

Goals Software Construction Process

Pedro Dionísio Valente
(Licenciado)

Thesis Submitted to the University of Madeira

for the degree of Master in Software Engineering

Funchal – Portugal

2007

3

Orientador

Professor Doutor Paulo Nazareno Maia Sampaio.

Professor Auxiliar do Departamento de Matemática e Engenharia da Universidade da Madeira

4

5

ABSTRACT

Generalized hyper competitiveness in the world markets has determined the need to

offer better products to potential and actual clients in order to mark an advantage

from other competitors. To ensure the production of an adequate product, enterprises

need to work on the efficiency and efficacy of their business processes (BPs) by means

of the construction of Interactive Information Systems (IISs, including Interactive

Multimedia Documents) so that they are processed more fluidly and correctly.

The construction of the correct IIS is a major task that can only be successful if the

needs from every intervenient are taken into account. Their requirements must be

defined with precision, extensively analyzed and consequently the system must be

accurately designed in order to minimize implementation problems so that the IIS is

produced on schedule and with the fewer mistakes as possible.

The main contribution of this thesis is the proposal of Goals, a software (engineering)

construction process which aims at defining the tasks to be carried out in order to

develop software. This process defines the stakeholders, the artifacts, and the

techniques that should be applied to achieve correctness of the IIS. Complementarily,

this process suggests two methodologies to be applied in the initial phases of the

lifecycle of the Software Engineering process: Process Use Cases for the phase of

requirements, and; MultiGoals for the phases of analysis and design.

Process Use Cases is a UML-based (Unified Modeling Language), goal-driven and use

case oriented methodology for the definition of functional requirements. It uses an

information oriented strategy in order to identify BPs while constructing the

enterprise’s information structure, and finalizes with the identification of use cases

within the design of these BPs. This approach provides a useful tool for both activities

of Business Process Management and Software Engineering.

MultiGoals is a UML-based, use case-driven and architectural centric methodology for

the analysis and design of IISs with support for Multimedia. It proposes the analysis

of user tasks as the basis of the design of the: (i) user interface; (ii) the system behavior

that is modeled by means of patterns which can combine Multimedia and standard

information, and; (iii) the database and media contents.

This thesis makes the theoretic presentation of these approaches accompanied with

examples from a real project which provide the necessary support for the

understanding of the used techniques.

6

KEYWORDS

Software Engineering

User-Centered Design

Interactive Information Systems

Multimedia Authoring

Business Process Management

Unified Modeling Language

Methodologies and Techniques

User Interface (Screen) Design

Prototyping

7

RESUMO

A hiper concorrência generalizada dos mercados mundiais tem determinado a

necessidade de oferecer melhores produtos aos actuais e potenciais clientes de forma a

ganhar vantagem face à concorrência. Para garantir um produto adequado, as

empresas precisam de trabalhar a eficiência e eficácia dos seus processos de negócio

(PN) através da construção de Sistemas Interactivos de Informação (SII, incluindo

Documentos Multimédia Interactivos) para que estes sejam processados de forma

mais fluida e correcta.

A construção de um SII correcto é uma tarefa importante que só terá sucesso se as

necessidades de cada interveniente forem tomadas em conta. Os requisitos têm que

ser definidos com precisão, profundamente analisados e consequentemente o sistema

tem que ser desenhado com exactidão de forma a minimizar problemas de

implementação para que o SII seja produzido dentro do prazo e com o mínimo

número de erros possível.

A principal contribuição desta tese é a proposta de Goals, um processo de construção

de software que tem por objectivo definir as tarefas a serem realizadas para o

desenvolvimento de software. Este processo define os participantes (stakeholders), os

artefactos e as técnicas que devem ser aplicadas para atingir a correcção (correctness)

do SII. Como Complemento este processo sugere a aplicação de duas metodologias na

fase inicial do ciclo de vida de Engenharia de Software: Process Use Cases para a fase

de requisitos, e; MultiGoals para as fases de análise e desenho.

Process Use Cases é uma metodologia baseada em UML (Unified Modeling Language),

orientada aos objectivos (goals), e orientada aos casos de utilização para a definição de

requisitos funcionais. Esta metodologia usa uma estratégia orientada à informação

para identificar os processos de negócio e ao mesmo tempo construir a estrutura de

informação da empresa, e finaliza com a identificação de casos de utilização no

desenho dos processos de negócio. Esta “ferramenta” é útil para as actividades de

Gestão de Processos de Negócio e para a Engenharia de Software.

MultiGoals é uma metodologia baseada em UML derivada de casos de utilização e

centrada em arquitectura (architectural centric) para a análise de SIIs com suporte

para multimédia. Propõe a análise das tarefas do utilizador como a base para o

desenho de: (i) interface do utilizador; (ii) comportamento do sistema que é modelado

8

através de padrões que combinam multimédia e informação standard, e; (iii) base de

dados e conteúdos multimédia.

Esta tese faz uma apresentação teórica destas abordagens acompanhada com

exemplos de um projecto real que fornece o suporte necessário para a compreensão

das técnicas usadas.

9

PALAVRAS CHAVE

Engenharia de Software

Desenho Centrado no Utilizador

Sistemas Interactivos de Informação

Autoria Multimédia

Gestão de Processos de Negócio

Unified Modeling Language

Metodologias e Técnicas

Desenho de Interface (Ecrã) do Utilizador

Protótipos

10

ACRONYMS

BP – Business Process

BPM – Business Process Management

CAP – Canonical Abstract Prototype

CASE – Computer Assisted Software Engineering

CTT – Concur Task Trees

DBMS – Database Management System

FR - Functional Requirement

Goals – Goal-Oriented Approach (led) Software

HCI – Human-Computer Interaction

HCM – Human-Centered Multimedia

HDM – Hypermedia Design Model

IIS – Interactive Information System

IMD – Interactive Multimedia Document

IS – Interaction Space

LUCID – Logical User Centered Interaction Design

NA – Norm Analysis

NFR – Non-Functional Requirement

OMG – Object Management Group

OO – Object Oriented

OOA – Object Oriented Analysis

OVID – Object, View and Interaction Design

PUC – Process Use Cases

QoE – Quality of Experience

QoS – Quality of Service

RE – Requirements Engineering

ROI – Return of Investment

RUP – Rational Unified Process

11

SE – Software Engineering

SQL – Structured Query Language

TPS – Transaction Processing System

UCD – Usage-Centered Design

UML – Unified Modeling Language

UWE – UML-based Web Engineering

VoIP – Voice over IP

Wisdom – Whitewater Interactive System Development with Object Models

12

ACKNOWLEDGEMENTS

I want to thank my Professor Paulo Sampaio who taught me how to make science and

write papers and this thesis, for the numerous hours spent with me in the elaboration

of the contributions here presented, and for always giving me support to go further.

I want to thank my Mother Margarida Dionísio and my friend Cabral without whom I

would never have finished this thesis.

I want to thank my Father and my Grandmother, and to my entire family that always

believed in me.

I want to thank my colleagues/friends Filipe Freitas and Paulo Vieira, and to my

uncle João Dionísio for their participation in this work ;)

Also thanks to my cousin Cristina Ferraz for proofreading this thesis.

And thanks to my friend Jorge Gonçalves for treating the image of the front cover.

I finally want to thank all my friends (including my work colleagues) that in one way

or another always encouraged me to finish this work.

13

TABLE OF CONTENTS

I. Introduction 21

I.1. Motivation...23

I.2. Problematic ...24

I.3. Contributions..25

I.3.1. Requirements Phase..26
I.3.2. Analysis Phase ...27
I.3.3. Design Phase ..27

I.4. Organization...29

II. State of the Art: Interactive Information Systems and Multimedia Modeling 31

II.1. Introduction..32

II.2. Interactive Information Systems Architecture...34

II.2.1. Presentation Tier ..34
II.2.2. Business Logic Tier ..35
II.2.3. Data Tier ..35

II.3. Multimedia Conceptual Approach ...36

II.3.1. Multimedia Systems ..36
II.3.2. Multimedia Applications ..36
II.3.3. Interactive Multimedia Documents...37
II.3.4. Hypermedia Documents ...39

II.4. Base Techniques ...40

II.4.1. Requirements Definition ...40
II.4.2. Requirements Definition Base Techniques ...42
II.4.3. Analysis and Design ..47
II.4.4. Analysis and Design Base Techniques ..48

II.5. Related Works ..54

II.5.1. Requirements..54
II.5.2. Analysis and Design ..59

II.6. Conclusions ..69

14

III. Requirements (Process Use Cases) 71

III.1. Introduction ... 72

III.2. Process Use Cases: An Overview ... 73

III.3. A Project ... 75

III.4. The Steps of Process Use Cases... 76

III.4.1. Step 1 – Interiorize Project ...76
III.4.2. Step 2 - Information Identification..77
III.4.3. Step 3 - Business Processes Identification..79
III.4.4. Step 4 - Use Cases Identification ...83

III.5. Conclusions.. 87

IV. Analysis & Design (MultiGoals) 89

IV.1. Introduction ... 90

IV.2. MultiGoals: An Overview.. 91

IV.3. An Application .. 93

IV.4. The Steps of MultiGoals ... 94

IV.4.1. Step 1 – Use Cases...94
IV.4.2. Step 2 – Activity Diagram (Interaction Spaces + Tasks)..96
IV.4.3. Step 3 – Interaction Model (Task + System Responsibility)..98
IV.4.4. Step 4 – Navigational Model (Interaction Spaces)..100
IV.4.5. Step 5 – Presentation Model (Interaction Spaces + Tasks) ..102
IV.4.6. Step 6 – Application Domain Model (Entities) ...104
IV.4.7. Step 7 – Application Object Model (Entities Objects) ..107
IV.4.8. Step 8 – Conceptual Model (System Responsibilities + Source)...............................109
IV.4.9. Step 9 – System Behavior Model (System Responsibilities)......................................111
IV.4.10. Step 10 – Temporal Model ...115
IV.4.11. Step 11 – Application Architecture...117

