% of the variance, respectively. 

 

 

haplogroups together with L1b and L2a; Bijagós are mainly driven on L3b, on the 1st axis 

closer to Fulbe; L3e defines Felupe-Djola’s position. 

When the variability is classified in haplogroups, the resulting diversity in our sample 

is H=0.9019±0.0053 (Rosa et al. 2004). In general, the indexes of molecular diversity tend to 

decrease following an east-to-west cline, but in Guinea-Bissau it is slightly higher than in 

other West Africans (Table S3). This is again not surprising given the multiple contacts and 

inputs that these peoples were subjected, being part of a “melting pot” in a corridor of 

commercial networks. The FST distances are not significant only for Hausa, Serer, Mali, and 

Sierra Leone Limbe and Temne (Table S6). As in Cerny et al. (2006), none of the mtDNA pools 

of the Fulani nomads was differentiated, but are distinct from that of the settled Fulani. It is 

interesting to note that among Guineans FST pairwise comparisons, Bijagós are the only 

indistinct from all the considered Fulani groups, independently of their homeland. Within our 

sample units we have found that the maternal pool of Fulbe is significantly different from 

Felupe-Djola, Balanta, Papel and Nalú (P<0.05). Some discrepancies are found between the 

P-values assigned to FST-base pairwise comparisons and the relative distances plotted in the 

PC graphics. These differences were already mentioned by González et al. (2006) that 

attributed the heterogeneous results due to small samples sizes, global versus binary 

relationships and the extent of variance captured by the first two principal components. 
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8.2 - Analysis of Molecular Variance 

 

 The AMOVA test based on haplogroup frequencies of several African populations 

attributed 83.25% of variance to the differences within populations, 6.10% among 

populations within groups and 10.64% among five main geographic groups (Table S7a, 

P=0.0000). The results continue to be significant and with comparable distribution of indexes 

in a linguistic grouping of the main families and subfamilies. These results are in agreement 

with the previously obtained data indicating that African geography plays an important role in 

defining the differences but linguistic affiliations cannot be disregarded (Salas et al. 2002, Wood et al. 

2005, Gonzalez et al. 2006). If we consider only the sub-Saharans (!Kung and Pygmies excluded from 

the analysis) the index among groups decreases considerably for both geographic (91.26-

4.74-4.01) and linguistic criteria (93.0-2.49-4.51), leaving us in a more homogeneous 

panorama of sub-Sahara. As shown before by Wood and colleagues, when the Bantu 

mtDNA pool is taken out of the picture, there is an increase of within group variance (Wood et al. 

2005). The proportion of variance attributed to the intrapopulational level continues to rise if we 

narrow the criteria towards West Africa and Niger-Congo speakers (97.89-1.42-0.70 and 

97.75-1.57-0.68, respectively), revealing their overall homogeneity and no preferential 

association to geography or linguistics. The fractioning of variance is in accordance with 

González et al. (2006) clustering on West African linguistics (98.8-1.42-0.50) but not with 

geographic criteria that attributes 1.9% to the variance among groups P<0.001). Out of 

curiosity, we tested the Fulani on their geographic areas and obtained a significant 

association of the intergroup and intragroup variation (97.76-0.89-1.35; FCT=0.01346, 

P=0.03617±0.00709; FSC=0.00903, P=0.04399±0.00594) when discriminating Central 

African, Burkina-Faso and Guinea-Bissau Fulani. The structuring of Guinea-Bissau ethnic 

groups had no statistical significance under religious or geographic criteria (Table S7b) with 

the vast majority of variation within the populations (>99%). The linguistic grouping with 

Bijagós and Mande against all Niger-Congo revealed significant for the variance between 

populations within groups (FSC=0.0093, P=0.0137±0.0031), most likely due to the high 

heterogeneity within the Niger-Congo speakers. 

 

 

9 - Statistical parameters from mtDNA nucleotidic sequences 

 

 The demographic history of populations is thought to be reflected in various 

parameters of intrapopulational variation of their mitochondrial pool, including haplotype 

diversity, mean number of pairwise differences and the mismatch distribution (Harpending et al. 

1993). Therefore, we have extended the same line of reasoning to our analysis. 
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The mtDNA HVS-I sequence comparison for the 372 Guineans led to the 

identification of 192 haplotypes, defined by the combinations of 93 segregating sites (24.7% 

of polymorphism in HVS-I between nps 16024-16400), a high ratio found only in eastern 

countries as Sudan and Ethiopia (Salas et al. 2002). The substitutions summed 102, with 92 

transitions and 10 transversions, resulting in a nucleotide diversity of 0.0218±0.0112. Of the 

distinguished lineages 93 are single occurrences in our sample whereas others occurred 

more frequently among ethnic groups (see Table S1) or had sequence matches elsewhere 

(Table S5). The most common haplotype motif is GB117 (haplogroup L2c) with a frequency 

of 6.7% in the total sample. The random match probability of our HVS-I mtDNA dataset, 

calculated as the sum of the squares of the haplotype frequencies (Stoneking et al. 1991), is of 1:70 

(1.4%). Similar calculations have been computed for HVS-I and HVS-II databases from 

Sierra Leone (1:52, Monson et al. 2003), Mozambique (1:28, Pereira et al. 2001b) and Nairobi (1:83, 
Brandstatter et al. 2004b) telling of its strong utility for mtDNA testing. 

 The molecular diversity of mtDNA sequences is outstanding for haplogroups L1c and 

L2d, with the more elevated mean pairwise number of differences (Table S8a), which is not 

surprising and is corroborant with the network pattern of distantly separated clades. The 

same lineages retain the highest nucleotide diversity that roughly suggests their ancestrality. 

On the contrary, the nucleotide diversity is the lowest in the haplogroups with low average 

number of pairwise differences, namely L0a and L3h, that seem to have founder types with 

few (and thus recent) arising types. The Nei’s gene diversity among the populations of 

Guinea-Bissau is generally similar to that of to previously determined values in African 

populations (Salas et al. 2002), except for higher diversity in haplogroup L1b (D=0.9260, sd 

0.0255) and lower index in haplogroups L2b and L2c (D=0.6404, sd 0.0934; D=0.8311, sd 

0.0490). The diversity of haplogroup L3h, not estimated before, is of D=0.6923 (sd 0.1187) in 

the present analysis. The Tajima’s D selection test is meant to evaluate deviations from 

neutrality but in the case of mtDNA, a genetic system assumed to be neutral, it likely reflects 

fluctuations in population size. Therefore, with the statistically significant negative values for 

haplogroups L0a, L2a and L2c (Table S8a) these are expected to have experienced 

expansion, as hypothesized when interpreting the networks. Fu’s FS test is by turn more 

sensitive to fluctuations, further unveiling haplogroups L1b, L3b, L3d (0.001<P<0.002) and 

L2b (P~0.05) as candidates of expansion. 

 If we calculate the same parameters for the ethnic clusters we obtain the highest 

mean pairwise difference for Bijagós and Balanta, while the lowest is displayed by the 

Felupe-Djola (Table S8b). The sequence diversity is the lowest in Bijagós, not surprising 

given that these people have colonized the archipelago and, to a certain extent may have 

experienced a founder effect and have remained more isolated by the islander condition. On 

the opposite, the highest gene diversity is seen in Felupe-Djola, Balanta and Mandenka, for 
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the first accounting the co-existence of East African and West African types and in both the 

latter the presence of ancient West African lineages. Tajima’s D is only significant for 

expansion in Papel (P=0.0138). Though not significant for the Bijagós and the Balanta, those 

present “close-to-zero” values while the Mandenka show the most negative value (D= -

1.3601). This is suggestive of limited expansion for the first, possibly due to the founder 

effect and a higher degree of isolation in the archipelago, possibly favoring endogamic 

practices in the Bijagós, and more pronounced expansion for the Mandenka. On the 

contrary, the Fu’s Fs indicates expansion for all except Bijagós (P=0.1430). 

 

 

9.1 - Mismatch distribution 

 

 We have calculated the mismatch distributions of the mtDNA haplogroups as the 

nucleotide pairwise differences in HVS-I sequences (Figure 22). The interval of mismatch 

differences is usually between 0-15 nps, depending on geographical region – it is relatively 

higher among the mtDNA lineages of Africans, which indicates the greater diversity 

associated with the older age of African gene pool, but low in Europe, where the value of this 

parameter rarely exceeds 7 (e.g. Pereira et al. 2001a). The average number of pairwise differences 

for the West African samples ranges from M=5.62 in Mandenka to M=8.49 in Songhai (Salas et 

al. 2002). The M=8.2281±3.8233 for Guinea-Bissau mtDNAs (Kimura-2P, parameter 

gamma=0.26; Meyer et al. 1999) is thus among the highest in West Africa. 

 The tendency of African populations is to display ragged and multimodal 

distributions, supporting the idea of their being more ancient and stationary or more 

diversified. When the Guinean mismatch distribution is plotted, the haplogroups with younger 

coalescence age show unimodal distributions, centered at none or one difference between 

sequence pairs, exemplified here by clusters L0a1 and L3h (Figure 26). In older clades there 

is a shift towards larger number of differences between lineages - in haplogroups L1b, L2a 

and L2c the peak of mismatch moves to 2 or 3 stepwise differences. Their unimodal bell-

shape indicates an expansion with step-by-step accumulation of mutations, and their mode 

depending on the time passed since the expansion. As discussed before, it seems that 

favorable conditions for population growth have acted over these mtDNA types, with 

haplogroup L2c being the most starlike of the sampled variants. If the L3b1 lineages and 

16148-16293-16362 in L3d are excluded, the slightly bimodal patterns of both become 

unimodal, thus considered a consequence of haplogroup sub-structuring (data not shown). 

 The distributions can become multimodal as a result of constant population size for a 

longer period (under genetic drift lineages present at lower frequencies have higher chance 

to become extinct) or multiple bottlenecks/narrow founder events and expansions (only 
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Figure 26 – Mismatch distribution of mtDNA haplogroups found in Guinea-Bissau based on HVS-I 

sequences. 

 

 

subsets of variation persist and will define new expansion founders). On the other hand, the 

variants can escape sampling due to the small sample sizes. Haplogroup L1c has a ragged 

and multimodal distribution stating for the mutationally distant haplotypes, with the lack of 

intermediate variants. The capture of well-separated sub-clades of L1c is probably not due to 

the low sample size but rather due to a rich palette of separate sub-clades, arisen long ago, 

so that the subset of captured in sampling lineages reflects very different evolutionary 

trajectories within L1c. The distribution of L3e lineages is slightly multimodal but changes into 

unimodal by separating the clades L3e2a, L3e2b and L3e4 (data not shown), tellers of 
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different phylogenetic episodes. Similar mismatch distribution in haplogroup L2b is on the 

account of the L2b1 and L2b* distinct lineages, with more than 2 steps difference in between. 

The curve of haplogroup L3f could be indicative of different ethnic histories, for instance of 

particular haplotypes in Felupe-Djola and Papel, but we have to assume that many lineages 

have probably escaped detection (N=9). Finally, haplogroup L2d shows two curves on the 

responsibility of two independent subdivisions that have accumulated differences over a long 

timescale – clades L2d1 and L2d2. Departures from normal distribution were tested by the 

significance of raggedness index (Harpending 1994) and did not attain statistical significance for 

any haplogroup (Table S8a). In sum, the information is redundant with the interpretation of 

the network topology, useful for corroborating the hypothesized.  

 

 

10 - A phylogenetic perspective of Y chromosome pool in Guinea-Bissau population 

 

 The paternal genetic pool of Guinean ethnic groups accessed by the profile of Y 

chromosome haplogroups is characterized by a high homogeneity (D=0.4700, sd 0.0333) 

typical of sub-Saharan West Africans (see Table S11). Consistent with previous reports 

about West African Y chromosomes (Scozzari et al. 1997, 1999; Underhill et al. 2000; Semino et al. 2002; Wood et al. 

2005), haplogroup E3a*-M2 is the most frequent clade in every of the considered 

ethnolinguistic units, ranging from 58.0% in Felupe-Djola to 82.2% in Mandenka (Figure 28; 
Rosa et al. 2007). The M2 genetic marker has been proposed to trace the routes of 

agriculturalists, especially in the context of the Bantu expansions (Passarino et al. 1998, Underhill et al. 

2001a). Nonetheless, its high proportion and diversity in West Africa (Figure 27) indicates an 

early local origin and expansion, in the last 19 ky (Semino et al. 2004), with a high chance of 

representing a major populational growth under the cultivation “know-how”. In fact, several 

authors believe in the early existence of a West African agricultural centre prior to the Bantu-

expansions (Cavalli-Sforza et al. 1994, Jobling et al. 2004), perhaps as early as 9-6 kya (Atherton 1972, Calvocoressi 

and David 1979, Clark 1994). Husbandry practices allowed to support a higher number of people and 

have promoted either an expressive expansion that overwhelmed the previous pool, or a 

more modest growth in a background of reduced diversity (after the LGAM savanna retreat 

or the malaria epidemics, product of agriculture; Adams and Faure 1997, Kwiatkowski 2005). 

 Mandenka and Balanta show the highest frequency (except Bijagós) and diversity 

levels of haplogroup E3a*-M2 in Guinea-Bissau (Figure 28 and Table S13; 82.2%, 

RST=0.5208, sd 0.2979; 73.1%, RST=0.5166, sd 0.2895) attesting for a more divergent 

founder pool and more marked expansion. As no Bantu-speakers inhabit today the area, and 

none expressive westward migration of this people is documented, the ancestors of  
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Figure 27 – African spatial distribution of haplogroup E3a-M2. Frequency scale (in percentage) is shown on 

the left. Data according to population datasets described in Tables S10 and S11.  

 

Mandenka and Balanta are, among Guineans, candidates to have promoted or relate to the 

people that have promoted the lifestyle transition, or at least to have profited from it (Rosa et al. 

2007). On the basis of such socioeconomic knowledge the Mande people pioneered with the 

foundation of economically centralized states, based on trade and agriculture and with the 

later aid of iron-smelting techniques, more than millennia ago – the historic empires of 

Ghana, Mali and Songhai (Newman 1995). The Guinean E3a*-M2 pool, studied in the light of STR 

variation within the clade, coalesces at a TMRCA of 20.5±4.7 kya (Table S12), which is in 

accordance with previously calculated ages (Semino et al. 2004). If to consider haplogroup E3a*-

M2 coalescence estimates for the different ethnic groups, the Balanta and the Mandenka 

exhibit the oldest TMRCAs in our dataset (Table S13, 29.0±6.9 and 23.5±4.4 kya, 

respectively; Rosa et al. 2007). As mentioned before, the Balanta cultural and physical affinities 

with Bantu suggest a common origin at the end of the Pleistocene near the Nile (Quintino 1969), 

where they could have jointly learnt the agricultural techniques. However, one should keep in 

mind that coalescence ages as those indicated above antedate by far the beginning of 

agriculture not only in the Nile Valley but anywhere. The E3a*-M2 pool in Bijagós and Fulbe 

is less diverse (Table S13) signaling either a genetic bottleneck or a more recent expansion 

from a less diverse subset of male founders, arriving to western regions. The data are 

consistent with a less diverse profile of E3a-M2 among Central Africans, and thus the first 

documented presence of Fulbe in West Africa after the 8th century (Carreira and Meireles 1959). 
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Figure 28 – Parsimonious Y chromosome phylogeny of the twelve haplogroups found in Guinea-Bissau and 

their distribution among ethnic groups. Absolute numbers are shown for the total sample and ethnical 

clusters. Haplogroup nomenclature and defining mutations assayed in this study, shown along the branches 

of the phylogeny, are as proposed by YCC (2002 and Jobling and Tyler-Smith (2003). The bold link indicates the 

root, determined by comparisons with primates (Underhill et al. 2000, Hammer et al. 2001). In Rosa et al. (2007). 

 

 

 The Mandenka people in Guinea-Bissau share E3a* microsatellite haplotypes with all 

other groups in Guinea-Bissau and do not match with those out of Central-West Africa 

(Tables S9 and S14, except H67 in Mozambique), suggesting a localized expansion. Several 

exact matches of E3a*-M2 haplotypes were found between Guinean Fulbe and Equatorial 

Guineans, Angolans, Mozambicans and Xhosa (Alves et al. 2003, Arroyo-Pardo et al. 2005, Willuweit and Roewer 

2007) mirroring the broad distribution of these people. The Felupe-Djola, the Balanta and the 

Papel share each one particular haplotype with Mozambique and Angola (Table S14a H46, 

H49 and H127) but this is rather a consequence of a west-to-east flow of Y chromosomes, 

possibly carried by migrants during the spread of agriculture. Many other matches with 

Europeans were registered for E3a*-M2 haplotypes (Tables S14a and S14b), most likely 

descendants of incoming slaves given the ancestral absence of this haplogroup in Europe. 

Caution should be however taken when performing the haplotypic search in public 
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databases: in case of the lack of haplogroup assignment one cannot guarantee that two 

identical STR-defined haplotypes refer to the same SNP-defined lineage. As recognized 

before, microsatellite alleles should not be taken as surrogates of UEPs (e.g. Cruciani et al. 2004, 

2006; DiGiacomo et al. 2004). The E3a7-M191 lineages present in one Fulbe and two Mandenka are, 

on the other hand, a testimony of a Central African lineage that followed a trajectory to the 

west (Underhill et al. 2000, Cruciani et al. 2002, Semino et al. 2002). 

 

 The Felupe-Djola and Papel groups exhibit the highest diversity of Y chromosome 

haplogroups (Figure 28; D=0.5576, sd 0.0495 and D=0.4926, sd 0.0631, respectively) 

together with traces of the deepest rooting phylogenetic clades in our dataset – haplogroups 

A-M91, E2-M75 and E3*-PN2 - also with occasional occurrences in Fulbe and Balanta. 

These minor imprints may represent genetic flow from Sahel’s more central and eastern 

areas, in particular the E3*-PN2 which is common in Ethiopia (Cruciani et al. 2002, Semino et al. 2002). If 

to interpret their paternal pool in cultural grounds, it is then relevant to mention the arrival of 

Djola from Sudan in the 15th-16th century claimed by their oral tradition (Quintino 1969). For the 

Papel, also curiously affiliated to the Bak-speakers, their Y chromosomes may either 

represent a late arrival of eastern migrants that have kept a more discrete identity, or 

survivors of a local ancient pool through bottleneck episodes and expansions (Rosa et al. 2007). 

  

 Haplogroup E1*-M33 is of putative West-Central African origin and major distribution 

(from 10% in Fulbe to 45% in Dogon, with an outstanding frequency of 53% in Cameroonian 

Fulbe, Table S11; Scozzari et al. 1997, 1999; Wood et al. 2005). These lineages are surprisingly frequent in 

Guinean Felupe-Djola and Papel (34% and 20%, see Figure 28). Assuming a recent arrival 

of these people from an eastern source, the high proportion of E1*-M33 lineages can only be 

explained by a founder effect – a limited number of migrants have increased the frequency of 

an West African regional clade when in contact with local populations (Rosa et al. 2007). In fact 

Felupe-Djola and Papel E1 haplotypes form a central cluster of one-step difference from 

each other, among the Guinean diversity. The E1*-M33 microsatellite diversity in our dataset 

coalesces at 18.7±3.6 kya (Table S12), slightly older than the obtained for the sample of 

Semino et al. (2004) in North Africa and the Mediterranean area (14.3±3.7ky), not surprising if 

considering the sub-Saharan origin and expansion of the clade. The relatively lower 

frequency of haplogroup E3a*-M2 in Djola (58.8%) and Papel (68.8%) suggests their shallow 

time of permanence in West Africa and/or that their genetic flow with West Africans has not 

been sufficient for a greater homogeneity among the peoples.  

  

 Haplogroups A-M91 and B-M60 are among the two most basal clades of the Y 

chromosome phylogenetic tree, associated with the earliest AMH paternal diversification of 
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lineages and putative hitchhikers of the first pan-African dispersals of hunter-gatherers. The 

Guinean A-M91 lineages are nevertheless included in the West African A1-M31 subcluster, 

not in A3-M32 of East and South African distribution (Underhill et al. 2000, Semino et al. 2002, Rosa et al. 2007). 

The Y chromosome sub-haplogroup A1 is so far reported at low frequencies of about 2-5% in 

Mali (Table S11; Underhill et al. 2000), Gambia/Senegal Mandenka, North African Berbers (Scozzari et 

al. 2001) and Bakola Pygmy (Wood et al. 2005). Although A-M91 is among the oldest Y chromosome 

lineages in modern humans, STRs in its subset sampled in Guinea-Bissau coalesce at about 

9.8±2.9 ky (Table S12), stating for a recent gene flow from eastern regions and expansion 

into West Africa, rather narrow in diversity (i.e. creating sharp founder effect). It is therefore 

not surprisingly more frequent among the Papel and Balanta people (Figure 28; Rosa et al. 2007). 

The E3* lineages and the only A3b2-M13 in Guinea-Bissau dataset may trace the Balanta to 

their Sudanese-speakers relatives (Cruciani et al. 2002) since these clades were found to be 

common among Ethiopians (Semino et al. 2002, Shen et al. 2004). The clade B-M60 is observed in 

almost all sub-Saharan collections at marginal proportions (Scozzari et al. 1997, Underhill et al. 2000, Semino 

et al. 2002) and was present in one Guinea-Bissau Nalú. The low resolution of its typing does 

not allow further inferences. 

 

 E3b*-M35 lineages are of greater prevalence in the eastern quadrant of Africa (Table 

S11), also peaking in frequency and diversity in the Democratic Republic of Congo (Wood et al. 

2005) and the South African !Kung (Scozzari et al. 1997, 1999). Its presence at ca. 5% present in 

Senegal (Semino et al. 2002) and the ca. 2% found in Guinea-Bissau may also represent loose 

relationships with population in North Africa, since it is also widespread at rather low 

frequencies in North African Arabs and Berbers (<5%; Bosch et al. 2001, Scozzari et al. 2001, Arredi et al. 

2004, Semino et al. 2004). In our dataset, the paragroup clusters together Felupe-Djola and Papel 

(about 2%) and is also present among Fulbe and Mandenka people (approximately 4%, 

Figure 28). Although calculated with a very limiting number of samples, the coalescence age 

of 16.9±5.9 kya (Table S12) is within the range of estimated for the E3b* Y-chromosomal 

lineages in North Africa (9-19 ky in Arredi et al. 2004, using the same molecular clock as in 
Zhivotovsky et al. 2004). 

 

 Guinea-Bissau haplogroup E3b1-M78 attains the highest frequency so far reported 

for West Africans (about 4%, Table S11). A scenario of eastern prevalence and North and 

West African spread reflects the African distribution of E3b1 lineages, not to mention the 

frequency of about 7% in Near Easterns and Mediterranean Europeans (Underhill et al. 2000, 2001a; 

Cruciani et al. 2002, 2004; Semino et al. 2002, 2004; Wood et al. 2005). In Guineans the MRCA time estimate of 

11.5±3.1 ky (Table S12) is concordant with the estimate in Semino et al. (2004) (14.9±4.1 ky), 

but escapes the upper time interval obtained by Cruciani et al. (2004) (21.1-25.4 ky) and the 
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lower one by Arredi et al. (2004) (5.42-10.71ky). The different estimates have an underlying 

cause in that the microsatellite haplotypes within E3b1-M78 are considered to represent 

different clusters with variable frequency in different regions (sub-clusters α, β, γ and δ; 
Cruciani et al. 2004). The haplotype E3b1-β DYS349 allele 10, particularly widespread among 

Moroccan Arabs was found in one Guinean Fulbe and one Bijagó (H162 and H164, Table 

S9), telling of a contribution of North West Africans that have crossed the Sahara. The 

hypothesis of more recent European arrival, at the colonizing period post-15th century, 

appears less likely since none of the remaining E3b1 haplotypes harbor the “European” A7.1 

allele 9, and all a panoply of rather frequent haplogroups in Europe is absent (except 2 R1b-

P25). Nevertheless, three Fulbe E3b1-M78 haplotypes (H155 and H156 for 10 Y-STR loci 

plus H157 for 8 Y-STR loci, Tables S14a and S14b) match Spanish haplotypes (Zarrabeitia et al. 

2003) and samples in central Portugal, Macedonia, Romania and Poland (YHRD, Willuweit and 

Roewer 2007), hint for possible European paternal ancestry. Intriguingly, both H155 and H156 

profiles present the A7.1 allele 12 which is quite frequent in Equatorial Guinea though no 

exact matches were registered (Arroyo-Pardo et al. 2005). 

 

 A recent European admixture, at the times of the slavetrade, is a likely explanation 

for the two R1b-P25 lineages found in Fulbe and Bijagós (Figure 28, Table S9). The 

European source of R1b chromosomes has been stated as of great expression for the 

nearby Cape Verdians (Brehm et al. 2002). The haplotype H165 has an exact match of 10 Y-STR 

loci with 71 worldwide populations, of which 57 are Eurasian (nine matches with Portuguese 

samples, YHRD Willuweit and Roewer 2007). Concerning the R1b H166 profile, exact matches are 

only found when reducing the search criteria to 7 Y-STR loci (Table S14b), matching in three 

European populations and two out of 300 samples of Reunion islands (known to have a 

European-permeable society), not to mention Austronesians. Their introduction in Guinea-

Bissau territory by North African pastoral immigrants can not be ruled out, though. Here, the 

R1b lineages (in a proportion of 3-12%) were most likely acquired due to the long-term 

reported contacts with Europe, mainly Iberia (Bosch et al. 2001). However, given that no exact 

matches with North Africans were established and no other highly frequent North African 

haplogroups were detected, we consider more likely the European origin for the Guinean 

R1b chromosomes. The M173 and P25 derived states of our samples rule out the 

relationship to the R1*-M173 lineages found in Cameroon, Oman, Egypt and Rwanda, 

adduced to support the “Back-to-Africa” demographic scenarios (Cruciani et al. 2002, Luis et al. 2004). 

 

 The intriguing profile of genetic markers found in a Nalú individual allowed us to 

classify it in the rare and deep-rooting paragroup DE* (Figure 28), so far described only in 

five Nigerians (Weale et al. 2003). The DE* Y chromosomes represent a coalescent “missing link” 
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paraphyletic to haplogroup D-E variation or both. However, the Y-STR profile of the Guinean 

sample is one-step away of the allelic state described for Nigerians (Table S9, DYS390*21, 

DYS388 not tested; Weale et al. 2003), therefore suggesting a private common ancestor but not 

elucidating the phylogenetics. The subject deserves further attention, either in checking for 

state reversion of M174 (no inner markers typed) and searching for new polymorphisms. 

 

 The relationships of haplotypes of several Y-chromosomal clusters are depicted by 

means of networks in Figure 29 (a-e). However, these networks are not highly informative 

from the phylogenetic point of view, because of multiple reticulations, no clear definition of 

founder nodes and no apparent ethnic association of subsets of the paternal variation. In the 

E3a*-M2 network (Figure 29a), one particular fact called our attention – several haplotypes 

are shared among Fulbe, Mandenka, Balanta and Papel, precisely the ones involved in the 

phenomena of “Sudanization” and “Balantization”. Under a strict pattern of patrilocal 

miscegenation we should expect genetic flow of mtDNAs but not of Y chromosomes. As 

suggested for the mtDNA counterpart, we are in the context of a largely common paternal 

variability, defined much earlier than the ethnolinguistic groups. This is therefore a hindrance 

in tracing the relevance of these socio-cultural processes. Furthermore, we have to consider 

that the network construction was based only in the information of 7 Y-STR loci, and that the 

nature of these fast mutating markers makes them prone to reversions. The diversification in 

E3a*-M2 background is old enough so that particular lineages can be “equal-by-state” 

instead of “equal-by-descendant”. 
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Figure 29 – Networks of Y-STR haplotypes for several Y chromosome 

haplogroups, based on the information of 7 loci. Loci were weighted 

according to Helgasson et al. (2000) and built with combined use of 

reduced-median and median-joining criteria (Bandelt et al. 1995, 2000). a) 

haplogroup E3a*-M2, includes 75 individuals distributed among 26 

haplotypes (52 singletons excluded); b) the scheme for haplogroup 

E3b1-M78 represents 11 individuals included in 9 haplotypes, with 

singletons included; c) haplogroup A1; d) haplogroup E1* and e) 

haplogroup E3b*, all including singletons. Node size is proportional to 

the number of individuals. 

d) 

b) 

c) 

e) 



                            

10.1 - Principal Component Analysis 

 

 The coordinates of the first two Principal Components extracted from the Y 

chromosome haplogroup frequencies place the North, East and West African populations in 

a geographic perspective, forming independent and tighter groups (Figure 30; see Table S10 

and Figure S3). Haplogroups E3b2-M81, E3b1-M78 and J-12f2 are the responsible for the 

coordinates of North Africans, positioned almost as outliers in the African paternal 

landscape. The 1st PC clearly separates the Afro-Asiatic speakers from other linguistic 

families, independently of their geographic location. The West African Y chromosomes are 

clustering on the major significance of haplogroup E3a*-M2, with a less significant 

contribution of E1-M33. Central and South African people are more dispersed in the plot. The 

Central African Pygmies and South African Khoisan coordinates are on the account of their 

particular lineages of R-M207, A3-M32 and B2-M182 lineages. A linguistic correlation can be 

hypothesized for the closeness of Bantu-speakers that nevertheless inhabit distinct 

quadrants of the continent, driven by the frequency of sub-haplogroup E3a7-M191. 
  

 
Figure 30 – Principal Component Analysis for several African populations based on Y chromosome 

haplogroup frequencies. The 1st PC captures 42.6% of the variance and 16.9% are under the responsibility 

of the 2nd PC. For codes and further details on population datasets see Supplementary material - Table S10. 
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(Wood et al. 2005). The ethnic groups in Guinea-Bissau are among the West African cluster, 

together with Gambia and Senegal people, with whom share numerous population groups 

(e.g. Fulbe and Mandenka). It is worth noting that the Guinean Fulbe are integrated in the 

paternal variation of other Guinea-Bissau people and thus have a distinct genetic pool of 

those Fulani in Burkina-Faso and Cameroon. However, we have to be aware that the picture 

may be refined with the further phylogenetic discernment of haplogroup E3a*-M2. 

 A second PCA solely considering the Guinean ethnic units on the present survey 

aimed to reduce the influence of E3a*-M2 and at the same time promote that of minor Y 

chromosome clusters (see Figure 31). The paternal genetic structure of both Felupe-Djola 

and Papel is displayed as more discrete than that of other people, due to their high 

proportion of E1-M33. The position of the Mandenka is clearly defined by the E3a*-M2 

chromosomes, not surprising in the light of an assumedly indigenous West African 

population which harbors the highest diversity of this clade (Table S13). Again, as verified for 

the maternal genetic pool, the PCA tells of higher similarities of Bijagós and Fulbe people 

than with the other Guinean ethnic groups, not supporting the idea that Bijagós are relatives 

of Djola, Papel or even Nalú  (Teixeira da Mota 1954 ).  

 

 
Figure 31 - Principal Component Analysis for Guinea-Bissau ethnic clusters, based on Y chromosome 

haplogroup frequencies. The PCA captures 87% of the variance with 74% and 13% attributed to the 1st and 

2nd PC, respectively. 

 

 A pairwise FST analysis based on Y chromosome haplogroup frequencies outstanded 

the non-significant differences among the Bantu-speakers in Central, East and South Africa 

(Table S15; e.g. Ghanian Ewe, Ga and Fante do not yield statistically significant FST indexes 
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when compared to South Cameroon Bantu and Bamileke or South African Herero, Ambo 

and Shona). This is likely due to the spread of Bantu people, with replacement of local 

hunter-gatherers or gene flow and language replacement of the inhabitants en route. In 

Figure 27, the paternal pool of Ewondo Bantu-speakers is shown to have larger affinities to 

the West African variability. Their proximity is in agreement with non-significant FST distances 

to Bijagós, Balanta, Nalú, Wolof and Mossi (Table S15). The similarity of the paternal pool of 

Senegalese, Wolof and Mandenka is again confirmed by the FST analysis. Also in 

accordance with the graphic display, and justifying their “misplacement” out of geographic 

and/or linguistic context, are the FST significant differences of Cameroonian Fulbe, Mbuti and 

Biaka Pygmies, Mali, Dogon, North Cameroon Chadic and Khoisans against all the 

considered populations. The Felupe-Djola is the only Guinean group with statistically 

significant differences from Bijagós (Table S15; FST=0.0947, P=0.0268), Fulbe (FST=0.0812, 

P=0.0040) and Mandenka (FST=0.1071, P=0.0040). The Bijagós and curiously the Burkina-

Faso Fulbe do not exhibit significant FST from any Guinean group except Felupe-Djola. An 

exact test of population differentiation further distinguishes the Papel from Bijagós, Fulbe and 

Mandenka (P<0.05, data not shown). The results are generally in agreement with the PCAs, 

with the interpretation of higher dissimilarity of the paternal pool of Felupe-Djola and Papel 

among other Guineans. 

 

 

10.2 - Analysis of Molecular Variance 

 

 When grouping the paternal profiles of the compiled African datasets on Northwest, 

Northeast, West, Central, East, and South Africa, 15.35% of the variance is apportioned 

among the geographic groups (Table S16a, P=0.0000). The intrapopulational variation 

retains the largest portion of 72.07% while the remaining is attributed to the differences 

among populations within groups. The linguistic structuring of the same samples into the 

Afro-Asiatic, Niger-Congo and Khoisan families is, in terms of inter-group, intra-group and 

intrapopulation variance, comparable to that of the geographic criteria (67.46-14.89-17.65). 

However, the percentage of variance among populations within the groups decreases 

considerably (8.45%) if the languages families are further subdivided (Table S16a), meaning 

that populations speaking related languages harbor similar genetic pools. The sub-Saharan 

geographic variance (75.93-14.69-9.11) suggests lower genetic differences among groups, 

but that is not so when language families are considered (74.69-9.16-16.15). The linguistic 

criteria seems to play then a higher role in defining the paternal variability, since the 

proportion retained among groups is higher than that among populations within groups. The 

sub-Saharan index among groups tells however of a more homogeneous genetic pool 
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among Niger-Congo speakers (85.66-7.04-7.30). In West Africans the intrapopulational 

component retains the larger variance (86.31%) if we do not include Cape Verdians, where 

the non-African diversity is known to be large (Goncalves et al. 2003). Significant differences among 

Niger-Congo West Africans are only found if we consider linguistic subdivisions for the non-

Fulani and non-Mande people (89.85-3.10-7.05). The AMOVA test yielded no significant 

results for the grouping of Guinea-Bissau ethnic units under geographic, linguistic or religious 

criteria (Table S16b). The intrapopulational variance is statistically significant for all the 

criteria, retaining more than 97% of the variance. When compared to the AMOVA test for the 

mtDNA counterpart, we verify that the intrapopulation index is usual lower, while the variance 

among groups retains a higher proportion. This can testify for a more significant role of the 

linguistic and geographic criteria in defining the paternal genetic pool, possibly interpreted in 

terms of patrilocality and sex-biased patterns of admixture. In addition, it inevitably reflects 

the state-of-the-art of the refinement of the Y chromosome phylogeny, and new biallelic 

markers may allow achieving higher phylogeographic and intraethnic resolution. 

 

 

10.3 – Statistical parameters for Y chromosome microsatellite variation 

 

 The allelic range and allelic frequencies of eleven Y chromosome microsatellite 

analyzed for the Guinea-Bissau samples (Table 1a and 1b in Rosa et al. 2006) are in 

agreement with the determined for sub-Saharan Africans (Kayser and Sajantila 2001, Gusmao et al. 2001, 

Trovoada et al. 2001, Alvarez et al. 2002, Pereira et al. 2002, Leat et al. 2004, Arroyo-Pardo et al. 2005). Alleles DYS19*15, 

DYS390*21, DYS392*11, DYS437*14 and DYS438*11 held high frequencies in the 

Guineans while in the other African populations used for comparison these appear at 

moderate or low frequencies. In addition, the Guinean proportion of allele DYS393*14 (about 

60%) is to our knowledge the highest reported (Rosa et al. 2006). The haplotype distribution of 

DYS385 ranges from alleles 13 to 21, where the most frequent haplotypes 15/16, 16/16 and 

16/17 (~16% for each combination) are either absent or weakly represented outside of Africa 

(e.g. Bosch et al. 2002, Gusmao et al. 2002, Zarrabeitia et al. 2003, Quintana-Murci et al. 2004). 

 All loci show a unimodal distribution (see frequency profile in Table 1, Rosa et al. 2006), 

including DYS392, which is bimodal in some populations (e.g. Bosch et al. 2000, Gonzalez-Neira et al. 

2000, Kayser and Sajantila 2001, Alves et al. 2003, Carvalho et al. 2003, Zarrabeitia et al. 2003, Arroyo-Pardo et al. 2005). Loci 

DYS19 and DYS389II exhibit the highest allelic diversity in this survey (D=0.7182 and 

0.7239), not to consider the equivalent DYS385 heterozigosity (H=0.9031). Together with 

DYS393, these four loci held higher haplotype diversity than the European populations, and 

are thus reveal to be more informative for discriminating between African individuals. On the 



 135 

other hand, DYS391 and DYS392 display the lowest allelic diversities, supporting their 

limited utility in forensic caseworks involving sub-Saharans, as previously suggested (Leat et al. 

2004).  

 The eleven Y-STR profile of 164 individuals results in 157 distinct haplotypes 

(H=0.9997±0.0011; H165 to HB220 not considered), with the highest frequency of two 

individuals (Table S9). The Y-STR discriminatory power reached for the Guinean haplotypes 

is higher than for other populations with similar or higher number of loci analyzed: Europeans 

(11 loci D=0.9983, Roewer et al. 2001; 14 loci D=0.9992, Kayser et al. 2003; 19 loci D=0.9988, Bosch et al. 

2002; Japanese 14 loci D=0.9987 Uchihi et al. 2003; North Africans, 12 loci D=0.9605–0.9821 
Quintana-Murci et al. 2004). For most of the data on African populations included for comparisons, 8 

or 9 Y-STRs (the ‘‘minimal haplotype’’) or even less markers are available, thus limiting 

comparisons with our data. When the minimal set of 8 loci is considered, the haplotype 

diversity in Guineans decreases to 0.9981±0.0010 (142 haplotypes), comparatively higher 

than data on Europeans (D=0.9972, Roewer et al. 2001), Afro-Americans (D=0.998, Kayser et al. 2003 

and other sub-Saharans (D=0.9900; Trovoada et al. 2001, Alvarez et al. 2002). Previously published 

haplotypic data on ten Y-STR loci were used for an analysis of molecular variance (AMOVA) 

in selected populations (North Africa, Arredi et al. 2004; Equatorial Guinea, Arroyo-Pardo et al. 2005; 

Mozambique, Alves et al. 2003; North Portugal, Gusmao et al. 2002; and Spain, Zarrabeitia et al. 2003). Criteria 

defining three geographic regions attributed the vast majority of variance to the 

intrapopulational level (99.1%). Although not statistically significant, the among-group 

variance is of 0.34% (P=0.08504±0.00762) while the intragroup component displayed 0.56%. 

According to an exact test of population differentiation (10000 steps of Markov chain) the six 

considered populations are distinct. 

 In order to evaluate the discriminatory power of the extended haplotype, the 

haplotypic diversity was determined for sets of ten markers (minimal haplotype plus one 

marker). The additional marker causes a variation in haplotype diversity as follows: DYS437 

(H=0.9982±0.0010, 143 haplotypes), DYS438 (H=0.9986±0.0009, 146 haplotypes) and 

DYS439 (H=0.9994±0.0008, 153 haplotypes). The level of discrimination obtained by 

additional typing of DYS439 confirms its usefulness for forensic purposes (Gusmao et al. 2001, Bosch 

et al. 2002, Beleza et al. 2003), by lowering the random match probability. We should however notice 

that an increase on haplotype diversity when adding new markers is dependent not only on 

the locus diversity but on the degree of gametic association between markers and the 

haplotypes previously defined (Beleza et al. 2003). 

 For DYS19, DYS389I, DYS389II, DYS390, DYS391 and DYS392 the haplotype 

combinations 15-13-30-21-10-11 and 15-13-31-21-10-11 are quite common in our data 

(Table S9 H46-H55 and H60-H68, respectively). The examples mentioned above are, in fact, 
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all classified within haplogroup E3a*-M2. We have verified that depending on the haplogroup 

assignment, alleles are not randomly associated; therefore particular haplotypic 

combinations persist while other loci have accumulated differences. In our particular data 

set, the allelic/haplotype assignment can therefore be a relevant predictor of haplogroup 

assignment: allele DYS438*8 is only present in our A1 Y chromosomes; all seven A1 Y 

chromosomes are DYS392*11-DYS437*14-DYS438*8 and the DYS389I*13 and DYS391*11 

alleles are frequent (5 out of 7); the combination DYS437*17, DYS438*10 and DYS19*15 is 

frequent in E1* lineages (but also present in haplogroup E3a); the six E3b* Y chromosomes 

showed no variation at DYS19*13 and DYS437*14; all of the E3b1 individuals harbored the 

profile DYS389I*13-DYS438*10. These are most likely close related lineages resulting from 

founder effects, especially in haplogroup A1 were most of the haplotypes are of Papel 

individuals. One may also associate this differences with mutation rate differences in single 

STR loci from SNP-haplogroup to haplogroup as well as inter-loci differences according to 

the allele repeat score (Carvalho-Silva et al. 1999, Dupuy et al. 2004). However, in evolutionary studies the 

genetic sampling over hundreds of generations could lead to differences in repeat variation 

between loci within a haplogroup and between haplogroups at the same locus, regardless of 

their effective mutation rates, simply because the evolutionary trajectories at each locus are 

a random event which can and most likely will differ in different haplogroups (Zhivotovsky and 

Underhill 2005). The Guinean dataset is far too small for any consistent interpretation in this 

subject. We would however like to alert for the interest of larger studies and with deeper 

resolution, in particular for African haplogroups given that there is a clear ascertainment bias 

towards non-African Y chromosomes. This may elucidate us on each haplogroup’s history, 

contributing for a better resolution of many African lineages, for example within haplogroup 

E3a-M2. 

 

 

11 - Combined analysis of Y chromosome and mtDNA haplogroups 

 

 The mtDNA and Y chromosome genetic analysis of Guineans was performed in the 

same male samples and thus renders the possibility of analyzing their combined maternal 

and paternal ancestry (matrix of pie charts depicted in Figure 32). The most outstanding 

characteristic is that the mtDNA variation is sparsely distributed among several L0-L3 

haplogroups and sub-haplogroups, while the Y chromosome lineages belong mostly to E3a*-

M2. Not surprisingly, the largest percentage of the pool is retained by a combination of Y 

chromosome haplogroups E3a and E1 and mtDNA haplogroups L1b, L2a, L2b, L2c, L3b, 

L3d, all of major West Africa distribution and common to all Guinean ethnic groups, telling of  
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Figure 32 – Distribution of Y chromosome and mtDNA haplogroups of 214 male individuals belonging to the 

7 Guinea-Bissau ethnic groups (assigned by colors as indicated, includes only individuals with determined 

extended microsatellite haplotype). The area of each chart is on linear scale to the number of individuals 

carrying the particular combination, the smallest representing single individuals. 
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their common evolutionary history and/or marked genetic flow. The Central-African E3a7 

lineages displayed by Nalú, Balanta and Mandenka are curiously in combination with L1b1 

and L2a1-β1 which can be Central African lineages in their origin, even though no exact 

matches are registered. A considerable proportion of lineages tell of non-West African 

maternal ancestors who have been integrated in the West African mtDNA pool, associated to 

E3a-M2 Y chromosomes: the East African L0a, L3e, L3f1 and L3h are common among 

Felupe-Djola while North African M1, U5b1 and U6 lineages are particularly frequent among 

Balanta and Fulbe. Though less frequent, the opposite is also detected, suggesting 

admixture of non-West African Y chromosomes with West African mtDNAs: in Papel, 

haplogroups A1 and E3* are associated to several West African mtDNAs; one Felupe-Djola 

has a E2* Y chromosome and a L2c mtDNA; Fulbe E2* and E3b* are shown in a L2c 

background. Nevertheless the most important finding is that Balanta, Papel and Felupe-Djola 

are the only people in Guinea-Bissau to show “pure” East African inheritance (L0a, L3e, L3f1 

and L3h mtDNAs, combined with A1, A3b2, E3* and E3b* Y chromosomes), further 

supporting their East African origin. The E3b1 and R1b Y chromosomes testify for a most 

likely North African and/or European genetic imprint. The Fulbe displaying an E3b1 Y 

chromosome in combination with a U5b1 mtDNA is most likely of North African origin, though 

no firm interpretations can be made.  

 

 

12 - Analysis of autosomal genetic markers in Guinea-Bissau ethnic groups 

 

Our work team has previously surveyed fifteen autosomal STR (Powerplex 16, 

Promega) for a subset of 100 Guinea-Bissau individuals (Goncalves et al. 2002). All the ten 

population units (Beafada, Sussu and Mansonca here considered independently) were found 

to be in Hardy-Weinberg equilibrium and thus to be representative of the population (Fernandes  

A, com. pess.). Although no significant differences were found in overall allelic or haplotypic 

frequencies, when the ethnic groups were separately analyzed, the following could be 

distinguished on the basis of one or two loci: Bijagós differ from Papéis, Beafada (included in 

Felupe-Djola), Fulbe and Mandenka; Balanta are distinct from Felupe-Djola e Papéis; 

Felupe-Djola are by turn different from Fulbe and Mandenka; Papel differ from Mandenka; 

interestingly Mansonca and Sussu, for mtDNA and Y chromosome analysis included in the 

same group, were distinguished from Mandenka on the basis of D13S317 and VWA, 

respectively. In sum, Mandenka do not differ only from Beafada and Balanta. A NJ tree 

isolates Bijagós in the first branching (data not shown), indicating the differences in their 

pool. The next split includes a well-defined cluster with Felupe-Djola, Papel and Beafada, 
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while Fulbe show in an isolated branch. On the basis of their autosomal STR variation, the 

more closely related groups are Mandenka and Balanta. 

Assuming that the autosomal genetic systems are gender-independent and reflect a 

combination of both maternal and paternal transmittion we chose to contrapose the results 

with the mtDNA and Y chromosome data. In fact, there seems to be concordance in several 

aspects: 

- Bijagós are distinct of the majority of the groups, perhaps due to insularity factors; 

- Relatedness of Mandenka and Balanta, a putative consequence of a long term shared 

history; 

-     Papel and Felupe-Djola share large affinities and both differ from Mandenka, possibly on 

the account of lineages tracing back to East Africa. 

 Autosomal alleles which are not of frequent African assignment were found, for 

example the D3S1358*13 in two Bijagós and two Felupe-Djola. It is interesting to note that 

one of this Bijagós harbors an R1b Y chromosome (H165) and mitochondrial L2a3 lineage 

(GB58), most certainly descending from a European father and a sub-Saharan mother. The 

10 Y-STR profile further confirms its source as matches numerous European populations in 

YHRD database. As for the other Bijagó the maternal component is typically sub-Saharan 

(L0a1, GB4) while the paternal counterpart can either be European or North African (E3b1, 

H161; DYS439*12). The Felupe-Djola samples harbor both mtDNA and Y chromosomes 

very common in the sub-Saharan West corner (GB85–H167 and GB114–H99). 

Nevertheless, the first has the D3S1358*12,13 alleles not found among any other Guinean 

and possibly tracing a different origin. In fact, it is known that when analyzing genetic 

systems of uniparental inheritance one of the sides of the progenitor’s story is lost, but can 

be conserved in autosomes due to recombination. Therefore, even if the parental types do 

not show Caucasoid or Berber variants, a link can be established. Alternatively, this can be a 

case of allelic reversion in a STR “fast-mutating” marker. 

The D21S11*29.2, typically present at low frequency in US Caucasoids and North 

African Berbers (Holt et al. 2000, Budowle et al. 2001), was found in Bijagós and Beafada. The latter 

harbors an A1 Y chromosome (H2 in Table S9) which could have migrated from North Africa, 

though no exact matches were found. Similar enumerations can continue for VWA*12 found 

in Mandenka and Fulbe, two groups historically related with Berber people, and whose 

autosomal allele is common in Madeira and Azores (Fernandes et al. 2002a, Velosa et al. 2002). The Fulbe 

harboring the GB191 mtDNA lineage matches several North Africans and non-Africans (see 

Table S5), a putative link to the non-West African origin of its VWA*12 allele. 
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Chapter Six 

 

Final remarks 

 

 
 From the perspectives of both the extant maternal and paternal genetic pools, the 

Guinea-Bissau people can undoubedtly be classified as West sub-Saharan Africans. The 

majority of the genetic lineages of every one of the ethnolinguistic groups considered was 

found to belong to the West African specific and most prevalent sub-clusters of mtDNA L0-L3 

and Y chromosome E3a-M2 and E1-M33 haplogroups (Rosa et al. 2004, 2007). Their profile is, in 

terms of frequency and diversity levels, comparable to those of their neighboring populations, 

with whom they form clusters encompassing short genetic distances. The genetic 

background of the ethnic groups in Guinea-Bissau shows no preferential association to 

geography, linguistics or religion, and though diverse, seems to be uniformly distributed 

among many of the sub-Saharan populations, particularly those in Central-West Africa (Rosa et 

al. 2004, 2007). 

  Comparing the diversity of both uniparental systems is, however, hindered because 

of the very different mutational properties of their SNPs and Y microsatellites, and because 

of SNP ascertainment bias on the Y chromosome. Therefore, caution is needed when 

interpreting the results. When paying attention to the high paternal homogeneity, on the 

account of the E3a-M2 Y chromosomes, one may speculate on a comparatively lower 

population size, gender differences in reproductive success or on a major expansion from a 

pool of limited paternal genetic diversity (in terms of haplogroups), that has overwhelmed 

less frequent variants. A possible scenario to cause such variation relates to the social 

practices of male polygamy and patrilocal exogamy, which predominate in most of the ethnic 

societies in Guinea-Bissau. In that sense the mtDNA variability tends to be maintained and 

flows among the groups (progeny included in the father’s ethnic group) while the paternal 

variability tends to decrease over time, with a biased transmission of only a limited portion of 

the pool. However, we believe rather that the overall paternal homogeneity is at least 

partially illusory due to different rates and modes of evolution of the Y chromosomal 

polymorphisms, with subclades of phylogenetic importance still to be discriminated, in 

particular within haplogroup E3a*-M2. 

 One should not expect the extant genetic pool, even that of autochthonous people, to 

directly reflect the demographic events within a geographical region since its initial 

occupation to recent historical episodes. Also, the time of colonization can not generally be 

inferred from the coalescence time of the genetic lineages since, unless a drastic founder 
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effect has occurred the age of the clades often greatly predates the age of the ethnically 

defined population(s) in which it is found. For instance, haplogroups L1c and L2d are the 

clades of deepest coalescence in Guinea-Bissau (~110-120 kya; Rosa et al. 2004). The absence 

of founder lineages in our dataset plus the proposed Central African origin for such clades 
(Salas et al. 2002, Batini et al. 2007) leads us to hypothesize on their westwards expansion relatively late 

in the evolution of the haplogroups; thus the migrants already carried along substantial 

molecular diversity, arriving in size(s), capable to maintain it. Their ragged multimodal 

mismatch distribution, on the account of distantly separated sub-clades, further supports 

their ancestrality. 

 In Bandelt, Macaulay and Richards’ words “only when reconstructed and dated 

ancestral types appear to have given rise to essentially autochthonous branches of the 

phylogeny, with approximately equal coalescence time, then one could speak of founder 

types at the colonizing event” (Bandelt et al. 2006). The archaeological findings support a 

permanent occupation of West Africa by modern humans from 30-40 kya onwards (Mercader and 

Martí 2003) or possibly even earlier (Phillipson 1993, Newman 1995, Foley and Lahr 1997, Cornelissen 2002). Such 

archaeological evidence is concordant with the coalescence ages of indigenous mtDNA 

clades, namely L1b, L2b, L3b and L3d (Rosa et al. 2004). The Guinean E3a-M2 and E1-M33 NRY 

variation, coalescing 20-30 kya at the most (Rosa et al. 2007), is much less consistent within the 

non-genetic evidence on the initial colonization of West Africa, but again these differences 

are likely inherent to the systems. 

 The climatic oscillations between 40-12 kya have caused the expansion and 

fragmentation of the equatorial forest (Adams 1997, Lahr and Foley 1998, Cornelissen 2002), an ecological 

scenario able to reduce the genetic diversity of AMHs, and generate a fragmented pattern of 

population distribution, ultimately with genetic sub-structuring, even if to assume earlier more 

homogeneous spread of the variation. The first inhabitants of West Africa were supposedly 

dispersed in small and isolated hunter-gatherer groups, their genetic pool unlikely to have 

been uniform. South of the Sahelian strip, in the vicinity of Guinea-Bissau, a vegetation zone 

was conserved throughout the climatic oscillations 23-15 kya to 9 kya (Adams and Faure 1997), and 

therefore could have acted as a refugium, conserving genetic diversity. We observe today an 

overall similarity in the mtDNA and Y chromosome profile of West Africans, which could be 

due to a common basis and co-evolution of the genetic diversity that has emerged from the 

refugium. The return to moister and warmer conditions culminated in the Sahara’s wet phase 

~9kya (Aumassip et al. 1994), which likely promoted population growth and massive displacement of 

people, reaching previously uninhabited areas and allowing contact and admixture with 

isolated before populations (Camps 1974, Hassan 1978, Dutour et al. 1988, Clark 1994). 
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 Many of the haplogroups and sub-haplogroups in our sample coalesce at about 20 

kya and show signs of expansion. From a limited number of founders that are shared 

between populations of different ethnolinguistic affiliations, haplogroup L2c and subclades of 

L2a show high haplotype diversity and an almost starlike topology (with many one-mutational 

step derived haplotypes in L2a1), suggestive of population growth. The Tajima’s selection 

test, here designed to evaluate fluctuations in population size since the hypothesis of 

selection is neglected, gave significant negative results for L0a, L2a and L2c, whereas the 

less conservative Fu’s FS further indicated L1b, L3b1 and L3d as candidates of expansion. 

The unimodal and bell-shaped pairwise mismatch distribution of these haplogroups is 

consistent evidence of population growth (Harpending et al. 1993, Schneider and Excoffier 1999). However, the 

size of African human populations should have slowly increased in the Pleistocene, limited 

by the available fauna. At about 14 kya, when animals were driven near extinction by 

hunting, the impetus for people to adopt cultivation as a subsistence strategy was triggered 

and foraging was progressively abandoned (Cohen 1989). By 6 kya centers in the Sahel were 

cultivating local crops, West Africa at that time being classified as a temperate sub-tropical 

zone, usually selected as agricultural centres. The widely represented E3a-M2 is a likely 

genetic marker for the agricultural expansions in sub-Saharan Africa in the last 2-3 ky, 

especially in the context of the Bantu migrations (Passarino et al. 1998, Underhill et al. 2001a). Although 

clear founders are absent, its high frequency and microsatellite diversity in Guineans and 

nearby populations hint at an early West African origin and expansion (many lineages differ 

by one mutational step and are shared by the ethnic groups), sometime in the last 20 ky. 

This fits well with suggestions of a local agricultural centre perhaps as early as 6-9 kya 
(Atherton 1972, Calvocoressi and David 1979, Clark 1994), with better nutrition supporting a larger number of 

people. The advent of cultivation obviously drove to numerical growth but one cannot 

distinguish which subsets of the extant variation have been generated by the post-LGAM 

return to more beneficial conditions or by the subsequent shift to agriculture. More likely, the 

population growth happened in a continuous timescale since the climatic return to more 

stable conditions and became more accentuated with the introduction of agriculture and iron-

smelting techniques, with gene flow obscuring earlier diversity and any differences 

accumulated during the isolation periods. 

 Less frequent clades summing up to 6% of each uniparental genetic profile may tell 

about non-West African influences. The mtDNA L3e2a and L3e2b lineages are thought to be 

successful hitchhikers of population movements in the Sahara in the early Holocene and the 

Great Wet Phase (Muzzolini 1993, Bandelt et al. 2001). The NRY A1-M31 lineages and mtDNA L0a1 and 

L3h, East African in their origin, could have participated in such movements and have 

reached West Africa, where they have differentiated in isolation and have given rise to 
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specific subsets. Additionally, the L3e4 clade sampled among Guinean people and 

coalescing at about 11 kya, was associated with the West African expansion due to the rise 

of food-production and iron-smelting (Bandelt et al. 2001). Haplogroups U6a and M1b, of North 

West African origin and prevalent distribution (Corte-Real et al. 1996, Macaulay et al. 1999b, Plaza et al. 2003, 

Olivieri et al. 2006), have likely crossed the Sahara in more ancient times and not at the time of 

contacts reported in history (Moreira 1964), otherwise a random assortment of Eurasian 

haplogroups that exist in Northwest Africa at a fairly high frequency would have been carried 

by the migrants. The particular GB191 U6a lineage is thought to have registered partial 

diffusion to the Sahel at about 11 kya (Rando et al. 1998, Coia et al. 2005). We have to bear in mind that 

the Mauritania/Senegal and Mali border seems to be an important barrier to southward gene 

flow of the North African Euroasiatic haplogroups to sub-Saharan regions (Gonzalez et al. 2006). 

Although U5b reaches its main radiation in Europe, the U5b1b mtDNAs in Guinea-Bissau are 

one or few steps away from a widespread type in Europeans, Moroccans, West Saharans 

and Tunisians (Plaza et al. 2003, Rosa et al. 2004, Tambets et al. 2004, Achilli et al. 2005). These are supposedly 

post-glacial signatures of lineages that have crossed the strait of Gibraltar towards Northwest 

Africa, and further develop into local clusters, one of which is in West Africa (Rando et al. 1998, Rosa 

et al. 2004, Cerny et al. 2006, Ely et al. 2006). Its sub-Saharan spread could have been mediated by the 

Berbers or by Berber related people, like the Fulani (Rosa et al. 2004, Achilli et al. 2005). The E3b1-β 

haplotypes are the only paternal lineages that we can with more confidence identify as North 

African contributions (Cruciani et al. 2004, Rosa et al. 2007). Therefore, evidence of gene flow from East 

and North African populations is found in both maternal and paternal pools of Guinea-Bissau. 

Even though their precise origin can not be indicated, and a North African source cannot be 

disregarded, the exact matches of R1b-P25 and a few E3b1-M78 are with Europeans. These 

may relate to the times of the slave trade and are in agreement with historical records, which 

describe a predominantly male presence that nevertheless did not leave a strong imprint in 

Guineans (Teixeira da Mota 1954). Note that no European mtDNA haplotypes, that could in principle 

have been introduced at the time of the slave trade, were found in our dataset. 

 The evolutionary relationships based on uniparentally transmitted polymorphisms are 

primarily concerned with the history of genes and not of populations. Therefore, any 

suggestions on a population-based phylogeographic approach are mere hypothesis built on 

the genetic evidence, and corroborated or not by non-genetic data. Inferences are made 

even more difficult in African populations, where ethnicities are deeply structured by social 

patterns of admixture (like endogamy or patrilocal exogamy), which blur the mtDNA and NRY 

inheritance within the ethnic units. The genetic background of the Guinean Mandenka shows 

a high frequency of clades testifying to expansion, namely the mtDNA L2c which has an 

almost starlike phylogeny (Rosa et al. 2004) and the E3a-M2 Y chromosomes, which harbor in the 
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Mandenka the highest microsatellite diversity among Guineans (Rosa et al. 2007). While the Fu’s 

Fs index indicates population growth in the Mandenka, the more stringent Tajima´s D is 

marginally significant. Although the Mandenka are among the last well-defined ethnic groups 

to have arrived to Guinea-Bissau (Carreira and Quintino 1964), these are West African indigenous 

people which could have been involved in a marked population increase, possibly due to 

their food-producing economy. Their ancestors may even relate to the people who instigated 

farming expertise in West Africa. This is strengthened by the historical records that tell of 

Guinean Mandenka as physically and culturally descendants of the Mande, the protagonists 

of agricultural population expansions in the Niger/Mali/Burkina-Faso region (Cavalli-Sforza et al. 

1994) and rulers of the West African Black Empires based on trade and agriculture (Fage 1995). 

 While some studies suggest linguistic affinities between Balanta and the Sudanese 

family, their spread related to that of Cushitic migrants (Quintino 1964), others hypothesize on 

their common origin with Bantu, near the Nile in the Late Pleistocene (Stuhlmann 1910). Minor 

traces of East African lineages corroborate the non-genetic evidence in claiming their 

easternmost origin. The mtDNA pool of the Balanta shows an increased frequency of sub-

haplogroup L0a1. The subset of L0a1 variation that has reached Guinea-Bissau coalesces 

relatively recently at 7 kya, and exhibits a corridor of matches in a possible East-to-West 

route of migration only at the level of the founder haplotype (Rosa et al. 2004). Their coalescence 

time might then reflect their arrival in the Holocene (when post-LGAM conditions were more 

favorable for migrations in the Sahelian strip). Again, in L2a-α3 the GB44 motif traces a 

corridor of matches from East to West Africa. A link of Balanta and Sudanese-speakers is 

traceable in A3b2-M13 and E3* Y chromosomes (Rosa et al. 2007), found to be frequent among 

Sudanese and Ethiopians (Underhill et al. 2000, Semino et al. 2002). The high frequency and 

microsatellite diversity of E3a*-M2 in the Balanta attests to a more pronounced expansion of 

the paternal variation, comparatively to other Guineans (except Mandenka), a population 

increase which could related to the farming practices. Even if there are no firm 

archaeological indications that early Holocene sorghum or millets were being domesticated, 

the spread of the Sudanic people at that time may be an example of farming/language 

dispersal (Ehret 1997, Ehret 2003). This dispersal could have extended to all the Sahara, including 

West Sahara, with later introgressions to the Niger-Congo speakers (Bellwood 2005). Under such 

model, and together with the genetic evidence, the Balanta’s Sudanese origin gains 

relevance. A common origin with the Bantu, one of most notable people in the sub-Saharan 

agricultural context, may suggest that different peoples jointly learnt agricultural techniques, 

and thus be a support for the expansion observed in the paternal pool of the Balanta. 

Particular relationship of these Guineans and North Africans are found in exact matches in 
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haplogroup L2a, L2b and L3b, typical of West Africa and the North African M1b (Plaza et al. 2003, 

Rosa et al. 2004, Olivieri et al. 2006).  

 Although the Bantu people are known to have been the main drivers of the sub-

Saharan agricultural spread towards South Africa, the absence of mtDNA Bantu-associated 

markers (Soodyall et al. 1996, Watson et al. 1997, Bandelt et al. 2001, Pereira et al. 2001b) in the West African sample 

sets suggests either that the Bantu contributed very little to the gene pool of Guineans or that 

they had a distinct gene pool from that associated with the southwards migrations (Rosa et al. 

2004). Since none or few Bantu-speakers today inhabit West Africa, and the Mandenka and 

Balanta display evidence of a particularly marked recent population growth, these are the 

best candidates among Guineans to reflect the demographic effects of the agriculturalist 

lifestyle, putatively related to the people that introduced early cultivation practices into West 

Africa or at least those that have experienced a particular benefit from food production. The 

autosomal STR profiles of Balanta and Mandenka share large affinities (Goncalves et al. 2002), 

possibly as a consequence of a long-term shared history. 

 There is an intriguing line of evidence in mtDNA haplogroups typically frequent 

among the Fulani (e.g. L1b), with a few Fulani-exclusive haplotypes. Moreover, exact 

matches among mtDNA Fulani lineages inhabiting a broad geographic area in West-Central 

Africa were found in a background of several haplogroups (Watson et al. 1996, Destro-Bisol et al. 2004, Rosa 

et al. 2004, Cerny et al. 2006). This most likely tells of a common ancestry, with lower differentiation of 

the maternal pool among nomadic Fulani, while the settled communities tend to accumulate 

differences by gene flow with their geographic neighbors (Cerny et al. 2006). The high proportion of 

haplogroup L2c in Guinean Fulbe contrasts with other Fulani and better relates them with 

their West African neighbors. This feature is not evident in their Y chromosomal haplogroups, 

probably on the account of the lower resolution of lineages. Nonetheless, both maternally 

and paternally inherited pools of Fulbe are significantly different from other Guineans, 

especially from those showing non-West African traces. Although geography is the main 

dictator of matches, the Fulbe mtDNAs and Y chromosomes match widely from West-Central 

to South Africa, thus supporting the broad distribution and multiple origins of their ancestors 
(Rosa et al. 2004, 2007). The U5b1b haplotypes found in our Fulbe sample set are a curious link to 

the European post-glacial population recovery (Achilli et al. 2005). The non-random distribution of 

haplogroup U5 in the Fulani people suggests a correlation between genetic and linguistic 

affiliation, and provides evidence of the link between these people and North Africans. Again, 

E3b1-β is a Northwest African contribution (Cruciani et al. 2004) to the Guinean Fulbe paternal 

variation. 

 Minor imprints of more eastern and central areas of the Sahel are represented in 

particular mtDNA and NRY haplotypes found in the Papel and Felupe-Djola people (e.g. 
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L3e2a, L3e2b and L3h, and A1-M31, E2-M75 and E3-PN2, respectively). Curiously these are 

the ethnic groups in Guinea-Bissau with an oral tradition claiming an origin in Sudan (Quintino 

1969) and, together with the Balanta, are both affiliated to the Niger-Congo Bak-speakers. 

Their paternal pool is among the more diverse in our dataset, with the lowest frequency of 

E3a-M2 among Guineans (Rosa et al. 2007) indicating a shallow residence time in the territory 

and/or that the paternal genetic flow has not allowed greater homogeneity. The increased 

frequency of NRY haplogroup E1-M33 in Papel and Djola, responsible for a higher 

dissimilarity of their pool in a PCA of all Guineans, is possibly an amplifying effect of West 

African lineages on founder groups arriving from an easternmost source (Rosa et al. 2007). Such 

unconventional frequencies of West African lineages due to genetic drift might have their 

parallel in mtDNA L3b and M1 in Felupe-Djola, U6 in Papel and L2b in both (Rosa et al. 2004). 

Furthermore, these groups retain statistically significant differences from other Guineans in 

maternal, paternal and autosomal pool (Goncalves et al. 2002, Rosa et al. 2004).  

 In the Guinean genetic context, the mtDNA profile of the Bijagós displays a marked 

similarity to that of the Fulbe, with many shared lineages. This is also true for the Y 

chromosomal pool, hindering any claimed similarity to the Djola, Papel or Nalú (Teixeira da Mota 

1954) or even Egyptians (Quintino 1964). It is interesting to note that these are the only people in 

Guinea-Bissau whose mitochondrial phylogenetic pool does not exhibit significant 

differences from those of other Fulani, further suggesting a genetic proximity of both groups. 

The HVS-I sequence diversity is the lowest in the Bijagós (Rosa et al. 2004), not surprising given 

that these are the main inhabitants of the archipelago, possibly arriving through one or few 

founder effects, with a subsequent isolation due to their islander condition. 

Besides finding that a high frequency of haplogroup L2b better distinguishes the Nalú 

maternal pool from other Guineans, no consistent inferences on their genetic pool were 

achieved by our analysis. They are integrated in the West African genetic diversity, in 

Guinea-Bissau only retaining significant differences from the Fulbe maternal profile, and do 

not show any mtDNA or Y chromosomal lineages linked to the East African variation. 

Although this does not constitute as a firm genetic evidence, it nonetheless does not 

contradict the idea that they are an Guinea-Bissau autochthonous population (Teixeira da Mota 

1954). The DE* Y chromosome in their pool seems to descend from a private lineage in 

Nigerians (Weale et al. 2003) and may represent a coalescent node of variation paraphyletic to 

haplogroup D, E or both. 

 The extant mtDNA and Y chromosome pool is a net outcome of many past events, 

where episodes in recent history are not readily detectable, and are often not the main focus 

of attention of population geneticists. Therefore, analyzing the effects of ‘Balantization’ and 

‘Sudanization’ processes in the extant genetic pool is not straightforward. These processes 
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are very recent, taking place in the last four or five generations (Carreira and Meireles 1959), and 

would have only become evident in the modern variability if there was overwhelming intense 

and directional gene flow between very distinct pools. These phenomena in Guineans 

involve lineages of a largely common West African pool, established before the definition of 

the ethnolinguistic units, and certainly long before this process of directed admixture. Despite 

the obvious sociocultural differences among Guinea-Bissau ethnic groups, marked by the 

supposedly strict admixture barriers, their genetic pool remains largely shared, because of 

common ancestry and/or a common history of genetic admixture without language shift. 
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Table S1 - HVS-I haplotypes and their distribution among Guinea-Bissau ethnic groups 
 

 
 
 



Table S1 (continued) 
 

 
 



Table S1 (continued) 
 

 
 



Table S1 (continued) 
 

 
 



Table S1 (continued) 
 

 
 
Population codes are as described in section 5 and as in Table 1 of Rosa et al. (2004). 

 



Table S1a - HVS-II haplotypes and coding region sites analyzed for haplogroup L1c samples 
 

 
 
Haplotype ID is as described in Table S1 for HVS-I. HVS-II nps 303-315 were not considered because their high mutation rate can be a source of error in phylogenetic 
reconstructions (Santos et al. 2005, Batini et al. 2006).



Table S2 – African datasets used for comparison of mtDNA genetic pool 
 

Abbreviation N Family Sublevel Reference

Northwest Africa

Mauritania Mauritanians Mau 94 Mixed Mixed Rando et al.  1998, González et al . 2006 a

West Sahara Saharawis Sah 25 Afro-Asiatic Semitic Rando et al. 1998

Morocco Arabs MAr 350 Afro-Asiatic Semitic Rando et al.  1998, Pennarun et al.  (unpublished)

Berbers MBb 268 Afro-Asiatic Berber Rando et al.  1998, Pennarun et al.  (unpublished)

Algeria Arabs AAr 55 Afro-Asiatic Semitic Pennarun et al.  (unpublished)

Berbers ABb 64 Afro-Asiatic Berber Pennarun et al.  (unpublished)

Mozabites Mzt 85 Afro-Asiatic Berber Côrte-Real et al.  1996

Northeast Africa

Egypt Egyptians Egy1 192 Afro-Asiatic Mixed Metspalu et al.  (unpublished)

Egyptians Egy2 107 Afro-Asiatic Mixed Krings et al.  1999

Sudan Nubians Nub 148 Nilo-Saharan Eastern Krings et al.  1999

West Africa

Cape Verde Cape Verdeans CV 292 Creole Portuguese-based Brehm et al. 2002

Senegal Mandenka Mak 110 Niger-Congo Manding Graven et al. 1995

Senegalese Sen 50 Mixed Mixed Rando et al.  1998

Wolof Wol 48 Niger-Congo Atlantic-Wolof Rando et al.  1998

Serer Ser 23 Niger-Congo Atlantic-Serer Rando et al.  1998

Mali Tuareg Tug 23 Afro-Asiatic Berber Watson et al. 1996

Mixed Mal 26 Niger-Congo Mixed González et al.  2006 
a

Bambara Bab 71 Niger-Congo Manding-East Ely et al.  2006, González et al.  2006 a

Peul Pe 15 Niger-Congo Atlantic-Fulani González et al.  2006 
a

Malinke Mwk 92 Niger-Congo Manding-West Ely et al.  2006, González et al.  2006 
a

Guinea-Bissau Felupe-Djola EJA 50 Niger-Congo Atlantic-Bak Rosa et al.  2004

Bijagós BJG 22 Niger-Congo Atlantic-Bijagó Rosa et al.  2004

Balanta BLE 62 Niger-Congo Atlantic-Bak Rosa et al.  2004

Papel PBO 77 Niger-Congo Atlantic-Bak Rosa et al.  2004

Fulbe FUL 77 Niger-Congo Atlantic-Fulani Rosa et al.  2004

Mandenka MNK 58 Niger-Congo Manding-West Rosa et al.  2004

Nalú NAJ 26 Niger-Congo Atlantic-Nalu Rosa et al.  2004

Sierra Lione Limba Lim 67 Niger-Congo Atlantic-Limba Jackson et al . 2005

Loko Lko 32 Niger-Congo Manding Mende-Loko Jackson et al . 2005

Temne Tmn 121 Niger-Congo Atlantic-Temne Jackson et al . 2005

Mende Mde 59 Niger-Congo Manding Mende-Loko Jackson et al . 2005

Burkina-Faso Fulani Banfora FBa 50 Niger-Congo Atlantic-Fulani Cerny et al.  2006

Fulani Tindangou FTi 47 Niger-Congo Atlantic-Fulani Cerny et al.  2006

Central Africa

Niger/Nigeria Yoruba Yor 33 Niger-Congo Yoruboid Vigilant et al.  1990, Watson et al.  1996

Fulbe Fni 60 Niger-Congo Atlantic-Fulani Watson et al. 1996

Hausa Hau 20 Afro-Asiatic Chadic Watson et al. 1996

Chad Mandara Mad 37 Afro-Asiatic Chadic Destro-Bisol et al. 2004*

Uldeme Oul 28 Afro-Asiatic Chadic Destro-Bisol et al. 2004*

Podokwo Po 39 Afro-Asiatic Chadic Destro-Bisol et al. 2004*

Fulani Bongor FBo 49 Niger-Congo Atlantic-Fulani Cerny et al.  2006

North Cameroon Kotoko Kot 18 Afro-Asiatic Chadic Cerny et al.  2004

Tupuri Tup 25 Niger-Congo Adamawa Destro-Bisol et al. 2004*

Daba Dab 20 Afro-Asiatic Chadic Destro-Bisol et al. 2004*

Fali Fal 41 Niger-Congo Adamawa Destro-Bisol et al. 2004*

Tali Ta 20 Niger-Congo Adamawa Destro-Bisol et al. 2004*

Fulbe Fca 34 Niger-Congo Atlantic-Fulani Destro-Bisol et al. 2004*

Hide Hid 23 Afro-Asiatic Chadic Cerny et al.  2004

South Cameroon Fulani Tcheboua FTc 40 Niger-Congo Atlantic-Fulani Cerny et al.  2006

Mafa Maf 32 Afro-Asiatic Chadic Cerny et al.  2004

Bakaka Bak 50 Niger-Congo Bantu Destro-Bisol et al. 2004*

Bamilike Bam 48 Niger-Congo Bantu Destro-Bisol et al. 2004*

Masa Mas 31 Afro-Asiatic Chadic Cerny et al.  2004

Bassa Bis 46 Niger-Congo Bantu Destro-Bisol et al. 2004*

Ewondo Ewo 53 Niger-Congo Bantu Destro-Bisol et al. 2004*

Central African Republic Biaka Pygmies Bia 17 Niger-Congo Bantu Vigilant et al.  1990, Watson et al. 1996

East Africa

Ethiopia Tigrais Tig 53 Afro-Asiatic Semitic Kivisild et al.  2004

Oromo/Afar Oro 49 Afro-Asiatic Cushitic Kivisild et al.  2004

Amhara Amh 120 Afro-Asiatic Semitic Kivisild et al.  2004

Gurage Gur 21 Afro-Asiatic Semitic Kivisild et al.  2004

Kenya Turkana Tur 37 Nilo-Saharan Nilotic Watson et al.  1996, 1997

Kikuyu Kik 24 Niger-Congo Bantoid Watson et al.  1996, 1997

Nairobians Nai 84 Mixed Mixed Brandstätter et al.  2004

Somalia Somalians Som 27 Afro-Asiatic Mixed Watson et al.  1996, 1997

South Africa

Mozambique Mozambicans Moz 109 Mixed Mixed Pereira et al.  2001

Bantu MoB 307 Niger-Congo Bantu Salas et al.  2002

South Africa/ !Kung Ku 62 Khoisan Northern Vigilant et al . 1990; Watson et al. 1996,

Botswana 1997; Chen et al.  2000

Khwe Khw 31 Khoisan Central Chen et al.  2000

Geographic region/Ethnic group

Linguistic

 
 

“*” Data in Coia et al. 2005, “a” – not included in the statistical analysis. The linguistic classification follows 

pertinent information from www.ethnologue.com. 



 
 

 
 
 
 

 
 
 

Figure S1 – Geographic distribution of the African datasets used for comparison of mtDNA 
genetic profiles (details in Table S2). 