IV.5. Conclusions.. 118

V. Case Study (MultiGoals) 119

V.1. Introduction ... 120

V.2. Training .. 122

V.3. Produced Diagrams .. 124

V.3.1. Step 1 - Use Cases...124
V.3.2. Step 2 - Activity Diagram..125
V.3.3. Step 3 – Interaction Model ..128
V.3.4. Step 5 – Presentation Model ...131

V.4. Conclusions.. 139

15

VI. Conclusions 141

VI.1. General Conclusions..142

VI.1.1. Requirements (Process Use Cases)...142
VI.1.2. Analysis and Design (MultiGoals) ...143

VI.2. Future Work ...146

VI.2.1. Requirements (Process Use Cases)...146
VI.2.2. Analysis and Design (MultiGoals) ...147

List of Publications 149

References 150

Appendix A: Static and Run-Time Patterns 155

Appendix B: Stereotypes 161

16

LIST OF FIGURES

Figure 1: Goals’ (partial view) defined phases. 26

Figure 2: Goals’ (partial view) undefined phases 26

Figure 3: Sommerville’s RE lifecycle. 41

Figure 4: Wisdom’s Requirements Workflow. 44

Figure 5: Business Process Model. 45

Figure 6: Participation Map for a retail selling situation. 46

Figure 7: Activity-Task Map (partial) for retail selling. 46

Figure 8: Wisdom’s Architecture. 48

Figure 9: Example of the application of an essential use case. 50

Figure 10: CAPs abstract tools and abstract materials. 51

Figure 11: Example of the application of CAPs. 51

Figure 12: Concur Task Trees’s operators and types of tasks. 52

Figure 13: Example of the application of the Concur Task Trees. 52

Figure 14: Gonzalez’ sequence of models. 54

Figure 15: Gonzalez’ “IT Infrastructure” sequence of diagrams until reaching use
cases. 55

Figure 16: Two Norm Analysis sentences. 56

Figure 17: Shishkov’s derivation of use cases from norms. 56

Figure 18: Dijkman’s mappings between business processes and use cases model. 57

17

Figure 19: Štolfa’s sequential (a) and optional (b) patterns for derivation of use cases
from business processes. 58

Figure 20: UWE’s Conceptual Model. 61

Figure 21: UWE’s Navigation Space Model. 61

Figure 22: UWE’s Navigational Structure Model. 62

Figure 23: UWE’s Presentation Model (Company). 62

Figure 24: UWE’s Task Modeling. 63

Figure 25: W2000’s Navigational Requirements Analysis’. 64

Figure 26: W2000’s Hyperbase Information Design in-the-large(a) & in-the-small(b). 65

Figure 27: W2000’s Hyperbase Navigation Design. 65

Figure 28: OMMMA’s class diagram for the modeling of scenarios, applications and
media classes. 66

Figure 29: OMMMA’s interaction modeling. 67

Figure 30: OMMMA’s Statechart diagram modeling the top level reactive behavior
of the education application. 67

Figure 31: OMMMA’s Sequence diagram modeling timed procedural behavior for
the presentation of lecture discussion videos. 67

Figure 32: Business Process Management lifecycle. 73

Figure 33: Process Use Cases’s BP. 74

Figure 34: Step 1- High-level concept for the project. 76

Figure 35: Step 2 - Domain model for the project. 78

Figure 36: Business Process Model for the “Obtain Recipe” business process. 80

Figure 37: Business Process Model for the “Make Event” business process. 81

Figure 38: Business Process Model for the “Advertise” business process 81

Figure 39: Business Process Model for the “Obtain Gastronomic Information” business
process. 82

Figure 40: Step 3 – The Business Process Model for the project. 82

Figure 41: Process use cases model for “Obtain Recipe” business process. 84

Figure 42: Process use cases model for “Make Event” business process. 85

Figure 43: Process use cases model for “Advertise” business process. 85

18

Figure 44: Process use cases model for “Obtain Gastronomic Information” business
process 86

Figure 45: Illustration of an interactive Multimedia scenario 93

Figure 46: Step 1: Use Case and complementary information for the example
application. 94

Figure 47: Step 2 - Activity diagram for the example application. 97

Figure 48: Step 3 - Interaction model for the example application. 99

Figure 49: Step 4 - Navigational model for the example application. 101

Figure 50: Step 5 – Presentation model for the example application. 103

Figure 51: Step 6 - Application Domain Model for the example application. 105

Figure 52: Step 7 - Object model for the example application. 107

Figure 53: Step 8 - Conceptual model for the example application. 110

Figure 54: Sequence (of system responsibilities). 111

Figure 55: Parallel Fork. 112

Figure 56: Exclusive Fork. 112

Figure 57: Causal interruption generated from a user interaction. 113

Figure 58: Causal relation generated by the behavior of the system. 113

Figure 59: Step 9 - System behavior model for the example application. 113

Figure 60: Step 10 - Temporal model for the example application. 116

Figure 61: Step 11 - Application architecture for the example application. 117

Figure 62: Step 1 - Use cases of the Gastronomy Project. 124

Figure 63: Step 2 - Activity diagram for the "Catalog Recipe" use case. 125

Figure 64: Step 2 - Activity diagram for the "Advertise" use case. 127

Figure 65: Step 2 - Activity diagram for the "Obtain Gastronomic Information" use
case. 127

Figure 66: Step 3 - Interaction model for the pair task-system responsibility “Select one
of the Choices”- “Return the Chosen Category” (Recipe Situation). 129

Figure 67: Step 3 - Interaction model for the pair task-system responsibility “Select one
of the Choices”- “Return the Chosen Category” (Search Situation) 130

Figure 68: Step 5 - "Recipe" IS versions 1 (blue ink) and 2 (red ink). 132

19

Figure 69: Step 5 - "Recipe" IS versions 2.1 and 3 (red ink, approved by the Client). 133

Figure 70: Step 5 - "Advertise" IS versions 1 (pencil) and 2 (red ink). 134

Figure 71: Step 5 - "News/Event/Publicity" IS version 2.1 (Approved by the Client). 134

Figure 72 : Step 5 - "HomePage" IS version 1. 135

Figure 73: Step 5 - "HomePage" IS versions 1.1 and 2 (red ink, approved by the
Client). 136

Figure 74: Step 5 - "Advanced Search" IS version 1. 137

Figure 75: Step 5 - "Advanced Search" IS version 1.1. 138

20

LIST OF TABLES

Table 1: Requirements methodologies comparison 59

Table 2: Analysis and Design methodologies comparison. 68

Table 3: Steps of Process Use Cases methodology 74

Table 4: Steps of MultiGoals methodology 91

Table 5: MultiGoals training session schedule. 122

Table 6: Requirements methodologies comparison. 143

Table 7: Analysis and Design methodologies comparison. 144

21

I. INTRODUCTION

"It is a process (the Timeless Way of Building) which brings

order out of nothing but ourselves. It cannot be attained, but it

will happen of its own accord, if we will only let it. "

Christopher Alexander in The Timeless Way of Building

[Christopher Alexander, 1979]

Software construction is a major challenge. The requirements for the construction of

software, such as time construction and budget restrictions do not allow great

margins of error. For this reason, the phases that lead to the implementation of the

software must be straightforward and precise regarding the production of artifacts

that provide valuable information for the development of the software.

User-Centered Design has been successful in the task of understanding the user and

consequently efficiently building more adequate software products. However, with

the introduction of new technologies, there is the need of evolving the methods in a

way that this extra complexity can be represented making these technologies useful

for the development of better systems.

This thesis introduces Goals, a software construction process for the conception of

correct software products for an enterprise aiming the resolution of specific

information problems. Goals defines the phases (major activities), the actors (and their

objectives), the outputs and inputs (artifacts), the triggers and the guidelines for each

phase of the process which will ensure a higher rate of success for the project. For the

22

moment, the first 3 phases of a software development process are defined

(requirements, analysis, and design).

Goals proposes two methodologies to be applied on these first three phases: (i) Process

Use Cases for the requirements phase [Pedro Valente and Paulo Sampaio, 2007b] and;

(ii) MultiGoals for the analysis and design phases [Pedro Valente and Paulo Sampaio,

2007a]. These methodologies provide a set of techniques that are applied to produce

the necessary artifacts. Process Use Cases is a methodology that identifies use cases from

the design of business processes, and MultiGoals is a methodology that fully designs

the components of an Interactive Information System (with support for Multimedia)

based on the analysis of use cases and associated tasks.

23

I.1. MOTIVATION

The precise and easy identification of functional requirements is crucial for the fluent

development of a project. The identification of functional requirements (as use cases) in

the design of the business processes (BPs) provides a tool that will allow profitable

discussion between every stakeholder involved. Discussion will be based on the

needed functionalities and, as a result, the reorganization of the BP will be clear to

everyone.

Once functional requirements are identified, their analysis in terms of user tasks is

facilitated since there is the previous knowledge of how these tasks can be carried out

(during the execution of the BPs). Consequently, the design of the system will be

carried out based on the context, increasing the probability of a more adequate and

complete conception of the Interactive Information System (IIS).

IISs must be developed on schedule, as correct as possible and also have to be highly

usable. For this reason, they must be designed in detail minimizing iterations between

the phases of development and design. In order to produce a detailed design of the

system, conceive its components (user interface, system behavior and information

entities) and define the dependencies among these components, there is the need to

use tools which detail the system up to a level when there are now doubts, for the

future constructor (developer), on its functioning.

24

I.2. PROBLEMATIC

The construction of the correct software for an enterprise is a task which requires the

use of all the resources efficiently. Human, physical and logical resources must be

organized in such a way (in a project) that they will in the end bring an added value

to every stakeholder involved. The accomplishment of such an organization will only

be possible if every stakeholder is aware of its responsibility in the project and is able

to negotiate its intentions in terms of project requirements.

In this negotiation, functional requirements assume a preponderant role regarding the

final product of the project, the software, and the negotiation of the requirements will

only be efficient if the objects under discussion are represented by a language that is

understood by every intervenient. Usually, functionality and its associated

implementation “effort” will be major issues, in which, artifacts like a use case model

and an architectural view can make the difference between an abstract and a concrete

discussion.

Technology provides each day more and more valuable solutions for the development

of software, and from the combination of these new capabilities emerges complexity

that needs to be represented. Multimedia is an example of useful technology that can

bring an added value to traditional Interactive Information Systems. However,

Multimedia requirements such as synchronization and user-system interaction need

to be observed.

The modeling of systems is a highly elaborated task, for example a single user

interface can easily have dozens of associated components. Hence, the modeler must

be able to choose the models that will provide sufficient information about the design

of the system so that developers will have no doubts about its implementation. For

these reasons, analysis and design methodologies must be the more straightforward,

complete and flexible as possible.

25

I.3. CONTRIBUTIONS

The main contribution of this thesis is the proposal Goals, which is a (business) process

for the production of the correct Interactive Information System (IIS) for the resolution

of a specific information problem. This process is defined into 6 different phases

following a standard construction process: (i) requirements definition, (ii) analysis of

the problem, (iii) design of the solution, (iv) development of the IIS, (v) test of the IIS

and (vi) installation of the finished IIS. Goals also predicts that the software will need

maintenance following two possibilities: (i) introduction of new requirements to the

IIS, in which situation the complete process will be followed again, and, (ii) corrective

maintenance in which case process is also executed from the beginning in order to

identify where the mistake on the conception of the IIS was made.

Each phase of Goals is a business process itself in which a different methodology

should be applied to produce information for the construction of the IIS. Although the

Goals process is independent from the methodologies used, some restrictions should

be observed in order to achieve the minimal quality for the global process and assure

that full advantage is taken from the available inputs and that the needed outputs are

also produced. Also, each phase defines: the human intervenient and their objectives,

the minimal set of information inputs, and the outputs for the next phase.

The Goals process defines the phases of requirements, analysis and design (Figure 1).

These phases are seen as the key for the success of the IIS producing the needed

artifacts for the remaining phases (Figure 2) of development, test and installation.

According to Goals, after the definition of the requirements, two other phases are

applied for analysis and design of the software to be developed (or modified). For this

reason, it is also an objective of this thesis to explain how requirements should be

integrated with software analysis and how analysis should be integrated with design

in order to achieve correct software definition.

Although all information generated along the process should be available to all the

phases, Goals suggests sharing a minimal set of crucial information for correct system

definition. The next sections describe the requirements, analysis and design phases

illustrated in Figure 1.

26

Figure 1: Goals’ (partial view) defined phases.

Figure 2: Goals’ (partial view) undefined phases

I.3.1.Requirements Phase

The requirements phase aims at defining the requirements for the IIS. In this case the

applied methodology is: (i) use case-oriented, in order to produce a use case model and

(ii) information-oriented, in order to produce a domain model.

This phase that is triggered by the client with the intention of automating the

enterprise regarding the resolution of some information problem, and can take

advantage of artifacts that might already exist in the enterprise: business processes;

information entities, and; members of the enterprise.

The following artifacts are defined as the minimal set of information to achieve

functional requirements definition: (i) domain model - information entities of the

enterprise, and; (ii) use cases model - the use cases of the system. Optionally a high-level

concept and a Business Process Model can be elaborated.

27

In Process Use Cases architect, analyst and client work in order to produce the needed

output elements: high-level concept; Business Process Model; (process) use cases model, and;

domain model.

I.3.2. Analysis Phase

The analysis methodology was defined as: (i) object-oriented; (ii) use case-driven, and;

(iii) architecture-centric in order to achieve consistency validation in system

definition, i.e., to combine in one view usage, interaction interfaces, system behavior,

information entities and the relations among them.

The following artifacts are defined as the minimal set of information to achieve

comprehension of the problem: (i) an activity diagram - of the use cases, and; (ii) a

domain model - detailed with attributes. Optionally a use cases diagram and a task model

can be elaborated.

In MultiGoals architect, designer and client work to produce: (i) a use cases model; (ii)

activity diagrams, and; (iii) an interaction model.

I.3.3. Design Phase

The choice for the design methodology should depend on: (i) the compatibility with

the objects generated in the analysis phase; (ii) the non-functional requirements

revealed in the analysis phase and the (iii) available resources, i.e., modeling detail

needed for the development of the interactive system in: user interface usability,

system behavior refinement and database integrity; the human resources available for

the modeling, time and budget constraints.

The following artifacts are defined as the minimal set of information to achieve a

solution: (i) user interface design, and; (ii) a database design. Optionally a navigational

model, an interaction model, a business class model and a conceptual architecture can be

elaborated.

In MultiGoals engineer, designer and client work as a team to produce: a (i)

navigational model; (ii) presentation model; (iii) application domain model; (iv) application

object model; (v) conceptual model; (vi) system behavior model; (vii) temporal model, and;

(viii) a multimedia architecture.

28

To fully complement the Goals process the two methodologies already introduced are

presented in this thesis to cover the defined phases of requirements, analysis and

design. The first methodology is Process Use Cases which covers the phase of

requirements, and begins with the specification of a statement that defines the project

and ends with the identification of the use cases of the project. The second

methodology is MultiGoals which covers the phases of analysis and design. This

methodology takes advantage of the identified use cases and details them until the full

definition of the system producing the outputs defined by Goals.

29

I.4. ORGANIZATION

This thesis is organized as follows:

• Chapter II presents the state of the art for the use case-oriented methodologies for

the identification of requirements, and the UML-based methodologies for analysis and

design of Interactive Information Systems with support for Multimedia;

• Chapter III presents the Process Use Cases methodology for requirements definition;

• Chapter IV presents the MultiGoals methodology for the analysis and design of

Interactive Information Systems with support for Multimedia;

• Chapter V presents a case study of the modeling made by two Multimedia

professionals with the MultiGoals methodology, and;

• Chapter VI presents some conclusions and future work.

30

31

II. STATE OF THE ART: INTERACTIVE

INFORMATION SYSTEMS AND

MULTIMEDIA MODELING

Software Engineering has largely benefited from the introduction of different

technologies that combined have been providing useful ubiquitous solutions for the

world in general. The relational database, the hypertext and programming languages

are examples of tools that implement this reality.

From the generated complexity, solutions have emerged to defining architectural

patterns, analysis and design techniques that are used with the intention of building

better systems. This state of the art presents some of these existing solutions relative to

Interactive Information Systems and Multimedia which represent the bridge that the

contributions presented in this thesis aim to fulfill.

32

II.1. INTRODUCTION

The cost of a software project must have a comeback in terms of an adequate and

usable system. Software Engineering (SE) has produced and gathered a number of

different paradigms to help the construction of software systems involving techniques

and tools that can be applied to define requirements, analyze the problem inherent to

each requirement, design, implement and test the system.

Requirements Engineering (RE) has produced techniques to elicit and establish the

requirements for a software project including the identification of use cases as a

generally accepted technique to define functional requirements. The introduction of

object-oriented (OO) analysis (OOA) (late 80’s, 90’s) has produced formal methods to

analyze and model use cases using User-Centered Design techniques to understand the

complexity of tasks users need to carry out on the system. The Human-Computer

Interaction (HCI) and SE architecture-centric methods have produced OO techniques

to design the (interactive information) system’s user interface, code and data

components in terms of a unique comprehensive structure. The establishment of

techniques that cover the initial phases of software conception (requirements

definition, analysis and design) has become a solution to model and consequently

implement adequate and usable Interactive Information Systems (IISs).

Multimedia has become an usual solution to develop attractive applications in areas

like education, arts, games and marketing. The initial challenges in the Multimedia

history concerned issues like synchronization of media, definition of the structure of

Multimedia applications or documents (separation of responsibilities of the code) and

the production of Multimedia systems (including network and bandwidth, servers,

protocols that assured quality of service) in order to provide services like video-on-

demand, video-conferencing and online games. Although the same issues are always

under development, recent Multimedia studies indicate that user satisfaction is

gaining importance and issues like user interaction have crescent space in the

Multimedia community, namely in Human-Centered Multimedia (HCM) in which the

area of Multimedia interaction analyzes how people can interact with computerized

systems in natural ways with special concerns on multimodal interaction (interaction

based on multiple modes of interfacing) [Alejandro Jaimes et al., 2006].

33

This state of the art focus the efforts made in Software Engineering (SE) and

Multimedia regarding the development of Interactive Information Systems (IISs). First

we present an approach for architecture of IISs and how the responsibilities of the

system can be divided in different tiers. After this we present an approach for

architecture (structure) of an Interactive Multimedia Document (IMD) also dividing

the responsibilities into different tiers (levels). Then we present the techniques that

served as a basis for the contributions of this thesis: (i) requirements definition, and

(ii) analysis and design of IISs. Finally we present the related works for both these

areas.