Table S3 – Absolute frequencies of mtDNA haplogroups in several African datasets, including Guinea-Bissau ethnic groups, and respective 
diversity indexes (H, sd) 
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0.0546

 

0.0138  0.0073  0.0274  0.0186  0.0251  0.0370  0.0687  0.0420  0.0221  0.0160  0.0287  0.0113  0.0140  0.0160  0.0192  0.0270  0.0184  0.0318  0.0084  0.0258  0.0298  0.0229

N 30 25 350 268 55 64 85 192 107 148 292 110 50 48 23 23 19 61 50 22 62 77 77 58 26 67 32 121 59 50 47

15*

4* 2* 3*
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L0a 1 0 0 0 2 2 0 3 1 1 5 0 0 2 0 5 10 7 3 2 8 3 3 11 0 7 3 15 1 16 88 1 3

L1b 6 11 1 4 3 2 14 1 2 1 0 1 4 0 8 1 3 1 0 3 3 0 3 1 1 0 0 2 0 1 4 0 1

L1c 2 0 1 4 1 0 0 0 0 2 1 1 2 3 2 0 7 3 2 11 11 0 0 0 0 0 0 2 0 5 17 0 0

L1* 0 0 1 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 1 0 11 3 11 0 10 13 52 12

L2a 7 9 5 10 6 5 3 2 4 2 14 5 3 4 0 3 5 14 5 7 8 3 7 18 2 4 3 8 7 47 90 0 3
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L2c 0 2 2 1 0 1 2 0 0 0 0 0 0 0 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 2 0 0

L2d 0 0 1 2 0 1 0 0 0 0 1 0 0 1 1 0 0 2 2 2 4 0 0 0 0 0 0 1 0 0 3 0 0

L2* 0 0 0 0 0 0 0 0 0 0 1 1 5 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

L3b 1 11 2 4 3 5 0 1 4 5 2 4 1 7 1 2 5 1 3 0 0 0 0 0 0 7 0 4 8 5 1

L3d 5 7 2 0 0 2 0 0 1 1 0 0 3 7 0 3 1 0 0 0 3 3 0 0 0 0 0 2 21 0 0

L3e 7 8 4 3 3 10 3 3 6 6 4 4 4 5 3 5 13 5 5 6 6 0 0 0 0 0 3 10 0 19 45 2 9

L3f 2 5 1 1 1 2 0 7 3 0 2 3 0 1 2 2 2 5 7 5 3 3 4 6 1 3 2 5 3 2 8 0 0

L3h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

L3* 0 0 0 7 5 8 1 1 7 3 5 3 6 1 1 1 7 3 0 7 6 9 9 23 6 10 8 16 8 0 4 0 0

M1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 1 0 4 3 0 0 0 0

U6 0 2 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 12 30 7 0 2 1 0 0 0 0 0

Eurasian 1 5 0 0 0 0 4 0 0 0 0 0 4 1 2 0 0 0 0 0 0 9 7 19 3 0 0 1 5 0 0 0 0

H 0.8693 0.8774 0.9000 0.8679 0.9021 0.8691  0.8537 0.8170 0.8467 0.8632  0.8415  0.8789  0.9037 0.9091 0.8910 0.8851 0.8539 0.8706 0.8796 0.8754 0.8868 0.7569 0.8648 0.8469 0.8095 0.8048 0.8732 0.8873 0.7977  0.7560 0.8015 0.2924 0.7656

sd  0.0279  0.0142  0.0428  0.0303  0.0279  0.0293  0.0281  0.0698  0.0403  0.0486  0.0395  0.0398  0.0181  0.0336  0.0226  0.0233  0.0237  0.0298  0.0266  0.0219  0.0170

 

0.0453  0.0218

 

0.0140  0.0549  0.0324  0.0406  0.0134  0.0421  0.0316  0.0126  0.0734  0.0509

N 33 60 20 37 28 39 49 18 25 20 41 20 34 23 40 32 50 48 31 46 53 53 49 120 21 37 24 84 27 109 307 62 31

9*17*

 
 

List of population datasets in Table S2 (units with N<20 not included). L1*, L2* and L3* include lineages not ascertained in the mentioned clades. Guinea-Bissau Eurasian 

cluster refers only to U5b while in other populational units may include other non-L subsets. “*” - the original publication does not allow distinguishing the clades. 



Table S4 – Coalescence time estimates for the Guinea-Bissau mtDNA haplogroup variation (in ky) 
 
 

Haplogroups N TMRCA sd 

L0a1 19 6.4 2.6

L1b 38 43.5 19.3

L1b1 33 23.8 8.8

L1b1 (x np114A) 21 15.4 7.7

L1b1 (x np274) 24 13.5 6.7

L1c 19 108.3 21.9

L2a* 15 36.3 13.0

L2a1 46 36.0 9.6

L2a1-β1 30 30.3 8.0

L2b 29 39.0 20.9

L2b1 21 8.6 4.0

L2c 61 20.8 5.1

L2d 7 121.1 33.1

L3b 32 36.6 12.6

L3b (x L3b1) 18 17.9 9.8

L3b1 14 40.4 16.3

L3d 35 42.7 10.8

L3e2a 10 8.1 4.0

L3e2b 6 10.1 5.8

L3e4 11 11.0 5.2

L3f1 9 49.3 16.2

L3h 13 14.1 8.4  
 

Calculations based on the network in Figures 20 and 22, according to 
Forster et al. 

(1996)
 and Saillard et al. 

(2000)
. “x” denotes lineages not 

considered for the calculations, e.g. L1b1 (x np274) considers  all L1b1 
mtDNAs except the lineages defined by np16274). 



 

Table S5 - Exact matches of mtDNA haplotypes between Guinea-Bissau and other populations (based on HVS-I nps 16024-16400) 
 

 



Table S5 (continued) 
 

 
 

 



Table S5 (continued) 
 

 
 

 

 

 

 

 

 



Table S5 (continued) 

 

 
 

 



Table S5 (continued) 
 

 
 



Table S5 (continued) 
 

 
 

 

 

 

 

 

 



Table S5 (continued) 
 

 
 
 



Table S5 (continued) 
 

 
 
 



Table S5 (continued) 
 

 
 
 
 
 
 
 
 
 



Table S5 (continued) 

 



Table S5 (continued) 
 

 
 



Table S5 (continued) 
 

 
 
 



 
 
 
 
 
 
 
 

 
 
 
 

Figure S2 – Principal Component Analysis of sub-Saharan populations based on mtDNA haplogroup frequencies. Calculations based on 

the frequencies of 17 haplogroups for 64 populational units. The 1st PC and 2nd PC retain 34.1% and 14.0% of the variance, 

respectively. Population codes are as in Table S2.  

 
 
 
 
 



Table S6 – Matrix of FST distances of mtDNA haplogroup profile among African populations 
 

Mar MBb Aar Abb Mzt Sah Mau Egy1 Egy2 Nub Amh Tig Gur Oro Som Tur Kik Nai Fni Hau Tug

Mar 0.00000

MBb 0.00953** 0.00000

Aar 0.05809** 0.12741*** 0.00000

Abb 0.00901 0.00776 0.10551*** 0.00000

Mzt 0.03373** 0.06672*** 0.07638*** 0.02201 0.00000

Sah 0.03859** 0.09351** 0.01797 0.07735** 0.04975* 0.00000

Mau 0.05784** 0.12953*** 0.03007* 0.08847** 0.03298 0.01219 0.00000

Egy1 0.01118** 0.00204 0.11519*** 0.01949** 0.07456*** 0.08733** 0.13240*** 0.00000

Egy2 0.00755 0.01253** 0.08274*** 0.02579** 0.06657*** 0.05490** 0.09303*** 0.00132 0.00000

Nub 0.13132** 0.19920*** 0.03576*** 0.17085*** 0.12743*** 0.05753** 0.05422*** 0.17262*** 0.12801*** 0.00000

Amh 0.17567** 0.25403*** 0.07761*** 0.19093*** 0.11309*** 0.08584*** 0.04740** 0.23549*** 0.18947*** 0.03895*** 0.00000

Tig 0.21490** 0.30755*** 0.13659*** 0.22502*** 0.11610*** 0.12893*** 0.06975** 0.29610*** 0.24836*** 0.10994*** 0.01434 0.00000

Gur 0.21264** 0.31773*** 0.10963*** 0.25061*** 0.13762*** 0.10871** 0.05362** 0.30406*** 0.24591*** 0.06802** -0.00903 -0.01281 0.00000

Oro 0.18126** 0.27670*** 0.07380*** 0.21014*** 0.12130*** 0.08302*** 0.03635** 0.25858*** 0.20400*** 0.03547*** -0.00984 0.01290 -0.01656 0.00000

Som 0.20494** 0.30454*** 0.09359*** 0.27566*** 0.20207*** 0.12058*** 0.11457*** 0.26953*** 0.22032*** 0.03963** 0.09268*** 0.16458*** 0.13391*** 0.07979*** 0.00000

Tur 0.30803** 0.41152*** 0.16939*** 0.36160*** 0.28986*** 0.20150*** 0.18463*** 0.37732*** 0.31793*** 0.09118*** 0.12282*** 0.18955*** 0.16616*** 0.11627*** 0.07452** 0.00000

Kik 0.27352** 0.38696*** 0.11584*** 0.32943*** 0.24419*** 0.16018*** 0.13301*** 0.35706*** 0.29796*** 0.05950** 0.06282*** 0.11731*** 0.08768** 0.05042** 0.03182 0.00327 0.00000

Nai 0.24963** 0.34359*** 0.09444*** 0.28231*** 0.22484*** 0.14139*** 0.12263*** 0.31226*** 0.24900*** 0.04678*** 0.06080*** 0.12288*** 0.07900*** 0.05630*** 0.10142*** 0.05252*** 0.02197 0.00000

Fni 0.20653** 0.30881*** 0.05596*** 0.25592*** 0.19241*** 0.11312*** 0.07299*** 0.29168*** 0.23343*** 0.07631*** 0.09322*** 0.15065*** 0.11287*** 0.07336*** 0.10598*** 0.13755*** 0.08651*** 0.06998*** 0.00000

Hau 0.25712** 0.37527*** 0.05905** 0.33108*** 0.24307*** 0.12455*** 0.10974*** 0.35375*** 0.29288*** 0.06313** 0.09146*** 0.16721*** 0.12249*** 0.07725*** 0.09013** 0.10927*** 0.05238** 0.04359** 0.00096 0.00000

Tug 0.20783** 0.31436*** 0.04840* 0.28154*** 0.19338*** 0.10077** 0.07310** 0.29471*** 0.24011*** 0.02482 0.06471** 0.14785*** 0.10779** 0.05406** 0.04379 0.12155*** 0.06659** 0.07478*** 0.02817 -0.00411 0.00000

Yor 0.24736** 0.35880*** 0.07324*** 0.30824*** 0.23846*** 0.14515*** 0.10080*** 0.33833*** 0.27660*** 0.07727*** 0.10074*** 0.17369*** 0.13036*** 0.08070*** 0.10671*** 0.13421*** 0.07383** 0.06568*** 0.00267 -0.01514 0.01505

Hid 0.23298** 0.34727*** 0.05163** 0.29767*** 0.22092*** 0.12115*** 0.10152*** 0.32033*** 0.26259*** 0.05277** 0.07248*** 0.14505*** 0.10697*** 0.06159** 0.08229** 0.10185*** 0.03552* 0.02842** 0.02621* -0.02236 0.02099

Maf 0.26564** 0.37726*** 0.09011*** 0.32196*** 0.24957*** 0.16084*** 0.13759*** 0.34762*** 0.28750*** 0.08590*** 0.09116*** 0.15999*** 0.13170*** 0.08202*** 0.11276*** 0.10407*** 0.05294** 0.04332** 0.04257** 0.02541 0.06832**

Kot 0.29875** 0.41518*** 0.13925*** 0.37030*** 0.29186*** 0.19511*** 0.16993*** 0.38402*** 0.32509*** 0.08855*** 0.10884*** 0.17699*** 0.14615*** 0.09245*** 0.03385 0.04615 -0.02301 0.05514** 0.10610*** 0.08248** 0.09346**

Mas 0.26456** 0.37836*** 0.08700*** 0.32685*** 0.24893*** 0.15704*** 0.13431*** 0.34936*** 0.29145*** 0.07041*** 0.09626*** 0.16165*** 0.13137*** 0.08275*** 0.04590** 0.06804** 0.00602 0.03773** 0.04616** 0.01336 0.04586**

FBo 0.22468** 0.32972*** 0.08765*** 0.28121*** 0.22237*** 0.13080*** 0.08487*** 0.31288*** 0.24896*** 0.10176*** 0.11917*** 0.17702*** 0.13466*** 0.09394*** 0.14619*** 0.15371*** 0.11761*** 0.08752*** 0.00433 0.04534** 0.07853***

Dab 0.27161** 0.39177*** 0.07917** 0.34236*** 0.26256*** 0.16974*** 0.13444*** 0.36966*** 0.30661*** 0.09142*** 0.10091*** 0.16722*** 0.11535*** 0.08952*** 0.14698*** 0.14718*** 0.06766** 0.02361 0.02544 0.00104 0.07302**

Fal 0.27758** 0.38353*** 0.09050*** 0.33813*** 0.25639*** 0.16048*** 0.13744*** 0.35611*** 0.29556*** 0.03902** 0.07295*** 0.16016*** 0.11167*** 0.06839*** 0.07913** 0.09434*** 0.04729** 0.02787** 0.05580*** 0.00511 0.00518

Fca 0.18828** 0.29291*** 0.04093** 0.24687*** 0.18609*** 0.08456*** 0.06451** 0.27304*** 0.20805*** 0.04363** 0.06185*** 0.12325*** 0.06591** 0.05054** 0.10840*** 0.13372*** 0.07370*** 0.03224** 0.03032** 0.02650 0.05720**

Mad 0.26585** 0.37379*** 0.08786*** 0.32857*** 0.24967*** 0.14036*** 0.10570*** 0.35080*** 0.28644*** 0.04662*** 0.06871*** 0.14732*** 0.08081** 0.05612*** 0.09476*** 0.12733*** 0.06647** 0.03694** 0.03896** 0.00637 0.02012

Po 0.26349** 0.37449*** 0.07881*** 0.31580*** 0.24471*** 0.15131*** 0.12771*** 0.35068*** 0.28745*** 0.07124*** 0.07415*** 0.13764*** 0.08198** 0.06190*** 0.11944*** 0.12532*** 0.04415** 0.01657 0.03606** 0.00917 0.06004**

Ta 0.26506** 0.38323*** 0.07380** 0.34052*** 0.25359*** 0.14796*** 0.11886*** 0.35874*** 0.29682*** 0.04378** 0.06949** 0.14684*** 0.08630** 0.05418** 0.05389** 0.09520*** 0.01291 0.02177 0.03324** -0.01077 0.01296

Tup 0.27949** 0.39354*** 0.09875*** 0.34466*** 0.26979*** 0.16735*** 0.13916*** 0.36827*** 0.30360*** 0.06217*** 0.07013*** 0.14462*** 0.07471** 0.05778** 0.10361*** 0.11778*** 0.03019 0.01767 0.06422*** 0.03433 0.06498**

Oul 0.25088** 0.36416*** 0.07589*** 0.31089*** 0.22336*** 0.13176*** 0.08589*** 0.34140*** 0.27566*** 0.03704** 0.03426** 0.10126*** 0.04598** 0.02453 0.08584*** 0.10168*** 0.03465* 0.01137 0.02466* 0.00669 0.01667

Bak 0.27393** 0.37809*** 0.10337*** 0.31632*** 0.25846*** 0.16876*** 0.13864*** 0.35035*** 0.28718*** 0.08135*** 0.09228*** 0.15837*** 0.11881*** 0.08661*** 0.13214*** 0.11405*** 0.04798** 0.01923** 0.07472*** 0.03749** 0.08181***

Bam 0.26527** 0.36897*** 0.08595*** 0.31776*** 0.24386*** 0.14793*** 0.12472*** 0.33947*** 0.27988*** 0.04006*** 0.06972*** 0.15109*** 0.11203*** 0.06128*** 0.05538** 0.07992*** 0.02773 0.03265** 0.05369*** 0.00418 0.00575

Bis 0.26643** 0.37059*** 0.10297*** 0.31582*** 0.24943*** 0.15035*** 0.11535*** 0.34364*** 0.28214*** 0.06500*** 0.08256*** 0.14795*** 0.09565*** 0.06924*** 0.09176*** 0.10126*** 0.04147** 0.03490*** 0.07146*** 0.02947 0.06380**

Ewo 0.26037** 0.36235*** 0.09463*** 0.30516*** 0.24080*** 0.14131*** 0.11170*** 0.33426*** 0.27118*** 0.05872*** 0.07721*** 0.14434*** 0.10229*** 0.06857*** 0.09820*** 0.09602*** 0.04545** 0.02251** 0.06251*** 0.02401 0.05512**

FTc 0.23078** 0.34007*** 0.08411*** 0.28697*** 0.22435*** 0.11866*** 0.09107*** 0.31958*** 0.25646*** 0.10312*** 0.11150*** 0.16376*** 0.12434*** 0.08686*** 0.13139*** 0.13956*** 0.09394*** 0.07543*** 0.01029 0.03336** 0.08677***

CV 0.21361** 0.28631*** 0.06486*** 0.24700*** 0.19323*** 0.10264*** 0.09153*** 0.26951*** 0.22834*** 0.07112*** 0.08583*** 0.14226*** 0.10830*** 0.07366*** 0.09942*** 0.12920*** 0.07424*** 0.06227*** 0.02020** -0.01483 0.02020

Sen 0.23038** 0.33468*** 0.06768*** 0.28663*** 0.21417*** 0.11124*** 0.09232*** 0.31013*** 0.25280*** 0.06222*** 0.08222*** 0.14804*** 0.10661*** 0.06686*** 0.07647*** 0.11088*** 0.06404*** 0.05712*** 0.01245 0.00321 0.02791

Ser 0.23589** 0.34924*** 0.07113** 0.30937*** 0.23036*** 0.12019*** 0.07642** 0.32996*** 0.26523*** 0.06036** 0.08187*** 0.15690*** 0.10579*** 0.06635** 0.09910** 0.13353*** 0.08046*** 0.06175*** 0.00750 0.00356 0.01325

Wol 0.24242** 0.34512*** 0.09053*** 0.29470*** 0.22559*** 0.12778*** 0.08505*** 0.32651*** 0.26525*** 0.08077*** 0.09037*** 0.15452*** 0.11338*** 0.07637*** 0.11507*** 0.14726*** 0.09612*** 0.08560*** 0.03063** 0.02767 0.03236*

Mak 0.29233** 0.38211*** 0.14968*** 0.33567*** 0.28039*** 0.13584*** 0.15146*** 0.36432*** 0.30904*** 0.14899*** 0.16390*** 0.22196*** 0.18866*** 0.14786*** 0.18440*** 0.19493*** 0.15940*** 0.13900*** 0.08000*** 0.06505** 0.10922***

Bab 0.26163** 0.37970*** 0.09419*** 0.33731*** 0.25769*** 0.11857** 0.09329** 0.36124*** 0.29339*** 0.08151*** 0.10347*** 0.17044*** 0.12264*** 0.08050*** 0.08882** 0.11548*** 0.05927** 0.06943*** 0.01806 0.00905 0.03288

Mwk 0.23904** 0.33912*** 0.06920*** 0.29006*** 0.22294*** 0.10752*** 0.09613*** 0.31717*** 0.25986*** 0.06294*** 0.09197*** 0.16203*** 0.12140*** 0.07772*** 0.07777*** 0.12162*** 0.06806*** 0.06888*** 0.02146** -0.01494 0.00162

EJA 0.24941** 0.35474*** 0.08000*** 0.29738*** 0.23004*** 0.11339*** 0.11213*** 0.32860*** 0.26820*** 0.08266*** 0.09781*** 0.15635*** 0.12267*** 0.08778*** 0.08925*** 0.10455*** 0.05542*** 0.05289*** 0.02281** -0.00257 0.04437**

BJG 0.24634** 0.36411*** 0.07855*** 0.31758*** 0.23512*** 0.10894*** 0.08640*** 0.34020*** 0.27095*** 0.06228** 0.08222*** 0.15040*** 0.10861*** 0.06240** 0.08181** 0.09230*** 0.05377** 0.04137** -0.00562 -0.00459 0.02336

BLE 0.24456** 0.34568*** 0.07840*** 0.28686*** 0.22505*** 0.11572*** 0.09824*** 0.31973*** 0.25652*** 0.07006*** 0.08716*** 0.15147*** 0.11738*** 0.07186*** 0.10142*** 0.10607*** 0.06390*** 0.04630*** 0.01894** -0.00518 0.03202**

PBO 0.24004** 0.33517*** 0.08113*** 0.27835*** 0.20858*** 0.10320*** 0.09418*** 0.31100*** 0.25589*** 0.07286*** 0.07593*** 0.13398*** 0.10478*** 0.06492*** 0.09115*** 0.11231*** 0.07002*** 0.06892*** 0.02999** 0.00315 0.02837**

FUL 0.18995** 0.28150*** 0.05454*** 0.23763*** 0.17685*** 0.06870*** 0.05160** 0.26423*** 0.20881*** 0.05204*** 0.08111*** 0.14305*** 0.10493*** 0.06402*** 0.08308*** 0.13068*** 0.08987*** 0.07803*** 0.01551** 0.00820 0.00860

MNK 0.25102** 0.35193*** 0.08804*** 0.29301*** 0.22459*** 0.10166*** 0.10072*** 0.32787*** 0.26879*** 0.08264*** 0.08799*** 0.14553*** 0.11386*** 0.07337*** 0.09987*** 0.11131*** 0.06778*** 0.06752*** 0.03098** 0.00111 0.04048**

NAJ 0.26131** 0.37323*** 0.08161*** 0.32471*** 0.24539*** 0.12037*** 0.11698*** 0.34790*** 0.28848*** 0.08465*** 0.09454*** 0.16401*** 0.12908*** 0.08458*** 0.11395*** 0.12757*** 0.07705*** 0.06672*** 0.03822** -0.00516 0.04366**

Mde 0.24490** 0.34801*** 0.09080*** 0.29481*** 0.22763*** 0.12383*** 0.07944*** 0.32968*** 0.26414*** 0.07121*** 0.08743*** 0.14897*** 0.10039*** 0.06227*** 0.09964*** 0.12544*** 0.07664*** 0.06614*** 0.00940 0.01763 0.02861*

Lko 0.26259** 0.37363*** 0.10065*** 0.32607*** 0.23879*** 0.14113*** 0.08261*** 0.35493*** 0.29075*** 0.07431*** 0.08622*** 0.15288*** 0.11064*** 0.06393*** 0.10724*** 0.13507*** 0.09234*** 0.07819*** 0.01605 0.01075 0.01673

Lim 0.23316** 0.33213*** 0.06311*** 0.28249*** 0.21548*** 0.10337*** 0.10231*** 0.30914*** 0.25485*** 0.06904*** 0.09615*** 0.16187*** 0.12630*** 0.08452*** 0.08632*** 0.12383*** 0.07184*** 0.06465*** 0.02123** -0.01469 0.01684

Tmn 0.22312** 0.31174*** 0.06825*** 0.25886*** 0.20140*** 0.09808*** 0.08506*** 0.28931*** 0.23503*** 0.06349*** 0.08237*** 0.14026*** 0.10617*** 0.06403*** 0.08183*** 0.10320*** 0.05726*** 0.05307*** 0.01540** -0.00755 0.02410**

FBa 0.23659** 0.33944*** 0.10788*** 0.29388*** 0.23493*** 0.13102*** 0.09039*** 0.32311*** 0.25909*** 0.11562*** 0.13119*** 0.18906*** 0.14948*** 0.10750*** 0.15725*** 0.16966*** 0.13900*** 0.11140*** 0.02362** 0.06764** 0.09215***

FTi 0.21341** 0.31630*** 0.08631*** 0.27012*** 0.21262*** 0.10174*** 0.08048*** 0.29938*** 0.23633*** 0.10556*** 0.12168*** 0.17508*** 0.13791*** 0.09679*** 0.14259*** 0.16095*** 0.12688*** 0.10296*** 0.02011** 0.05768** 0.09159***

MoB 0.27490** 0.34598*** 0.12154*** 0.30788*** 0.25575*** 0.18834*** 0.16563*** 0.32111*** 0.27839*** 0.07650*** 0.10867*** 0.18771*** 0.16734*** 0.10839*** 0.11590*** 0.10192*** 0.06846** 0.05295*** 0.09174*** 0.03910** 0.04109**

Moz 0.30371** 0.39341*** 0.12902*** 0.35110*** 0.28381*** 0.20759*** 0.18140*** 0.36844*** 0.31917*** 0.08244*** 0.12758*** 0.21687*** 0.18705*** 0.12852*** 0.11610*** 0.12863*** 0.08962*** 0.08242*** 0.09613*** 0.02327 0.01253

Ku 0.48796** 0.58306*** 0.44293*** 0.60210*** 0.52421*** 0.52480*** 0.49666*** 0.57152*** 0.54412*** 0.35360*** 0.38845*** 0.48383*** 0.52117*** 0.43642*** 0.50898*** 0.29486*** 0.41006*** 0.31014*** 0.40581*** 0.45029*** 0.49903***

Khw 0.31655** 0.42460*** 0.15126*** 0.37354*** 0.30512*** 0.22365*** 0.20096*** 0.40061*** 0.34196*** 0.13746*** 0.16468*** 0.22969*** 0.20507*** 0.16427*** 0.19556*** 0.08259** 0.08169** 0.06262*** 0.11821*** 0.07045** 0.13767***

Population units

 



Table S6 (continued) 

 

Yor Hid Maf Kot Mas FBo Dab Fal Fca Mad Po Ta Tup Oul Bak Bam Bis Ewo FTc CV Sen

Mar

MBb

Aar

Abb

Mzt

Sah

Mau

Egy1

Egy2

Nub

Amh

Tig

Gur

Oro

Som

Tur

Kik

Nai

Fni

Hau

Tug

Yor 0.00000

Hid -0.00705 0.00000

Maf 0.02494 -0.00174 0.00000

Kot 0.08632** 0.04882* 0.05221* 0.00000

Mas 0.04327** 0.00386 0.02314 0.00051 0.00000

FBo 0.02934** 0.06153** 0.05104** 0.13038*** 0.08174*** 0.00000

Dab 0.02095 -0.00911 0.03013 0.08607** 0.02109 0.06030** 0.00000

Fal 0.04368** 0.01714 0.05252** 0.07753** 0.02371 0.10037*** 0.03647* 0.00000

Fca 0.03892** 0.02640 0.05058** 0.09282*** 0.04388** 0.04045** 0.01139 0.04552** 0.00000

Mad 0.02969** 0.01853 0.06349*** 0.09052*** 0.03829** 0.06561*** 0.01910 0.00271 0.00688 0.00000

Po 0.02978** 0.00478 0.03311** 0.06207** 0.02580 0.06849*** -0.02367 0.02735 0.01237 0.01631 0.00000

Ta 0.01729 -0.00561 0.04152** 0.02445 -0.00952 0.07596** -0.00700 -0.00715 0.00930 -0.01611 -0.01437 0.00000

Tup 0.04326** 0.02000 0.04948** 0.03982 0.03731* 0.09259*** 0.00137 0.03232 0.01814 0.01107 -0.01770 -0.02213 0.00000

Oul 0.01883 0.00649 0.02601 0.05673** 0.02249 0.04856** 0.00314 -0.00143 0.00279 -0.01747 -0.00406 -0.01791 -0.00848 0.00000

Bak 0.03959** 0.00005 0.03893** 0.05415** 0.03658** 0.10414*** 0.00189 0.04776** 0.03908** 0.04243** 0.01363 0.01933 0.01487 0.01957 0.00000

Bam 0.02477* -0.00297 0.02589* 0.03791* 0.00609 0.09069*** 0.04107** -0.00882 0.04462** 0.01232 0.03248** -0.00558 0.03215** 0.00343 0.02986* 0.00000

Bis 0.04315** 0.00680 0.06662*** 0.05766** 0.02780** 0.09578*** 0.02209 0.03910** 0.02317* 0.00701 0.03107** -0.00116 0.02214 0.01430 0.01458 0.02306* 0.00000

Ewo 0.03998** 0.00069 0.04779** 0.05904** 0.02146 0.08786*** 0.01802 0.02533** 0.02359** 0.01170 0.02997** 0.00953 0.03339** 0.00959 0.00197 0.01044 -0.00944 0.00000

FTc 0.03171** 0.03630** 0.02925** 0.09974*** 0.05356*** -0.00929 0.04084** 0.09690*** 0.03067** 0.06018*** 0.05185*** 0.06074** 0.07787*** 0.04468** 0.08239*** 0.07802*** 0.07092*** 0.06480*** 0.00000

CV 0.01600* 0.00274 0.04208*** 0.09293*** 0.03811** 0.04834*** 0.02509* 0.03581*** 0.03741*** 0.02145** 0.03074** 0.01744 0.05007** 0.01768* 0.05450*** 0.03127*** 0.04528*** 0.03884*** 0.03348*** 0.00000

Sen 0.03059** 0.01621 0.02312* 0.07587** 0.01886 0.02374** 0.03351** 0.03223** 0.02859** 0.01797 0.03716** 0.01665 0.05417** 0.01035 0.07534*** 0.02871** 0.05099*** 0.04464*** 0.00921 0.00880 0.00000

Ser -0.00196 0.01719 0.02398 0.08879** 0.04607** 0.00940 0.03788 0.03845** 0.01380 0.00463 0.03971** 0.01758 0.04032 -0.00676 0.05881** 0.02692 0.04380** 0.04035** 0.01565 0.00920 -0.00180

Wol 0.01760 0.04081** 0.04025** 0.10380*** 0.07188*** 0.02972** 0.07079** 0.06671*** 0.03965** 0.03387** 0.06620*** 0.04660** 0.06459** 0.01617 0.08149*** 0.04934*** 0.07049*** 0.06678*** 0.03575** 0.02812*** 0.02201**

Mak 0.09615*** 0.09912*** 0.12084*** 0.17345*** 0.13388*** 0.07718*** 0.13140*** 0.13934*** 0.11550*** 0.10733*** 0.12232*** 0.12514*** 0.14618*** 0.10583*** 0.14697*** 0.12636*** 0.13671*** 0.12203*** 0.05625*** 0.04535*** 0.06208***

Bab 0.01425 0.03461 0.04558** 0.05579** 0.03747* 0.01753 0.05703** 0.06262** 0.02824 0.02642 0.04682** 0.02075 0.04629* 0.01554 0.06683** 0.04079** 0.05090** 0.04894** 0.01112 0.01134 0.00922

Mwk 0.01251 0.01070 0.04154** 0.07901** 0.03164** 0.04671*** 0.04560** 0.02752** 0.03813** 0.01549 0.04204** 0.01070 0.05159** 0.01434 0.06641*** 0.01882** 0.04874*** 0.04351*** 0.03776** -0.00192 0.00236

EJA 0.03183** 0.01350 0.02657** 0.06580** 0.02262 0.04906*** 0.02781 0.05029*** 0.04057** 0.03989** 0.03267** 0.02488 0.05125** 0.02343* 0.05464*** 0.04005** 0.05670*** 0.04491*** 0.02412** 0.00608 0.00441

BJG 0.00686 0.01407 0.01485 0.06355** 0.02447 -0.00053 0.03483 0.03740** 0.02938** 0.02449 0.03444** 0.02637 0.05359** 0.00687 0.05483** 0.02489 0.05243** 0.03370** -0.00805 0.00235 -0.01125

BLE 0.00117 -0.00413 0.00990 0.07360*** 0.03499** 0.02995** 0.03237** 0.04121** 0.03640** 0.03272** 0.03689** 0.03270** 0.05483** 0.01857 0.03524** 0.01981** 0.04175*** 0.02423** 0.01571 0.00864 0.01464*

PBO 0.02876** 0.01525 0.02305** 0.08848*** 0.04400** 0.04529*** 0.06063*** 0.04696*** 0.05019*** 0.03750** 0.05680*** 0.04235** 0.07273*** 0.02458** 0.07572*** 0.03140** 0.06223*** 0.05019*** 0.02589** 0.00768* 0.00143

FUL 0.02737** 0.03352** 0.07107*** 0.10989*** 0.05800*** 0.03156** 0.06566** 0.04864*** 0.03742** 0.02652** 0.06544*** 0.04039** 0.08140*** 0.02903** 0.08566*** 0.04335*** 0.05899*** 0.04954*** 0.03043** 0.01058** 0.01095

MNK 0.02742** 0.01354 0.03199** 0.08477*** 0.04720** 0.04607*** 0.05725** 0.05922*** 0.05380*** 0.04519** 0.05380*** 0.04588** 0.07211*** 0.03465** 0.06752*** 0.03975** 0.05855*** 0.04631*** 0.02056** 0.00545 0.01111

NAJ 0.01612 -0.00813 -0.00160 0.08872*** 0.04051** 0.04927** 0.04376** 0.05286** 0.04208** 0.03974** 0.04740** 0.03937** 0.06389** 0.02736 0.05558** 0.02703** 0.05084** 0.04064** 0.02097 0.00428 0.00550

Mde 0.01421 0.04276** 0.05756*** 0.08749** 0.05213** 0.00909 0.05395** 0.05036** 0.02683** 0.01821 0.04706** 0.02698 0.05424** 0.01157 0.07429*** 0.04157** 0.05292*** 0.04824*** 0.01657 0.02525*** 0.01598

Lko 0.00778 0.02813 0.05367** 0.11406*** 0.05630** 0.02286 0.06362** 0.04118** 0.04420** 0.01514 0.06906*** 0.03911** 0.08356*** 0.01569 0.07893*** 0.02839** 0.04401** 0.03612** 0.02803** 0.02225** 0.01359

Lim 0.02957** 0.00846 0.04205** 0.08752*** 0.02427** 0.05232*** 0.03205* 0.02914** 0.04263** 0.02515** 0.03731** 0.01635 0.06071** 0.02300* 0.06834*** 0.02805** 0.05523*** 0.04458*** 0.03430** -0.00344 -0.00333

Tmn 0.01471 0.00551 0.03273** 0.06980*** 0.02410** 0.03078** 0.03519** 0.03591*** 0.03123** 0.02350** 0.03631*** 0.01979 0.05547*** 0.01981** 0.05293*** 0.02232** 0.03765*** 0.02755** 0.01421* 0.00411 0.00364

FBa 0.05076** 0.08583*** 0.06690*** 0.14694*** 0.10461*** -0.01215 0.09722*** 0.12327*** 0.05799*** 0.08120*** 0.09968*** 0.10284*** 0.11901*** 0.06480*** 0.12909*** 0.10785*** 0.11531*** 0.10525*** -0.00235 0.05771*** 0.03036**

FTi 0.05386** 0.07371*** 0.06176*** 0.13584*** 0.08810*** -0.00849 0.08688*** 0.11790*** 0.04515** 0.08088*** 0.08855*** 0.09439*** 0.11551*** 0.06874*** 0.12256*** 0.10121*** 0.10623*** 0.09492*** -0.01258 0.05165*** 0.02461**

MoB 0.05419** 0.02329 0.04998** 0.08454** 0.05276** 0.13221*** 0.07442** 0.02184** 0.10309*** 0.06969*** 0.07296*** 0.05468** 0.08403*** 0.04763** 0.04220*** 0.01006 0.07425*** 0.04113*** 0.12724*** 0.06689*** 0.08266***

Moz 0.05641** 0.03987** 0.09096*** 0.12060*** 0.06849*** 0.15208*** 0.09021** 0.01061 0.11614*** 0.05682** 0.08565*** 0.04111** 0.09195*** 0.05169** 0.08062*** 0.01695 0.08550*** 0.06872*** 0.15703*** 0.06029*** 0.08472***

Ku 0.45659*** 0.46387*** 0.44500*** 0.52295*** 0.45021*** 0.41009*** 0.48644*** 0.42669*** 0.43528*** 0.44809*** 0.43932*** 0.48700*** 0.48586*** 0.45056*** 0.43285*** 0.42943*** 0.42117*** 0.41444*** 0.42707*** 0.33627*** 0.40751***

Khw 0.09761*** 0.07904** 0.09715*** 0.14096*** 0.10678*** 0.13797*** 0.08728** 0.11020*** 0.11702*** 0.13170*** 0.09328*** 0.10171** 0.10963*** 0.10375*** 0.09020*** 0.11142*** 0.11770*** 0.11293*** 0.13676*** 0.10588*** 0.12749***

Population units

 



Table S6 (continued) 
 

Ser Wol Mak Bab Mwk EJA BJG BLE PBO FUL MNK NAJ Mde Lko Lim Tmn FBa FTi MoB Moz Ku Khw

Mar

MBb

Aar

Abb

Mzt

Sah

Mau

Egy1

Egy2

Nub

Amh

Tig

Gur

Oro

Som

Tur

Kik

Nai

Fni

Hau

Tug

Yor

Hid

Maf

Kot

Mas

FBo

Dab

Fal

Fca

Mad

Po

Ta

Tup

Oul

Bak

Bam

Bis

Ewo

FTc

CV

Sen

Ser 0.00000

Wol -0.02919 0.00000

Mak 0.06888** 0.07710*** 0.00000

Bab -0.02248 -0.01155 0.02689 0.00000

Mwk -0.00824 0.00879 0.04712*** -0.01037 0.00000

EJA 0.01368 0.03095** 0.04376*** 0.00105 0.00513 0.00000

BJG -0.01182 0.00715 0.02231 -0.02276 -0.00454 -0.01179 0.00000

BLE 0.00261 0.01873* 0.04843*** 0.00335 0.00693 0.00846 -0.01667 0.00000

PBO 0.00482 0.01653* 0.04072*** 0.00866 0.00170 0.00354 -0.00843 0.00255 0.00000

FUL 0.00525 0.02424* 0.03939*** 0.00342 0.00259 0.02458** -0.00548 0.01631** 0.01398* 0.00000

MNK 0.01753 0.02963** 0.01863* 0.00333 0.00504 -0.00058 -0.01283 -0.00283 -0.00863 0.01283 0.00000

NAJ -0.00091 0.01115 0.05228** 0.01055 0.00064 0.00174 0.00049 -0.00860 -0.01396 0.02828** -0.00996 0.00000

Mde -0.00793 0.01054 0.05949*** -0.01548 0.01202 0.03405** -0.01204 0.01483* 0.02710** 0.00655 0.02651** 0.03860** 0.00000