34

II.2. INTERACTIVE INFORMATION SYSTEMS
ARCHITECTURE

Interactive Information Systems (IISs) are developed to respond to the needs for

automated information of an enterprise. An IIS is a set of components that collect,

store, analyze and distribute structured information. IISs have evolved during time

and can be divided into different categories: (i) operational level systems that

appeared during the 50’s where the transaction processing systems (TPSs) captured

and processed the every day operations of the employees of the enterprise; (ii)

management level systems that appeared during the 70’s to support the enterprise’s

managers decision using techniques like data warehousing and data mining; (iii)

knowledge level systems that appeared during this decade (2000’s) to explicit,

organize and distribute the knowledge within an enterprise.

With the growing complexity of IISs more powerful ways of structuring complexity

are required [Rikard Land, 2002]. Software architectures have appeared as the way to

control and document the components and relations among components of the

implemented software in such a way that decisions can be made along the process of

conceiving and evolving that IIS. The introduction of patterns has become a way to

introduce standards in the architectural discussion. Architectural patterns like client-

server architecture and object-oriented architecture provide an easy way to

understand the parts involved on the decisions that need to be made to evolve a

system.

In order to control the complexity of an IIS, responsibilities must be divided.

Therefore, multi-tier architectures have become ubiquitous solutions, mainly 3-tier

architectures [Robert Bretl et al., 1999] allow that the responsibilities of an IIS to be

divided into user interface, business logic and data storage, that can be developed and

maintained as independent modules. This assures traceability between code and

architectural representation.

II.2.1. Presentation Tier

In a 3-tier architecture the presentation tier (1st tier) presents information (to the user)

and supports application control (by the user). The presentation tier supports

application control derived from the interactions generated by the user to perform his

35

tasks. When an interaction occurs the presentation tier triggers a request to the

business logic tier which will provide the appropriate response involving navigation,

data manipulation or both. The presentation tier invokes the functions provided by

the business logic tier (2nd tier) returning or sending data in a previously agreed way

and presenting it to the user. The 1st tier software usually runs on the client

workstation under the perspective of a client-server architecture.

II.2.2. Business Logic Tier

The business logic (2nd tier) tier is responsible for receiving or sending data to the 1st

tier (according to a previously agreed protocol), manipulating this data, and setting or

collecting data from the 3rd tier (also according to a previously agreed protocol). The

middle tier code typically carries out 3rd tier data queries, updates, and transactions to

implement shared business logic. Data manipulation (performed by the IIS) is

typically done on object representations of 3rd tier data. The configuration data used

to set activities in the middle tier is usually stored in specialized files designed for

specific configuration and management purposes.

II.2.3. Data Tier

The data tier (3rd tier) is responsible for receiving (and keeping) or returning (existing)

data to the business logic tier (2nd tier) according to a previously agreed protocol that

is usually based on structured query language (SQL) [Donald Chamberlin and

Raymond Boyce, 1974]. SQL is a computer language designed for the retrieval and

management of data in relational database management systems (DBMS), which,

among other actions creates, updates and deletes records, creates and deletes

databases, tables, views and stored procedures, and returns data based on complex

queries.

Although other kinds of architectures would be eligible to fit our purpose of fully

documenting IISs, the 3-tier architecture seems to be a balanced way to divide system

responsibilities in such a way that they can be modeled separately promoting the

reusability of the system components. The next section presents an analogous

structure in a Multimedia perspective.

36

II.3. MULTIMEDIA CONCEPTUAL APPROACH

Multimedia is related to the synchronized presentation of different types of media

objects where at least one of these objects is continuous (video, audio or animation).

On the context of the work presented in this thesis, some basic concepts should be

presented: (i) Multimedia systems; (ii) Multimedia applications; (iii) Interactive

Multimedia Documents, and; (iv) Hypermedia documents.

II.3.1.Multimedia Systems

A Multimedia system is capable of managing the capture, generation, storage,

recovery, processing, transmission and presentation of Multimedia information.

Multimedia systems can be local or distributed.

Distributed Multimedia systems usually have large storage capacity and also require

large bandwidth once they have to deal with jitter generated from e.g. hard disk

access delays or codification. These systems should be the most tolerant to failures as

possible.

II.3.2.Multimedia Applications

Multimedia applications are capable of handling (capturing, presenting and editing)

Multimedia content and can be classified as presentational, conversational, and

authoring Multimedia applications [Khalil Mehdi El-Khatib, 2005].

Presentational - are “one-way” Multimedia applications where (typically) Multimedia

data is captured on one or more Multimedia servers and streamed to the receivers

(users) over a broadband network. Receivers interact with the presentational

Multimedia application by defining which data they want to receive and their

preferences regarding the Quality of the Service (QoS). Examples of presentational

Multimedia applications are news-on-demand, video-on-demand and distance

education.

Conversational - are Multimedia applications where two or more users communicate

with each other in real-time. The participants of a conversational application send and

receive real-time data. Due to their interactive nature, conversational Multimedia

37

applications usually impose higher QoS requirements on all system components than

presentational Multimedia applications. Examples of conversational Multimedia

applications are voice-over-IP (VoIP) and video-conference.

Multimedia Authoring allow the implementation and presentation of interactive

Multimedia documents (IMDs) and isolated media. Typically the Multimedia author

can define: (i) the spatial features of the presentation, (ii) the temporal durations for

the media and logical relations among media and (iii) the media storage. Well known

examples of authoring tools are ®Adobe Flash [Adobe, 2007a] and ®3D Studio Max

[Autodesk, 2007].

In general, Multimedia applications have a relation with interactive Multimedia

documents once they have the capability of processing these documents.

II.3.3.Interactive Multimedia Documents

Interactive Multimedia Documents (IMDs) are digital documents composed by

different types of media objects (image, text, graphics, video, audio, animation,

digitalized sound or speech), integrated by means of temporal, spatial and logical

relations, allowing user interaction and having at least one continuous media object

(video, audio, animation, digitalized sound or speech).

In order to propose an approach for the modeling of applications that support

Multimedia, it is indeed important to understand how IMDs can be structured. Thus,

an IMD can be described according to a multi-level structure [Roberto Willrich, 1996]:

(i) Presentation level, which describes how and where (spatial relations) each

component of the document will be presented; (ii) Conceptual level, which describes

the behavior of the IMD associated with the temporal and logical relations among the

components of the document, and; (iii) Content level, which describes the information

itself associated with each component of the document.

Besides, an authoring model should also consider the possible user interaction

methods. Thus, the model should also describe anchors and links for Hypermedia

navigation and other methods such as selection and data input. These structures are

briefly discussed in the following sections.

Presentation Level

The Presentation level defines the spatial, temporal and sound characteristics for each

component of the IMD. Thus, this level is composed by:

38

• The spatial characteristics of each visible component, such as the size, spatial

position (absolute or relative to a virtual coordinates system) and presentation style;

• The temporal characteristics for the presentation of each dynamic component,

such as the presentation speed, the initial and final position of presentation, and the

number of possible repetitions;

• The characteristics related to sound are useful to define, for instance, the initial

volume for the presentation of an audio sequence.

Conceptual Level

The Conceptual level is responsible for describing the components of a document and

their logical and temporal relations:

• The components of a document are related to the description of the content of

this document through a structure of modules with different semantics and

granularity, for example: chapters, sections, sub-areas, etc.

• The logical structure of an IMD is related to the different possibilities a user has

to navigate inside the document’s structure. According to Ginige [Athula Ginige et al.,

1995], three basic types of structures can be defined: linear, hierarchical and network.

The choice of the most appropriate structure to an IMD depends upon the purpose of

this document.

• The temporal relations are described based on events which can be produced

during the presentation of an IMD. These events can be synchronous (when their

occurrence can be predicted previously, such as the start or end of presentation of an

image), or asynchronous (when their occurrence can not be predicted, such as the

occurrence of a user interaction). The temporal relations describe not only the parallel

and/or sequential presentation among media objects, but also the causal relations

among them. In particular, the causal relations describe the conditional dependencies

among the events associated with the components of an IMD. For instance, if a user

interaction occurs over media object B, it interrupts the presentation of media object C.

• User interaction and subsequent system response is also defined at conceptual

level. Thus, interactivity can be divided into the following categories: navigation,

presentation control, environment control and information input.

39

Content Level

The Content level defines the information associated with each component of the

IMD. Basically, the Content level describes the primitive data (image, text, graphics,

video, audio, animation, digitalized sound or speech) related to each media object of

the IMD. In this level, the information about access (URL), manipulation of primitive

data and metadata shall be declared.

II.3.4. Hypermedia Documents

Hypermedia documents are a subclass of IMDs which support the integrated

presentation of Multimedia and that implement the navigation among Multimedia

contexts based on the concepts of node, anchors and hyperlinks.

The separation of responsibilities of the IMD (presentation, conceptual and content

levels) can be equivalent to the responsibilities defined for the IIS (presentation,

business logic and data tiers). This relation will be explored in chapter IV where the

MultiGoals combines these levels and tiers into a single structure that supports the

design of IISs with support for Multimedia. The following section presents the

techniques that served as basis for the Process Use Cases and MultiGoals

methodologies.

40

II.4. BASE TECHNIQUES

This section presents a conceptual approach on the activities for both requirements

definition, analysis and design of Interactive Information Systems (IISs), and also

describes the main techniques that served as basis for the methodologies presented in

this thesis (Process Use Cases for requirements definition and MultiGoals for the

Analysis and Design of IISs).

II.4.1.Requirements Definition

Requirements Engineering (RE) is the branch of Software Engineering (SE) that

identifies the requirements for the implementation of an IIS. The conception of an IIS

will only be successful if it supports all the needs of every stakeholder, i.e. individuals

or organizations that win or loose with the success or failure of a system. From the

diversity of stakeholders of a system different kinds of requirements are generated

that need organization, conciliation and validation before the IIS is designed.

Requirements elicitation is the main objective of RE and is based on the identification

of the stakeholders and their goals [Bashar Nuseibeh and Steve Easterbrook, 2000]. A

number of elicitation techniques can be applied such as: Traditional techniques - use

of questionnaires, interviews, and analysis of existing documentation; Group

elicitation techniques - to foster stakeholder agreement to elicit a richer understanding

of needs; and Prototyping - when there is a great deal of uncertainty about the

requirements prototyping which can provoke discussion over concrete material.

According to Ian Sommerville in [Ian Sommerville, 2005], RE has a lifecycle cycle

(Figure 3) composed by the activities of: Elicitation (identify sources of information

and discover the requirements from them); Analysis (understand the requirements,

their overlaps and their conflicts); Validation (check with the stakeholders if the

requirements are what they really need); Negotiation (try to reconcile conflicting

views and generate a consistent set of requirements); Documentation (write down the

requirements in a way that every stakeholder understands); and Management (control

the requirements changes).

According to the same author, in a competitive market where there is the need for

rapid software delivery and the need to get improved return of investment (ROI), RE

41

activities should be integrated with the activities of system design and

implementation in order to produce software in increments which represent an added

value to the client.

Figure 3: Sommerville’s RE lifecycle.

Stakeholders related to the business management activities will be concerned (for

example) over how the new system will improve the functioning of the enterprise, the

budget of the project and the implementation time. Most times these non-functional

requirements (NFRs) will dictate the success or failure of the IIS.

In opposite, users want the new system to improve the efficiency and efficacy of their

work and will generate a set of functional requirements (FRs) that will have direct

impact on the design of the IIS and which can collide with the existing NFRs. Indeed,

the more functionality a system needs the more expensive it will be and more time it

will take to be implemented. Budget, time constraints and FRs of the system will have

to be conciliated in such a way that every stakeholder needs are sufficiently satisfied.

The decomposition of stakeholder’s goals into different levels of abstraction leads us

to the identification of use cases, which are the point where users interact with IISs in

order to carry out useful tasks. Use cases are the most widely used technique in RE to

express user requirements (user-centered development has adopted use cases as the

cornerstone of its process) once they describe the task that the user carries out on the

IIS and serve as guidance for the IT professionals that will implement the system.

The modeling of the enterprise business processes is required in order to understand

the context of an IIS: the organizational structure, business rules, the goals and tasks.

Business process modeling will help to understand how individuals from the

organizational structure combine their efforts (respecting business rules) to achieve a

certain business goal.

42

Modeling business process during RE will open a space for Business Process

Management (BPM) to take place before the new IIS is implemented. A new IIS will

have an impact in the enterprise and the BPM activities can measure that impact and

predict how the new automated business process will benefit the enterprise’s goals.

All these RE engineering tasks must be supported by RE techniques that ensure the

final objective of requirements definition. The RE techniques that served as basis for

one of the contributions of this thesis, Process Use Cases, a methodology for

requirements definition are presented on the next section with a brief introduction to

the methodology.

II.4.2. Requirements Definition Base Techniques

Process Use Cases (PUC) is the result of the need to easily identify use cases and relate

them to the parts of the software implemented using a semantically understandable

conceptual architecture model that gathers both business processes (BPs) and system

components (and dependencies among them). The main goal of PUC is to develop, in

a sequence of 4 steps, the process use cases model, in which actors and use cases [Larry

Constantine, 2006] come together to achieve a first stage of functional requirements

definition (the interactions between users and system, the use cases).

Different abstractions provided by different techniques are used to represent the

information acquired within PUC. These techniques are: UML [Object Management

Group, 2003]; Wisdom [Nuno Nunes, 2001]; the High-Level Concept [Charles Kreitzberg,

1999]; the Business Process Model [Hans-Erik Eriksson and Magnus Pencker, 2001] and

Usage-centered design [Larry Constantine, 2006].

UML

The Unified Modeling Language (UML) [Object Management Group, 2003] is an object-

oriented (OO) modeling language for specifying, visualizing, constructing and

documenting the artifacts of software systems. UML version 0.9 was published in

1996 by Grady Booch, Jim Rumbaugh, and Ivar Jacobson as an attempt to normalize

the semantics and notation of other existing OO languages. UML has become the

standard modeling language in software industry and has been, from the late 90’s, the

reference to a number of other methodologies, notations and techniques that restrict

or extend UML’s models and notation.

43

RUP [Philippe Kruchten, 1999], the Rational Unified Process, developed initially by the

Rational Corporation, is the software development process that explains how to apply

UML.

Besides the UML notation, class diagram and activity diagram are used within PUC to

produce the domain model and process use cases model respectively.

Wisdom

Wisdom was proposed as a solution to bridge Usability Engineering and Software

Engineering and as a way to apply Software Engineering in small software

development companies [Nuno Nunes, 2001]. Wisdom is an evolutionary, prototyping,

agile UML-based method which provides an activity dedicated to requirements

definition (the Requirements Workflow) within its process.

The Requirements Workflow (Figure 4) starts with the “interiorize project activity”

which is a short textual description that indicates what the system should and should

not do, and what are the potential benefits and anticipated risks. The second activity is

“understand system context” that produces a domain model (an UML class diagram)

when the problem domain is very simple or when the development team is

experienced in the domain. In addition, a business model (class diagram using the

business process profile of the UML) and activity diagrams to describe the business

processes should be elaborated when the problem is very complex or when there is

little knowledge of the domain. The activity “User Profiling” produces a user role

model to describe who are the users, how they are grouped and what are their salient

characteristics. The last activity is “requirements discovery” that encompasses several

sub-activities, they are (i) finding actors and essential use cases; (ii) detailing essential use

cases with activity diagrams, and; (iii) annotating non-functional requirements to use

cases.

44

Figure 4: Wisdom’s Requirements Workflow.

The activities for requirements discovery (especially “process interiorization” and

“requirements discovery”) defined in Wisdom provide the main concepts behind

Process Use Cases. The concept of entity used in both Process Use Cases and MultiGoals is

also provided by Wisdom.

High-Level Concept

The Logical User Centered Interaction Design (LUCID) was proposed as a way of

describing the approach to interface design at Cognetics Corporation [Charles

Kreitzberg, 1999] with the objective of improving software usability. LUCID is

composed of 6 stages: (i) Envision - Develop UI (User Interface) Roadmap which

defines the product concept, rationale, constraints and design objectives; (ii) Analyze -

Analyze the user needs and develop requirements; (iii) Design - Create a design

concept and implement a key screen prototype; (iv) Refine - Test the prototype for

design problems and iteratively refine and expand the design; (v) Implement -

Support implementation of the product making late stage design changes where

required and Develop user support components, and; (vi) Support - Provide roll-out

support as the product is deployed and gather data for next version.

The High-Level Concept is a statement defined within the LUCID Framework and is the

first step for the envisioning of the product. The High-Level Concept is seen as a

mission statement for a product to help focus product development. The same

concept is used in Process Use Cases.

45

Business Process Model

The Business Process Model [Hans-Erik Eriksson and Magnus Pencker, 2001] is a

notation developed by Hans-Erik Eriksson and Magnus Pencker as a way to help

enterprises to model their business processes and their context using UML and ease

the relation to the implementation of the enterprise information system (Figure 5).

After the business process is identified, the following information is associated:

Inputs, Resources and Information (Resources serve as "inputs" and information

"supply" information); Events (that trigger the business process); Outputs (may be a

physical object, a transformation of raw resources or an overall business result), and;

Goals (the reason for the existence of the business process).

Figure 5: Business Process Model.

The Business Process Model provides the (adapted) notation used in Process Use Cases

for modeling BPs and their interaction with users and information.

Usage-Centered Design

Usage-centered design (UCD) is a model-driven process for user interface and

interaction design developed by Larry Constantine (Constantine & Lockwood, Ltd.)

[Larry Constantine and Lucy Lockwood, 2000]. Since UCD has special concerns with

usability, detailed attention is given to the tasks users need to carry out on the system

to be developed, and, to the usage of their system. This has led to the definition of

several basic concepts related to Human-Computer Interaction such as: (essential) use

cases, actors and roles.

UCD requirements definition is based in activity theory which is a way of describing

and characterizing the structure of human activity of all kinds, that was first

introduced by Russian psychologists Rubinshtein, Leontiev, and Vigotsky in the early

part of the XX century.

46

Figure 6: Participation Map for a retail selling situation.

Figure 7: Activity-Task Map (partial) for retail selling.

The following activities are carried out in a straightforward process: (i) Activity Map

(Figure 7, upper part) – representation of the activities relevant to the design problem

and the interrelationships among them; (ii) Activity Profiles - purpose, place and time,

participation, and performance related to each relevant activity; (iii) Participation Map

(Figure 6) – a representation of the participants (actors, roles, players, system actors)

and their relationships with each other and with the various artifacts involved in the

activity; (iv) Activity-Task Map (Figure 7) – tasks (user interactions with the system,

essential use case) and actions (actions which are not carried out by the interaction with

the system) are extracted and related to the activities previously identified in the

activity map.

The UCD concept of (essential) use case is applied in Process Use Cases. Indeed, the

notion of use case provided by UCD is seen as crucial for the correct identification of

use cases.

47

These techniques are the foundation to the requirements contribution provided by

this thesis. The conceptual approach for the analysis and design is presented on the

next section.