Lko -0.00773 0.01213 0.07755*** 0.01067 0.01209 0.04485** -0.00427 0.00816 0.01638 0.00376 0.02347** 0.02465 -0.00534 0.00000

Lim 0.01413 0.03623** 0.04569*** 0.01255 -0.00628 -0.00149 -0.00225 0.01341 0.00454 0.00765 0.00530 0.00622 0.02951** 0.02838* 0.00000

Tmn 0.01044 0.02981** 0.03986*** 0.00047 0.00124 0.00915 -0.01365 -0.00186 0.00473 0.00374 -0.00113 0.00536 0.00874 0.00699 0.00157 0.00000

FBa 0.00878 0.02306* 0.06143*** 0.01025 0.05001*** 0.05337*** 0.00098 0.03669** 0.04255*** 0.03224** 0.04430*** 0.04991** 0.01351 0.02776* 0.06095*** 0.03854*** 0.00000

FTi 0.02563 0.04232** 0.05268*** 0.01681 0.04911*** 0.04622*** -0.00101 0.03196** 0.03769*** 0.02701** 0.03378** 0.04397** 0.01771 0.03357* 0.05051*** 0.02630** -0.01116 0.00000

MoB 0.07589*** 0.09511*** 0.15575*** 0.09517*** 0.06398*** 0.07880*** 0.05949** 0.04291*** 0.07145*** 0.08491*** 0.07565*** 0.06587*** 0.09031*** 0.07108*** 0.06858*** 0.06137*** 0.15143*** 0.14938*** 0.00000

Moz 0.07062** 0.09067*** 0.17053*** 0.09817*** 0.04894*** 0.08753*** 0.08260** 0.06742*** 0.07885*** 0.08168*** 0.09187*** 0.08010*** 0.09472*** 0.07358*** 0.06105*** 0.07190*** 0.17283*** 0.17750*** 0.02174*** 0.00000

Ku 0.47144*** 0.43328*** 0.42708*** 0.48865*** 0.40918*** 0.40401*** 0.45818*** 0.39230*** 0.38307*** 0.39689*** 0.40178*** 0.45769*** 0.41353*** 0.46003*** 0.39990*** 0.35695*** 0.43088*** 0.43365*** 0.35950*** 0.39581*** 0.00000

Khw 0.11466*** 0.12738*** 0.19527*** 0.12050*** 0.11403*** 0.10041*** 0.11369*** 0.09823*** 0.12267*** 0.14148*** 0.12151*** 0.10770*** 0.13585*** 0.14910*** 0.11659*** 0.11253*** 0.16771*** 0.16935*** 0.11012*** 0.11092*** 0.23083*** 0.00000

Population units

 
Note: Population codes as in Table S2. Significance levels: * - P<0.05, ** - P<0.01; *** - P<0.001 

 



Table S7a – Analysis of Molecular Variance (AMOVA) of mtDNA haplogroups in African populations (1023 permutations) 
 

  
 

 Among groups Among populations within groups Within populations 

Criteria Ethnic clusters % Va FCT P % Vb FSC P % Vc FST P 

 

 
 

African continent 

 

� Northwest 

� Northeast 

� West 
� Central 

� East 
� South 
 

11.97 
 

0.05544 
 

 
0.11970 

 

0.00000± 
0.00000 

 
4.79 

 
0.02219 

 

 
0.05442 

 

0.00000± 
0.00000 

 
83.24 

 
0.38552 

 

 
0.16760 

 

0.00000± 
0.00000 

 

Sub-Sahara 

 

� West 

� Central 
� East 

� South 
 

4.01 

 

0.01855 

 

0.04007 

 

0.00000± 

0.00000 
 

4.74 

 

0.02194 

 

0.04935 

 

0.00000± 

0.00000 
 

91.26 

 

0.42257 

 

0.08744 

 

0.00000± 

0.00000 
 G

e
o
g
ra
p
h
y
 

 

West Africa 

 

� Senegal 
� Mali 
� Guinea-Bissau 
� Sierra-Leone 

� Burkina-Faso 
 

0.70 

 

0.00311 

 

0.00696 

 

0.06452± 
0.00816 

 

1.42 

 

0.00633 

 

0.01427 

 

0.00000± 
0.00000 

 

97.89 

 

0.43754 
 

 

0.02113 

 

0.00000± 
0.00000 

 

African continent 

� Afro-Asiatic 

� Nilo-Saharan 
� Niger-Congo 
� Khoisan 

9.77 

 

0.04645 

 

0.09767 

 

0.00000± 

0.00000 

 

8.36 

 

0.03973 

 

0.09259 

 

0.00000± 

0.00000 

 

81.88 

 

0.38936 

 

0.18122 

 

0.00000± 

0.00000 

 

African continent 

 

� AA Semitic 

� AA Berber 

� AA Chadic 
� Nilo-Saharan 

� NC Bantu 
� NC Atlantic-Fulani 

� NC Atlantic 
� NC Mande 

� Khoisan 
 

11.14 
 

0.05139 
 

0.11142 
 

0.00000± 

0.00000 
 

4.69 
 

0.02162 
 

0.05274 
 

0.00000± 

0.00000 
 

84.17 
 

0.38823 
 

0.15828 
 

0.00000± 

0.00000 
 

Sub-Sahara 

 

� AA Semitic 
� AA Chadic 

� Nilo-Saharan 
� NC Bantu 
� NC Atlantic Fulani 
� NC Atlantic 

� NC Mande 
(excluding Khoisan) 
 

4.51 
 

0.02082 
 

0.04514 
 

0.00000± 

0.00000 

 

2.49 
 

0.01147 
 

0.02604 
 

0.00000± 

0.00000 

 

93.00 
 

0.42886 
 

0.07001 
 

0.00000± 

0.00000 

 

Sub-Sahara 
Niger-Congo 

 

� NC Bantu 

� NC Atlantic Fulani 
� NC Atlantic 

� NC Mande 
 

3.41 
 

0.01559 
 

0.03412 
 

0.00000± 

0.00000 
 

2.42 
 

0.01104 
 

0.02501 
 

0.00000± 

0.00000 
 

94.17 
 

0.43035 
 

0.05827 
 

0.00000± 

0.00000 
 

L
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West Africa 
 

 

� NC Atlantic Fulani 
� NC Atlantic 
� NC Mande 

 

0.68 
 

0.00304 
 

0.00680 
 

0.02542± 
0.00489 

 

1.57 
 

0.00704 
 

0.01584 
 

0.00000± 
0.00000 

 

97.75 
 

0.43701 
 

0.02254 
 

0.00000± 
0.00000 

 

 
 

Geographic and linguistic assignment according to information in Table S2. 
 



Table S7b – Analysis of Molecular Variance (AMOVA) of mtDNA haplogroups in Guinea-Bissau ethnic groups (1023 permutations) 
 

 

 
 

 Among populations Among populations within groups Within populations 

 

Criteria 
Ethnic clusters % Va FCT P % Vb FSC P % Vc FST P 

 

 
 
 

Geography 
 

 

� Fula, Mandinga 
� Felupe-Djola, Papel, 
Balanta  

� Bijagós 
� Nálu 
 

-0.44 -0.00196 -0.00435 
0.78592± 

0.01115 
0.74 0.00332 0.00733 

0.05279± 

0.00628 
99.70 0.44942 0.00300 

0.11828± 

0.01036 

 

 
� Fula, Mandinga 
� Felupe-Djola, Papel, 

Balanta, Nálu 
� Bijagós 
 

-0.03 -0.00013 -0.00029 
0.55230± 
0.01714 

0.44 0.00199 0.00440 
0.143099±
0.01145 

99.59 0.44942 0.00411 
0.13001± 
0.00945 

Linguistic 

 
� Bijagós 
Felupe-Djola, Balanta, 

Papel 
� Nálu 
� Fula, Mandinga 
 

0.02 0.00010 0.00023 
0.45552± 
0.01517 

0.41 0.00184 0.00407 
0.17302± 
0.01258 

99.57 0.44942 0.00430 
0.11926± 
0.00942 

 
 

 

 
� Bijagós 

� Felupe-Djola, Balanta 
� Papel 
� Fula 

� Nálu, Mandinga 
 

0.30 0.00135 0.00300 
0.45259± 
0.01264 

0.15 0.00066 0.00146 
0.35191± 
0.01537 

99.55 0.44942 0.00446 
0.11241± 
0.00891 

 

 
 

 

� Bijagós 
� Felupe-Djola, Balanta, 
Papel, Nalú, Fula  

� Mandinga 
 

-1.32 -0.00590 -0.01317 
0.94624± 

0.00699 
0.99 0.00442 0.00973 

0.01369± 

0.00309 
100.33 0.44942 -0.00331 

0.11730± 

0.01278 

 

 
Religion* 

 
� Felupe-Djola, Papel, 
Nalú, Bijagós 

� Fula, Mandinga 

 

0.37 0.00165 0.00366 
0.28152± 

0.01063 
0.23 0.00102 0.00227 

0.30596± 

0.01463 
99.41 0.44840 0.00592 

0.14272± 

0.01117 

  
* mostly Animists versus mostly Muslims. Negative values mean that one of the units is more similar to one in other cluster. 
 
 
 
 
 
 
 
 
 

 



 
Table S8a – Statistical indices calculated from the mtDNA nucleotidic sequences (by haplogroup) 
 

Haplogroup L0a L1b L1c L2a L2b L2c L2d L3b L3d L3e L3f L3h M1 U5 U6 

N 19 38 19 61 29 61 7 32 35 27 9 13 4 10 8 

n hp 6 18 14 40 9 29 6 16 18 12 7 5 2 2 3 

n trans 6 18 27 35 12 29 16 14 19 16 11 5 1 2 2 

n transv 2 1 1 2 0 1 1 1 0 0 0 0 0 0 0 

n subst 8 19 28 37 12 30 17 15 19 16 11 5 1 2 2 

polim sites 8 18 28 36 12 29 17 15 19 16 11 5 1 2 2 

Mean 
pairwise 
difference 

1.0567 2.7408 8.8072 3.8681 1.8487 2.1114 9.6884 3.1240 3.7427 3.3413 4.3514 1.1586 0.5065 0.4105 0.6893 

sd 0.7320 1.4859 4.2507 1.9696 1.0918 1.1935 5.0609 1.6635 1.9345 1.7691 2.3731 0.7979 0.5234 0.4093 0.5802 

Nucl 
diversity 

0.0028 0.0073 0.0234 0.0103 0.0049 0.0056 0.0257 0.0083 0.0099 0.0089 0.0115 0.0031 0.0013 0.0011 0.0018 

sd 0.0022 0.0044 0.0126 0.0058 0.0032 0.0035 0.0154 0.0049 0.0057 0.0052 0.0071 0.0024 0.0017 0.0012 0.0018 

Gene 

diversity 
0.6023 0.9260 0.9708 0.9787 0.6404 0.8311 0.9524 0.9415 0.9378 0.8519 0.9444 0.6923 0.5000 0.2000 0.6071 

sd 0.1242 0.0255 0.0239 0.0077 0.0934 0.0490 0.0955 0.0202 0.0237 0.0476 0.0702 0.1187 0.2652 0.1541 0.1640 

Tajima D -1.8824 -1.2756 -0.0920 -1.7255 -1.3846 -2.1705 1.0809 -0.6811 -0.7935 -0.8409 0.0096 -1.0688 -0.6124 -1.4009 -0.4479 

P (sim<obs) 0.0150 0.0870 0.5360 0.0180 0.0720 0.0030 0.8970 0.2660 0.2290 0.2390 4.0687 0.1690 0.3680 0.7049 0.3500 

Fu's Fs -2.2625 -10.6175 -3.2076 -26.0725 -2.7564 -27.1834 -0.1804 -7.7759 -8.3836 -3.3959 -1.7403 -1.4540 0.1719 0.5862 -0.4776 

P 0.0370 0.0000 0.0890 0.0000 0.0480 0.0000 0.3740 0.0010 0.0020 0.0530 0.1280 0.0650 0.3560 0.4340 0.1250 

Harpending's 

Raggedness 
index 

0.0627 0.0311 0.0190 0.0265 0.1675 0.0205 0.0522 0.0384 0.0249 0.0604 0.0340 0.0746 0.2500 0.7200 0.2411 

P 0.8600 0.6200 0.4300 0.2700 0.2000 0.9300 0.9700 0.5600 0.5200 0.2500 0.9400 0.7800 0.9100 0.6300 0.3000 

 
 

Abbreviations as follows: “n hp” – number haplotypes, “n trans” – number of transitions, “n transv” – number of transversions, “n subst” – number of substitutions, “polim” 
– polymorphic, “sd” –standard deviation. Note: Calculated with a Kimura-2P parameter (gamma 0.26; Meyer et al. 1999). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S8b – Statistical indices calculated from the mtDNA nucleotidic sequences (by ethnic 
group) 

 

Ethnic group 
Felupe-
Djola 

Bijagós Balanta Papel Fulbe Mandenka Nalú 

N 50 22 62 77 77 58 26 

n hp 38 15 50 50 51 50 20 

n trans 47 35 53 56 57 61 41 

n transv 4 3 7 5 5 4 2 

n subst 51 38 6 61 62 65 43 

polim sites 49 37 54 58 59 64 43 

Mean pairwise difference 8.0743 10.0005 10.6808 8.8267 8.9865 9.4867 9.0886 

sd 3.8122 4.7542 4.9293 4.1150 4.1841 4.4162 4.3219 

Nucl diversity 0.0214 0.0265 0.0283 0.0234 0.0238 0.0252 0.0241 

sd 0.0112 0.0141 0.0145 0.0121 0.0123 0.0130 0.0128 

Gene diversity 0.9902 0.9567 0.9921 0.9802 0.9764 0.9915 0.9692 

sd 0.0056 0.0276 0.0046 0.0068 0.0083 0.0064 0.0220 

Tajima D -1.1713 -0.5317 -0.6401 -1.1065 -1.1236 -1.3601 -1.0881 

P (sim<obs) 0.1236 0.3191 0.2793 0.0138 0.1336 0.0833 0.1468 

Fu's Fs -24.9468 -2.5533 -24.6740 -24.8486 -24.8353 -24.8188 -7.4231 

P 0.0000 0.1430 0.0000 0.0000 0.0000 0.0000 0.0070 

Harpending's Raggedness 

index 
0.0046 0.0079 0.0039 0.0044 0.0056 0.0034 0.0091 

P 0.9400 0.9700 0.9200 0.8800 0.8300 0.9700 0.8600 

  
Abbreviations as follows: “n hp” – number haplotypes, “n trans” – number of transitions, “n transv” – number of 
transversions, “n subst” – number of substitutions, “polim” – polymorphic, “sd” –standard deviation. Note: 
Calculated with a Kimura-2P parameter (gamma 0.26; Meyer et al. 1999). 

 



Table S9 –Y-chromosome SNP-defined haplogroups and associated extended Y-STR haplotypes among Guinea-Bissau ethnic groups  
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B
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P
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F
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M
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N
a
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H1 A1 14 12 30 23 10 11 14 14 8 12 15,16 1

H2 A1 14 13 30 23 11 11 14 14 8 13 16,16 1

H3 A1 14 13 31 22 11 11 14 14 8 12 17,17 1

H4 A1 14 13 31 22 11 11 14 14 8 14 17,19 1

H5 A1 15 13 32 23 11 11 13 14 8 12 17,17 1

H6 A1 15 13 32 24 11 11 14 14 8 12 17,17 1

H7 A1 15 14 31 23 11 11 14 14 8 12 15,17 1

H8 B 15 13 29 24 10 14 12 14 10 12 14,15 1

H9 DE 13 12 28 21 11 11 13 14 8 11 15,16 1

H10 E1* 15 12 29 22 11 10 13 17 10 11 15,16 1

H11 E1* 15 12 29 22 11 11 13 17 10 11 15,15 1

H12 E1* 15 12 29 22 11 11 13 17 10 12 14,14 1

H13 E1* 15 12 30 21 10 10 13 17 10 13 14,15 1

H14 E1* 15 12 30 21 10 11 13 17 10 12 15,16 1

H15 E1* 15 13 29 22 11 11 14 17 10 12 14,14 1

H16 E1* 15 13 31 24 10 10 14 17 10 12 16,17 1

H17 E1* 15 14 29 22 10 10 14 17 10 12 14,17 1

H18 E1* 15 14 31 22 10 11 14 17 10 13 14,16 1

H19 E1* 16 12 29 22 10 11 13 17 8 11 15,15 1

H20 E1* 16 12 30 22 9 11 14 16 10 13 16,16 1

H21 E1* 16 14 29 23 11 10 13 17 10 12 15,16 1

H22 E2 14 12 28 24 10 11 13 13 11 11 19,19 1

H23 E3* 13 13 30 22 10 11 14 14 10 12 14,17 1

H24 E3* 13 14 31 21 10 11 14 15 10 11 16,17 1

H25 E3* 14 14 32 21 10 10 14 14 10 11 17,17 1

H26 E3a 13 13 30 21 10 11 14 14 11 14 15,16 1

H27 E3a 13 13 31 23 10 11 13 14 10 11 16,17 1

H28 E3a 13 13 31 24 10 11 14 14 10 12 16,17 1

H29 E3a 14 13 30 21 10 11 14 15 11 13 18,18 1

H30 E3a 14 13 30 21 10 13 14 14 11 11 16,19 1

H31 E3a 15 12 29 21 10 11 13 13 11 12 15,16 1

H32 E3a 15 12 29 22 10 11 13 17 10 12 14,15 1

H33 E3a 15 12 29 22 10 11 13 17 10 13 13,17 1

H34 E3a 15 12 29 22 10 11 13 17 10 13 15,17 1

H35 E3a 15 12 29 22 11 10 13 16 8 11 15,15 1

H36 E3a 15 12 29 22 11 11 13 17 10 12 14,14 1

H37 E3a 15 12 30 21 10 11 14 13 11 11 15,16 1

H38 E3a 15 12 30 21 10 11 14 13 11 12 15,16 1

H39 E3a 15 12 30 21 10 11 14 13 11 13 15,16 1

H40 E3a 15 12 30 21 10 11 14 13 11 13 16,16 1

Ethnic group
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p

Y-STR marker

 
 



Table S9 (continued) 
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H41 E3a 15 12 31 21 10 11 13 14 11 11 15,18 1

H42 E3a 15 13 29 21 10 11 14 14 11 12 16,17 1

H43 E3a 15 13 29 21 10 11 14 14 11 12 16,18 1

H44 E3a 15 13 29 22 10 11 14 14 11 11 16,17 1

H45 E3a 15 13 30 21 10 10 14 14 11 11 16,16 1

H46 E3a 15 13 30 21 10 11 13 14 11 11 16,17 1

H47 E3a 15 13 30 21 10 11 13 14 11 12 15,16 1

H48 E3a 15 13 30 21 10 11 13 14 11 12 16,16 1

H49 E3a 15 13 30 21 10 11 13 17 10 11 14,15 1

H50 E3a 15 13 30 21 10 11 14 14 10 12 14,14 1

H51 E3a 15 13 30 21 10 11 14 14 11 11 16,17 1

H52 E3a 15 13 30 21 10 11 14 14 11 14 16,17 1

H53 E3a 15 13 30 21 10 11 14 14 12 12 17,17 1

H54 E3a 15 13 30 21 10 11 14 15 11 12 17,18 1

H55 E3a 15 13 30 21 10 11 15 14 11 12 15,16 1

H56 E3a 15 13 30 21 11 11 13 14 11 11 16,19 1

H57 E3a 15 13 30 21 11 11 14 14 11 11 16,17 1

H58 E3a 15 13 30 22 10 11 14 14 10 11 13,15 1

H59 E3a 15 13 30 22 10 11 14 15 11 12 15,16 1

H60 E3a 15 13 31 21 10 11 13 14 11 12 17,18 1

H61 E3a 15 13 31 21 10 11 13 14 11 13 16,18 1

H62 E3a 15 13 31 21 10 11 14 14 10 13 15,16 1

H63 E3a 15 13 31 21 10 11 14 14 11 11 16,16 1

H64 E3a 15 13 31 21 10 11 14 14 11 11 16,17 1

H65 E3a 15 13 31 21 10 11 14 14 11 12 15,16 1 1

H66 E3a 15 13 31 21 10 11 14 14 11 12 16,16 1

H67 E3a 15 13 31 21 10 11 14 14 11 12 17,18 1

H68 E3a 15 13 31 21 10 11 15 14 11 12 15,15 1

H69 E3a 15 13 31 21 11 11 13 14 11 11 16,18 1

H70 E3a 15 13 31 22 11 11 14 14 11 12 18,18 1

H71 E3a 15 13 32 21 10 11 13 14 11 11 16,16 1

H72 E3a 15 13 32 21 10 11 13 14 11 12 17,18 1

H73 E3a 15 13 32 21 10 11 14 14 10 13 15,16 1

H74 E3a 15 14 30 21 10 11 14 14 11 13 16,18 1

H75 E3a 15 14 31 21 10 11 14 14 11 12 14,14 2

H76 E3a 15 14 31 21 10 11 14 14 11 12 16,17 1

H77 E3a 15 14 31 21 11 11 13 14 11 12 16,18 1

H78 E3a 15 14 31 22 10 11 13 14 11 12 15,16 1

H79 E3a 15 14 31 22 10 11 13 17 10 13 14,17 1

H80 E3a 15 14 31 22 10 11 13 17 11 13 14,17 1
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H81 E3a 15 14 32 21 10 11 13 14 11 11 16,17 1

H82 E3a 15 14 32 21 10 11 13 14 11 12 16,17 1

H83 E3a 15 14 32 21 10 11 14 14 11 12 16,16 1

H84 E3a 16 11 28 21 10 11 13 14 11 12 16,17 1

H85 E3a 16 12 28 21 10 11 14 14 11 12 16,16 1

H86 E3a 16 12 30 21 10 11 14 14 11 13 15,16 1

H87 E3a 16 12 30 21 10 11 14 14 11 13 16,16 1

H88 E3a 16 12 30 21 11 11 14 14 11 12 17,17 1

H89 E3a 16 13 29 21 10 11 14 14 11 11 15,18 1

H90 E3a 16 13 29 21 10 11 14 14 11 11 16,18 1

H91 E3a 16 13 29 21 10 11 14 14 11 12 15,18 1

H92 E3a 16 13 29 21 10 11 14 14 11 12 16,16 1

H93 E3a 16 13 30 21 10 11 14 14 12 12 16,16 1

H94 E3a 16 13 30 21 11 11 14 14 11 11 17,17 1

H95 E3a 16 13 30 21 11 11 14 14 11 12 17,18 1

H96 E3a 16 13 30 22 10 11 14 14 12 12 16,16 1

H97 E3a 16 13 30 22 10 11 14 15 11 11 15,17 1

H98 E3a 16 13 31 21 10 11 14 14 10 12 16,16 1

H99 E3a 16 13 31 21 10 11 14 14 11 10 16,16 1

H100 E3a 16 13 31 21 10 11 14 14 12 11 16,16 1

H101 E3a 16 13 31 21 10 11 15 14 10 12 16,17 1

H102 E3a 16 13 31 22 10 11 14 14 11 12 14,17 1

H103 E3a 16 13 32 21 10 11 13 14 11 12 17,17 1

H104 E3a 16 13 32 21 10 11 14 14 11 10 16,16 1

H105 E3a 16 13 32 21 11 11 13 14 11 11 17,18 1

H106 E3a 16 13 32 21 12 11 14 14 11 13 15,17 1

H107 E3a 16 14 31 21 10 11 13 14 11 12 15,17 1

H108 E3a 16 14 31 21 10 11 14 14 10 12 16,18 1

H109 E3a 16 14 31 21 10 11 14 14 11 11 17,18 1

H110 E3a 16 14 31 21 10 11 14 14 11 12 16,16 1

H111 E3a 16 14 31 21 10 12 14 15 12 11 18,19 1

H112 E3a 16 14 31 22 10 11 13 14 11 13 16,16 1

H113 E3a 16 14 31 22 10 11 13 14 11 14 16,17 1

H114 E3a 16 14 31 22 10 11 13 15 11 12 16,17 1

H115 E3a 16 14 31 22 10 11 14 14 11 11 15,17 1

H116 E3a 16 14 31 22 10 11 14 15 11 11 16,18 1

H117 E3a 16 14 32 21 10 11 13 14 11 12 15,15 1

H118 E3a 16 14 32 21 10 11 14 14 11 11 15,17 1

H119 E3a 16 14 32 21 10 11 14 15 11 12 17,2 1

H120 E3a 16 14 32 21 10 11 14 15 11 13 20,21 1
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Table S9 (continued) 
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H121 E3a 17 12 29 21 10 11 14 14 11 13 17,17 2

H122 E3a 17 12 30 21 10 11 14 15 11 13 15,16 1

H123 E3a 17 12 32 22 11 11 13 17 8 11 15,15 1

H124 E3a 17 13 29 21 10 11 14 14 11 12 15,18 1

H125 E3a 17 13 30 21 10 11 13 14 11 12 17,18 1

H126 E3a 17 13 30 21 10 11 13 14 11 13 17,18 1

H127 E3a 17 13 30 21 10 11 14 14 11 11 17,17 2

H128 E3a 17 13 30 21 10 11 14 15 11 11 16,17 1

H129 E3a 17 13 30 21 11 11 13 14 11 11 17,17 1

H130 E3a 17 13 31 20 11 11 15 14 11 11 16,16 1

H131 E3a 17 13 31 21 10 11 13 14 11 10 15,16 1

H132 E3a 17 13 31 21 10 11 14 14 11 10 16,16 1

H133 E3a 17 13 31 21 10 11 14 14 11 12 17,17 1

H134 E3a 17 13 32 20 10 11 14 14 11 11 15,16 1

H135 E3a 17 13 32 21 10 11 13 14 11 10 16,17 1

H136 E3a 17 13 32 21 10 11 15 14 11 11 15,16 1

H137 E3a 17 13 32 22 10 11 13 15 11 13 16,17 1

H138 E3a 17 14 31 21 10 11 13 14 11 12 16,16 1

H139 E3a 17 14 31 21 10 11 14 15 11 12 18,2 1

H140 E3a 17 14 31 21 10 11 15 15 11 12 18,2 1

H141 E3a 17 14 31 21 11 10 14 14 11 12 16,18 1

H142 E3a 17 14 31 21 11 11 14 15 11 12 18,18 1

H143 E3a 17 14 31 22 10 11 13 14 11 12 15,17 1

H144 E3a 17 14 32 21 10 11 14 14 11 11 17,17 1

H145 E3a 17 15 31 22 10 12 13 15 11 13 17,17 1

H146 E3a7 15 12 30 21 10 11 14 13 11 12 15,16 1

H147 E3a7 16 14 31 21 10 11 13 14 11 13 17,17 1

H148 E3a7 17 13 30 21 10 12 14 14 11 13 18,18 1

H149 E3b* 13 12 30 22 9 11 13 14 10 13 14,17 1

H150 E3b* 13 13 29 24 11 11 14 14 10 13 14,16 1

H151 E3b* 13 13 30 22 9 11 12 14 10 13 13,16 1

H152 E3b* 13 13 30 22 9 12 12 14 10 12 16,17 1

H153 E3b* 13 13 30 23 10 13 13 14 11 12 16,16 1

H154 E3b* 13 13 30 24 10 10 13 14 10 13 15,16 1

H155 E3b1 13 13 30 24 10 11 13 14 10 12 16,17 12 2

H156 E3b1 13 13 30 24 10 11 13 14 10 12 17,17 12 1

H157 E3b1 13 13 30 24 10 11 14 14 10 13 16,16 11 1

H158 E3b1 13 13 30 24 10 12 13 15 10 12 15,15 11 1

H159 E3b1 13 13 31 24 10 12 14 15 10 13 16,16 12 1

H160 E3b1 13 13 31 23 10 11 13 14 10 11 15,16 11 1
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H161 E3b1 13 13 31 24 10 12 12 15 10 12 15,15 11 1

H162 E3b1 13 13 31 24 11 11 13 14 10 10 15,16 10 1

H163 E3b1 13 13 32 25 11 11 13 15 10 12 15,18 11 1

H164 E3b1 14 13 30 23 10 11 14 14 10 10 13,14 12 1

H165 R1b 14 13 29 24 10 13 13 15 12 12 11,14 1

H166 R1b 15 14 31 25 10 13 13 14 12 13 13,15 1

H167 E1* 12 29 22 10 10 14 12 11 15,16 1

H168 E1* 12 29 22 11 13 11 15,16 1

H169 E1* 12 30 22 11 13 12 13,16 1

H170 E1* 13 30 22 10 13 12 13,16 1

H171 E1* 14 22 10 13 13 15,17 1

H172 E3a 11 30 21 10 14 11 16,17 1

H173 E3a 16 11 21 10 13 14 1

H174 E3a 12 29 21 10 14 12 16,19 1

H175 E3a 12 29 21 10 14 14 16,17 1

H176 E3a 12 29 21 11 14 12 17,18 1

H177 E3a 12 29 21 11 14 14 13 16,17 1

H178 E3a 12 29 22 11 13 11 15,16 1

H179 E3a 12 29 22 11 13 12 14,14 1

H180 E3a 12 30 21 10 14 12 16,16 1

H181 E3a 12 30 21 10 14 13 14,17 1

H182 E3a 12 30 21 10 14 13 15,16 1

H183 E3a 13 28 21 10 13 12 16,17 1

H184 E3a 13 29 21 10 13 12 16,16 1

H185 E3a 13 29 21 10 14 12 16,18 1

H186 E3a 13 29 21 10 14 12 1

H187 E3a 13 30 20 10 14 11 15,16 1

H188 E3a 13 30 21 9 13 13 15,15 1

H189 E3a 13 30 21 9 13 13 15,16 1

H190 E3a 13 30 21 10 13 12 16,16 1

H191 E3a 13 30 21 10 14 12 14,14 1

H192 E3a 13 30 21 10 14 12 15,16 1

H193 E3a 13 30 21 10 14 12 17,17 1

H194 E3a 13 30 21 10 14 12 17,18 1

H195 E3a 13 30 21 10 14 13 16,18 1

H196 E3a 13 30 21 10 15 11 16,19 1

H197 E3a 13 30 21 10 15 12 15,15 1

H198 E3a 13 30 21 10 15 12 16,16 1

H199 E3a 13 30 21 11 12 11 17,17 1

H200 E3a 13 30 21 11 13 11 16,17 1
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H201 E3a 13 30 21 11 13 11 16,2 1

H202 E3a 13 30 21 11 14 11 17,17 1

H203 E3a 13 30 21 11 14 11 17,18 1

H204 E3a 13 31 21 10 14 10 16,16 1

H205 E3a 13 31 21 10 14 10 16,16 1

H206 E3a 13 31 21 10 14 11 15,16 1

H207 E3a 13 31 21 10 14 12 17,18 1

H208 E3a 13 31 22 10 14 15 12 13 16,17 1

H209 E3a 13 31 23 10 13 11 16,18 1

H210 E3a 13 32 21 11 13 12 17,17 1

H211 E3a 14 31 21 9 13 12 15,16 1

H212 E3a 14 31 21 10 15 11 16,16 1

H213 E3a 14 31 22 10 13 13 15,17 1

H214 E3a 14 32 21 10 14 10 16,16 1

H215 E3a 14 32 21 10 14 11 16,17 1

H216 E3a 14 32 21 10 14 12 14,14 1

H217 E3a 14 33 21 11 14 12 15,16 1

H218 E3a 16 14 21 10 10 14 14 8 13 1

H219 E3a 14 21 10 15 14 12 11 1

H220 E3b1 13 24 10 13 12 16,16 1
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Table S10 – African datasets used for comparison of Y-chromosome genetic profiles 
 

Geographic region/Ethnic group Abbreviation N Family Sublevel Reference

Northwest Africa

West Sahara Saharawis Sah 29 Afro-Asiatic Semitic Bosch et al.  2001

Morocco Arabs MAr 93 Afro-Asiatic Semitic Scozzari et al.  1999, 2000; Bosch et al . 2001

Berbers MBb 167 Afro-Asiatic Berber Scozzari et al.  2001, Bosch et al . 2001

Algeria Algerians Alg 32 Afro-Asiatic Mixed Semino et al.  2004

Arabs AAr 35 Afro-Asiatic Semitic Semino et al.  2004

Tunisia Tunisians Tun1 146 Afro-Asiatic Semitic Arredi et al.  2004

Tunisians Tun2 28 Afro-Asiatic Semitic Wood et al.  2005

Northeast Africa

Egypt Egyptians Egy1 73 Afro-Asiatic Mixed Arredi et al.  2004

Egyptians Egy2 92 Afro-Asiatic Mixed Wood et al.  2005

Sudan Sudanese Sud 40 Mixed Mixed Underhill et al.  2000

West Africa

Cape Verde Cape Verdeans CV 201 Creole Portuguese-based Gonçalves et al. 2005

Senegal/Gambia Mandinka Mak 39 Niger-Congo Manding Wood et al.  2005

Senegalese Se 139 Niger-Congo Mixed Semino et al.  2002

Wolof Wo 34 Niger-Congo Atlantic-Wolof Wood et al.  2005

Mali Mali Mal 44 Niger-Congo Mixed Underhill et al.  2000

Dogon Do 55 Niger-Congo Dogon Wood et al.  2005

Guinea-Bissau Felupe-Djola EJA 50 Niger-Congo Atlantic-Bak Present study

Bijagós BJG 21 Niger-Congo Atlantic-Bijagó Present study

Balanta BLE 26 Niger-Congo Atlantic-Bak Present study

Papel PBO 64 Niger-Congo Atlantic-Bak Present study

Fulbe FUL 59 Niger-Congo Atlantic-Fulani Present study

Mandenka MNK 45 Niger-Congo Manding West Present study

Nalú NAJ 16 Niger-Congo Atlantic-Nalu Present study

Burkina-Faso Fulbe FBF 20 Niger-Congo Fulani Scozzari et al.  1997, 1999

Mossi Mo 49 Niger-Congo Gur Scozzari et al.  1997, 1999

Rimaibe Ri 37 Niger-Congo Mande Scozzari et al.  1997, 1999

Ghana Ewe Ewe 30 Niger-Congo Kwa Wood et al.  2005

Ga Ga 29 Niger-Congo Kwa Wood et al.  2005

Fante Fan 32 Niger-Congo Kwa Wood et al.  2005

Central Africa

Chad Mandara Mad 28 Afro-Asiatic Chadic Wood et al.  2005

Ouldeme Ou1 52 Afro-Asiatic Chadic Scozzari et al.  1997, 1999; Wood et al.  2005

Podokwo Po 19 Afro-Asiatic Chadic Wood et al.  2005

North Cameroon Daba Dab 18 Afro-Asiatic Chadic Scozzari et al.  1997, 1999

Fali Fal 39 Niger-Congo Adamawa Scozzari et al.  1997, 1999

Tali Ta 15 Niger-Congo Adamawa Scozzari et al.  1997, 1999

Fulbe Fca 17 Niger-Congo Fulani Scozzari et al.  1997, 1999

South Cameroon Bakaka Bak 29 Niger-Congo Bantu Scozzari et al.  1999, Wood et al.  2005

Bamileke Bam 48 Niger-Congo Bantu Scozzari et al.  1997, 1999

Bassa Bis 11 Niger-Congo Bantu Wood et al.  2005

Ewondo Ewo 29 Niger-Congo Bantu Scozzari et al.  1997, 1999

Ngoumba Ng 31 Niger-Congo Bantu Wood et al.  2005

Bakola Bko 33 Niger-Congo Bantu Wood et al.  2005

CAR Biaka Pygmies Bik 51 Niger-Congo Bantu Underhill et al. 2000, Wood et al.  2005

DRC Mbuti Pygmies Mb 59 Niger-Congo Bantu Underhill et al. 2000, Wood et al.  2005

Nande Nad 18 Niger-Congo Bantu Wood et al.  2005

Herna Hen 18 Niger-Congo Bantu Wood et al.  2005

East Africa

Ethiopia Ethiopians Eth 88 Afro-Asiatic Mixed Underhill et al.  2000

Oromo Or 87 Afro-Asiatic Cushitic Semino et al.  2002, Wood et al.  2005

Amhara Am 66 Afro-Asiatic Semitic Semino et al.  2002, Wood et al.  2005

Uganda Ganda Gan 26 Niger-Congo Bantu Wood et al.  2005

Kenya Kikiu & Kamba K&K 42 Niger-Congo Bantu Wood et al.  2005

Maasai Maa 26 Nilo-Saharan Nilotic Wood et al.  2005

South Africa

Namibia Herero Her 24 Niger-Congo Bantu Wood et al.  2005

Ambo Am 22 Niger-Congo Bantu Wood et al.  2005

!Kung Sekele Ku 96 Khoisan Northern Scozzari et al.  1997, 1999; Wood et al.  2005

Tsumkwe San 29 Khoisan Central Wood et al.  2005

Dama 18 Khoisan Central Wood et al.  2005

Nama 11 Khoisan Central Wood et al.  2005

South Africa Sotho-Tswana ST 28 Niger-Congo Bantu Wood et al.  2005

Zulu Zu 29 Niger-Congo Bantu Wood et al.  2005

Xhosa Xh 80 Niger-Congo Bantu Wood et al.  2005

Shona Sh 49 Niger-Congo Bantu Wood et al.  2005

Khoisan Khoi 39 Khoisan Mixed Underhill et al.  2000

Linguistic

CKhoisan

 
 
Linguistic classification follows pertinent information from www.ethnologue.com. 
 
 

 Senegalese 



 
 
 
 
 
 
 

 
 
 

Figure S3 – Geographic location of the African datasets used for comparison of Y-chromosome 
genetic profiles (details in Table S10). 