II.4.3.Analysis and Design

Software is being developed in the world almost since the appearance of the first

computer in the 40’s. The potential provided by computers was an attractive solution

to solve information problems for enterprises that manipulated large amounts of data

and needed automation for their business processes.

Analysis and design for software-based Interactive Information Systems mainly for

transaction processing systems (TPSs) in the 50’s was initially developed without the

use of any formal tools except for the use of flowcharts. With the proposal of new

technologies and the need to meet expectations, and without the tools to correctly

understand the problem to be solved and consequently design the appropriate

software, the software industry has entered an age of crisis. Developed software had

inappropriate functionality, was developed outside schedule and over the budget.

It was only in the 70’s that the structured analysis and design was introduced by

Yourdon and Constantine [Edward Yourdon and Larry Constantine, 1979] and only

became generally accepted during the 80’s, and that has established modeling as a

fundamental activity in Software Engineering. But it was only in the late 80’s that

object oriented methods made their way in SE supporting the modeling of the IIS

components as individual objects observing the relations of aggregation (or

composition) and inheritance.

The introduction of both use cases and task analysis (also in the 80’s) was a major

breakthrough regarding the modeling of adequate user interfaces once they are a

valuable tool to specify users, understand the context of use and define

responsibilities of the system. As a complement (to user interface analysis and

design), architectural-centric methods lead to the modeling of system responsibilities

and data components as objects (and establish the relations among them) as a catalyst

for reuse and easier system maintenance.

These analysis and design tasks must be supported by Software Engineering

techniques that ensure the final objective of system design. The analysis and design

techniques that served as basis for the second contribution of this thesis, MultiGoals, a

methodology for the analysis and design of Interactive Information Systems with

48

Multimedia support are presented on the next section with a brief introduction to the

methodology.

II.4.4.Analysis and Design Base Techniques

MultiGoals is the result of the need to design Interactive Information Systems (with

support to Multimedia) comprehensively and in detail, specifying user interface

objects, the correspondent system responsibilities and the data components of the

system.

The main techniques applied by MultiGoals are UML [Object Management Group,

2003], Wisdom [Nuno Nunes, 2001], Usage-centered design [Larry Constantine, 2002]

(which includes essential use cases [Larry Constantine and Lucy Lockwood, 2000] and

Canonical Abstract Prototypes [Larry Constantine, 2003]) and Concur Task Trees [Fábio

Paternò et al., 1997]. UML provides the basic notation of the methodology, Wisdom

provides the main Software Engineering process, Usage-centered design provides

specific techniques for requirements definition and user interface design, while Concur

Task Trees provide the technique for user-task modeling.

UML

As presented in section II.4.2.

Wisdom

As presented previously, Wisdom [Nuno Nunes, 2001] was proposed as a solution to

bridge usability engineering and Software Engineering, and, as a way to apply

Software Engineering in Small Software Development Companies. Wisdom is an

evolutionary, prototyping, UML-based method. The Wisdom method provides a tool

to rapidly achieve a stage of implementation based on a few and easy to understand

sequence of diagrams, effectively reducing the great quantity of models provided by

UML and RUP, focusing on the essentials of the system being developed. The main

diagrams proposed within Wisdom are illustrated in the Figure 8.

Figure 8: Wisdom’s Architecture.

49

As a complement to the requirements workflow already presented in section II.4.2,

Wisdom predicts the following activities until reaching an implementation model. The

Analysis Workflow starts with the Internal System Analysis that encompasses the

sub-activities of: (i) Identify General Analysis Classes - in which the classes captured

in the requirements workflow execution are refined, with this objective Wisdom

suggests that the CRC [Kent Beck and Ward Cunningham, 1989] method is applied as

an effective way to extract analysis classes and corresponding responsibilities and (ii)

Structure Analysis Classes – in which activity the analysis classes are then structured

into analysis stereotypes and responsibilities distributed to build an internal

architecture. The second (and concurrent) activity of the Analysis Workflow is the

Interface Architecture Design activity that concerns the external architecture of the

system which encompasses the sub-activities of: (i) identify and (ii) structure

interaction classes for both task and interaction spaces classes. The final activity of the

Analysis Workflow relates both internal and external architectures in a single

architecture that ensures that the future design can be seamlessly built upon this

structure of classes.

The Design Workflow starts with the Internal System Design which encompasses the

sub-activities of: (i) Prioritizing and selecting candidate use cases for design and (ii)

Design use case classes, in which the analysis classes are refined at both responsibility

and association level integration non-functional requirements annotated in the

requirements phase. The second (and concurrent) activity of the Design Workflow is

the User Interface Design which encompasses the sub-activities of: for user tasks (i)

Prioritize and select tasks; (ii) Refine tasks; and (iii) Define temporal relationships

between tasks; and for interaction spaces (iv) Prioritize and select interaction spaces; (v)

Identify contained interaction spaces where the complex interaction spaces are

decomposed in different contained or navigable interaction spaces; (vi) Map actions to

dialogue model in which an initial correspondence is established between tasks and

interaction spaces; (vii) Map input and output elements to interface components, and;

(vii) Relate tasks and interaction spaces. The final activity of the Design Workflow is to

build a prototype of the system. Wisdom suggests that the Bridge method [Tom

Dayton et al., 1998] part 2 to map task flows to task objects (classes) and part 3 to map

task objects to the graphical user interface.

Wisdom provides the basics of a Software Engineering process for MultiGoals,

especially the notions of interaction space, user task, system responsibility and entity.

50

Essential Use Cases

Usage-centered design (UCD) [Larry Constantine, 2002] is an object-oriented based

approach for interactive system design that firstly applied the already existing

essential use cases [Larry Constantine and Lucy Lockwood, 2000]. Essential use cases are

an evolution of concrete use cases which are usually used in a large variety of scope,

detail, focus, format, structure, style, and content by both software engineers and

Interface Designers, that results in imprecision in the definition of the requirement.

By definition, an essential use case is a single, discrete, complete, meaningful, and well-

defined task of interest to an external user in some specific role or roles in relationship

to a system, comprising the user intentions and system responsibilities in the course of

accomplishing that task, described in abstract, technology-free, implementation

independent terms using the language of the application domain and of external users

in role.

Essential use cases focuses in what the user really needs to accomplish and provide a

way to connect the design of the user interface back to the essential purpose of the

system and the work it supports, contributing to fulfill a gap between Software

Engineering and interface design. An illustration of the application of essential use

cases is depicted in Figure 9 where user and system “collaborate” to accomplish a test.

The user intentions are the tasks that the user might want to carry out on the system

instead of the traditional approach where the user has to take the actions technically

desirable influenced by the available technology resulting in more complex systems to

use.

Figure 9: Example of the application of an essential use case.

The use cases used in MultiGoals are essential use cases.

51

Canonical Abstract Prototypes

Canonical Abstract Prototypes (CAPs) [Larry Constantine, 2003] are part of the Usage-

centered design [Larry Constantine, 2002]. CAPs allow the modeling of a complete set

of user interactions that can occur in the components of the user interface and also the

position, size, layout, and composition of the user interface features. The user

interface is modeled by the combination of abstract tools and abstract materials.

The use of CAPs can largely contribute for the better and faster understanding of the

functionality of the user interface, especially if a software development team exists.

Some of the most commonly used CAPs notations are depicted in Figure 10 and in

Figure 11 is presented an example of the application of CAPs in which the user is able

to navigate among items of a list.

Figure 10: CAPs abstract tools and abstract materials.

Figure 11: Example of the application of CAPs.

CAPs are used in MultiGoals to complementarily describe user interface interaction

and functionality.

Concur Task Trees

Concur Task Trees (CTTs) [Fábio Paternò et al., 1997] is a notation, proposed by Fabio

Paternò for task modeling which is a central and familiar concept in Human-

Computer Interaction.

52

A task model details user’s goals and the strategies adopted to achieve those goals in

terms of actions that the users perform, the objects involved in those actions, and the

underlying sequencing of activities. CTTs are based in a graphical notation that

supports the hierarchical structure of tasks, which can be interrelated through a

powerful set of operators that describe the temporal relationships between subtasks.

The operators and the types of possible tasks are presented in Figure 12.

Figure 12: Concur Task Trees’s operators and types of tasks.

An example of the application of CTTs is presented in Figure 13 where the

“Application” task is decomposed in the “editing” task that deactivates the “close”

task. The “editing” task is further detailed into the “specify” task that enables the

“perform” tasks passing information to this second task.

Figure 13: Example of the application of the Concur Task Trees.

CTTs were adapted to fit MultiGoals modeling, relating the tasks defined with the

system behavior (the system response), however, the main guidance lines towards

interface design defined in CTTs are preserved.

53

The previously described techniques differently contributed for the elaboration of

MultiGoals. The next sections present works that are related to the contributions of this

thesis regarding requirements definition, analysis and design of Interactive

Information Systems.

54

II.5. RELATED WORKS

This section presents the related work for both requirements, analysis and design.

Based on what is defined in the Goals process as requirements for the choice of

methodologies for the first three phases of the Software Engineering process, the

following was observed:

• Requirements – methodologies that identify use cases as a result of the analysis of

business processes. The production of a domain model was not observed in order to

enlarge the scope of our analysis;

• Analysis and design – UML-based use case-driven methodologies for the design of

Interactive Information Systems with support for Multimedia. The production of a

domain model was not observed in order to enlarge the scope of our analysis.

II.5.1. Requirements

Most approaches found in the literature argue that use cases should be identified as a

result of the design of business processes and should be used to specify the

requirements for a software project. We now briefly present these approaches and

then proceed to their comparison.