 

Table S11 – Absolute frequencies of Y-chromosome haplogroups for several African populations, including Guinea-Bissau ethnic 
groups, and respective diversity indexes (H, sd) 
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A1-M31 0 0 0 2 0 0 0 0 0 0 0 0 1 2 0 0 1 1 1 0 1 5 1 0 0 0 0 0 0 0 0

A2-M14 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A3-M32 0 0 0 0 0 0 0 0 0 1 3 18 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

B1-M146 0 0 0 0 0 0 0 0 0 0 0 0 0 1 nd 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0

B2-M182 0 0 0 0 0 0 0 0 0 0 2 6 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0

E*-SRY4064 0 0 0 0 0 0 0 0 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E1-M33 1 0 0 1 2 0 1 1 0 0 1 1 10 1 7 4 15 25 17 1 3 13 4 4 2 2 0 2 0 1 1

E2-M75 0 0 0 0 0 0 0 0 0 0 0 2 0 1 4 1 0 1 1 0 0 0 1 0 0 0 2 10 0 0 0

E3*-PN2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 1 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1

E3a*-M2 1 0 3 3 7 0 0 2 0 0 2 0 32 31 112 23 9 21 29 16 19 44 43 37 12 18 33 21 22 18 14

E3a7-M191 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 3 0 0 0 0 1 2 0 0 11 3 7 10 13

E3b*-M35 0 0 1 0 8 1 1 5 0 2 8 0 0 7 2 0 0 1 0 0 1 2 2 0 0 1 0 0 0 1

E3b1-M78 0 21 5 7 6 2 4 8 4 17 29 7 2 1 0 0 0 0 3 1 0 6 0 1 0 0 0 0 0 0

E3b2-M81 22 16 23 44 67 17 14 56 10 7 0 2 6 1 1 2 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3b3-M123 0 0 0 0 0 1 0 2 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J-12f2.1 0 10 1 4 3 7 10 53 13 15 22 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R-M207 0 1 3 0 2 nd 0 10 1 9 7 0 46 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 2

Other 5 1 8 3 8 4 5 9 0 16 17 4 39 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H 0.4064 0.6811 0.6860 0.5139 0.5606 0.6694 0.7445 0.7129 0.6587 0.8349 0.8067 0.7474 0.8545 0.3698 0.3462 0.5348 0.7622 0.6505 0.5576 0.4143 0.4646 0.4871 0.4594 0.3192 0.4417 0.1895 0.5034 0.6111 0.4207 0.5123 0.6573

sd 0.1012 0.0331 0.0632 0.0721 0.0555 0.0720 0.0450 0.0236 0.0524 0.0165 0.0215 0.0542 0.0097 0.0981 0.0517 0.0980 0.0325 0.0394 0.0495 0.1241 0.1160 0.0632 0.0774 0.0864 0.1446 0.1081 0.0707 0.0667 0.0874 0.0626 0.0528

N 29 49 44 64 103 32 35 146 28 73 92 40 201 39 139 34 44 55 50 21 26 64 59 45 16 20 49 37 30 29 32
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A1-M31 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A2-M14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 15 0 0 0 0 6

A3-M32 4 0 0 0 2 0 0 0 0 0 0 1 1 12 9 10 2 1 7 0 0 25 11 2 1 4 0 11

B1-M146 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

B2-M182 1 0 5 7 0 0 0 7 3 5 24 32 0 9 0 1 0 1 2 0 0 7 12 5 5 4 5 11

E*-SRY4064 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 1 0 1 1 1 3 0 0

E1-M33 0 0 0 3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E2-M75 2 0 4 0 0 0 0 2 0 1 0 5 7 15 3 0 4 1 0 0 1 4 2 1 6 22 1 0

E3*-PN2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 13 6 0 0 0 0 0 0 0 0 0 0 0 0

E3a*-M2 3 0 5 18 0 17 19 18 19 7 7 4 9 3 0 0 8 14 3 9 11 21 7 10 10 27 25 7

E3a7-M191 1 0 0 16 0 12 27 14 6 17 20 18 14 0 0 0 12 16 1 8 7 15 5 6 6 16 18 0

E3b*-M35 0 0 0 0 0 0 0 0 0 0 0 0 5 6 16 7 0 8 9 0 1 11 2 2 0 4 0 4

E3b1-M78 0 1 1 0 0 0 0 0 0 0 0 0 0 20 30 17 0 1 4 0 0 0 0 0 0 0 0 0

E3b2-M81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3b3-M123 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 1 0 0 0 0 0 0 0 0 0 0 0 0

J-12f2.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 22 0 0 0 1 0 0 1 0 0 0 0 0

R-M207 17 18 37 10 2 0 0 1 1 0 0 0 0 1 0 0 0 0 0 4 1 0 2 0 0 0 0 0

Other 0 0 0 0 3 0 0 0 0 0 0 0 0 4 5 2 0 0 0 2 0 0 0 1 0 0 0 0

H 0.6138 0.1053 0.4781 0.7610 0.6985 0.5025 0.5363 0.6911 0.5345 0.6780 0.6180 0.6243 0.7492 0.8584 0.8121 0.7907 0.6892 0.7224 0.7938 0.7428 0.6710 0.8300 0.8427 0.8095 0.7906 0.7712 0.6063 0.7949

sd 0.0956 0.0920 0.0791 0.0263 0.1024 0.0397 0.0376 0.0402 0.0906 0.0658 0.0331 0.0462 0.0384 0.0144 0.0255 0.0267 0.0576 0.0373 0.0462 0.0515 0.0768 0.0147 0.0222 0.0485 0.0387 0.0243 0.0411 0.0262

N 28 19 52 54 17 29 48 42 29 33 51 59 36 88 87 66 26 42 26 24 22 96 58 28 29 80 49 39  
 

List of population datasets in Table S10 (units with N<20 not included). “1” and “2” denote distinct sets of the same population; “*” – only marker M35 was tested, 
limiting further resolution. 



Table S12 – Coalescence time estimates for the Guinea-Bissau Y-chromosome 
haplogroup variation 

 

 

Haplogroup N TMRCA (ky) sd (ky)

A1-M91 7 9.8 2.9

E1*-M33 12 18.7 3.6

E3a*-M2 125 20.5 4.7

E3b*-M35 6 16.9 5.9

E3b1-M78 11 11.5 3.1  
 

Time to the MRCA is calculated as in Zhivotovsky et al. 
(2004)

, and standard error as in Thomas et al. 
(1998)

. 

 

 

 

 

 

 

 

 

Table S13 – Molecular diversity index (RST) and TMRCA for haplogroup E3a*-M2, by 
ethnic group 

 

Ethnic group N RST sd TMRCA (ky) sd (ky)

Felupe-Djola 19 0.4429 0.2608 21.0 5.7

Bijagós 14 0.3861 0.2426 14.2 3.4

Balanta 16 0.5166 0.2895 29.0 6.9

Papel 22 0.4386 0.2532 16.1 4.7

Fulbe 21 0.3581 0.2114 13.8 4.0

Mandenka 23 0.5208 0.2979 23.5 4.4

Nalú 9 0.4229 0.2434 14.9 5.4  
 
Indexes calculated for 10 Y-STRs, except DYS385. RST is according to Reynolds et al. 

(1983)
 and TMRCA as 

in Zhivotovsky et al. 
(2004)

 and standard error as in Thomas et al. 
(1998)

. 
 

 

 

 

 

 

 



 
 

Table S14a – Exact matches of Y-chromosome haplotypes between Guinea-Bissau and other populations (for 10 Y-STR loci, except 
DYS437) 

 

 

  Y-STR marker Guinea-Bissau Populations 
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E3a 15 12 29 22 10 11 13 10 12 14,15 H32 1            1   

E3a 15 12 31 21 10 11 13 11 11 15,18 H41   1          1   

E3a 15 13 30 21 10 11 13 11 11 16,17 H46   1     1 1 1   1   

E3a 15 13 30 21 10 11 13 11 12 16,16 H48    1    1        

E3a 15 13 30 21 10 11 13 10 11 14,15 H49 1        1       

E3a 15 13 30 21 10 11 14 11 12 17,18 H54  1            1  

E3a 15 13 30 22 10 11 14 10 11 13,15 H58     1        1   

E3a 15 13 31 21 10 11 13 11 12 17,18 H60    1       1   1  

E3a 15 13 31 21 10 11 13 11 13 16,18 H61   1           1  

E3a 15 13 31 21 10 11 14 11 12 17,18 H67     1   1 1       

E3a 15 13 31 21 11 11 13 11 11 16,18 H69    1      1      

E3a 15 14 31 21 10 11 14 11 12 16,17 H76    1          1  

E3a 15 14 32 21 10 11 13 11 11 16,17 H81  1            1  

E3a 16 13 30 21 11 11 14 11 12 17,18 H95    1           1 

E3a 17 13 30 21 10 11 13 11 12 17,18 H125 1             3  

E3a 17 13 30 21 10 11 14 11 11 17,17 H127      2   1 1      

E3a 17 13 30 21 10 11 14 11 11 16,17 H128      1        1  

E3a 17 14 31 21 10 11 15 11 12 18,20 H140   1                       1   

E3b1 13 13 30 24 10 11 13 10 12 16,17 H155    2        1 6   

E3b1 13 13 30 24 10 11 13 10 12 17,17 H156    1         1   

R1b 14 13 29 24 10 13 13 12 12 11,14 H165  1           71   

  
* - Haplotype code as in supplementary data; 1- Alves et al. 2003; 2 – Zarrabeita et al. 2003; a - populational samples in YHRD database. 

 

 

 

 

 

 

 

 
 



Table S14b – Haplotype exact matches between Guinea-Bissau Y chromosomes and other populations (for 8 Y-STR loci, except 
DYS437, DYS438 and DYS439)  
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E1* 15 12 29 22 11 11 13 14,14 H12      1      3 

E3a 13 13 31 23 10 11 13 16,17 H27       1     3 

E3a 15 12 29 22 10 11 13 14,15 H32 1           7 

E3a 15 12 29 22 10 11 13 13,17 H33  1          7 

E3a 15 12 31 21 10 11 13 15,18 H41   1         2 

E3a 15 13 29 21 10 11 14 16,17 H42      1      1 

E3a 15 13 29 21 10 11 14 16,18 H43      1      5 

E3a 15 13 30 21 10 11 13 16,17 H46   1         12 

E3a 15 13 30 21 10 11 13 15,16 H47    1    1    7 

E3a 15 13 30 21 10 11 13 16,16 H48    1      2  7 

E3a 15 13 30 21 10 11 13 14,15 H49 1           3 

E3a 15 13 30 21 10 11 14 14,14 H50      1      1 

E3a 15 13 30 21 10 11 14 16,17 H51,H52    1 1       7 

E3a 15 13 30 21 10 11 14 17,17 H53    1        5 

E3a 15 13 30 21 10 11 14 17,18 H54  1          6 

E3a 15 13 30 21 11 11 14 16,17 H57      1      1 

E3a 15 13 30 22 10 11 14 13,15 H58     1   1  1  4 

E3a 15 13 30 22 10 11 14 15,16 H59     1       3 

E3a 15 13 31 21 10 11 13 17,18 H60    1        4 

E3a 15 13 31 21 10 11 13 16,18 H61   1         5 

E3a 15 13 31 21 10 11 14 15,16 H62,H65   1 1 1       1 

E3a 15 13 31 21 10 11 14 16,16 H63,H66   1 1      1  5 

E3a 15 13 31 21 10 11 14 16,17 H64    1    1  1 1 8 

E3a 15 13 31 21 10 11 14 17,18 H67     1       4 

E3a 15 13 31 21 11 11 13 16,18 H69    1    2    6 

E3a 15 13 32 21 10 11 14 15,16 H73   1         1 

E3a 15 14 31 21 10 11 14 16,17 H76    1        2 

E3a 15 14 31 21 11 11 13 16,18 H77     1       4 

E3a 15 14 32 21 10 11 13 16,17 H81,H82  2          4 

E3a 15 14 32 21 10 11 14 16,16 H83  1          1 

E3a 16 11 28 21 10 11 13 16,17 H84    1      1  1 

E3a 16 12 30 21 10 11 14 15,16 H87     1       2 

E3a 16 13 30 21 10 11 14 16,16 H93     1       3 

  
 



 

Table S14b (continued) 

 

  
Y-STR marker Guinea-Bissau Populations 
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E3a 16 13 30 21 11 11 14 17,17 H94 1           1 

E3a 16 13 30 21 11 11 14 17,18 H95    1        3 

E3a 16 13 31 21 10 11 15 16,17 H101 1         1  2 

E3a 16 14 31 21 10 11 14 17,18 H109 1           3 

E3a 16 14 31 22 10 11 13 16,16 H112     1       1 

E3a 16 14 31 22 10 11 13 16,17 H113,H114   1   1      1 

E3a 16 14 31 22 10 11 14 16,18 H117   1         1 

E3a 17 13 30 21 10 11 13 17,18 H125,H126 2           6 

E3a 17 13 30 21 10 11 14 17,17 H127      2   1   18 

E3a 17 13 30 21 10 11 14 16,17 H128      1      5 

E3a 17 13 30 21 11 11 13 17,17 H129      1      1 

E3a 17 13 31 21 10 11 14 16,16 H132   1         1 

E3a 17 14 31 21 10 11 15 18,2 H140  1          1 

E3a 17 14 31 22 10 11 13 15,17 H143       1             2 

E3b* 13 13 30 23 10 13 13 16,16 H153     1   

 1   1 

E3b1 13 13 30 24 10 11 13 16,17 H155    2    

    

40 

E3b1 13 13 30 24 10 11 13 17,17 H156    1    8    15 

E3b1 13 13 30 24 10 11 14 16,16 H157    1        1 

R1b 14 13 29 24 10 13 13 11,14 H165  1          71 

R1b 15 14 31 25 10 13 13 13,15 H166    1        7 

  
Note: This table summarizes the 8-STR matches in addition to the described in Table S14a. 
 “*” – Haplotype code as in Table S9; 1- Alves et al. 2003; 2 – Zarrabeita et al. 2003; 3 - Arroyo-Pardo et al. 2005; 4 - Quintana-Murci et al. 2004; a - populational 
samples in YHRD database (nr pop – number of matching populations, details on request from the author). 

 

 

 

 

 

 

 

 

 



 

Table S15 - FST distance matrix for Y-chromosome pool of African populations 
 

Ar Mar Aar Bb MBb Sah Alg Tun1 Tun2 Egy1 Egy2 Sud Eth Or Amh Gan K&K Maa DRCBantu

Ar 0.00000

Mar 0.11326*** 0.00000

Aar 0.06182* 0.04003* 0.00000

Bb 0.16735*** 0.02620 0.09136** 0.00000

MBb 0.18330*** 0.01374 0.09017*** 0.00013 0.00000

Sah 0.25933*** 0.03657 0.13763** 0.01443 0.00880 0.00000

Alg 0.10248** 0.01310 -0.01133 0.03087 0.03055* 0.06381* 0.00000

Tun1 0.09882*** 0.08747*** -0.00245 0.12085*** 0.12151*** 0.16784*** 0.01747 0.00000

Tun2 0.07754* 0.14170*** 0.00872 0.18317*** 0.19048*** 0.27053*** 0.05101 -0.00342 0.00000

Egy1 0.07361*** 0.12246*** 0.06264** 0.23531*** 0.22822*** 0.26995*** 0.11813*** 0.09425*** 0.09639*** 0.00000

Egy2 0.08210*** 0.18145*** 0.10404*** 0.28962*** 0.28305*** 0.33296*** 0.17501*** 0.13575*** 0.12293*** 0.00716 0.00000

Sud 0.21310*** 0.23452*** 0.21057*** 0.34081*** 0.32620*** 0.37658*** 0.25294*** 0.24605*** 0.26285*** 0.14350*** 0.14299*** 0.00000

Eth 0.14128*** 0.19005*** 0.16485*** 0.28503*** 0.27611*** 0.32070*** 0.20730*** 0.20304*** 0.20261*** 0.08961*** 0.07995*** 0.07495*** 0.00000

Or 0.10501*** 0.20193*** 0.15776*** 0.29833*** 0.28779*** 0.34553*** 0.21083*** 0.19647*** 0.18962*** 0.06720*** 0.04385*** 0.11749*** 0.05669*** 0.00000

Amh 0.10227*** 0.22421*** 0.11435*** 0.31232*** 0.30821*** 0.36768*** 0.18661*** 0.12752*** 0.09872*** 0.05334*** 0.02704* 0.12651*** 0.09357*** 0.04243** 0.00000

Gan 0.31528*** 0.29777*** 0.28173*** 0.40647*** 0.37795*** 0.45027*** 0.32110*** 0.29324*** 0.32624*** 0.22770*** 0.23218*** 0.24797*** 0.17714*** 0.23008*** 0.24482*** 0.00000

K&K 0.29153*** 0.27430*** 0.26080*** 0.37944*** 0.34575*** 0.41550*** 0.29765*** 0.27414*** 0.30480*** 0.20892*** 0.20275*** 0.25044*** 0.17197*** 0.19165*** 0.21784*** 0.01396 0.00000

Maa 0.21542*** 0.23883*** 0.21009*** 0.35536*** 0.31772*** 0.40238*** 0.25522*** 0.23774*** 0.25822*** 0.14175*** 0.11898*** 0.08384** 0.07243*** 0.06071** 0.10156*** 0.19923*** 0.12945*** 0.00000

DRCBantu 0.28654*** 0.26859*** 0.25014*** 0.37462*** 0.34383*** 0.40862*** 0.28683*** 0.26618*** 0.29406*** 0.20116*** 0.20117*** 0.23469*** 0.14509*** 0.18793*** 0.21363*** -0.01118 0.00138 0.14418*** 0.00000

Po 0.51456*** 0.50494*** 0.51752*** 0.61541*** 0.56356*** 0.71982*** 0.56623*** 0.44085*** 0.56665*** 0.35940*** 0.38953*** 0.50489*** 0.39680*** 0.42437*** 0.45008*** 0.57368*** 0.51880*** 0.51522*** 0.51557***

Mad 0.34083*** 0.31376*** 0.31814*** 0.44279*** 0.40824*** 0.48902*** 0.35768*** 0.29528*** 0.34965*** 0.20230*** 0.23441*** 0.26163*** 0.21176*** 0.25910*** 0.27038*** 0.29894*** 0.28891*** 0.25642*** 0.27319***

Ou1 0.40823*** 0.38643*** 0.39872*** 0.49971*** 0.46251*** 0.55025*** 0.43641*** 0.35061*** 0.42823*** 0.26707*** 0.29786*** 0.38116*** 0.28882*** 0.33361*** 0.35436*** 0.40773*** 0.38254*** 0.37261*** 0.37196***

SCBantu 0.31371*** 0.28955*** 0.28300*** 0.39315*** 0.36617*** 0.43043*** 0.31926*** 0.29080*** 0.32332*** 0.22969*** 0.23144*** 0.26072*** 0.18623*** 0.24144*** 0.25406*** 0.02376 0.02527 0.20063*** 0.04516*

Bak 0.39808*** 0.37276*** 0.37169*** 0.47633*** 0.43841*** 0.53619*** 0.41218*** 0.35971*** 0.42006*** 0.30651*** 0.30622*** 0.36693*** 0.27683*** 0.31543*** 0.33249*** 0.05319 0.05001 0.29587*** 0.09336*

Bko 0.32031*** 0.30775*** 0.28838*** 0.40812*** 0.38433*** 0.44937*** 0.32628*** 0.29889*** 0.33131*** 0.23545*** 0.23907*** 0.26848*** 0.19975*** 0.24566*** 0.25835*** 0.01261 0.03876 0.22252*** 0.03642

Bik 0.35066*** 0.34275*** 0.32299*** 0.43310*** 0.40934*** 0.47039*** 0.35866*** 0.32534*** 0.36404*** 0.26784*** 0.26690*** 0.26799*** 0.21251*** 0.27725*** 0.28705*** 0.16173*** 0.15677*** 0.25254*** 0.16219***

Bam 0.39095*** 0.37322*** 0.36619*** 0.46576*** 0.43427*** 0.51310*** 0.40307*** 0.35508*** 0.40978*** 0.30412*** 0.30409*** 0.36195*** 0.27839*** 0.31195*** 0.32927*** 0.01201 0.03809 0.30134*** 0.06032*

Ewo 0.38372*** 0.35308*** 0.35646*** 0.46120*** 0.42303*** 0.51868*** 0.39659*** 0.34638*** 0.40316*** 0.29086*** 0.29100*** 0.34218*** 0.25475*** 0.30307*** 0.31842*** 0.13075** 0.09883** 0.27155*** 0.14756**

NCAdaw 0.27560*** 0.24883*** 0.24553*** 0.35595*** 0.33204*** 0.38521*** 0.28102*** 0.25292*** 0.28007*** 0.18223*** 0.19248*** 0.22945*** 0.16574*** 0.21203*** 0.22226*** 0.04508* 0.04013* 0.17449*** 0.05766**

Fca 0.30759*** 0.27979*** 0.24546*** 0.40885*** 0.37498*** 0.43982*** 0.30236*** 0.27609*** 0.32047*** 0.17799*** 0.19716*** 0.20782*** 0.18745*** 0.20980*** 0.22545*** 0.30016*** 0.28573*** 0.22617*** 0.27061***

Mb 0.34838*** 0.34363*** 0.32127*** 0.42994*** 0.40846*** 0.46434*** 0.35588*** 0.32443*** 0.36101*** 0.26724*** 0.26658*** 0.24879*** 0.19475*** 0.27334*** 0.28368*** 0.20979*** 0.20884*** 0.25261*** 0.19641***

CV 0.14284*** 0.13898*** 0.11706*** 0.24845*** 0.23087*** 0.27258*** 0.16356*** 0.13709*** 0.15539*** 0.03280*** 0.04914*** 0.15542*** 0.09566*** 0.10148*** 0.10359*** 0.17418*** 0.14821*** 0.12405*** 0.15188***

Sen 0.52745*** 0.49787*** 0.51451*** 0.56869*** 0.52379*** 0.62230*** 0.54646*** 0.45908*** 0.55645*** 0.44034*** 0.42825*** 0.50930*** 0.39859*** 0.43487*** 0.46414*** 0.36783*** 0.30203*** 0.43949*** 0.35912***

Wo 0.37417*** 0.32999*** 0.33807*** 0.43456*** 0.39286*** 0.48716*** 0.37587*** 0.33186*** 0.39319*** 0.28771*** 0.29021*** 0.34880*** 0.25765*** 0.29400*** 0.31611*** 0.22646*** 0.17286*** 0.26949*** 0.21322***

Mak 0.44925*** 0.42549*** 0.43826*** 0.51848*** 0.47430*** 0.59426*** 0.47941*** 0.40221*** 0.49008*** 0.36076*** 0.35588*** 0.43336*** 0.32338*** 0.36392*** 0.38889*** 0.31093*** 0.25256*** 0.37392*** 0.30069***

Mal 0.20148*** 0.12765*** 0.13593*** 0.18995*** 0.16967*** 0.21533*** 0.14925*** 0.16476*** 0.20175*** 0.17391*** 0.20438*** 0.21616*** 0.17277*** 0.21070*** 0.22178*** 0.22279*** 0.20142*** 0.19851*** 0.20342***

Do 0.33451*** 0.31457*** 0.29687*** 0.40482*** 0.37828*** 0.43726*** 0.34102*** 0.30789*** 0.34590*** 0.25367*** 0.25443*** 0.28698*** 0.22126*** 0.26299*** 0.27667*** 0.21829*** 0.19351*** 0.24642*** 0.20744***

EJA 0.38092*** 0.35396*** 0.34868*** 0.44724*** 0.41274*** 0.49119*** 0.39148*** 0.34370*** 0.39818*** 0.29501*** 0.29331*** 0.34533*** 0.26193*** 0.29884*** 0.31761*** 0.24589*** 0.20458*** 0.28388*** 0.23491***

BJG 0.39069*** 0.38469*** 0.39112*** 0.49605*** 0.45487*** 0.57829*** 0.43989*** 0.37639*** 0.44228*** 0.30683*** 0.30099*** 0.38014*** 0.27664*** 0.30947*** 0.33553*** 0.27262*** 0.21536*** 0.31258*** 0.26343***

BLE 0.40237*** 0.37880*** 0.38165*** 0.48391*** 0.44356*** 0.55239*** 0.42653*** 0.36832*** 0.43344*** 0.31253*** 0.30987*** 0.36436*** 0.27632*** 0.31274*** 0.33284*** 0.25287*** 0.20302*** 0.30039*** 0.24783***

PBO 0.42169*** 0.39253*** 0.39669*** 0.47982*** 0.44328*** 0.53023*** 0.43583*** 0.37558*** 0.44327*** 0.33463*** 0.33044*** 0.39241*** 0.30062*** 0.33803*** 0.35824*** 0.27120*** 0.22054*** 0.32646*** 0.26503***

FUL 0.40825*** 0.39621*** 0.40548*** 0.48884*** 0.45071*** 0.54944*** 0.44659*** 0.38101*** 0.45002*** 0.32789*** 0.31791*** 0.39620*** 0.29087*** 0.32419*** 0.35216*** 0.26798*** 0.21029*** 0.32108*** 0.26074***

MNK 0.49577*** 0.46806*** 0.47995*** 0.55583*** 0.50489*** 0.63196*** 0.52166*** 0.42941*** 0.53382*** 0.39624*** 0.38792*** 0.47192*** 0.35770*** 0.39627*** 0.42220*** 0.33206*** 0.25953*** 0.40579*** 0.31831***

NAJ 0.39454*** 0.37453*** 0.37491*** 0.48800*** 0.44577*** 0.56611*** 0.42338*** 0.36816*** 0.42969*** 0.30554*** 0.30357*** 0.36787*** 0.27306*** 0.31074*** 0.33133*** 0.25182*** 0.19915*** 0.29861*** 0.24364***

Mo 0.40774*** 0.37848*** 0.38419*** 0.47441*** 0.43663*** 0.52706*** 0.42130*** 0.36541*** 0.42895*** 0.31915*** 0.31613*** 0.37844*** 0.28101*** 0.32152*** 0.34242*** 0.13470** 0.10725** 0.30183*** 0.15124***

Ri 0.35197*** 0.32408*** 0.32181*** 0.42778*** 0.39520*** 0.47349*** 0.36063*** 0.32191*** 0.36646*** 0.26599*** 0.26845*** 0.30952*** 0.20111*** 0.26648*** 0.28914*** 0.13064** 0.13713** 0.25107*** 0.12148**

FBF 0.50711*** 0.48060*** 0.48996*** 0.57720*** 0.52458*** 0.67630*** 0.53751*** 0.44569*** 0.55185*** 0.40472*** 0.40098*** 0.48035*** 0.36925*** 0.41054*** 0.43269*** 0.37228*** 0.29972*** 0.42935*** 0.35149***

Ewe 0.43418*** 0.40560*** 0.41164*** 0.50661*** 0.46364*** 0.57565*** 0.45296*** 0.38697*** 0.46241*** 0.33958*** 0.33739*** 0.40538*** 0.30623*** 0.34414*** 0.36441*** 0.17098** 0.13552** 0.33586*** 0.18916***

Ga 0.39380*** 0.36663*** 0.36639*** 0.47107*** 0.43293*** 0.53002*** 0.40739*** 0.35583*** 0.41508*** 0.30258*** 0.30216*** 0.36187*** 0.27214*** 0.31164*** 0.32849*** 0.07665* 0.06355* 0.28931*** 0.10948**

Fan 0.32902*** 0.30331*** 0.29717*** 0.41284*** 0.38047*** 0.45625*** 0.33605*** 0.30094*** 0.34055*** 0.23781*** 0.24160*** 0.29538*** 0.21634*** 0.24733*** 0.26446*** 0.00703 0.00483 0.21612*** 0.03407

Her 0.28183*** 0.24828*** 0.23817*** 0.37874*** 0.34636*** 0.41710*** 0.28173*** 0.24755*** 0.28223*** 0.16667*** 0.18062*** 0.24846*** 0.17681*** 0.21147*** 0.21745*** 0.02037 0.02095 0.18576*** 0.03936

Am 0.32259*** 0.29360*** 0.28835*** 0.41131*** 0.37506*** 0.46154*** 0.32893*** 0.29474*** 0.33435*** 0.22946*** 0.23254*** 0.28532*** 0.19206*** 0.23883*** 0.25637*** 0.01750 0.00720 0.19742*** 0.03396

Ku 0.23802*** 0.22161*** 0.20533*** 0.31045*** 0.28922*** 0.33472*** 0.23662*** 0.22610*** 0.24239*** 0.16199*** 0.15957*** 0.09075*** 0.09683*** 0.13615*** 0.14390*** 0.08303** 0.06980*** 0.04738** 0.07227***

cKhoisan 0.23303*** 0.22371*** 0.19872*** 0.31993*** 0.30276*** 0.34457*** 0.23333*** 0.22001*** 0.23322*** 0.15168*** 0.15587*** 0.09709*** 0.09215*** 0.14903*** 0.14846*** 0.14554*** 0.13826*** 0.09316*** 0.13232***

ST 0.25954*** 0.23114*** 0.21838*** 0.34889*** 0.31792*** 0.38218*** 0.25706*** 0.24058*** 0.26587*** 0.16765*** 0.16777*** 0.16936*** 0.11141*** 0.16928*** 0.18264*** 0.03921 0.01748 0.10206** 0.03654

Zu 0.26856*** 0.24716*** 0.23304*** 0.35811*** 0.33240*** 0.39428*** 0.27098*** 0.25214*** 0.27493*** 0.18469*** 0.18834*** 0.18990*** 0.10527*** 0.18873*** 0.20309*** 0.03103 0.05090* 0.14788*** 0.02831

Xh 0.27060*** 0.24979*** 0.23961*** 0.34182*** 0.32034*** 0.36920*** 0.27184*** 0.25555*** 0.27645*** 0.19564*** 0.19728*** 0.20495*** 0.11351*** 0.18883*** 0.20849*** 0.03394 0.05719** 0.14950*** 0.02008

Sh 0.35629*** 0.33136*** 0.32885*** 0.42906*** 0.39913*** 0.47120*** 0.36487*** 0.32646*** 0.37046*** 0.27263*** 0.27178*** 0.31446*** 0.23426*** 0.28143*** 0.29598*** 0.03545 0.03357 0.24772*** 0.06771*

Khoi 0.26397*** 0.24957*** 0.22766*** 0.35339*** 0.32748*** 0.38319*** 0.26359*** 0.24816*** 0.26958*** 0.17835*** 0.17576*** 0.07180** 0.09927*** 0.15532*** 0.15863*** 0.19323*** 0.16407*** 0.06120* 0.17235***

Population units

 



Table S15 (continued) 
 

Po Mad Ou1 SCBantu Bak Bko Bik Bam Ewo NCAdaw Fca Mb CV Sen Wo Mak Mal Do EJA

Ar

Mar

Aar

Bb

MBb

Sah

Alg

Tun1

Tun2

Egy1

Egy2

Sud

Eth

Or

Amh

Gan

K&K

Maa

DRCBantu

Po 0.00000

Mad 0.12924** 0.00000

Ou1 0.06594* 0.00747 0.00000

SCBantu 0.52694*** 0.28675*** 0.37105*** 0.00000

Bak 0.66615*** 0.39543*** 0.48233*** 0.02080 0.00000

Bko 0.56054*** 0.32000*** 0.40995*** 0.03667 0.10759* 0.00000

Bik 0.56630*** 0.35447*** 0.41822*** 0.10656** 0.25385*** 0.07212* 0.00000

Bam 0.61718*** 0.39136*** 0.47330*** 0.04608* 0.02886 0.03220 0.20355*** 0.00000

Ewo 0.63710*** 0.36084*** 0.44331*** 0.02874 0.02234 0.17788*** 0.25697*** 0.14228** 0.00000

NCAdaw 0.38989*** 0.17221*** 0.24693*** 0.00834 0.06692* 0.04826* 0.11225*** 0.07410** 0.06943* 0.00000

Fca 0.55962*** 0.28453*** 0.38509*** 0.30385*** 0.41195*** 0.31299*** 0.35001*** 0.40042*** 0.39101*** 0.22582*** 0.00000

Mb 0.55440*** 0.35085*** 0.40859*** 0.15675*** 0.31760*** 0.13127*** 0.00168 0.27710*** 0.30305*** 0.15588*** 0.34570*** 0.00000

CV 0.26021*** 0.11388*** 0.16203*** 0.15529*** 0.21558*** 0.19199*** 0.22927*** 0.23138*** 0.18784*** 0.10060*** 0.13491*** 0.23663*** 0.00000

Sen 0.70706*** 0.52744*** 0.57133*** 0.24125*** 0.21581*** 0.43629*** 0.49255*** 0.37537*** 0.08001** 0.27534*** 0.54361*** 0.51599*** 0.28805*** 0.00000

Wo 0.63786*** 0.38126*** 0.46017*** 0.13302*** 0.14016** 0.29171*** 0.36092*** 0.26854*** 0.03982 0.14986*** 0.34990*** 0.38604*** 0.17976*** 0.01329 0.00000

Mak 0.72644*** 0.47279*** 0.53472*** 0.19190*** 0.18780*** 0.37221*** 0.43683*** 0.33323*** 0.05954* 0.21822*** 0.49495*** 0.45990*** 0.24162*** -0.00228 0.01122 0.00000

Mal 0.48480*** 0.27850*** 0.35576*** 0.18942*** 0.27179*** 0.23278*** 0.25897*** 0.29460*** 0.23463*** 0.15087*** 0.10278** 0.26424*** 0.13174*** 0.37323*** 0.18931*** 0.30426*** 0.00000

Do 0.54366*** 0.33449*** 0.40792*** 0.16763*** 0.22672*** 0.24429*** 0.28869*** 0.27324*** 0.18382*** 0.14141*** 0.11485** 0.30578*** 0.16702*** 0.28475*** 0.13468*** 0.24371*** 0.07142** 0.00000

EJA 0.60257*** 0.37817*** 0.45108*** 0.16975*** 0.19425*** 0.29840*** 0.36124*** 0.28997*** 0.11849** 0.16213*** 0.24632*** 0.38294*** 0.18547*** 0.13541*** 0.03354 0.11947** 0.13898*** 0.03063 0.00000

BJG 0.71938*** 0.41438*** 0.49050*** 0.16231** 0.16854** 0.33457*** 0.40202*** 0.30698*** 0.04719 0.17554*** 0.43393*** 0.42759*** 0.20016*** 0.01068 0.00680 -0.01501 0.26437*** 0.20527*** 0.09470*

BLE 0.69336*** 0.41008*** 0.49130*** 0.15057*** 0.15369** 0.31543*** 0.38634*** 0.29071*** 0.04116 0.16770*** 0.38838*** 0.41218*** 0.20300*** 0.00126 -0.01829 -0.01078 0.22961*** 0.15480** 0.04264

PBO 0.63396*** 0.41804*** 0.48297*** 0.17107*** 0.17225*** 0.32534*** 0.39330*** 0.29854*** 0.07252** 0.18164*** 0.36405*** 0.41864*** 0.21216*** 0.04535** -0.00189 0.03335 0.21576*** 0.11786*** 0.01489

FUL 0.64753*** 0.42429*** 0.48781*** 0.16076*** 0.15254*** 0.33236*** 0.39973*** 0.29260*** 0.04377* 0.18303*** 0.43170*** 0.42624*** 0.20954*** 0.01063 -0.00017 -0.00603 0.26961*** 0.19611*** 0.08119**

MNK 0.75317*** 0.50835*** 0.56342*** 0.20426*** 0.18720*** 0.39384*** 0.45594*** 0.33940*** 0.06195* 0.22941*** 0.51767*** 0.48180*** 0.26334*** -0.00719 0.01088 -0.00068 0.32657*** 0.23915*** 0.10712**

NAJ 0.73740*** 0.41362*** 0.49794*** 0.14667** 0.15371* 0.31505*** 0.38627*** 0.28980*** 0.03686 0.16311** 0.38746*** 0.41276*** 0.20011*** -0.00655 -0.02398 -0.02237 0.22230*** 0.14911** 0.03702

Mo 0.63577*** 0.39807*** 0.47369*** 0.06006* 0.01830 0.20785*** 0.31531*** 0.14259** -0.01260 0.10704*** 0.42108*** 0.35973*** 0.21071*** 0.07022** 0.04173* 0.05562* 0.26820*** 0.20810*** 0.12708***

Ri 0.58941*** 0.33220*** 0.41648*** 0.09126** 0.11957** 0.22371*** 0.30948*** 0.21549*** 0.06216* 0.12174*** 0.33151*** 0.32453*** 0.17326*** 0.12029*** 0.04635* 0.09353** 0.20476*** 0.15721*** 0.09702**

FBF 0.85165*** 0.53219*** 0.58994*** 0.23921*** 0.24798** 0.42753*** 0.48244*** 0.38712*** 0.10356* 0.25612*** 0.54484*** 0.50354*** 0.28312*** -0.00432 0.03238 0.00063 0.33690*** 0.25698*** 0.12488*

Ewe 0.70992*** 0.43534*** 0.51193*** 0.08059* 0.02545 0.23897*** 0.34479*** 0.16776** -0.01330 0.12679*** 0.45974*** 0.39044*** 0.23034*** 0.06272** 0.04935* 0.05331* 0.29130*** 0.22957*** 0.14215***

Ga 0.66070*** 0.38922*** 0.47601*** 0.02582 -0.02823 0.13677** 0.26913*** 0.06365 -0.00268 0.06941* 0.39496*** 0.32703*** 0.20614*** 0.15512*** 0.09095* 0.13185** 0.25114*** 0.19482*** 0.14668**

Fan 0.54912*** 0.29384*** 0.38855*** 0.00193 -0.00809 0.04335 0.18450*** 0.00365 0.04933 0.01457 0.30669*** 0.24693*** 0.15706*** 0.26121*** 0.14618*** 0.21758*** 0.20770*** 0.17940*** 0.17622***

Her 0.47244*** 0.20056*** 0.29803*** 0.01083 0.03249 0.05206 0.17435*** 0.04231 0.06229 -0,00898 0.25241*** 0.22690*** 0.08739*** 0.28002*** 0.14645*** 0.22561*** 0.18093*** 0.17427*** 0.17891***

Am 0.58030*** 0.29095*** 0.39169*** -0.00712 -0.01870 0.07415* 0.20437*** 0.03525 0.00510 0.01791 0.31227*** 0.25724*** 0.14338*** 0.18602*** 0.08698*** 0.14981** 0.19649*** 0.16581*** 0.13883**

Ku 0.41974*** 0.20649*** 0.30690*** 0.09062*** 0.15340*** 0.11732*** 0.16481*** 0.16115*** 0.14653*** 0.08574*** 0.19928*** 0.17921*** 0.11906*** 0.29585*** 0.17401*** 0.24085*** 0.15828*** 0.17380*** 0.19172***

cKhoisan 0.41901*** 0.20287*** 0.29496*** 0.12880*** 0.22983*** 0.14804*** 0.14153*** 0.23276*** 0.20337*** 0.10982*** 0.19778*** 0.13713*** 0.11896*** 0.38493*** 0.23540*** 0.31096*** 0.15925*** 0.19961*** 0.24291***

ST 0.50409*** 0.23885*** 0.33947*** -0.00754 0.06602* 0.05419* 0.09353** 0.09559** 0.04476 0.01203 0.23037*** 0.12487*** 0.10446*** 0.24150*** 0.10935** 0.18788*** 0.13823*** 0.13491*** 0.14437***

Zu 0.51088*** 0.24428*** 0.33927*** 0.00592 0.09224* 0.06857* 0.11384** 0.11915** 0.07131* 0.03239 0.24838*** 0.12767*** 0.12478*** 0.26574*** 0.13133*** 0.20603*** 0.15101*** 0.14803*** 0.16124***

Xh 0.45846*** 0.24231*** 0.32498*** 0.04577** 0.10197*** 0.10143* 0.18027*** 0.12666*** 0.09777*** 0.06761*** 0.25337*** 0.19264*** 0.13499*** 0.24053*** 0.13090*** 0.19124*** 0.17214*** 0.16276*** 0.16128***

Sh 0.57524*** 0.34244*** 0.42383*** -0.01194 -0.01105 0.06570* 0.17036*** 0.03393 0.01406 0.03382* 0.35698*** 0.23026*** 0.18777*** 0.21198*** 0.12627** 0.17341*** 0.22932*** 0.19126*** 0.17310***

Khoi 0.48530*** 0.23832*** 0.34295*** 0.15237*** 0.26736*** 0.19749*** 0.16450*** 0.28821*** 0.21494*** 0.13962*** 0.22186*** 0.15223*** 0.14034*** 0.39051*** 0.23517*** 0.32077*** 0.16994*** 0.21004*** 0.24822***

Population units

 



Table S15 (continued) 
 

BJG BLE PBO FUL MNK NAJ Mo Ri FBF Ewe Ga Fan Her Am Ku cKhoisan ST Zu Xh Sh Khoi

0.00000

-0.01714 0.00000

0.03024 -0.01171 0.00000

-0.02608 -0.01524 0.02078 0.00000

0.01077 -0.00491 0.02850 0.00699 0.00000

-0.03417 -0.04187 -0.01373 -0.02791 -0.01654 0.00000

0.05319* 0.04427 0.07685** 0.04515* 0.05444* 0.03888 0.00000

0.08499* 0.06649* 0.08589** 0.07549** 0.11835** 0.06359 0.05353* 0.00000

0.02361 0.00604 0.04011 0.02080 -0.01837 -0.00484 0.09347* 0.14441** 0.00000

0.05372 0.04397 0.08052** 0.04538* 0.04590 0.04281 -0.02059 0.08273* 0.09100* 0.00000

0.11538* 0.09910* 0.11894** 0.10189** 0.12574** 0.09664* -0.00640 0.08948* 0.18117* -0.00449 0.00000

0.18125** 0.16616*** 0.18224*** 0.17637*** 0.22256*** 0.16390** 0.05593* 0.11493** 0.26770*** 0.07514* 0.00383 0.00000

0.17694** 0.17031** 0.19039*** 0.18273*** 0.24414*** 0.16504** 0.08233* 0.11275** 0.28264*** 0.10614* 0.03990 -0.01381 0.00000

0.11934** 0.10784** 0.12945** 0.11192** 0.15891** 0.10382* 0.00714 0.05611* 0.21152** 0.02737 -0.01902 -0.02521 -0.01164 0.00000

0.21160*** 0.19069*** 0.21363*** 0.21370*** 0.25640*** 0.19636*** 0.16774*** 0.14399*** 0.27950*** 0.19070*** 0.15152*** 0.10437*** 0.08765*** 0.09127*** 0.00000

0.27057*** 0.25332*** 0.27742*** 0.28375*** 0.33751*** 0.25372*** 0.24544*** 0.19904*** 0.34914*** 0.26786*** 0.22656*** 0.16860*** 0.13365*** 0.15619*** 0.02215* 0.00000

0.15046** 0.13296** 0.15648*** 0.15155*** 0.20781*** 0.13019** 0.08139** 0.08036** 0.23977*** 0.10777** 0.06226* 0.02858 0.01930 0.00769 0.03173* 0.06432** 0.00000

0.17267*** 0.15676*** 0.17945*** 0.17413*** 0.23607*** 0.15235** 0.10028** 0.04354 0.26242*** 0.13423** 0.08836* 0.05428* 0.04335 0.02543 0.05875** 0.08173*** -0.01193 0.00000

0.17058*** 0.15661*** 0.17578*** 0.16716*** 0.21200*** 0.15530*** 0.10331*** 0.03425* 0.23733*** 0.13559*** 0.09857** 0.06835** 0.06064* 0.03644 0.06991*** 0.11446*** 0.02431 -0.00910 0.00000

0.15171** 0.13948** 0.16030*** 0.14474*** 0.17744*** 0.13677** 0.03184 0.09846** 0.21876*** 0.04526 -0.00585 -0.00634 0.01985 -0.01745 0.12048*** 0.17890*** 0.01988 0.04137 0.07105*** 0.00000

0.27713*** 0.25406*** 0.28095*** 0.28845*** 0.35085*** 0.25709*** 0.26562*** 0.21656*** 0.36356*** 0.29049*** 0.25721*** 0.20740*** 0.17413*** 0.18588*** 0.02544* 0.00504 0.06528** 0.09883*** 0.13658*** 0.20659*** 0.00000

Population units

 
 

Note: Population codes as in Table S10. Significance levels: * - P<0.05, ** - P<0.01; *** - P<0.001. 
 



Table S16a– Analysis of Molecular Variance (AMOVA) of Y-chromosome haplogroups in African populations (1023 permutations) 
 

  
 

 Among groups Among populations within groups Within populations 

Criteria Ethnic clusters % Va FCT P % Vb FSC P % Vc FST P 

 
 
 

African 
continent 

 
� Northwest 
� Northeast 
� East 
� Central 
� West 
� South 
 

15.34 
 

0.06941 
 

0.15336 
 

0.00000+
-0.00000 

 

12.5
9 
 

0.05700 
 

0.14874 
 

0.00000+
-0.00000 

 

72.07 
 

0.32620 
 

0.27928 
 

0.00000+
-0.00000 

 

Sub-Sahara 

 
� West 
� Central 
� East 
� South 
 

9.11 
 

0.03864 
 

0.09109 
 

0.00000+
-0.00000 

 

14.9
6 
 

0.06345 
 

0.16458 
 

0.00000+
-0.00000 

 

75.93 
 

0.32205 
 

0.24068 
 

0.00000+
-0.00000 

 

 
West Africa 

 
� Cape Verde 
� Senegal/Gambia 
� Mali 
� Guinea-Bissau 
� Ghana 
� Burkina-Faso 

 

16.62 
 

0.05712 
 

0.16620 
 

0.00000+
-0.00000 

 

2.44 
 

0.00839 
 

0.02929 
 

0.00000+
-0.00000 

 

80.94 
 

0.27816 
 

0.19062 
 

0.00000+
-0.00000 

 

G
e
o
g
ra
p
h
y
 

 
West Africa 

 
� Senegal/Gambia 
� Mali 
� Guinea-Bissau 
� Ghana 
� Burkina-Faso 

 

10.31 
 

0.02862 
 

0.10314 
 

0.00000+
-0.00000 

 

3.38 
 

0.00936 
 

0.03763 
 

0.00098+
-0.00098 

 

86.31 
 

0.23948 
 

0.13690 
 

0.00000+
-0.00000 

 

 
� Afro-Asiatic 
� Niger-Congo 
� Khoisan 

17.65 
 

0.08322 
 

0.17647 
 

0.00000+
-0.00000 

 

14.8
9 
 

0.07024 
 

0.18087 
 

0.00000+
-0.00000 

 

67.46 
 

0.31812 
 

0.32542 
 

0.00000+
-0.00000 

 

L
in
g
u
is
ti
c
s
 

African 
continent 

 
� AA Semitic 
� AA Berber 
� AA Chadic 
� NC Bantu 
� NC Atlantic-
Fulani 

� NC Atlantic 
� NC Mande 
� Khoisan 
 
 

21.92 
 

0.09557 
 

0.21923 
 

0.00000+
-0.00000 

 

8.45 
 

0.03685 
 

0.10825 
 

0.00000+
-0.00000 

 

69.63 
 

0.30353 
 

0.30375 
 

0.00000+
-0.00000 

 

  
 



Table S16a (continued) 
  

 
 Among groups Among populations within groups Within populations 

Criteria Ethnic clusters % Va FCT P % Vb FSC P % Vc FST P 

  

 

 
� AA Semitic 
� AA Chadic 
� NC Bantu 
� NC Atlantic 
Fulani 

� NC Atlantic 
� NC Mande 
(excluding 
Khoisan) 
 

23.30 
 

0.10101 
 

0.23299 
 

0.00000+
-0.00000 

 

8.97 
 

0.03891 
 

0.11700 
 

0.00000+
-0.00000 

 

67.73 
 

0.29361 
 

0.32274 
 

0.00000+
-0.00000 

 

 
� AA Semitic 
� AA Chadic 
� NC Bantu 
� NC Atlantic 
Fulani 

� NC Atlantic 
� NC Mande 
� Khoisan 
 

16.15 
 

0.06491 
 

0.16150 
 

0.00000+
-0.00000 

 

9.16 
 

0.03683 
 

0.10928 
 

0.00000+
-0.00000 

 

74.69 
 

0.30017 
 

0.25313 
 

0.00000+
-0.00000 

 

� AA Semitic 
� AA Chadic 
� NC Bantu 
� NC Atlantic 
Fulani 

� NC Atlantic 
� NC Mande 
(excluding 
Khoisan) 

16.79 
 

0.06583 
 

0.16787 
 

0.00000+
-0.00000 

 

10.0
7 
 

0.03951 
 

0.12107 
 

0.00000+
-0.00000 

 

73.14 
 

0.28683 
 

0.26862 
 

0.00000+
-0.00000 

 

 
 
 
 
 
 
 
 
 
 
 
 

Sub-Sahara 
 
 
 
 
 
 
 
 
 
 
 

� AA Semitic 
� AA Chadic 
� NC Bantu 
� NC Atlantic 
Fulani 

� NC Atlantic 
� NC Mande 
(excluding Khoisan 
and Pygmies) 
 

16.45 
 

0.06236 
 

0.16446 
 

0.00000+
-0.00000 

 

8.67 
 

0.03288 
 

0.10379 
 

0.00000+
-0.00000 

 

74.88 
 

0.28392 
 

0.25118 
 

0.00000+
-0.00000 

 

 

Sub-Sahara 
Niger-Congo 

 
� NC Adamawa 
� NC Atlantic-Bak 
� NC Mande 
� NC Atlantic 
Fulani 

� NC Kwa 
� NC Bantu 
� NC Atlantic 
 

7.30 
 

0.02494 
 

0.07304 
 

0.00000+
-0.00000 

 

7.04 
 

0.02404 
 

0.07593 
 

0.00000+
-0.00000 

 

85.66 
 

0.29252 
 

0.14343 
 

0.00000+
-0.00000 

 

 



Table S16a (continued) 

 
  

 
 Among groups Among populations within groups Within populations 

Criteria Ethnic clusters % Va FCT P % Vb FSC P % Vc FST P 

  
 

 

 
� NC Atlantic-Bak 
� NC Mande 
� NC Atlantic 
Fulani 

� NC Kwa 
� NC Atlantic 
 

2.51 
 

0.00681 
 

0.02510 
 

0.10264+
-0.01130 

 

7.25 
 

0.01964 
 

0.07432 
 

0.00000+
-0.00000 

 

90.24 
 

0.24469 
 

0.09755 
 

0.00000+
-0.00000 

 

 
� NC Atlantic 
Fulani 

� NC Atlantic 
� NC Mande 

 

0.02 
 

0.00006 
 

0.00021 
 

0.38416+
-0.01415 

 

9.39 
 

0.02536 
 

0.09390 
 

0.00000+
-0.00000 

 

90.59 
 

0.24469 
 

0.09409 
 

0.00000+
-0.00000 

 

 

West Africa 
 

 
� NC Atlantic-Bak 
� NC Mande 
� NC Atlantic 
Fulani 

� NC Kwa 
� NC Atlantic-
Dogon 

� NC Atlantic 
(other) 

 

7.05 
 

0.01921 
 

0.07052 
 

0.00098+
-0.00098 

 

3.10 
 

0.00844 
 

0.03334 
 

0.00196+
-0.00136 

 

89.85 
 

0.24469 
 

0.10151 
 

0.00000+
-0.00000 

 

  
 
Geographic and linguistic assignment according to information in Table S10. 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

Table S16b – Analysis of Molecular Variance (AMOVA) of Y chromosome haplogroups in Guinea-Bissau ethnic groups (1023 
permutations) 
 

 
 
 
 

 Among populations Among populations within groups Within populations 

 
Criteria 

Ethnic clusters % Va FCT P % Vb FSC P % Vc FST P 

 
 
 

 
Geography 
 

 
� Fula, Mandinga 
� Felupe-Djola, Papel, 

Balanta  
� Bijagós 
� Nálu 

 

  1.64 0.00394 0.01640 
0.40078+-
0.01505 

1.15 0.00277 0.01172 
0.14076+-
0.00895 

97.21 0.23349 0.02793 
0.02346+-
0.00640 

 

 
� Fula, Mandinga 

� Felupe-Djola, Papel, 
Balanta, Nálu 

� Bijagós 

 

2.07 0.00498 0.02069 
0.24536+-
0.01415 

0.98 0.00236 0.01002 
0.14956+-
0.01141 

96.95 0.23349 0.03050 
0.01466+-
0.00368 

Linguistic 

 
� Bijagós 

Felupe-Djola, Balanta, 
Papel 

� Nálu 

� Fula, Mandinga 
 

1.64 0.00394 0.01640 
0.39589+-

0.01520 
1.15 0.00277 0.01172 

1.00000+-

0.00000 
97.21 0.23349 0.02793 

0.02542+-

0.00468 

 

 
 

 
� Bijagós 
� Felupe-Djola, Balanta 
� Papel 

� Fula 
� Nálu, Mandinga 
 

-0.09 0.00021 -0.00087 
0.65200+-

0.01632 
2.45 0.00585 0.02445 

0.99413+-

0.00295 
97.64 0.23349 0.02360 

0.02639+-

0.00461 

 
 
 

 
� Bijagós 
� Felupe-Djola, Balanta, 

Papel, Nalú, Fula  
� Mandinga 
 

-0.07 0.00017 -0.00070 
0.45064+-
0.01714 

2.40 0.00573 0.02397 
0.99804+-
0.00196 

97.67 0.23349 0.02329 
0.02444+-
0.00475 

 
 

Religion* 

 
� Felupe-Djola, Papel, 
Nalú, Bijagós 

� Fula, Mandinga 
 

1.54 0.00373 0.01541 
0.28543+-
0.01182 

2.04 0.00495 0.02074 
0.08309+-
0.00843 

96.42 0.23361 0.03583 
0.01760+-
0.00338 

  
* mostly Animists versus mostly Muslims. 
 



Appendix 1 – Primers information and PCR conditions for mtDNA HVS-I, HVS-II and coding region sites 

 
1 – Torroni et al. 1993, 2 - Bandelt et al. 2001, 3 - Torroni et al. 1996, 4 - Hofmann et al. 1997, 5 - Finnila et al. 2000, 6 - Torroni et al. 1992. The remaining primers are in use by the EBC 
group, original reference not specified. * Allele-specific primer. 
Note: Some of the primers were originally described for determining other haplogroup-defining mutations than the above mentioned. In the present analysis only the nucleotide position of 
interest was considered for their use. 

Haplogroup Polimorphism 
 

Primer forward (5'-3') 
 

 
Primer reverse (5'-3') 

 

Annealing 
(ºC) 

 
Size 
(bp) 
 

 HVSI 15907 atacaccagtcttgtaaaccgg 16547 
1
 ggaacgtgtgggctatttaggctt 52 640 

 HVSII 029 
2
 ggtctatcaccctattaaccac 408

 2
 ctgttaaaagtgcataccgcca 52 379 

L2c 325CT 029 
2
 ggtctatcaccctattaaccac 408 

2
 ctgttaaaagtgcataccgcca 52 379 

L3h 1719GA 1615 
3
 acacaaagcacccaacttacacttagga 1894 

3
 ctttggctctccttgcaaagt 52 279 

L1b 2352TC 2245 aactgaactcctcacacccaattgga 2528 ctggtgatgctagaggtgatg 52 283 

L0-L1 2758GA 2706 * cccgtgaagaggcgggcata 3006 tgtcctgatccaacatcgag 52 300 

L0-L1 3594CT 3388 
3
 ctaggctatatacaactacgc 3717

 3 
ggctactgctcgcagtg 52 329 

L2d 3693GA 3388 
3
 ctaggctatatacaactacgc 3717 

3
 ggctactgctcgcagtg 52 330 

L2b 4158AG 4057 tcccctgaactctacacaac 4251 gggaatgctggagattgtaatg 52 194 

L3f1 4218TC 4057 tcccctgaactctacacaac 4251 gggaatgctggagattgtaatg 52 195 

L1c? 4685AG 4308 
3
 ggagcttaaaccccctta 4739 

3
 ggtagtattggttatggttc 52 431 

L3e4 5584AG 5424 
4
 taacaacgtaaaaataaaatgaca 5660 ctagtaagggcttggcttaa 52 236 

U5b 5656AG 5548 
5
 agccctcagtaagttgcaata 5677 ctagtaagggcttggcttaa 54 129 

L1c 7055AG 6890 
3
 aagcaatatgaaatgatctg 7131 

3
 cgtaggtttggtcta 52 241 

L3d 8618TC 8551 ttcattgcccccacaatcc 8806 ggacggtgtaaatgagtgag 56 257 

L3b 10086AG 9911 
6
 cgaagccgccgcctgatactgg 10107 

6
 gtagtaaggctaggagggag 60 196 

L1c 10321TC 10284 ccatgagccctacaaacaact 10484 gtaaatgaggggcatttggta 60 200 

N 10398AG 10284 ccatgagccctacaaacaact 10484 gtaaatgaggggcatttggta 60 200 

M 10400CT 10284 ccatgagccctacaaacaact 10484 gtaaatgaggggcatttggta 60 200 

L0-L1 10810TC 10672 gccatactagtctttgccgc 10959 attaggaggggggttgttag 56 287 

L3f1 11440GA 11158 
4
 cacccgatgaggcaaccagc 11502 

4
 agtgtgaggcgtattaccatagc 52 344 

L0a-f 11641AG 11295 tcactctcactgcccagaa 12017 
4
 tgagtgagccccattgtgttgtg 52 722 

U 12308AG 12104 
3
 ctcaaccccgacatcattacc 12338 

3
 attacttttatttggagttgcaccaaaatt 52 234 

U5b1 12618GA 12541 gccacaacccaaacaacc 12818 cgggcgtatcatcaactgatgag 52 277 

L0-L1,L3e1 13105AG 12744 cctattccaactgttcatcg 13154 agcagaaaatagcccactaa 52 410 

L2a3 13803AG 13583 
3
 cctccctgacaagcgcctatagc 13843 

3
 ctagggctgttagaagtcctagg 60 260 

L2c 13958GC 13899 tttctccaacatactcggattc 14347 
4
 tgatggggtggtggttgtgg 56 448 

U5b 14182TC 13899 tttctccaacatactcggattc 14347 
4
 tgatggggtggtggttgtgg 56 448 

L3f1 14766TC 14701 caatgatatgaaaaaccatc 14799 taattaattttattaggggg 52 98 

L3e2a 14869GA 14701 caatgatatgaaaaaccatc 15161 
4
 atatttggcctcacgggaggacat 52 460 



 

Appendix  2 – Primers information and PCR condition for NRY markers 
 

SNP 
Marker 

Region/STS Polimorphism Primer forward (5'-3') Primer reverse (5'-3') 
Annealing 

(ºC) 
Size (bp) 

YAP
1
 DYS287 Alu

-
, Alu

+
 caggggaagataaagaaata aagccactattagacaacct 57 599(Alu+)/308(Alu-) 

92R7
2
 92R7 504GA gacccgctgtagacctgact gcctatctacttcagtgatttct 60 722 

SRY10831
3
 SRY 135AG ccacaacctctttcatc aataaaaatcccgtaaaata 57 536 

PN2
3
 DYS287 153CT gatgcaaatgagaaagaact ctaaaaactggagggagaaa 54 536 

M2
4
 DYS271 168AG aggcactggtcagaatgaag aatggaaaatacagctcccc 60 209 

M9
5
 G10.35a 68CG gcagcatataaaactttcagg gcttgagcaaagttaggtttt 57 340 

M10
5
 G10.10 156TC gcattgctataagttacctgc taataaaaattgggtcaccc 52 343 

M13
5
 G10.06 157GC tcctaacctggtggtctttc tgagccatgattttatccaac 52 233 

M14
5
 G10.07 180TC agacggttagatcagttctctg tagataaaagcacattgacacc 58 287 

M31
6
 G10.66b 71GC gaaccagacaatacgaaatagaag tttagcggcttatctcattacc 50 486 

M32
6
 G10.68a 166TC ttgaaaaaatacagtggaac caagtgtttaaggatacaga 48 370 

M33
6
 G10.68b 180AC ttgaaaaaatacagtggaac caagtgtttaaggatacaga 51 370 

M35
6
 G10.72a 168GC taagcctaaagagcagtcagag agagggagcaatgaggaca 59 513 

M40
3
 SRY 258GA gcattttgttacccttctcaac tggcaagacttacgagatttc 54 612 

M44
6
 G10.87 263GC ctggcaccttctgatattttgag tgtgatttctatgtgtttgaggac 59 389 

M60
6
 B9.34 242, +1bp gcactggcgttcatcatct atgttcattatggttcaggagg 54 388 

M75
6
 B9.51 296GA gctaacaggagaaataaattacagac tattgaacagaggcatttgtga 58 355 

M78
6
 B9.60a 197CT cttcaggcattattttttttggt atagtgttccttcacctttcctt 50 301 

M81
6
 B9.58a 147CT acttaatttatagtttcaatccctca ttcatggagatgtctgtatctgg 51 422 

M89
6
 B9.94 347CT agaagcagattgatgtcccact tccagttaggagatcccctca 57 527 

M91
6
 B9.87a 368, 9T-8T gagcttggactttaggacgg aaactttaaggcacttctggc 59 495 

M116
6
 G3.25a 176AC, AT aagtatgacttatgaagtacgaagaaa attcagttagattttacaatgagca 55 429 

M123
6
 G3.27b 161GA tggtaaactctacttagttgccttt cagcgaattagattttcttgc 53 393 

M130 RPS4YC711 41CT tatctcctcttctattgcag ccacaagggggaaaaaacac 53 205 

M155
6
 G10.57c 251GA tctctaacttctgtgagccac ggaaaaactaaactctaaatctct 52 327 

M168
6
 DFFRY Ex01B site a 371CT agtttgaggtagaatactgtttgct aatctcataggtctctgactgttc 62 473 

M173
6
 DBY Ex08 191AC aagaaatgttgaactgaaagttgat aggtgtatctggcatccgtta 53 417 

M174
6
 DffryEx38 219TC acatctcagatcgttgtttggt aaaaagccatgcaattacctg 54 348 

M191
6
 DBY exon 2 342TG ttgcatttgtcatggttggt gccaggataattttttgtattttc 59 429 

 
1 - Hammer and Horai 1995; 2 - Mathias et al. 1994; 3 - Hammer et al. 1998; 4 - Seielstad et al. 1994; 5 - Underhill et al. 1997; 6 - Underhill et al. 2001 

 
 
 



 

Appendix 3 – Information on Y-STR loci included on PowerPlex® Y System 
 

 

Locus Label Location 
GenBank® 
Accession 

Repeat motif Size range (bp) 
Repeat number 

alleles 

DYS391
1
 FL Yq G09613 TCTA 90–118 6, 8–13 

DYS389I/II
 1
 FL Yq AF140635 [TCTG][TCTA] Complex 

148–168, 
256–296 

10–15, 
24–34 

DYS439
 2
 FL Yq AC002992 GATA 203–231 8–15

a
 

DYS393
 1
 TMR Yp G09601 AGAT 104–136 8–16 

DYS390
 1
 TMR Yq AC011289 [TCTG][TCTA] Complex 191–227 18–27 

DYS385a/b
 1
 TMR Yq Z93950 GAAA 243–315 7–25 

DYS438
 2
 JOE Yq AC002531 TTTTC 101–121 8–12 

DYS437
 2
 JOE Yq AC002992 [TCTA][TCTG] Complex 183–199 13–17 

DYS19
 1
 JOE Yp X77751 TAGA Complex 232–268 10–19 

DYS392
 1
 JOE Yq G09867 TAT 294–327 7–18 

 
1-Kayser et al. 1997, 2-Ayub et al. 2000; TMR = carboxy-tetramethylrhodamine, FL = fluorescein, JOE = 6-carboxy-4’,5’-dichloro-2’,7’-dimethoxyfluorescein; a- follows the original 

nomenclature as in Ayub et al. 2000. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Appendix 4 – Typing methodology for mtDNA polymorphisms (and RFLP specifications) 

 
Haplogroup 

 
Polymorphism Sequencing RFLP/Site* Uncutted state (-) Cutted state (+) 

HVSI  �     

HVSII  �     

L2c 325CT  � -323HaeIII 379 84+295 

L3h 1719GA  � -1715DdeI 23+30+227 23+30+48+179 

L1b 2352TC  � +2348MboI 283 103+180 

L0-L1 2758GA  � -2759RsaI 145+156 54+91+156 

L0-L1 3594CT  � +3594HpaI 330 123+207 

L2d 3693GA  � -3693MboI 59+271 24+34+271 

L2b 4158AG  � +4158AluI 194 93+101 

L3f1 4218TC �     

L1c? 4685AG  � -4686AluI 4+9+47+48+107+101+115 4+9+47+48+53+54+101+115 

L3e4 5584AG  � -5585AluI 161+75 161+60+15 

U5b 5656AG  � +5656NheI 129 108+21 

L1c 7055AG  � -7056AluI 241 166+75 

L3d 8618TC  � -8615MboI 64+113+80 40+24+113+80 

L3b 10086AG  � +10084TaqI 196 174+22 

L1c 10321TC  � +10321AluI 200 37+163 

N 10398AG  � -10394DdeI 73+127 72+38+90 

M 10400CT  � +10398AluI 200 115+85 

L0 10810TC  � +10806Hinf I 158+129 135+23+129 

L3f1 11440GA  � +11438MboI 344 280+64 

L0a-f 11641AG  � +11641HaeIII 722 348+374 

U 12308AG  � +12308HinfI 67+168 67+138+30 

U5b1 12618GA �     

L0-L1,L3e1 13105AG �     

L2a3 13803AG  � +13804HaeIII 260 222+38 

L2c 13958GC  � -13958HaeIII 448 60+388 

U5b 14182TC �     

L3f1 14766CT  � +14766MseI 82+4+12 65+17+4+12 

L3e2a 14869GA  � -14868MboI 358+102 190+168+102 
 

* The restriction state is defined in relation to CRS 

 

 

 

 

 

 

 

 

 



Appendix 5 – Typing methodology for NRY markers (and RFLP specifications) 

SNP Marker Sequencing RFLP Enzyme Ancestral state Derived state 

YAP    150 455 

92R7  � HindIII 56+137 193 

SRY10831 �   

PN2 �   

M2  � NlaIII 102+65+42 65+144 

M9  � HinfI 182+93+66 284+93 

M10 �   

M13  � MboI 156+ 77 233 

M14 �   

M31  � BtsI 393+73+20 393+93 

M32 �   

M33  � MseI 10+59+118+183 10+118+242 

M35  � BsrI 169+344 513 

M40  � BsrBI 362+ 147 509 

M44 �   

M60 �   

M75 �   

M78 �   

M81  � HpyCH4IV 276+146 422 

M89 �   

M91 �   

M116 �   

M123 �   

M130  � BseL1 154+46+4+1 201+4 

M155 �   

M168  � Hinf I 234+106+ 81+52 234+187+52 

M173 �   

M174  � BseNI 348 218+130 

M191 �   
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Summary

The matrilineal genetic composition of 372 samples from the Republic of Guiné-Bissau (West African coast)

was studied using RFLPs and partial sequencing of the mtDNA control and coding region. The majority of the

mtDNA lineages of Guineans (94%) belong to West African specific sub-clusters of L0-L3 haplogroups. A new L3

sub-cluster (L3h) that is found in both eastern and western Africa is present at moderately low frequencies in Guinean

populations. A non-random distribution of haplogroups U5 in the Fula group, the U6 among the “Brame” linguistic

family and M1 in the Balanta-Djola group, suggests a correlation between the genetic and linguistic affiliation of

Guinean populations. The presence of M1 in Balanta populations supports the earlier suggestion of their Sudanese

origin. Haplogroups U5 and U6, on the other hand, were found to be restricted to populations that are thought

to represent the descendants of a southern expansion of Berbers. Particular haplotypes, found almost exclusively in

East-African populations, were found in some ethnic groups with an oral tradition claiming Sudanese origin.

Introduction

Unveiling the history of human settlement in the West

Coast of Africa is a complex task. It is the result of

a continuous complex network of migrations, inva-

sions and admixture of peoples from different origins.

Fossil evidence suggests a modern human presence in

NW Africa around 40000 years before present (YBP)

(Alimen, 1987). A pre-Neolithic Capsian culture

evolved later locally or through a diffusion from the

Near East (Camps-Faber, 1989). Around 9000 YBP,

when the Sahara went through a period of maximum

humidity (Aumassip et al. 1988), several Neolithic cul-

tures flourished in the area, bringing together people

of sub-Saharan and North African origin (Dutour et al.

1988). The domestication and spread of several African-

specific plants probably started in western Sahel after

4000 YBP. The first phase of largely east and southward

oriented Bantu migrations, originating from the cen-

∗Corresponding author: António Brehm, phone

+351291705383, fax +351291705393, e-mail: brehm@uma.pt

tral Gulf of Guinea region, is a likely outcome of these

cultural developments (Fage, 1995).

The Ghana Empire, between Niger and Senegal, is

the oldest known occidental African Kingdom (Fage,

1995) which was followed in the 14th–16th centuries

by other empires (Mali, Songhai). The admixture of

Berbers with native populations of this area dates back

at least to the 9th century A.D., after the arrival of

pastoral Peuls or Fulbe (here designated as Fula). In

1086 Ommı́ades conquered North-Western Africa and

pushed the populations from South Morocco and Mau-

ritania to the Senegal region (Moreira, 1964). When the

Europeans arrived in Senegambia in the 15th century

they met most of the presently known ethnic groups

settled in the region (Teixeira da Mota, 1954). The Fula

arrived again two centuries later, coming from the Futa

Toro and Sahel regions, dominating the whole area. The

Mandinga (Mandenka) were the last to arrive in this re-

gion (Carreira & Quintino, 1964).

Present day Guinean ethnic groups are disseminated

all over the territory. The Balanta are the biggest group,

and in the first quarter of the 20th century spread over
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territories occupied earlier by other ethnic groups. The

origin of the Balantas is uncertain. Some see language

affinities with the Sudanese from whom they could have

separated 2000 years ago with the first spread of kushites

migrations (Quintino, 1964). According to Stuhlmann

(1910), the group derives from a Bantu branch, which

separated in the Pleistocene near the Nile, following

camite invasions. The Bijagós inhabit the Archipelago

of the same name and some scholars see strong cul-

tural resemblances to Egyptians (Quintino, 1964), but

others relate them to the Senegalese Djola. The lat-

ter are a rather heterogeneous group, and include the

Beafada which have an oral tradition of coming from

Mali (Lopes, 1999). A mass arrival of Fula took place

in the beginning of the 19th century. The origin of this

ethnic group is unknown, but tradition relates them to

Hiksos and Nubians. They show the typical phonetic

“glottal catch” which characterizes the whole group.

Here we analyze the mtDNA lineages present in the

major ethnic groups of Senegambia, covering a broad

number of recognized groups underrepresented in pre-

vious studies (Graven et al. 1995; Watson et al. 1997;

Rando et al. 1998), and compare them within the

broader context of African mtDNA variability (Graven

et al. 1995; Watson et al. 1997; Rando et al. 1998, 1999;

Krings et al. 1999; Chen et al. 2000; Pereira et al. 2001;

Brehm et al. 2002; Salas et al. 2002). Because mtDNA

haplogroups show distinct geographic patterns in Africa,

their frequency and diversity patterns in West Africa can

be informative with respect to the origin of the different

ethnic groups from Guiné-Bissau. The presence of Y-

chromosomes of Eurasian affiliation among populations

from Cameroon at a high frequency, as reported recently

(Cruciani et al. 2002), raises the intriguing question of

back migrations from Eurasia to Africa, here supported

by the presence of particular Eurasian mtDNA lineages

among Guineans.

Material and Methods

Sampling

A total of 372 blood samples were collected from un-

related Guinean males whose maternal ancestors were

known to belong exclusively to a specific ethnic group.

The samples were collected either in military camps

with the permission of the Guiné-Bissau Chairman of

the Joint Chiefs of Staff, or in the villages around the

country with the help of the Ministry of Health. Ev-

ery participant gave his consent in an individual inter-

view after a detailed explanation of the project. Sample

sizes and origins (along with additional information) are

specified in Table 1 and 2. Due to the complex history

involving the major ethnic groups in Guiné-Bissau, they

do not all follow a clear present-day settlement pattern

(see Figure 1).

Populations of low sample size were pooled accord-

ing to their linguistic affinities. The linguistic cluster-

ing presented in Table 1 is based on anthropological

or linguistic classifications following Almeida (1939),

Barros (1947), Carreira (1962, 1983), Almada (1964),

Carreira & Quintino (1964), Hair (1967), Quintino

(1967, 1969), Diallo (1972) and Lopes (1999). Some

groups were left unpooled: the Balanta, for whom a

Sudanese origin has been suggested, and the Bijagós

because of their particular geographical location.

HVS-I and HVS-II Sequencing

The leukocyte fraction of whole blood was used for

DNA extraction by standard methods and the mtDNA

hypervariable segment I (HVS-I) of the control region

was amplified and sequenced. Sequencing products were

separated on a MegaBACE 1000 automatic sequencer,

following the manufacturer’s specifications and aligned

using Wisconsin Package GCG Version 10.0. All se-

quences were read between nucleotide positions (nps)

16024 and 16400. Additional information regarding

polymorphic sites 185, 186, 189, 195, 236, 297 and

322 in HVS-II was obtained by directly sequencing all

samples that could not be unambiguously classified on

the basis of HVS-I information alone.

RFLP Testing

In case of ambiguity in defining mtDNA haplogroups

on the basis of the HVS-I haplotype, additional data was

gathered from restriction fragment length polymor-

phisms (RFLPs) of diagnostic sites. All restriction digests

were made according to the manufacturer’s instructions

(Fermentas and New England BioLabs). The following

polymorphic restriction sites were screened: 322HaeIII,
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Table 1 Population data of the Guinean samples ethnic distribution

Ethnic Language Closest

Code group group WA Religion language group Synonyms

BLE Balantaa Bak-Balanta-Ganja A,M,C Tenda Ballante, Balant

BDA Baiote Bak-Diola-Bayot A Diola Bayotte

BAB Banhu Eastern Senegal-Banyun A,M Tenda Bainouk, Banyuk, Elomay

BIF Beafada Easter Senegal-Tenda M Badyara Biafada, Bidyola, Biafar

BJG Bijagó Bijagó A Bidyogo, Bijougot

BRA Brame

CCJ Cassanga Eastern Senegal-Nun A Banhu-Felupe Kasanga, I-Hadja

EJA Djolab Bak-Diola-HerEjamat A,C Diola-Wolof Fulup, Floup, Ejamat, Ediamat

FUL Fula Fulani-West Central M Fula-Wolof Fulbe, Futa Jallon

FUF Futa-Fula Fulani-West Central M Fula-Wolof Fulbe, Futa Jallon

FUC Fula-Preto Fulani-Western M Fula-Wolof Peul, Peulh

FUC Fula-Forro Fulani-Western M Fula-Wolof Peul, Peulh

FUT Fula-Toranca Fulani M Fula-Wolof Peul, Peulh

JAD Jancanca Mandenkan M Mandinka Jahanque, Jahanka, Diakanke

LAN Landoma

MAN Mancanha Bak-Manjaku-Papel A,C Manjaku-Papel Mankanya, Mankanha

MNK Mandinga Mandekan M Kalenke, Jahanka Mandingue, Mandenka

MFV Manjaco Bak, Manjaku-Papel A,C,M Mancanha, Papel Mandyak, Manjiak

MSW Mansonca Sua M Kunante, Mansoanka

NAJ Nalú Mbulungish-Nalu A,M Susu Nalou

SUD Sussu Susu-Yalunka M,A,C Yalunka Susu, Sose, Soso

PBO Papel Bak, Manjaku-Papel A,C Mankanya, Mandyak Pepel, Oium

A-Animist, M-Muslim, C-Christian; Population codes and language groups follow terminology from www.sil.org/ethnologue/;
aincludes the so-called Balanta-Mané (Balanta islamized by Mandinga); bincludes Felupes;

1715DdeI, 2349MboI, 2758RsaI, 3592HpaI, 3693MboI,

4157AluI, 4685AluI, 5584AluI, 5656NheI, 7055AluI,

8616MboI, 10084TaqI, 10321AluI, 10394DdeI,

10397AluI, 10806Hinf I, 11439MboI, 11641HaeIII,

12308Hinf I, 13803HaeIII, 13957HaeIII, 14766MseI

and 14868MboI. The following coding region sites

were ascertained by sequencing: 2758, 4218, 12618,

13105 and 14182. Primers and PCR conditions used

in all analyses are available as Complementary Material

at www.ahg.com.

Haplogroup characterization

The HVS-I sequence types were classified following the

nomenclature of African and European mtDNA hap-

logroups (Quintana-Murci et al. 1999; Macaulay et al.

1999; Rando et al. 1999; Alves-Silva et al. 2000; Chen

et al. 2000; Richards et al. 2000; Richards & Macaulay

2001; Bandelt et al. 2001; Torroni et al. 1997, 2001;

Mishmar et al. 2003; Salas et al. 2002). Here, and in what

follows, the nucleotide position (np) number relative to

the revised CRS (Anderson et al. 1981; Andrews et al.