Gonzalez

Gonzalez in [Jose González and Juan Sánchez Díaz, 2007] proposes an extensive

approach (Figure 14) which defines “Business Strategy” by means of an

organizational mission statement, the strategic goals that support the statement, the

measures that indicate business success and their target measures. Afterwards, the

“Business Infrastructure” is represented by the organizational operational structure

through a process map, a role model, a resource model, and business processes.

Figure 14: Gonzalez’ sequence of models.

55

The process is completed by following the “IT Infrastructure” step (Figure 15)

building a “business process goal tree” composed by “goals” and “tasks” that are

derived from the “business process” and “resource model” diagrams by means of

heuristic rules. The “business process goal tree” is then labeled according to the

nature of their tasks and goals: (A) Automated goal; (M) Manual goal; (C) Ceased

goal; or (IS) automatic goal. Finally, the use cases model is built based upon the A tasks

for human intervention and the IS tasks for system intervention.

Figure 15: Gonzalez’ “IT Infrastructure” sequence of diagrams until reaching use cases.

This approach is very interesting regarding the analysis of the enterprises’ strategy

and related goals which are major issues in Business Process Management. However,

this approach does not provide a structured way to identify use cases from business

processes once the “business process goal tree” (which is elaborated based on

heuristic rules) represents a major drawback between the business processes design

(no specific modeling technique is provided) and the use cases diagram design.

Usage-centered design

As previously presented in section II.4.2, Usage-centered design (UCD) comprehends 4

steps for requirements definition: (i) Activity Map – representation of the activities

relevant to the design problem and the interrelationships among them; (ii) Activity

Profiles - purpose, place and time, participation, and performance related to each

relevant activity; (iii) Participation Map – a representation of the participants, their

relationships with each other and with the various artifacts involved in the activity,

and; (iv) Activity-Task Map – tasks and actions are extracted and related to the

activities previously identified in the activity map.

UCD provides the notion essential use case that is used in our contribution. UCD’s

approach is based on activity theory and provides a very interesting way of analyzing

the user’s intervention within business processes modeling its interaction with

existing artifacts and other solicitations. From this interaction, tasks and actions are

derived.

56

Norm Analysis

Shishkov in [Boris Shishkov and Jan Dietz, 2005] proposes the modeling of business

processes based on “Norm Analysis” (NA), a semantic tool that specifies the norms

which are the (business) rules and patterns of behavior within an organization in a

sentence with the following structure (Figure 16): whenever <condition> if <state>

then <agent> is <deontic operator> to <action>.

Figure 16: Two Norm Analysis sentences.

After the NA sentences (norms) are specified, the use cases are identified based on the

“actions” that need to be carried out by the intervenient of the norm. In Figure 17 the

use cases “Arrange Subscription Payment” and “Perform Match-Making” are derived

from the norms “f-NORM 1” and “f-NORM 2” respectively.

This approach is very interesting since it describes the business rules that the

enterprise members and system must implement in order to run the business

properly. However, this approach is very limited for the description of complex

business processes that recurrently have more than one condition and one action (or

activity).

Figure 17: Shishkov’s derivation of use cases from norms.

57

Dijkman

Dijkman in [Remco Dijkman and Stef Joosten, 2002] proposes a detailed procedure to

transform business process models into use case diagrams by mapping roles to actors,

steps to use cases, and tasks to interactions, etc. as presented in Figure 18. A “Step” is a

sequence of “Tasks”. Dijkman’s method consists in modeling the business processes

using UML activity diagrams, making the mappings between the identified

components, and consequently producing a use cases model as the final step.

In Dijkman’s approach the business process activities (“steps” in the Figure) are

mapped directly into use cases, roles are mapped into actors, and sub-activities (“tasks”

in the Figure) are mapped into interactions within use cases. Dijkman further defines

the mapping of “guards in transitions” and “alternative paths through branches”.

Figure 18: Dijkman’s mappings between business processes and use cases model.

Wisdom

As previously presented in section II.4.2, Wisdom comprehends 4 steps for

requirements definition: (i) “interiorize project activity” producing a High-Level

Concept; (ii) “understand system context” to produce a domain model and/or a

business model; (iii) “user profiling” producing a Role Model, and; (iv) “requirements

discovery” that encompasses finding actors and essential use cases, detailing essential use

cases with activity diagrams, and annotating non-functional requirements to use cases.

Wisdom provides the main concepts behind our contribution, especially the activities

for requirements discovery (“process interiorization” and “requirements discovery”).

Štolfa

Štolfa in [Svatopluk Štolfa and Ivo Vondrák, 2006] proposes that business processes

are designed using activity diagrams and that a mapping is made between the activities

58

of the business process and use cases. The mapping can be “one-to-one” or “mapping

several actions to use cases” by applying the “sequential” pattern or the “optional”

pattern respectively.

In the “sequential” pattern several actions are mapped to one single general use case

using “mapping several actions to one use case” method, and sequential actions (or

whole parts of other patterns that may replace these actions) are mapped to other use

cases that are included by the first one (Figure 19a). The “optional” (Figure 19b)

pattern is applied when there is a condition block in the activity diagram. The condition

block and the action are mapped to a single general use case and the action is mapped

to a use case that extends the first one.

In this approach use cases are mapped “one-to-one”, however, in our perspective the

grouping of use cases as predicted in the “sequential” and “optional” patterns adds

extra complexity to the use cases model that is not necessary.

Figure 19: Štolfa’s sequential (a) and optional (b) patterns for derivation of use cases
from business processes.

Following the presentation of the related works for requirements definition, we

present a summary of the diverse methods in Table 1 which includes the following

criteria:

• Project Interiorization – (if the methodology includes) a way of promoting the

understanding of the scope of the project for the project community;

• Business Strategy Description – description of the business strategy defined by an

enterprise in the financial market that she is involved in;

• Data Modeling – modeling of a single structure of the information that is

manipulated by the enterprise;

• Business Process Context – definition of the triggers of the business processes, their

outputs and relations with other business processes;

• Goals Identification – identification of the goals of the enterprise and their relation

with existing business processes;

59

• Business Process Design – design of the activities of the business processes and the

actors that perform those activities;

• Business Rules – identification of the business rules defined within the functioning

of the enterprise;

• Business Processes Resources– identification of the resources consumed and

produced by the business processes;

• Use Cases Identification – identification of use cases as a result of the analysis of the

business processes.

Table 1: Requirements methodologies comparison
 Gonzalez UCD NA Dijkman Wisdom Štolfa
Project Interiorization X

Business Strategy Description X

Data Modeling 1 2 X
Business Process Context X X
Goals Identification X
Business Process Design X X X X X X
Business Rules 3 X

Business Processes Resources X X

Use Cases Identification X X X X X X

1 - Domain model of the used resources.
2 - Systems, Artifacts and Tools Identification.
3 – Included in the artifact design.

Table 1 makes the comparison of methodologies that both design business processes

and identify use cases. By the analysis of the table, Gonzales, Wisdom and Usage-

centered design are the more complete methodologies, and are the only three that

provide data or system/artifact/tools modeling. Only Gonzalez’ approach structures

the business strategy of the enterprise and identifies business goals. The Wisdom

approach is the only one that has concerns on the project interiorization. Only Usage-

centered design and Wisdom design the context of the business processes. Moreover,

only Norm Analysis and Usage-centered design include business rules in their work.

The previous table showed that sufficient approaches exist to extract requirements

based on business processes covering all the criteria that were taken into account. Our

approach (that is presented in Chapter III) tries to cover most of the criteria as possible

while being simple to use and expressive.

II.5.2.Analysis and Design

User centered development has produced a large number of methodologies for the

analysis and design of Interactive Information Systems (IISs). The application of

object-oriented concepts to system modeling (in the 90’s) and the introduction of use

cases by Ivar Jacobson and colleagues encouraged the proposal of methodologies for

the design of IISs. For instance, some of these methodologies are: Usage-centered design

60

[Larry Constantine, 2002]; Wisdom [Nuno Nunes, 2001]; Idiom [Mark Van Harmelen,

2001], and; OVID [Dave Robert et al., 1998]. Relatively to Multimedia there are a

number of methodologies (over 15 were studied) for the modeling of interactive

Multimedia documents (IMDs) with detailed interest in synchronization which

however are not UML-based and for this reason were not included in our study. Some

examples are: MING-I [Chung-Ming Huang et al., 2004]; ZYX [Susanne Boll and

Wolfgang Klas, 2001], and; TOCPN [Kyoungro Yoon and Bruce Berra, 1998].

With the crescent impact of the internet, the establishment of UML as the standard

information systems modeling language and the interest in the potentialities provided

by Multimedia, a number of UML-based methodologies for the design of Hypermedia

were conceived which are in the scope of our work. However, most of the existing

approaches do not make the analysis of the user tasks by providing a use case model or

alternatively user task analysis, focusing only in the conception of the domain, the

user interface and navigation, and for this reason important Hypermedia

contributions like OOHDM [Daniel Schwabe and Gustavo Rossi, 1998], WebML

[Stefano Ceri et al., 2003] and NDT [Maria Escalona et al., 2003] were left out of our

study. As a complement, OMMMA [Stefan Sauer and Gregor Engels, 2001], an

approach for the design of Interactive Multimedia Documents, which is not use case-

driven, was included in our study since it provides the modeling of synchronization

and media content, features that are left out of the Hypermedia contributions. For

each approach we provide an overview of the most important features ending with a

comparison among the studied contributions.