1999) is used to designate haplotype-defining mutations.

Character state change is specified only for transversions

and insertions/deletions. Based on the previous knowl-

edge of African complete sequences paraphyletic clade

L1 is split into two monophyletic units L0, capturing

previously defined L1a and L1d lineages, and L1 clade

that includes L1b and L1c clades (Mishmar et al. 2003).

The sub-clades of L0a (pro L1a) and L1b are defined as

in Salas et al. (2002).

Haplogroup L2 is divided into L2a (characterized by

16294 and 13803), L2b (16114A, 16129, 16213 and

4158), L2c (322 and 13958), and L2d (16399 and 3693)

sub-clades. Mutations 16278, 16362 and 10086 char-

acterize haplogroup L3b; haplogroup L3d is defined by

8618 and shares with L3b a transition at np 13105. Ac-

cording to Bandelt et al. (2001) L3e (defined by 2352)

is subdivided into L3e1 (16327), L3e2 (16320), L3e3

(16265T) and L3e4 (16264 and 5584) clades. L3e2 is fur-

ther subdivided into L3e2∗ (14869) and L3e2b (16172

and 16189). As in Salas et al. (2002), L3f captures all L3∗
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Figure 1 Geographic distribution of ethnic groups in Guiné-Bissau. The boundaries may not correspond entirely

to the precise distribution of the groups involved since overlapping areas do exist.

lineages with a mutation at 16209. L3f1 is further de-

fined by a T at np 16292 (and 14766). Here we further

define a new sub-cluster, L3h characterized by a loss

of the DdeI site at np 1715 (mutation at np 1719) and

the HVS I motif 16129, 16256A and 16362. Following

Finnilä et al. (2000) U5b is characterized by 5656 and

12618 over 14182. Haplogroup U6 (Rando et al. 1998)

is defined by 16172 and 16219. Haplogroup M1 is char-

acterized by 16129, 16189, 16249 and 10400 mutations

(Quintana-Murci et al. 1999).

Genetic Analysis and Population Comparisons

Median networks of HVS-I haplotypes (Bandelt

et al. 1995, 2000) were drawn for each haplogroup

separately, using the Network 3.1 program (Arne

Röhl, www.fluxus-engineering.com/sharenet.htm).

Haplogroup frequencies, molecular diversity indexes

(FST) and genetic diversity (H - Nei, 1987) for

haplotypes and haplogroups and analysis of molecular

variance (AMOVA) were calculated using Arlequin

v2.0 (Schneider et al. 2000). Comparisons between

populations were assessed by subjecting the (relative)

frequency vectors of the haplogroups to a principal

component analysis (PCA).

A local database with more than 19000 individuals

taken from literature and our unpublished data from

worldwide populations was employed to search for exact

matches of Guiné-Bissau haplotypes, ignoring length

variation in the C stretch of the HVS-I.

Coalescence times were estimated by means of the ρ

statistic, assuming that a transition within 16090-16365

corresponds to 20180 years (Forster et al. 1996).

Results and Discussion

Haplogroup Profiles

The 372 Guinean samples clustered to 192 different

haplotypes of all major West African mtDNA hap-

logroups (for the complete list see Complementary

Material). Three predominant haplotypes (GB4, GB85
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and GB117) captured 13% of the Guinean mtDNA

variation, occurring at a frequency higher than 3%

each. Most sequences (94%) could be classified as be-

longing to sub-Saharan African L0a1, L1b, L1c1, L2a,

L2b, L2c, L2d1, L3b, L3d, L3e, L3f1 and L3h hap-

logroups and subhaplogroups. Unexpectedly for a West

African population, 22 (5.9%) of the samples clustered

to haplogroups M1 (1.1%), U5 (2.7%) and U6 (2.2%,

Table 2; Graven et al. 1995; Watson et al. 1997; Rando

et al. 1998; Salas et al. 2002). M1 and U6 are found

in North and East Africa, Arabia, and the Middle East,

whereas U5 has been sampled at appreciable frequencies

only in Europe (Passarino et al. 1998; Quintana-Murci

et al. 1999; Richards et al. 2000). The haplogroup pro-

file for each ethnic group separately can be found in the

Complementary Material.

L Lineages

Haplogroup L0 was represented in Guineans only by

its daughter group L0a1 showing marginal frequencies

ranging from 1% to 5% (Table 2), in contrast to its fre-

quency in East African populations (e.g. 25% in Mozam-

bique: Watson et al. 1997; Pereira et al. 2001; Salas et al.

2002). Interestingly, only the Balanta, a group claim-

ing Sudanese origin, showed an increased frequency of

this clade (11%). Haplogroup L0a has a Paleolithic time

depth in East African populations (33,000 year old, Salas

et al. 2002). The relatively young coalescent date of

L0a1 in Guineans (6400±2600 years, assuming a single

founder) suggests that only a small subset of L0a reached

Guinea during the Holocene. The founder haplotype

of L0a in Guineans, GB4 (see Table 4 in Complemen-

tary Material), has an exact match in East Africa, the

Middle East and in Cape Verde and Senegal Mandenka

populations, indicating that its spread is not strictly

restricted to Guineans. The lack of the L0a2 clade,

associated with the 9bp deletion in CoII/tRNALys in-

tergenic region, and widespread in Bantu speaking pop-

ulations all over Africa (Soodyall et al. 1996), suggests

that L0a has at least two distinct phylogeographic pat-

terns in Central and West Africa. We cannot discard

the possibility of a Bantu migration to West Africa,

as the founder group could have a distinct composi-

tion from those who participated in the southwards

migration(s).

Haplogroup L1b is restricted mostly to West African

populations (Graven et al. 1995; Watson et al. 1997;

Salas et al. 2002) and is represented by two different

branches in Guineans. Its major cluster (Figure 2)

L1b1 is associated with a transition at np 16293 and

includes a frequent sub-clade defined by the combined

presence of a transversion to A at np 16114 and a

transition at np 16274 that has also been observed in

Senegalese Mandenka (Graven et al. 1995) and Wolof

(Rando et al. 1998). L1b1 presents a TMRCA of

about 36000 years (Figure 2), predating the diversity

of L0a1 in Guineans. The matches in this cluster have

a West African distribution well represented in

Mandenka (haplotypes GB8 and GB20)

and their frequency is highest in the

Fulani-western and Senegal-eastern language groups

(Table 2). GB23 and GB24 are widespread in Africa

and are found in nearly all West African populations

considered here (Salas et al. 2002). Another West

African specific clade, L1c, is present at a relatively low

frequency (0-8%) yet with high haplotype diversity in

the Guiné-Bissau sample.

Haplogroups L2a-L2c are frequent in Senegambia

(Table 2) and reveal signatures of a recent expansion

from a limited number of founder haplotypes that are

shared between populations of different linguistic affili-

ation. In contrast, haplotypes belonging to haplogroup

L2d are represented by single individuals and do not

show a common founder sequence (Figure 2). Fif-

teen out of 42 L2a haplotypes sampled in Guinea Bis-

sau had matches elsewhere: West Africa (Cabo Verde,

Brehm et al. 2002; Wolofs & Senegalese, Rando et al.

1998; Mandenka, Graven et al. 1995) but can also

be found in East, South and North Africa. The ge-

ographic distribution of L2b and L2c haplotypes is

largely restricted to West Africa. Not surprisingly most

of the haplotype matches are with Cabo Verdeans,

Wolof and Senegalese. L2c is the haplogroup that

shows a higher extent of shared lineages: Cape Verde,

Senegal Mandenka, mixed Senegalese and São Tomé.

The last case is likely due to a recent gene flow from

the Cape Verde Islands (Brehm et al. 2002). How-

ever, several L2 haplotypes observed in Guineans ap-

peared as unspecific to other West African populations

but shared matches with East and North Africans. This

was the case for the Balanta (BLE) haplotype GB44
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Figure 2 MtDNA phylogeny of all Guinean haplogroups and skeletons of various L0, L1, L2 and L3

sub-haplogroups based on HVS-I sequences and coding-region RFLPs. The number of individuals assigned to the

haplotypes is shown within the circles. The numbers over the lines represent the HVS-I (-16000 bp) and coding

region mutations, with respective restriction sites. Transversions are represented with suffixes (length variation in the

C-stretch is disregarded). Recurrent mutations are underlined and a refers to the mutation loss relative to root. The

star indicates the putative root of the haplogroup. Coalescence estimates ± sd (in ya) are shown for haplogroups or

sub-haplogroups.

matching only with Sudanese (Watson et al. 1999), and

GB59 matching with Moroccan sequences. Interest-

ingly, haplotype GB83 (L2b) found in the Mansonca

(MSW) group had an exact match only with Ethiopians

(our unpublished data). Also the Fula haplotype GB39

has not been reported in West Africa but appears in

East Africa: Lake Turkana (Watson et al. 1997), Nubia,

Southern Sudan, Ethiopia and Saudi Arabia (our un-

published data).

Haplogroups L3b, L3d, and L3e are rare or ab-

sent in indigenous populations of North and South

Africa but well represented in our sample. GB127 and

GB134 are particular links of Guinean groups to North-

west African Mozabites, Moroccans and Senegalese.
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Figure 2 Continued.

Particularly, GB136 from Fula-related people has been

found so far in Hausa and again in Nubians and Su-

danese. Apart from Mozambique (6%) the majority of

L3d lineages are West African (7% in mixed Senegalese

to 12% in Niger/Nigeria) with an estimated age of

42100 (±10600, Salas et al. 2002). L3f is more frequent

in Southeast Africa, ranging from 8% in Kenya/Sudan

to 2% in Mozambique. The coalescence time of this
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haplogroup in West Africa was calculated as 39400 ya

(±10400, Salas et al. 2002), within the error range of the

estimate based on Guinean samples (49350±16200 ya).

Haplotype GB178 in Fula shared an exact match with

sequences from a wide range of East-African populations

(Somalia, Egypt) and even Saudi Arabia. Haplogroup

L3h is found in Ethiopia, Cape Verde and Niger/Nigeria

at marginal frequencies (∼1%) but reaches its highest

known frequency in the Ejamat from Guinea (8%). Its

coalescent time estimate (14000±8400 ya) in Guineans

is consistent with its late Pleistocene/early Holocene

spread around Africa.

No significant differences between Guinean ethnic

groups pooled by their linguistic affiliation were ob-

served in haplogroup frequencies. As for their geo-

graphic neighbours (Table 2), haplogroups L1b, L1c,

L2b, L2c, L2d, L3b, L3d, and L3e cover most of the

mtDNA variation (64-85%). The Guiné-Bissau sample

shows an overall genetic diversity of 0.901 (sd.005) that

is significantly higher than among other samples from

West Africa (Table 2).

M1 and U6 Lineages

Haplogroup M1 has been characterized as an East

African remnant of the major Asian haplogroup M

(Quintana-Murci et al. 1999). It has been found mostly

in Ethiopian populations (17%), its characteristic HVS-

I motif being also well represented in Egyptian and

Sudanese populations along the Nile Valley (7-8%,

Krings et al. 1999). HVS-I haplotypes matching the East

African M1 clade have also been identified in Northwest

Africans (Plaza et al. 2003, unpublished data) where their

frequency can reach 12.8% in Algerians and 4% among

Moroccan and Algerian Arabs and Berbers. M1 is gen-

erally absent from autochthonous West African popula-

tions but was found among Balanta, Baiote, and Djola

groups speaking Niger Congo Atlantic Bak languages.

The Guinean M1 haplotypes matched exactly one West

Saharan (Rando et al. 1998), 2 Mozabites (Côrte-Real

et al. 1996), 2 Iranian and one Saudi Arabian sequence

(unpublished data). This lineage derives from a partic-

ular cluster defined by a mutation at position 16185,

which is also found in Ethiopia, Morocco and North

African populations (Plaza et al. 2003, our unpublished

results).

Haplogroup U6 is rather frequent in NW Africa,

among Algerian Berbers, Moroccans and Mauritani-

ans (Côrte-Real et al. 1996; Rando et al. 1998; Plaza

et al. 2003), but is rare or absent in western sub-Saharan

Africans. Three different U6 haplotypes were observed

in Fula, Mandenka and Manjaco groups. These hap-

lotypes match with sequences of a wide geographic

range: North and West Africa (Cabo Verde, Tuareg,

Mozabites, Moroccan Arabs and Berbers), East Africa

(Nile Valley, Egypt and Ethiopia), the Middle East

(Iran) and Mediterranean Europe (Sicily and Portu-

gal, http://www.ahg.com/), suggesting that their spread

might be related to the southern expansions of the

Berber groups to whom the Fulani languages relate.

European Lineages: U5

Ten individuals out of 372 samples, all related to Fulbe

groups, carried mtDNA variants typical of western

Eurasia, particularly Europe. Within these mtDNAs be-

longing to haplogroup U5 nine Fulanis share one par-

ticular HVS-I haplotype. Both haplotypes are only one

mutational step away from a common node widespread

in Europe. Although U5 is one of the most frequent

mtDNA variants among western Eurasians (about 460

sequences in our mtDNA HVS-I database) no exact

matches to the two Guinean haplotypes were found,

as would be expected in the case of recent admixture.

On the other hand, the Fulani U5 haplotype appears

in a data set of West Africans (Wolof and Serer, Rando

et al. 1998) and in Moroccans (unpublished data), point-

ing to the existence of a common African founder lin-

eage of haplogroup U5. Again, as in haplogroup U6

the linguistic correlation suggests that the spread of the

haplotype in Senegambia might be related to the move-

ment of Berber populations. More data from North and

West African populations is needed to better character-

ize the source and the time of the spread of this founder

lineage.

AMOVA and Principal Component Analysis

Analysis of molecular variance (AMOVA) in African

populations attributed 15.6% to differences between

groups, 3% to variation between populations within

groups, and 81.6% to differences within populations
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Figure 3 PCA of African populations based on data from Table 2 but excluding the! Kung/Khwe.

Population codes are as follows: Mb (Morocco Berbers), Ab (Algerian Berbers), Ma (Morocco Arabs),

Aa (Algerian Arabs), Eg (Egypt), Nv (Nile Valley), Et (Ethiopia), KS (Kenya/Sudan), Mo

(Mozambique), Sm (Senegal Mandenka), Sx (Senegal mixed), NN (Niger/Nigeria), CV (Cabo Verde).

Guinean ethnic groups were grouped (from a to g) as in Table 2. Axis 1 extracted 70.2% and axis 2,

12.5% of the total variation.

(overall FST = 0.184, P < 0.0001). A hierarchi-

cal structuring of populations into groups based on

religion beliefs (Muslims vs. Animists) and geogra-

phy (interior vs. littoral) gave similar values (data not

shown).

A principal component (PC) analysis distinguished

North Africans from sub-Saharans (Figure 3). The dif-

ference revealed by the first component is likely due

to the presence of Eurasian mtDNA lineages among

the North Africans and a relatively higher frequency

of haplogroups L2a, L2c, L2d and U6 in Northwest

Africa. The second component reflects L2/L0 frequen-

cies. Moroccan Berbers and Arabs and Algerian Berbers

are plotted close to Egyptians, supporting a common

origin, while Algerian Arabs are placed apart. The Nile

Valley sample occupies an intermediate position be-

tween Ethiopia and North Africans. The populations

from Mozambique appear isolated and well differenti-

ated from Kenya and Sudan. All the West Africans form a

distinct and more compact cluster. Nevertheless the iso-

lation of Senegalese Mandenka (Sm) and the Fula from

Guiné (e) should be noted. As a whole, Guinean groups

are closer to West and then East Africa (see Axis 1,

Figure 3).

Final Remarks

Roughly 87% of the mtDNA lineages found in the

Guinean populations are common in other West African

populations. Not surprisingly, the highest number of

matches was with Cape Verde followed by other pop-

ulations from the area (Mandenka, Wolof, Fulbe), but

also with Morocco. The notable L haplotype sharing

with North Africans testifies to the absence of a real

barrier between this region and typical sub-Saharan

populations. On the other hand, some Guinean groups

(Fula and Balanta for instance) present haplotypes oth-

erwise observed to date in East-African and Middle East

populations.

It is interesting to note that the Bantu-associated

markers L0a 9bp del CoII/tRNALys (Soodyall et al.

1996), L3b motif 16124-16223-16278 (Watson et al.

1997), L3e1 particularly L3e1a characterized by mu-

tation 16185 (Bandelt et al. 2001) or the 16192 L2a1
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subclade (Pereira et al. 2001), were not found in our

sample. This suggests that either Bantu migrations con-

tributed very little to the gene pool of Guineans,

despite the evidence of a Bantu migration starting

from Cameroon and spreading towards Ghana, Nigeria,

Burkina Faso and Mauritania, or that they had a distinct

gene pool from that associated with the southwards mi-

grants. The lack of Bantu branches of the Niger-Congo

linguistic family, among a plethora of languages spoken

in Guiné-Bissau, is more in agreement with the first

hypothesis.

The finding of haplogroup M1 lineages of East

African origin, albeit at low frequencies (3-5%) in

Guinean groups with linguistic affinities to the Bak

superfamily including Balanta, Baiote and Ejamat lan-

guages, supports the earlier suggestion of a Sudanese ori-

gin of the Balanta population and their spread to western

Africa with kushitic migrants approximately 2000 years

ago. Obviously, thereafter they were assimilated within

the local population, acquiring their language. In partic-

ular the 16185 mutation might suggest a route through

North Africa. The U6 presence in the Guinean pool,

although at a low frequency, is not surprising, as these

particular lineages have already been reported for this re-

gion. It seems plausible that the U5 lineages observed in

the Fula arrived in Guiné via Sahel from North Africa

before the slave trade. None of the typical European

haplogroups (H, J, and T) were found in the present-

day population of Guinea, whereas they exist at a fairly

high frequency in North Africa in contrast to the U5

frequency (only 4.5%). This makes it less likely that the

presence of U5 in Guiné, in particular, and in Northwest

Africa in general, is due to recent admixture with the

European population. A possible ancient migration from

Asia to Africa was proposed by Cruciani et al. (2002) to

explain the presence of some unusual Y-chromosome

lineages identified in West Africa. Haplogroup R1 (de-

fined by M173 mutation), without further branch defin-

ing mutations (M269 and M17) specific to Europeans,

accounted for ∼40% of the Y-chromosomes in North-

Cameroon, while not yet having been sampled else-

where in Africa. More data from Central and Western

Africa are needed to cast light on the origin of such id-

iosyncratic mtDNA and Y chromosome lineages. Thus,

our U5 sequences from the Guinean Fulbe people cor-

roborate Cruciani’s hypothesis of a prehistoric migration

from Eurasia to West Sub-Saharan Africa, testified by

their present day restricted and localised distribution.
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ethnic groups from Guiné-Bissau are available as Comple-

mentary Material at the web site http://www.ahg.com/. A

list of the PCR primers and conditions used to amplify all

pertinent mtDNA regions are also included in the Comple-

mentary Material web site.

References

Alimen, H. (1987) Evolution du climat et des civilisa-

tions depuis 40000 ans du nord au sud du Sahara occi-

dental. (Premières conceptions confrontées aux données
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B., Sánchez-Diz, P., Macaulay, V. & Carracedo, A. (2002)

The making of the African mtDNA landscape. Am J Hum

Genet 71, 1082–1111.

Schneider, S. Roessli, D. & Excoffier, L. (2000) Arlequin

ver. 2,000: A software for population genetics data analysis.

Genetics and Biometry Laboratory, University of Geneva,

Switzerland.

Soodyall, H., Vigilant, L., Hill, A. V., Stoneking, M. &

Jenkins, T. (1996) mtDNA control-region sequence vari-

ation suggests multiple independent origins of an “Asian-

specific” 9-bp deletion in sub-Saharan Africans. Am J Hum

Genet 5, 595-608.

Stuhlmann, F. (1910) Handwerk und Industrie in Ostafrika,

kulturgeschichtliche, Betrachtungen, Friedrichsen. Ham-

burg, 163p.

Teixeira da Mota, A. (1954) Guiné Portuguesa. Agência Geral
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Abstract

The forensic value of Y-STR markers in Guiné-Bissau was accessed by typing of 215 males. Allele and haplotype

frequencies, determined for loci DYS19, DYS389-I, DYS389-II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438,

DYS439 and the duplicated locus DYS385, are within the limits of variation found in other populations south of the Sahara. The

level of discrimination achieved is Guineans is higher than for European or other African populations with comparable data. The

haplotype diversity of 0.9995 is reduced to 0.9981 when the minimal haplotype is considered thus revealing the importance of

increasing the number of typed loci.

# 2005 Published by Elsevier Ireland Ltd.

Keywords: Y-chromosome; Short tandem repeats; Powerplex1 Y-System; Guiné-Bissau

Population: A total of 215 unrelated healthy males from

Guiné-Bissau population whose ancestors were known to

inhabit the same region for the last three generations.

DNA extraction: Chelex method [1] from leukocitary

blood fraction.

PCR: A multiplex reaction for 11 markers was per-

formed with Powerplex1 Y-System (Promega) following

the manufacturer’s instructions. For the samples with indi-

vidually typed Y-STRs (GB155 to GB207) published pri-

mers and conditions were used (DYS19, DYS389I/II,

DYS390, DYS391, DYS392, DYS393 [1,2]; DYS385 [3];

DYS439 [4]).

Typing:Amplified PCR fragments were analyzed in ABI

PRISMTM 310 Genetic Analyser along with Genescan 2.1

analysis software (AB Applied Biosystems). Typing fol-

lowed the ISFG guidelines for Y-STR analysis [5]. The

allele nomenclature system used is the proposed in [6,7]

with the exception of the DYS389 locus [8]. Guidelines for

the presentation of population data, specified by Lincoln and

Carracedo [9], have been considered.

Results: Described in Tables 1a–2. To note that the

sample size is not the same for all markers, varying from

N = 163 to 215 (Table 1).

Quality control: Proficiency testing of the GEP-ISFG.

Data analysis: Frequency and diversity indexes [10]

were calculated with Arlequin ver. 2.000 [11] for both loci

(D) and haplotypes (H). The same software performed

AMOVA tests for selected populations and locus-by-locus

and an exact test of population differentiation (not consider-

ing DYS385). The YHRD database (www.yhrd.org) was

consulted in the search for exact matches (both extended and

minimal haplotypes).

Other remarks: The allele frequencies and range of the

studied loci in Guiné-Bissau population (Table 1a and b) fit

into the determined by other studies on sub-Saharan African

populations [12–18]. The most outstanding differences are

found when comparing with Non-Africans [13,14,19–25] or

even North-Africans [26,27]. To note is the high prevalence

in Guineans of alleles 15 for DYS19 (42%), 21 for DYS390

(67%), 11 for DYS392 (88%), 14 to DYS 437 (72%) and 11

www.elsevier.com/locate/forsciint
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for DYS438 (65%) which in other populations are marginal

or, if the most common allele, retain a lower fraction of the

variation. For DYS393 a percentage of 59% of allele 14 is so

far the highest reported, even for a West African population.

A broader range for DYS389I (11–15 versus 12–14 for

Europe) or a more limited one, as for DYS438 (10–12 versus

9–13 in Europe) are examples of other distinct features. The

haplotype distribution of DYS385 ranges from alleles 13 to

21 where the most frequent haplotypes 15–16, 16–16 and

16–17 (�16%) are either absent or weakly represented

outside of Africa. All loci show a unimodal distribution,

including DYS392, which is bimodal in most non-Africans.

As for the diversity indexes (D), DYS19 and DYS389II

exhibit the highest diversity in this study (D = 0.7182 and

0.7239), not to consider DYS385 (H = 0.9031). Together

with DYS393 these loci held higher gene/haplotype diversity

than most Europeans, thus more informative for African

populations. On the other hand, DYS391 seems to have a

lower D than Europeans (but still higher than Asians) while

DYS392 exhibits the lowest diversity. Data of both loci

supports a limited utility in forensic casework in several

sub-Saharan populations as previously suggested [18].

The eleven Y-STRs are fully typed for 161 individuals

resulting in 154 distinct haplotypes (H = 0.9995 � 0.0008),

with the highest frequency of two individuals (Table 2).

GB155 to GB207 were not taken into account for the

calculation, as their 11 Y-STR pattern might be similar to

the previous. The discriminatory power achieved is higher
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Table 1a

Allele frequencies and gene diversity for ten Y-STR markers in Guiné-Bissau population

Allele DYS19 DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 DYS437 DYS438 DYS439

8 0.0667

9 0.0279

10 0.7767 0.0736 0.2364 0.0421

11 0.014 0.1907 0.8773 0.6485 0.2804

12 0.1907 0.0047 0.0368 0.0093 0.0485 0.4533

13 0.092 0.5628 0.0086 0.3535 0.0361 0.2009

14 0.0491 0.2279 0.586 0.7169 0.0234

15 0.4172 0.0047 0.0512 0.1205

16 0.2638 0.012

17 0.1779 0.1145

20 0.0186

21 0.6744

22 0.214

23 0.0419

24 0.0512

28 0.0143

29 0.1667

30 0.3714

31 0.3095

32 0.1333

33 0.0048

N 163 215 210 215 215 163 215 166 165 214

D 0.7182 0.5975 0.7239 0.497 0.3612 0.2248 0.5314 0.4598 0.52 0.6764

S.E. 0.0199 0.0249 0.0139 0.0339 0.0349 0.0422 0.0212 0.0431 0.0359 0.0178

N, sample size; D, gene diversity; S.E., standard error of D.

Table 1b

Haplotype frequency and diversity for DYS385 in Guiné-Bissau

population

Haplotype DYS385

13,14 0.0049

13,15 0.0049

13,16 0.0099

13,17 0.0049

14,14 0.0345

14,15 0.0148

14,16 0.0099

14,17 0.0345

15,15 0.0443

15,16 0.1576

15,17 0.0493

15,18 0.0197

16,16 0.1675

16,17 0.1478

16,18 0.0591

16,19 0.0197

16,20 0.0049

17,17 0.0985

17,18 0.069

17,20 0.0049

18,18 0.0197

18,19 0.0049

18,20 0.0099

20,21 0.0049

N 203

H 0.9031

S.E. 0.0084

N, sample size; H, haplotype diversity; S.E., standard error of H.
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Table 2

Y-chromosome STR haplotypes detected in Guiné-Bissau population

Haplotype N DYS19 DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 DYS437 DYS438 DYS439 DYS385

GB001 1 13 12 30 22 9 11 13 14 10 13 14,17

GB002 1 13 13 29 24 11 11 14 14 10 13 14,16

GB003 1 13 13 30 21 10 11 14 14 11 14 15,16

GB004 1 13 13 30 22 9 12 12 14 10 12 16,17

GB005 1 13 13 30 22 10 11 14 14 10 12 14,17

GB006 1 13 13 30 23 10 13 13 14 11 12 16,16

GB007 1 13 13 30 24 10 10 13 14 10 13 15,16

GB008 1 13 13 30 24 10 11 13 14 10 12 16,17

GB009 1 13 13 30 24 10 11 13 14 10 12 17,17

GB010 1 13 13 30 24 10 11 14 14 10 13 16,16

GB011 1 13 13 30 24 10 12 13 15 10 12 15,15

GB012 1 13 13 31 23 10 11 13 14 10 11 16,17

GB013 1 13 13 31 24 10 11 14 14 10 12 16,17

GB014 1 13 13 31 24 10 12 14 15 10 13 16,16

GB015 1 13 14 31 21 10 11 14 15 10 11 16,17

GB016 1 14 12 30 23 10 11 14 14 8 12 15,16

GB017 1 14 13 30 21 10 11 14 15 11 13 18,18

GB018 1 14 13 30 21 10 13 14 14 11 11 16,19

GB019 1 14 13 30 23 10 11 14 14 10 10 13,14

GB020 1 14 13 30 23 11 11 14 14 8 13 16,16

GB021 1 14 13 31 22 11 11 14 14 8 12 17,17

GB022 1 14 13 31 22 11 11 14 14 8 14 17,19

GB023 1 14 14 32 21 10 10 14 14 10 11 17,17

GB024 1 15 12 29 21 10 11 13 13 11 12 15,16

GB025 1 15 12 29 22 10 11 13 17 10 12 14,15

GB026 1 15 12 29 22 10 11 13 17 10 13 13,17

GB027 1 15 12 29 22 10 11 13 17 10 13 15,17

GB028 1 15 12 29 22 11 10 13 16 8 11 15,15

GB029 1 15 12 29 22 11 10 13 17 10 11 15,16

GB030 1 15 12 29 22 11 11 13 17 10 11 15,15

GB031 2 15 12 29 22 11 11 13 17 10 12 14,14

GB032 1 15 12 30 21 10 10 13 17 10 13 14,15

GB033 1 15 12 30 21 10 11 13 17 10 12 15,16

GB034 1 15 12 30 21 10 11 14 13 11 11 15,16

GB035 2 15 12 30 21 10 11 14 13 11 12 15,16

GB036 1 15 12 30 21 10 11 14 13 11 13 15,16

GB037 1 15 12 30 21 10 11 14 13 11 13 16,16

GB038 1 15 12 31 21 10 11 13 14 11 11 15,18

GB039 1 15 13 29 21 10 11 14 14 11 12 16,17

GB040 1 15 13 29 21 10 11 14 14 11 12 16,18

GB041 1 15 13 29 22 10 11 14 14 11 11 16,17

GB042 1 15 13 29 22 11 11 14 17 10 12 14,14

GB043 1 15 13 30 21 10 10 14 14 11 11 16,16

GB044 1 15 13 30 21 10 11 13 14 11 11 16,17

GB045 1 15 13 30 21 10 11 13 14 11 12 15,16

GB046 1 15 13 30 21 10 11 13 14 11 12 16,16

GB047 1 15 13 30 21 10 11 13 17 10 11 14,15

GB048 1 15 13 30 21 10 11 14 14 10 12 14,14

GB049 1 15 13 30 21 10 11 14 14 11 11 16,17

GB050 1 15 13 30 21 10 11 14 14 11 14 16,17

GB051 1 15 13 30 21 10 11 14 14 12 12 17,17

GB052 1 15 13 30 21 10 11 14 15 11 12 17,18

GB053 1 15 13 30 21 10 11 15 14 11 12 15,16

GB054 1 15 13 30 21 11 11 13 14 11 11 16,19

GB055 1 15 13 30 21 11 11 14 14 11 11 16,17

GB056 1 15 13 30 22 10 11 14 14 10 11 13,15

GB057 1 15 13 30 22 10 11 14 15 11 12 15,16

A. Rosa et al. / Forensic Science International 157 (2006) 210–217 213

Table 2 (Continued )

Haplotype N DYS19 DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 DYS437 DYS438 DYS439 DYS385

GB058 1 15 13 31 21 10 11 13 14 11 13 16,18

GB059 1 15 13 31 21 10 11 13 14 11 12 17,18

GB060 1 15 13 31 21 10 11 14 14 10 13 15,16

GB061 1 15 13 31 21 10 11 14 14 11 11 16,16

GB062 1 15 13 31 21 10 11 14 14 11 11 16,17

GB063 2 15 13 31 21 10 11 14 14 11 12 15,16

GB064 1 15 13 31 21 10 11 14 14 11 12 16,16

GB065 1 15 13 31 21 10 11 14 14 11 12 17,18

GB066 1 15 13 31 21 10 11 15 14 11 12 15,15

GB067 1 15 13 31 21 11 11 13 14 11 11 16,18

GB068 1 15 13 31 22 11 11 14 14 11 12 18,18

GB069 1 15 13 31 24 10 10 14 17 10 12 16,17

GB070 1 15 13 32 21 10 11 13 14 11 11 16,16

GB071 1 15 13 32 21 10 11 13 14 11 12 17,18

GB072 1 15 13 32 21 10 11 14 14 10 13 15,16

GB073 1 15 13 32 23 11 11 13 14 8 12 17,17

GB074 1 15 13 32 24 11 11 14 14 8 12 17,17

GB075 1 15 14 29 22 10 10 14 17 10 12 14,17

GB076 1 15 14 30 21 10 11 14 14 11 13 16,18

GB077 2 15 14 31 21 10 11 14 14 11 12 14,14

GB078 1 15 14 31 21 10 11 14 14 11 12 16,17

GB079 1 15 14 31 21 11 11 13 14 11 12 16,18

GB080 1 15 14 31 22 10 11 13 14 11 12 15,16

GB081 1 15 14 31 22 10 11 13 17 10 13 14,17

GB082 1 15 14 31 22 10 11 13 17 11 13 14,17

GB083 1 15 14 31 22 10 11 14 17 10 13 14,16

GB084 1 15 14 31 23 11 11 14 14 8 12 15,17

GB085 1 15 14 32 21 10 11 13 14 11 11 16,17

GB086 1 15 14 32 21 10 11 13 14 11 12 16,17

GB087 1 15 14 32 21 10 11 14 14 11 12 16,16

GB088 1 16 11 28 21 10 11 13 14 11 12 16,17

GB089 1 16 12 28 21 10 11 14 14 11 12 16,16

GB090 1 16 12 29 22 10 11 13 17 8 11 15,15

GB091 1 16 12 30 21 10 11 14 14 11 13 15,16

GB092 1 16 12 30 21 10 11 14 14 11 13 16,16

GB093 1 16 12 30 21 11 11 14 14 11 12 17,17

GB094 1 16 12 30 22 9 11 14 16 10 13 16,16

GB095 1 16 13 29 21 10 11 14 14 11 11 15,18

GB096 1 16 13 29 21 10 11 14 14 11 11 16,18

GB097 1 16 13 29 21 10 11 14 14 11 12 15,18

GB098 1 16 13 29 21 10 11 14 14 11 12 16,16

GB099 1 16 13 30 21 10 11 14 14 12 12 16,16

GB100 1 16 13 30 21 11 11 14 14 11 11 17,17

GB101 1 16 13 30 21 11 11 14 14 11 12 17,18

GB102 1 16 13 30 22 10 11 14 14 12 12 16,16

GB103 1 16 13 30 22 10 11 14 15 11 11 15,17

GB104 1 16 13 31 21 10 11 14 14 10 12 16,16

GB105 1 16 13 31 21 10 11 14 14 11 10 16,16

GB106 1 16 13 31 21 10 11 14 14 12 11 16,16

GB107 1 16 13 31 21 10 11 15 14 10 12 16,17

GB108 1 16 13 31 22 10 11 14 14 11 12 14,17

GB109 1 16 13 32 21 10 11 13 14 11 12 17,17

GB110 1 16 13 32 21 10 11 14 14 11 10 16,16

GB111 1 16 13 32 21 11 11 13 14 11 11 17,18

GB112 1 16 13 32 21 12 11 14 14 11 13 15,17

GB113 1 16 14 29 23 11 10 13 17 10 12 15,16

GB114 1 16 14 31 21 10 11 13 14 11 12 15,17

GB115 1 16 14 31 21 10 11 13 14 11 13 17,17

GB116 1 16 14 31 21 10 11 14 14 10 12 16,18
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Table 2 (Continued )

Haplotype N DYS19 DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 DYS437 DYS438 DYS439 DYS385

GB117 1 16 14 31 21 10 11 14 14 11 11 17,18

GB118 1 16 14 31 21 10 11 14 14 11 12 16,16

GB119 1 16 14 31 21 10 12 14 15 12 11 18,19

GB120 1 16 14 31 22 10 11 13 14 11 13 16,16

GB121 1 16 14 31 22 10 11 13 14 11 14 16,17

GB122 1 16 14 31 22 10 11 13 15 11 12 16,17

GB123 1 16 14 31 22 10 11 14 14 11 11 15,17

GB124 1 16 14 31 22 10 11 14 15 11 11 16,18

GB125 1 16 14 32 21 10 11 13 14 11 12 15,15

GB126 1 16 14 32 21 10 11 14 14 11 11 15,17

GB127 1 16 14 32 21 10 11 14 15 11 12 17,20

GB128 1 16 14 32 21 10 11 14 15 11 13 20,21

GB129 2 17 12 29 21 10 11 14 14 11 13 17,17

GB130 1 17 12 30 21 10 11 14 15 11 13 15,16

GB131 1 17 12 32 22 11 11 13 17 8 11 15,15

GB132 1 17 13 29 21 10 11 14 14 11 12 15,18

GB133 1 17 13 30 21 10 11 13 14 11 12 17,18

GB134 1 17 13 30 21 10 11 13 14 11 13 17,18

GB135 2 17 13 30 21 10 11 14 14 11 11 17,17

GB136 1 17 13 30 21 10 11 14 15 11 11 16,17

GB137 1 17 13 30 21 10 12 14 14 11 13 18,18

GB138 1 17 13 30 21 11 11 13 14 11 11 17,17

GB139 1 17 13 31 20 11 11 15 14 11 11 16,16

GB140 1 17 13 31 21 10 11 13 14 11 10 15,16

GB141 1 17 13 31 21 10 11 14 14 11 10 16,16

GB142 1 17 13 31 21 10 11 14 14 11 12 17,17

GB143 2 17 13 32 20 10 11 14 14 11 11 15,16

GB144 1 17 13 32 21 10 11 13 14 11 10 16,17

GB145 1 17 13 32 21 10 11 15 14 11 11 15,16

GB146 1 17 13 32 22 10 11 13 15 11 13 16,17

GB147 1 17 14 31 21 10 11 13 14 11 12 16,16

GB148 1 17 14 31 21 10 11 14 15 11 12 18,20

GB149 1 17 14 31 21 10 11 15 15 11 12 18,20

GB150 1 17 14 31 21 11 10 14 14 11 12 16,18

GB151 1 17 14 31 21 11 11 14 15 11 12 18,18

GB152 1 17 14 31 22 10 11 13 14 11 12 15,17

GB153 1 17 14 32 21 10 11 14 14 11 11 17,17

GB154 1 17 15 31 22 10 12 13 15 11 13 17,17

GB155 1 – 11 30 21 10 – 14 – – 11 16,17

GB156 1 16 11 – 21 10 – 13 14 – – –

GB157 1 – 12 29 21 11 – 14 14 – 13 16,17

GB158 1 – 12 29 21 11 – 14 – – 12 17,18

GB159 1 – 12 29 21 10 – 14 – – 14 16,17

GB160 1 – 12 29 21 10 – 14 – – 12 16,19

GB161 1 – 12 29 22 10 10 14 – 12 11 15,16

GB162 1 – 12 29 22 11 – 13 – – 11 15,16

GB163 1 – 12 29 22 11 – 13 – – 11 15,16

GB164 1 – 12 29 22 11 – 13 – – 12 14,14

GB165 1 – 12 30 21 10 – 14 – – 12 16,16

GB166 1 – 12 30 21 10 – 14 – – 13 14,17

GB167 1 – 12 30 21 10 – 14 – – 13 15,16

GB168 1 – 12 30 22 11 – 13 – – 12 13,16

GB169 1 – 13 28 21 10 – 13 – – 12 16,17

GB170 1 – 13 29 21 10 – 13 – – 12 16,16

GB171 1 – 13 29 21 10 – 14 – – 12 16,18

GB172 1 – 13 29 21 10 – 14 – – 12 –

GB173 1 – 13 30 20 10 – 14 – – 11 15,16

GB174 1 – 13 30 21 9 – 13 – – 13 15,15

GB175 1 – 13 30 21 9 – 13 – – 13 15,16

than for other populations with similar or higher number of

analysed loci—Europeans, 11 loci: 0.9983 [19], 14 loci:

0.9992 [20], 19 loci: 0.9988 [24]; Japanese, 14 loci: 0.9987

[22]; North Africans, 12 loci: 0.9605–0.9821 [27]. Most Y-

STR data on African populations refers to the 9 Y-STR

‘‘minimal haplotype’’ or includes even less markers thus

limiting comparisons with our data when diversity indexes

are concerned. Haplotype diversity in Guineans decreases to

0.9981 � 0.0010 (142 haplotypes) when the minimal set is

considered, comparatively higher than data on Europeans

(0.9972 [19]), Afro-Americans (0.998 [20]) and other sub-

Saharians (0.989–0.9900 [15,16]). For DYS19, DYS389I,

DYS389II, DYS390, DYS391 and DYS392 the haplotype

combinations 15-13-30-21-10-11 and 15-13-31-21-10 are

quite common in our data (GB044 to GB053, GB058 TO

GB066). Moreover, DYS437 allele 17 appears to be asso-

ciated to DYS438 10 and DYS19 15 (GB025) as DYS438 8

relates with DYS391 11 and DYS437 14 (GB020, with 3

exceptions).

Previously published haplotypic data were considered for

an analysis of molecular variance (AMOVA) in selected

populations (North Africa [28], Equatorial Guinea [29],

Mozambique [30], North Portugal [21] and Spain [31]).

In a three-group structure, defined by geographic criteria,

the vast majority of variance is explained at a intrapopula-

tional level (99.1%). The among group variance is of 0.34%

(P = 0.08504 � 0.00762) while the intragroup component

displayed 0.56%. A locus-by-locus AMOVA revealed sig-

nificant differences (P < 0.05) in the among group variation

of DYS19, DYS389II, DYS391, DYS437, DYS438 and

DYS439. According to the exact test of population differ-

entiation (10,000 steps of Markov chain) the six considered

populations are distinct.

The YHRD database search resulted in 21 exact matches

(10 markers, excluding DYS385): six Africans, eight Afro-

descendents, six Europeans and one Indian, out of 6281

haplotypes). It is worth mentioning that there is a pattern of

matching for the haplotypes order as shown in Table 2. The

European similar haplotypes refer to data between GB008

and GB056 while the African ancestry ones are reported

from GB044 on. Although increasing the total number of

matches to 69 (44 Africans, 20 Europeans and five of other

origin, some shared out of 27,773 haplotypes), a similar

pattern is maintained when narrowing the analysis to an 8-
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Table 2 (Continued )

Haplotype N DYS19 DYS389I DYS389II DYS390 DYS391 DYS392 DYS393 DYS437 DYS438 DYS439 DYS385

GB176 1 – 13 30 21 10 – 13 – – 12 16,16

GB177 1 – 13 30 21 10 – 14 – – 12 14,14

GB178 1 – 13 30 21 10 – 14 – – 12 15,16

GB179 1 – 13 30 21 10 – 14 – – 12 17,17

GB180 1 – 13 30 21 10 – 14 – – 12 17,18

GB181 1 – 13 30 21 10 – 14 – – 13 16,18

GB182 1 – 13 30 21 10 – 15 – – 11 16,19

GB183 1 – 13 30 21 10 – 15 – – 12 15,15

GB184 1 – 13 30 21 10 – 15 – – 12 16,16

GB185 1 – 13 30 21 11 – 12 – – 11 17,17

GB186 1 – 13 30 21 11 – 13 – – 11 16,17

GB187 1 – 13 30 21 11 – 13 – – 11 16,20

GB188 1 – 13 30 21 11 – 14 – – 11 17,17

GB189 1 – 13 30 21 11 – 14 – – 11 17,18

GB190 1 – 13 30 22 10 – 13 – – 12 13,16

GB191 2 – 13 31 21 10 – 14 – – 10 16,16

GB192 1 – 13 31 21 10 – 14 – – 11 15,16

GB193 1 – 13 31 21 10 – 14 – – 12 17,18

GB194 1 – 13 31 22 10 – 14 15 12 13 16,17

GB195 1 – 13 31 23 10 – 13 – – 11 16,18

GB196 1 – 13 32 21 11 – 13 – – 12 17,17

GB197 1 – 13 – 24 10 – 13 – – 12 16,16

GB198 1 – 14 31 21 9 – 13 – – 12 15,16

GB199 1 – 14 31 21 10 – 15 – – 11 16,16

GB200 1 – 14 31 22 10 – 13 – – 13 15,17

GB201 1 – 14 32 21 10 – 14 – – 10 16,16

GB202 1 – 14 32 21 10 – 14 – – 11 16,17

GB203 1 – 14 32 21 10 – 14 – – 12 14,14

GB204 1 – 14 33 21 11 – 14 – – 12 15,16

GB205 1 16 14 – 21 10 10 14 14 8 13 –

GB206 1 – 14 – 21 10 – 15 14 12 11 –

GB207 1 – 14 – 22 10 – 13 – – 13 15,17

N, number of individuals; –, not determined.



STRs set. For the African populations in the database, the

highest number of matching lineages were with Angola,

Mozambique and West Africa.

In order to evaluate the discriminatory power of an

extended haplotype, H was determined for sets of ten

markers (minimum haplotype plus one). The additional

marker causes a variation in haplotype diversity as follows:

DYS437 (H = 0.9982 � 0.0010, 143 haplotypes), DYS438

(H = 0.9986 � 0.0009, 146 haplotypes) and DYS439

(H = 0.9994 � 0.0008, 153 haplotypes). The level of dis-

crimination obtained by additional typing of DYS439 con-

firms its usefulness for forensic purposes [12,24].
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Abstract 

Background 

The geographic and ethnolinguistic differentiation of many African Y-chromosomal 

lineages provides an opportunity to evaluate human migration episodes and admixture 

processes, in a pan-continental context. The analysis of the paternal genetic structure of 

Equatorial West Africans carried out to date leaves their origins and relationships 

unclear, and raises questions about the existence of major demographic phenomena 

analogous to the large-scale Bantu expansions. To address this, we have analysed the 

variation of 31 binary and 11 microsatellite markers on the non-recombining portion of 

the Y chromosome in Guinea-Bissau samples of diverse ethnic affiliations, some not 

studied before. 

Results 

The Guinea-Bissau Y chromosome pool is characterized by low haplogroup diversity 

(D=0.470, sd 0.033), with the predominant haplogroup E3a*-M2 shared among the 

ethnic clusters and reaching a maximum of 82.2% in the Mandenka people. The Felupe-

Djola and Papel groups exhibit the highest diversity of lineages and harbor the deep-

rooting haplogroups A-M91, E2-M75 and E3*-PN2, typical of Sahel’s more central and 

eastern areas. Their genetic distinction from other groups is statistically significant 

(P=0.01) though not attributable to linguistic, geographic or religious criteria. Non sub-

Saharan influences were associated with the presence of haplogroup R1b-P25 and 

particular lineages of E3b1-M78. 

Conclusions 
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The predominance and high diversity of haplogroup E3a*-M2 suggests a demographic 

expansion in the equatorial western fringe, possibly supported by a local agricultural 

center. The paternal pool of the Mandenka and Balanta displays evidence of a 

particularly marked population growth among the Guineans, possibly reflecting the 

demographic effects of the agriculturalist lifestyle and their putative relationship to the 

people that introduced early cultivation practices into West Africa. The paternal 

background of the Felupe-Djola and Papel ethnic groups suggests a better conserved 

ancestral pool deriving from East Africa, from where they have supposedly migrated in 

recent times. Despite the overall homogeneity in a multiethnic sample, which contrasts 

with their social structure, minor clusters suggest the imprints of multiple peoples at 

different timescales: traces of ancestral inhabitants in haplogroups A-M91 and B-M60, 

today typical of hunter-gatherers; North African influence in E3b1-M78 Y chromosomes, 

probably due to trans-Saharan contacts; and R1b-P25 lineages reflecting European 

admixture via the North Atlantic slave trade. 

 

Background 

Many genetic studies of sub-Saharan Y chromosome variation have paid special 

attention to the large-scale Bantu expansions, and the particular pool of the “relic” 

Central African Pygmies and the South African Khoisan [1-7], while little is known about 

the events that have shaped the paternal structure of Equatorial West Africans. Although 

anthropological evidence is scarce, the earliest traces of West Atlantic occupation by 

modern humans dates back 40 ky [8,9]. Later climatic changes, when around 9 kya the 

Sahara was at its wettest [10], created conditions for both the massive displacement of 
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people and the spread of agriculture, reaching previously uninhabited areas and 

promoting admixture with isolated populations [11-14]. Although the farming practices in 

Sahel could have started earlier than 6 kya [15,16], firm archaeological evidence points 

to the domestication of local sorghum, millet and yams ~4 kya [17]. Together with the 

introduction of iron-smelting techniques ~ 2.7 kya, agriculture led ultimately to the large-

scale Bantu migrations from the Gulf of Guinea to the south of the continent [18]. From 

the perspective of Y chromosome genetic variation, such movements are believed to 

have erased much of the pre-existing diversity, replacing it with the now dominant 

haplogroup E3a-M2 lineages [4,19,20]. 

The inhabitants of the Guinea-Bissau area have certainly been under the 

influence of several demographic events since prehistorical times, as a result of 

migratory movements, trade networks and consecutive invasions. The first recorded 

influx of ethnically defined groups is the arrival of Fulbe people in the 8th century AD, 

from a Central African epicenter [21]. First contact with the North African Berbers dates 

back to at least the 9th century, and was repeated in the 11th century when, pushed by 

the Omníades, these people came to occupy the vicinity of Senegal [22]. The economic 

shift in the Sahel allowed more centralized states to form (namely the “Black Kingdoms” 

in the period between the 8th and 16th centuries, [23]), linked by a trading corridor 

reaching from Mauritania to Niger [18]. In the following centuries pastoral Fulbe arrived 

again slowly but en masse, together with the Mandenka, and became the most 

prevalent people in Guinea-Bissau territory. Oral tradition also states that the Djola 

people – Felupe-Djola, Baiote and possibly Beafada – came from Sudan in the 15th-16th 

centuries [24]. As for the Balanta, Sudanese or Bantu affinities may argue for their 

cultural and phenotypic aspects. Though research on the background of the Nalú is less 
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advanced, Teixeira da Mota [25] considers them to be the autochthonous people of the 

region. The same author identifies Bijagós as a separated branch of Djola or relatives of 

Papel and Nalú.  The main ethnic groups now present in Guinea-Bissau (Figure 1; see 

Additional file 1) were already settled in the region in the 15th century, at the time of 

arrival of the Portuguese. With the establishment of the Atlantic slave trade the region 

experienced an input of Europeans, in their vast majority males, whose genetic imprint is 

undetermined. Many of the ethnic barriers were brought down, in particular the 

endogamic practices, promoting an intense cultural contact and higher levels of 

admixture between groups than before. 

The present study intends to characterize the paternal genetic pool of Guineans, 

focusing on their ethnic affiliation, by the use of binary markers and microsatellites on 

the non-recombining region of the Y chromosome (NRY). Our sample (n=282) extends 

significantly the Y-chromosomal coverage of West African populations (Senegal [5], 

Gambia/Senegal Wolof and Mandenka [7], Mali [2] and Dogon [7], Burkina-Faso [1,26], 

Ghana Ewe, Ga and Fante [7]) both in size and number of surveyed ethnic groups. The 

unique features of the Y chromosome system, namely its haploid and non-recombining 

nature and paternal inheritance, provide an opportunity to evaluate the temporal and 

spatial aspects of population movements, in the light of the available non-genetic 

evidence. 

 

Results and discussion 

Y chromosome haplogroup variation 
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The fairly homogeneous paternal structure of Guinea-Bissau (D=0.470, sd 0.033), 

is not surprising given the general landscape of sub-Saharan low Y-chromosomal 

haplogroup diversity [2,27] and its reported east-to-west decline along a Central African 

corridor [28]. Responsibility for the low diversity is attributed to the highly frequent E3a*-

M2 and E1*-M33 lineages (72.0% and 15.6%, respectively) that are shared among all 

ethnic clusters (Figure 2). In our dataset the Mandenka harbor the highest frequency 

(82.2%) of the E3a*-M2 paragroup, fitting the context of its closest neighbors (~80% in 

Senegalese [5] and Gambia/Senegal Mandinka [7]). The lack of diversity of West African 

Y chromosomes together with the predominance of E3a*-M2 lineages (assuming a 

frequency peak only equivalent to that in Central Africa; Figure 3) reinforces its link to 

agricultural expansion [3,4,19,20] and hint at the existence of a large local center of 

cultivation [14-16,18,29]. We hypothesized that the newly adopted lifestyle created 

conditions for major demographic growth, obscuring earlier patterns of lineages. 

Alternatively, a moderate farming expansion may have occurred on a background of 

reduced diversity, following the 5.5 kya savanna retreat [30] or the malarial epidemic 

episodes which were an outcome of pastoral habits [31]. 

The lifestyle transition in West Africa was most likely promoted by people other 

than the Bantu, as no relevant westwards migrations of these people are reported and 

none or few Bantu languages are found in the area today. In fact, the West African 

center may date earlier than that documented for Central Africa and may have acted as 

a western source of knowledge [14-16]. Based on the high frequency and microsatellite 

diversity of E3a*-M2 in the Mandenka and Balanta (Figure 2; see Additional file 2), we 

suggest that these people may have experienced a particular benefit from food 

production. If so, this might associate their ancestors with the people who implemented 
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the farming habits in the Guinea-Bissau area. The Mandenka are physically and 

culturally descendants of the Mande, protagonists of agricultural population expansions 

in Niger/Mali/Burkina-Faso region [18] and rulers of the West African Black Empires, 

based on trade and agriculture. For the Balanta, the cultural and physical affinities with 

Bantu suggest a common origin at the end of the Pleistocene [24], so it may be that 

different peoples jointly learnt the agricultural techniques. The E3a7-M191 lineages of 

one Fulbe and two Mandenka individuals of Guinea-Bissau are undoubtedly 

representatives of a Central African lineage that followed a trajectory to the west  

[2,3,5,32]. 

Haplogroup E1*-M33, of probable local radiation (5-7% in Senegal and Burkina-

Faso [2,3,5,7], 40.4% in Mali and 52.9% in Fulbe of Cameroon [1,26]), is surprisingly 

frequent in Felupe-Djola and Papel (34.0% and 20.3%). Both ethnic groups exhibit the 

highest haplogroup diversity (0.5<D<0.6) and the deepest-rooting phylogenetic types in 

our dataset – haplogroups A-M91, E2-M75 and E3*-PN2 – some with occasional 

occurrences in Fulbe and Balanta (Figure 2). These minor imprints may represent 

movements from Sahel’s more central and eastern parts, seen, for example, in the 

typically Ethiopian/Sudanese E3*-PN2 lineages that have reached Senegambia [2,3,5]. 

The Djola’s oral tradition claims an arrival from Sudan in the 15th-16th centuries which is 

supported by their carrying the lowest fraction of E3a* in our dataset (58.0%). At the 

same time, the relatively short time of residence and/or the genetic isolation on cultural 

grounds has not contributed to a greater homogeneity among the peoples. The Papel, 

curiously also affiliated to the Bak-speakers, may either represent a legacy left by earlier 

inhabitants of the Guinean delta, survivors of an ancient pool through demographic 
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reductions and expansions, or later arrivers who have preserved a more discrete genetic 

identity. 

Of greater prevalence in the East quadrant of Africa and among South African 

Khoisan (~12% and 15%, respectively; [2,5]) the paragroup E3b*-M35 is common to 

Felupe-Djola and Papel (~2%) but is also found among Fulbe and Mandenka (~4%). Its 

presence at ~2% in Guinea-Bissau and ~5% in Senegal may also indicate loose 

relationships to the North, where it is widespread at rather low frequencies (2-4%, 

[1,26,33-35]. A similar scenario of Eastern prevalence and North African spread traces 

the African distribution of E3b1-M78 (~26% in Sudan and Ethiopia and 19% in NW-

African Arabs), not to mention the ~7% in the Near Eastern and European people 

[1,5,26,33-35]. In Guinea-Bissau this haplogroup attains the highest frequency so far 

reported for West Africa (~4%). 

The remainder of binary marker variation falls into haplogroups A, B and R, each 

detected at marginal frequencies (0.4-3.9%). Clades A-M91 and B-M60, the most 

divergent of the haplogroups of the Y chromosome tree, are associated with the earliest 

modern human diversification and are putative markers of the first pan-African 

dispersals of hunter-gatherers [2,3,7,20,36]. However, the Guinea-Bissau A-M91 

lineages do not belong to the widespread A3-M32 but to the A1-M31 subcluster, with 

reported marginal presence in Mali (2.0% [2,7]), Gambia/Senegal Mandinka (5.1% [7]) 

and North African Berbers (3.1% [1,33-35]). Any association of Balanta to the 

Sudanese-speakers is traceable only in the A3b2-M13 and E3* Y chromosomes. The B-

M60 variant observed in almost all sub-Saharan collections [28] was only found in Nalú. 

One other Nalú individual belongs to the rare and deep-rooting DE* paragroup 

described in five Nigerians [37] and thus representing a coalescent “missing link”, 
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paraphyletic to haplogroups D and E. The two Western European R1b-P25 lineages in 

Fulbe and Bijagós are best explained by recent European influence, at the time of the 

slave trade. A partial introduction through North African pastoral immigrants can not be 

rejected, where the 3-12% of R1b-P25 are due to the geographic proximity and the long 

reported contacts with Europe and Middle-East [33]. The European source seems 

nevertheless more likely: firstly, Y chromosome signatures of European presence have 

a reported great expression in the nearby Cape Verdians [38] and secondly, highly 

frequent North African haplogroups that would have been equally carried by the 

migrants (e.g. E3b2-M81) are absent in Guineans. The M173 and P25 derived states in 

both our samples rule out a relationship to the R1*-M173 lineage previously found in 

Cameroon, Oman, Egypt and Rwanda, and adduced to support the “Back-to-Africa” 

theory [3,28].  

Pairwise FST analysis of haplogroup frequencies reveals the Felupe-Djola as the 

only group statistically significantly different from others, namely Bijagós (FST=0.095, 

P=0.027), Fulbe (FST=0.081, P=0.004) and Mandenka (FST=0.107, P=0.004). The exact 

test of population differentiation reveals similar information, further distinguishing Papel 

from Bijagós (P=0.01), Fulbe (P=0.003) and Mandenka (P=0.04). These results are in 

agreement with principal components analysis (PCA; see below) and the interpretation 

of the greater distinctiveness of the paternal pool of Felupe-Djola and Papel among 

other Guineans. 

 

PCA and AMOVA analysis 

A PCA of Guinean and other African populations Y chromosome haplogroup 

frequencies is depicted in Figure 4a [see Additional files 3 and 4 for population details]. 

 10

The 1st PC clearly separates the Afro-Asiatic speakers from other linguistic families, 

independently of their geographic location. Consistent with geographical grouping, North 

and West Africans cluster in independent and tighter groups. The coordinates of North 

Africans are attributable to haplogroups E3b2-M81 and J-12f2 while West Africans’ Y 

chromosomes cluster largely due to E3a*-M2, and E1-M33 to a lesser extent. Central 

and South African people are more dispersed in the plot, many lying closer to the 

Eastern populations (due to the presence of R-M207, A3-M32 and B2-M182 lineages) 

while others lie closer to the Western cluster. A linguistic correlation is hypothesized to 

underlie the genetic proximity of Bantu-speakers occupying different quadrants of the 

continent, driven by the E3a7-M191. Guinea-Bissau groups are included in the western 

cluster of populations, in close vicinity to Gambia/Senegal Wolof and Mandinka [7] and 

Senegalese [5] with which they share numerous population groups. It is noteworthy that 

the Guinea-Bissau Fulbe show a distinct pool from other Fulbe people, namely the ones 

in Burkina-Faso and Cameroon, and are integrated within the Guinea-Bissau variation. 

A PCA of Guinea-Bissau ethnic groups is illustrated in Figure 4b, less biased by the 

major influence of haplogroup E3a*-M2 and where the influence of minor clusters is 

emphasized. The Felupe-Djola and Papel have distinctive positions, largely a result of 

the high frequency of haplogroup E1-M33. The Bijagós, inhabitants of the archipelago, 

are placed apart in closer relation to the mainland Fulbe. The position of Mandenka is 

clearly defined by its E3a*-M2 composition. 

The AMOVA yielded no statistically significant results for ethnic group distinction 

on any of the defined criteria, with ~97% of the variance occurring at the within-

population level (P<0.05; see Additional file 5). These results suggest that in spite of 

obvious sociocultural differences among groups, marked by the supposedly strict 
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admixture barriers, their Y chromosome gene pool remains largely shared, because of 

common origin or common history of genetic admixture without language shift. 

 

Microsatellite haplotypes within haplogroups 

Y-chromosomal microsatellites provide further haplotype resolution, and are of 

particular use when, as in this case, some haplogroups are very prevalent. The E3a*-M2 

microsatellite profiles of Mandenka and Balanta are the most diverse among our data 

(RST average gene diversity, see Additional file 2) and attest to an earlier origin or more 

pronounced expansion. Since the corresponding parameter in Fulbe is less diverse we 

consider this to signal either a genetic bottleneck or their more recent expansion and 

late arrival in the West. The data are consistent with the less diverse E3a-M2 profile in 

Central and South Africans (data not shown). Haplotypes within E3b1-M78 are 

supposed to represent distinct clusters of local genetic drift [39]. The rare DYS439 allele 

10 of a so-called E3b1-β cluster particularly widespread among Moroccan Arabs defines 

a contribution to the Guinean Fulbe and Bijagós from North West Africans who have 

crossed the Sahara. The hypothesis of much later European contribution is valid though 

the remaining variability is absent (except for two R1b-P25 chromosomes) and none of 

the Guinean haplotypes carry the A7.1 allele with size 9, characteristic of Europe [39]. 

Microsatellite networks for paragroup E3a*-M2 and haplogroup E3b1-M78 are not 

informative due to multiple reticulations and the absence of a clear haplotype sub-

structure particularly associated to ethnic groups [see Additional file 6]. Further 

refinement awaits the finding of new markers especially within paragroup E3a*-M2. The 

microsatellite profile of the DE* individual is one mutational step away from the allelic 
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state described for Nigerians (DYS390*21, DYS388 not tested; [37], therefore 

suggesting a common ancestry but not elucidating the phylogenetics. 

The Fulbe E3a*-M2 extended haplotypes find exact matches in Equatorial 

Guinea, Mozambique, Angola and Xhosa (H61, H48, H69 [40,41]; see Additional file 7) 

supporting their broad distribution. The Mandenka share E3a*-M2 variants with all other 

groups in Guinea-Bissau and do not match types outside Central-West Africa (except 

H67 in Mozambique), a sign of localized expansion and increased influence over their 

ethnic neighbors. The Felupe-Djola, Balanta and Papel each share one microsatellite 

haplotype (H49, H46 and H127, respectively) with Mozambique and Angola. Several 

E3a* eight-loci profiles matched Europeans (H29, H38, H44, H30, H152, H153 and 

H55), most likely descendants of incoming slaves. Three Fulbe E3b1-M78 haplotypes 

(H155 and H156) were found to match Spanish haplotypes [42] and samples in Central 

Portugal, Macedonia, Romania and Poland (YHRD database [43]). Both profiles present 

the A7.1 allele 12, quite frequent in Equatorial Guinea [44]. The R1b-P25 H165 has a 

10-loci haplotype found in 68 worldwide populations, of which 53 are European (nine 

matches in Portugal, YHRD). The picture for H166-R1b is quite different since on a 7-

loci basis it matches four Europeans and two individuals from the Reunion Islands, 

known to have a European-permeable culture. 

 

MtDNA haplogroup variation 

 Comparisons between mtDNA and Y-chromosomal diversity are hindered 

because of the very different mutational properties of their SNPs and Y microsatellites, 

and because of SNP ascertainment bias on the Y chromosome. Therefore, caution is 

needed when interpreting the results. 
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 The maternal inheritance of Guineans is markedly West African, with haplogroups 

coalescing at distinct timeframes, from the initial occupation of the area to the later 

inputs of people [45]. Of relevance for comparison with the paternal counterpart are the 

signatures of recent expansion in haplogroups frequent in Senegambia, namely 

haplogroups L2a-L2c, the latter displaying an almost starlike phylogeny and being 

particularly frequent in the Mandenka ([45]; Tajima’s D and Fu’s Fs, our unpublished 

data). An intriguing increased frequency of L0a1 in the Balanta might parallel A1-M31 

and A3b2-M13 Y chromosomes in representing East African traces. Although the 

founder L0a1 haplotype is shared in an east-to-west corridor, the emerging lineages are 

exclusive of Guineans, indicating a rapid spread and local expansion after arrival. These 

may therefore reflect the arrival of their ancestors in the Holocene (at about 7 kya, [45]). 

Moreover, the exact matches found between Balanta and North Africans in haplogroups 

L2a, L2b and L3b may represent evidence for their contact and long residence in the 

territory. L3e4 lineages, thought to signal the western expansion of food-production and 

iron-smelting, show a moderate frequency of 8% in the Balanta. The absence of mtDNA 

Bantu-markers [46-49] suggests either that Bantu people contributed very little to the 

maternal gene pool of Guineans, or that they had a different pool from that associated 

with the southwards migrations [45]. 

 The widespread L3e2b is mainly a Felupe-Djola and Papel cluster with probable 

links to their homeland mirrored in exact matches with East and Central African 

haplotypes. Lineages within L3h, coalescing at the late Pleistocene/early Holocene in 

Guineans [45], exhibit one of the highest found frequencies among the Felupe-Djola 

(8%). Their increased frequency of West African mtDNA haplogroups L2b and L3d and 
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Y chromosome E1*-M33 could be due to amplification in small founder groups, as these 

are absent in East Africa. 

 The mtDNA haplotypes in Guinean Fulbe exhibit a wide range of matches 

supported by their wide distribution and massive movements in recent history (e.g. [21]). 

The high frequency of L1b is otherwise a constant in the Fulbe “world” [50]. Conversely 

to what is seen on the paternal side, this is the only group that retains statistically 

significant differences in mtDNA lineages from its ethnic neighbors. As for the Y 

chromosome, the mtDNA pool of Bijagós shows higher affinity to that of Fulbe, making 

less likely any connections to the Djola, Papel or Nalú [25]. 

 The North African mtDNA haplogroups demonstrates partial diffusion to Sahel, 

namely U6 found in Fulbe and Mandenka and M1b present in Guinea-Bissau Atlantic 

Bak-speakers ([51,52]; previously referred to as M1 in [45]). The U5b1b lineages in 

Fulbe and Papel are representatives of a link between the Scandinavian Saami and the 

North African Berbers, emphasizing the great importance of post-glacial expansions 

[53]. These lineages have most likely crossed the strait of Gibraltar and developed into 

local clusters, one of which is in West Africa. They do not seem to result from recent 

gene flow given that the North African Euroasiatic haplogroups H, J and T are absent in 

our sample. 

 

Conclusions 

The analysis of our data provides further evidence for the homogeneity of the Y 

chromosome gene pool of sub-Saharan West Africans, due to the high frequency of 

haplogroup E3a-M2. Its frequency and diversity in West Africa are among the highest 
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found, suggesting an early local origin and expansion in the last 20-30 ky. Hypothesizing 

on the existence of an important local agricultural centre, this could have supported a 

demographic expansion, on an E3a-M2 background, that almost erased the pre-existing 

Y chromosome diversity. Its pattern of diversity within Mandenka and Balanta hints at a 

more marked populational growth, these people possibly related to the local diffusion of 

agricultural expertise. The Papel and Felupe-Djola people retain traces of their East 

African relatives, to which the short timescale of residence in Guinea-Bissau and higher 

isolation from major influences have contributed. In the near absence of archaeological 

data, the signatures of North, Central and East Africans, traceable in less frequent 

extant paternal haplogroups, fit well with the linguistic and historical evidence regarding 

the origin and admixture processes of particular ethnic groups. Minor influences of North 

and East Africa, in particular, are corroborated by mtDNA data. 

 

Methods 

Sampling procedure 

A total of 282 Guinea-Bissau unrelated healthy males were analyzed in this 

survey for the Y chromosome biallelic markers. The sample constitutes a subset of that 

typed for mtDNA [45] and therefore follows similar selection criteria and DNA extraction 

procedures. The present data are published as a Cape Verde source population [38] but 

here samples are described by ethnic affiliation. In the aforementioned article the 

authors were alerted to slight inconsistencies in Figure 2, which are corrected in the 

present work (see Figure 2), such as the missing 44 haplogroup E1*-M33 individuals. 
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Note that discrepancies were not due to sample mistyping but to typographical errors in 

the original table. 

In order to have a manageable number of units with reasonable sample size, 

many of the Guinean ethnic groups were clustered: Felupe-Djola includes the 

homonymous group, Baiote, Cassanga and Beafada; Papel includes Papel, Manjaco 

and Mancanha; Fulbe clusters Fulbe, Futa-Fulbe, Fulbe-Preto and Fulbe-Forro; 

Mandenka joins Mandenka, Mansonca, and Sussu; Balanta, Bijagós and Nalú were 

considered independently. The clustering is not without controversy, but follows 

pertinent information related either to history, anthropology or linguistics [24,54-59]. 

 

Typing of Y chromosome Binary and Microsatellite Polymorphisms 

The hierarchical selection of the following 31 Y chromosome binary markers 

according to the Y Chromosome Consortium phylogeny [60,61] allowed the inclusion of 

each Y chromosome into specific haplogroups: YAP [62], 92R7 [63], SRY4064, 

SRY10831 [64], P25 [65], PN2 [62], M2, M9, M10, M13, M14, M31, M32, M33, M35, 

M44, M60, M75, M78, M81, M89, M91, M116, M123, M130, M155, M168, M173, M174 

and M191 [2,20]. The typing details of restriction fragment length polymorphisms 

(RFLPs) and direct sequencing analysis are available from the authors. The Wisconsin 

Package Version 10.0 [66] was employed to align DNA sequences. The nomenclature 

and phylogenetic relationship of lineages followed the guidelines proposed by the YCC 

[60], referred to in the text by the (sub)haplogroup and the terminal mutation. 

The microsatellite variation, previously determined for a subset of 215 individuals 

[67] and newly typed for five samples, was associated to the haplogroups. Typing 

methodology of microsatellites DYS19, DYS389I, DYS389II, DYS390, DYS391, 
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DYS392, DYS393, DYS385, DYS437, DYS438 and DYS439 is published elsewhere 

[67]. An additional GATA microsatellite A7.1 (DYS460 [68]) was tested for E3b1-M35 

chromosomes. 

 

Data analysis 

A graphical representation of the haplogroup phylogeny and distribution among 

ethnic clusters was built in netViz 6.5 [69]. Arlequin program ver. 2.000 [70] was used for 

the summary statistics on both haplogroup and microsatellite haplotype frequencies for 

each population unit: diversity indexes [71]; FST and RST calculation; exact test of 

population differentiation (DYS385 omitted from the analysis) [72]; AMOVA tests [73] 

with hierarchical clustering of the ethnic groups on geographical, linguistic and religious 

criteria. PCAs were performed with the software MSVP Version 3.13m [74] for 

haplogroup frequencies of our data and a wide selection of African populations (units as 

in Figure 4; see Additional files 3 and 4), to generate a more complete picture of the 

African Y-haplogroup variation and the phylogeographic relationships. 

Haplotype networks of microsatellite data were drawn using the Network 4.1.1.2 

program [75]. Information on seven microsatellites (DYS19, DYS389I, DYS389II, 

DYS390, DYS391, DYS392 and DYS393) was sequentially submitted to reduced-

median and median joining algorithms [76,77]. Singletons were excluded from the 

analysis and the threshold level of 2 was set, with weighted STR loci [78]. The YHRD 

database and published sources were consulted for exact matches of eight and ten 

microsatellites (minimal and extended haplotypes, respectively). 
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Figure legends 

Figure 1 - Geographic location of Guinea-Bissau and present-day settlement 

pattern of the ethnic groups considered in this study.  

 
Figure 2 - Y chromosome haplogroup diversity in Guinea-Bissau. Absolute 

numbers are shown for the total sample and ethnical clusters. Haplogroup nomenclature 

and defining mutations assayed in this study, shown along the branches of the 

phylogeny, are as proposed by the YCC [60]. The bold link indicates the root, 

determined by comparisons with primates [2,79]. 

 

Figure 3 – African spatial distribution of haplogroup E3a-M2. Frequency scale (in 

percentage) is shown on the left. Data according to population datasets described in 

Additional files 3 and 4.  

 

Figure 4 – Principal Component Analysis for a) several African populations and b) 

Guinea-Bissau ethnic clusters, based on haplogroup frequencies. 

a) The 1st PC captures 42.6% of the variance and 16.9% are under the responsibility of 

the 2nd PC. For details on populational datasets see Additional file 2. The codes in italic 

refer to the following populations: Morocco Arabs: Ar [1,34], Mar [33]; Morocco Berbers: 

Bb [33], MBb [34]; Algeria: Alg [80], Aar-Algerian Arabs [35]; Tunisia-Tun1 [35], Tun2 [7]; 

West Sahara: Sah-Saharawis [33]; Egypt: Egy1 [35], Egy2 [7]; Sudan: Sud [2]; Ethiopia: 

Eth [2], Or-Oromo, Amh-Amhara [5,7]; Kenya: K&K-Kikiu & Kamba, Maa-Maasai [7]; 

Uganda: Gan-Ganda [7]; North Cameroon: Po-Podokwo, Mad-Mandara [7], Ou-

Ouldeme, Daba [1,7,26], NCAdaw-Fali, Tali [1,26], Fca-Fulbe [1,26]; South Cameroon: 
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SCBantu-Bassa, Ngoumba [7], Bak-Bakaka, [1,7], Bam-Bamileke [1,26], Ewo-Ewondo 

[1,26], Bko-Bakola Pygmies [7]; CAR: Bik-Biaka Pygmies [2,7]; DRC: DRCBantu-Nande, 

Herna [7]; Mb-Mbuti Pygmies [2,7]; Guinea-Bissau: EJA-Felupe-Djola, BJG-Bijagós, 

BLE- Balanta, PBO-Papel, FUL-Fulbe, MNK-Mandenka, NAJ-Nalú (Present study); 

Burkina Faso: Mo-Mossi [1,26], Ri-Rimaibe [1,26], FBF-Fulbe [1,26]; Gambia/Senegal: 

Wo-Wolof [7], Mak-Mandinka [7]; Mali: Mal [2], Do-Dogon [7]; Ghana: Ewe, Ga, Fan-

Fante [7]; Senegal: Se [5]; Namibia: Her-Herero, Amb-Ambo [7], Ku-!Kung, Sekele 

[1,7,26], CKh-Tsumkwe San, Dama, Nama [7]; South Africa: ST-Sotho-Tswana, Zu-

Zulu, Xh-Xhosa, Sh-Shona [7], Kho-Khoisan [2]. 

 

b) The PCA captures 87.0% of the variance with 74.0% and 13.0% attributed to the 1st 

and 2nd PC, respectively. The 1st PC reflects an axial proportion of E3a* vs. E1* where 

Papel and Felupe-Djola retain the higher proportions of the later. E3a* is again a main 

influence in the 2nd axis against that of R1b and E3b1, placing Mandenka apart from 

Bijagós and Fulbe. 

List of additional files 

 
Additional file 1 

File format: EPS 

Title: Population data on the surveyed ethnic groups of Guinea-Bissau. 

Description: The table provides information on the linguistic and religious affiliations of 

the Guinea-Bissau ethnic groups.  

 
Additional file 2 
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File format: EPS 

Title: Diversity indices and TMRCA estimates. 

Description: The table gives diversity indices for Guinea-Bissau Y chromosome 

haplogroups: a) coalescence time estimates for haplogroups and b) molecular diversity 

index (RST) and TMRCA for haplogroup E3a*-M2, by ethnic group.   

 

Additional file 3 

File format: EPS 

Title: Comparative African data. 

Description: The table summarizes previously published Y chromosome datasets on 

African populations, here considered for comparative purposes. 

 

Additional file 4 

File format: EPS 

Title: Geographical distribution of African samples.  

Description: The figure displays the geographical distribution of the African Y 

chromosome samples considered for comparative purposes [see Additional file 3]. 

 

Additional file 5 

File format: EPS 

Title: Analysis of Molecular Variance (AMOVA) in Guinea-Bissau  

Description: The table summarizes the results of an AMOVA analysis (1023 

permutations) for the Y chromosome variation among Guinean ethnic groups, clustered 

according to geographical, linguistic and religious criteria. 
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Additional file 6 

File format: EPS 

Title: Microsatellite haplotype networks. 

Description: The networks describe the variability of 7 microsatellite loci in Y 

chromosome haplogroups, among ethnic groups. a) haplogroup E3a*-M2 (N=75, 

singletons excluded); b) haplogroup E3b1-M78 (N=11), ”*” denoting the E3b1-β 

haplotypes. Node sizes are proportional to the number of individuals. 

  

Additional file 7 

File format: PDF 

Title: Haplotypes in Guinean samples. 

Description: List of the Y chromosome SNP-defined haplogroups and corresponding 

microsatellite haplotypes found in the Guinean sample set, by ethnic group. 
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