UML-based Web Engineering

UML-based Web Engineering (UWE) [Nora Koch and Andreas Kraus, 2002] is a use

case-driven methodology for the analysis and design of Hypermedia document that

adapted the Unified Process to the Hypermedia conception. This methodology

produces in three steps the following artifacts: (i) Conceptual Design – (that produces

the) conceptual model; (ii) Navigational Design - navigation space model and

navigational structure model, and; (iii) Presentational Design - presentation model.

The conceptual model is built taking into account the functional requirements

captured with use cases, and traditional object-oriented techniques are used to

construct the conceptual model, such as finding classes, defining inheritance

structures and specifying constraints. The output will be a class diagram as presented

in Figure 20.

61

Figure 20: UWE’s Conceptual Model.

The next step is the Navigation Space Model (Figure 21). The author defines which of

the existing classes are “navigational classes”, i.e. classes whose instances are visited

by the user during navigation. Complementarily, the author defines among which

“navigational classes” will exist navigation, defining the “direct navigability” (among

classes).

Figure 21: UWE’s Navigation Space Model.

Once the Navigation Space Model is completed, each existing navigation will be

enhanced by one “access element” (indexes, guided tours or queries) that defines how

the navigation will take place. Complementarily, “menus” (and “menu items”) will be

defined and will be aggregated to the existing “navigational classes”. Each “menu

62

item” has a name and owns a link either to an instance of a “navigational class” or to

an “access element”. This diagram is called Navigational Structure Model (Figure 22).

Figure 22: UWE’s Navigational Structure Model.

The next step of the methodology is the Presentational Model which describes how

the information within the “navigational classes” and the “access elements” are

presented to the user. This is done by constructing an abstract interface design similar

to a user interface sketch (Figure 23).

Figure 23: UWE’s Presentation Model (Company).

It is only after the presentation model is produced that the UWE methodology makes

the analysis of the user tasks. This analysis is carried out modeling the user tasks with

activity diagrams. Each task is represented by an activity that is further refined (using

63

the “refine” stereotype”) into sub-activities. An example of the analysis of the user

tasks is presented in Figure 24.

Figure 24: UWE’s Task Modeling.

UWE models with accuracy the navigation and the presentation of information to the

user based on a domain model of the structure of the information of the business under

analysis. However, this approach makes the construction of the user interface

dependent of the domain not taking advantage of the existence of the use cases and not

giving sequence to the analysis of the user tasks. This can be considered a bottom-up

approach since the interface depends on the domain. Contrarily, there is no modeling

of the media requirements, and synchronization is left out of the scope of the

methodology.

W2000

W2000 [Luciano Baresi et al., 2001] is the evolution of the Hypermedia Design Model

(HDM) [Franca Garzotto et al., 1993] an Hypermedia methodology recognized as the

ancestor of a family of several design methodologies. With the new version (W2000)

the authors wanted to make the methodology UML-compliant and to adapt the old

models to the new challenges of Hypermedia in the beginning of the 2000’s, e.g. e-

commerce.

The methodology starts with the “requirements analysis”, an activity that

encompasses the sub-activities of “Functional Requirements Analysis” and

“Navigational Requirements Analysis”. The former produces a use case model, and in

the later the previous use case is complemented with the “navigation” capabilities

64

associated with each user, i.e., the permissions that each user has of browsing within

the information associated with each use case. For example, note that in Figure 25 the

relation between the user “PC Member” and the use case “Browse Reviews” there is a

note “No Conflict” meaning that the user only has permissions to browse the reviews

he doesn’t have conflicts with.

Figure 25: W2000’s Navigational Requirements Analysis’.

The “State Evolution Design” analyses the state of the information that is being

manipulated. For this purpose, an UML statechart diagram is used. Using the

example previously provided, a “paper” can have the states “Submitted”,

“Reviewed”, “Accepted” or “Rejected”. This model is optional and is only required

for specific cases where a significant evolution of the states of the information is

foreseen.

The “Hyperbase Information Design” encompasses modeling the information “in-the-

large” and “in-the-small”, the former is related to the modeling of the domain based

on a UML class diagram and the later is related to the definition of the attributes of

the identified classes. Figures 26 (a) and (b) illustrate these situations.

65

Figure 26: W2000’s Hyperbase Information Design in-the-large(a) & in-the-small(b).

The “Hyperbase Navigation Design” defines the “navigational nodes” (nodes for

short) and “navigational links” (links) of the application. Nodes, rendered using the

UML stereotype node type, are derived from the structural design through a set of

rules and design decisions. In the simplest case, nodes correspond to “leaf” classes.

Figure 27 illustrates an example of the navigation from the “paper abstract” to the

“paper submission” or to “paper camera” ready.

Figure 27: W2000’s Hyperbase Navigation Design.

W2000 complements the use cases model with information relevant to the

implementation of the business logic of the system which is an important

implementation feature. The modeling of the information structure is made based on

a class diagram. However, like most of the Hypermedia methodologies, the W2000’s

user interface navigation relies on a class diagram in a bottom-up approach that

makes the navigation dependent from the information structure which in our opinion

does not take advantage of the user-centered approach made by the modeling of use

cases.

66

OMMMA

OMMMA [Stefan Sauer and Gregor Engels, 2001] is an object-oriented UML-based

methodology for the development of IMDs which allows the modeling of domain

(both information and media), navigation, system behavior (temporal and logical) and

presentation. Briefly, this methodology covers all the design aspects of IMDs

(modeling presentation, content and conceptual levels).

Figure 28 presents the class diagram that structures an educational application for

organizing course material. The class diagram distinguishes the semantic part of the

application and the media types deployed to present the content of Multimedia

objects (that are marked using the stereotype <<media>>). The stereotype

<<application>> is used to distinguish (Multimedia) application classes that

correspond to Multimedia information from general application classes. The

stereotype <<scenario>> marks classes of objects that represent complex scenarios,

i.e., composite parts of the interactive Multimedia application that involve several

<<application>> objects with temporal and spatial relationships.

Figure 28: OMMMA’s class diagram for the modeling of scenarios, applications and
media classes.

OMMMA models interaction (Figure 29) by means of a UML collaboration diagram.

The user of the system is depicted by an actor that interacts with the modeled system.

Users can only interact with objects of stereotypes <<interaction>> and

<<presentation>> for input and output, respectively.

67

Figure 29: OMMMA’s interaction modeling.

Furthermore, OMMMA separates reactive behavior from timed procedural behavior

as two different modeling views of a Multimedia application. They are modeled by

statechart diagrams (Figure 30) and by sequence diagrams (Figure 31) respectively.

Figure 30: OMMMA’s Statechart diagram modeling the top level reactive behavior of

the education application.

Figure 31: OMMMA’s Sequence diagram modeling timed procedural behavior for the

presentation of lecture discussion videos.

OMMMA models the basic IMD requirements, i.e., the presentation, the user

interaction, the media synchronization and models the media content. However,

OMMMA’s solutions, especially the modeling of the presentation structure is very

complex mixing the user interfaces with the media content resulting in a model with

scalability problems.

68

Following the presentation of UWE, W2000 and OMMMA, we now evaluate the

methodologies by the following criteria:

• Use Cases – if a use case model is produced or alternatively if user task analysis is

made;

• Interface Design – (if the methodology includes) the modeling of the user interface;

• Navigation – modeling of the navigation among user interfaces;

• Interaction – modeling of the user interaction;

• System Responsibilities – modeling of the system behavior;

• Synchronization – modeling of the synchronization among media objects;

• Database– modeling of the information structure for purposes of database

construction;

• Content– modeling of the media.

Table 2: Analysis and Design methodologies comparison.

 UWE W2000 OMMMA

Use Cases X X
Interface Design X X
Navigation X X
Interaction X X X
System Responsibilities 1
Synchronization X
Database X X
Content X

1 - Rules are defined in the use cases model for the access to the
information that will be later implemented by the system
responsibilities.

By the analysis of Table 2 we conclude that none of the contributions cover all the

defined criteria, however, these methodologies complement themselves covering all

the requirements. By further analysis of the table, it is possible to conclude that the

Hypermedia derived methodologies (UWE and W2000) cover similarly the same

requirements (W2000 does not provide interface design and UWE does not model

system responsibilities). Complementarily, the requirements that are not covered by

these approaches are covered by OMMMA that provides support for synchronization

and content modeling.

69

II.6. CONCLUSIONS

This chapter presented the state of the art related to the existing modeling techniques

for requirements identification, analysis and design of Interactive Information

Systems with support for Multimedia.

From the techniques found in the literature for the definition of requirements, analysis

and design of Interactive Information Systems, some served as basis for the

contributions that will be presented in this thesis and some other may be used in the

future evolution of these contributions.

The main contributions of this thesis are presented in the following Chapters III –

Requirements (Process Use Cases) and IV – Analysis and Design (MultiGoals).

70

71

III. REQUIREMENTS (PROCESS USE

CASES)

The identification of use cases is one key issue in the development of Interactive

Information Systems. User participation in the development life cycle can be seen as

critical to achieve usable systems and has proven its efficacy in the improvement of

systems appropriateness. Indeed, the involvement of users in the requirements

definition can add a significant improvement in both consecutive/interleaved tasks

of: (i) understanding and specifying the context of use, and, (ii) specifying the user

and organizational requirements as defined in Human-Centered Design (HCD)

[International Standards Organization, 1999].

Existing solutions provide a way to identify business processes and/or use cases in order

to achieve system definition, but they don’t do it in an agile and structured way that

helps to efficiently bridge Business Process Management and Software Engineering.

Process Use Cases is a methodology, defined in the Goals software construction process,

for the identification of use cases and information entities during the modeling and

reorganization of business processes focusing the results in the identification of the

functional requirements for the correct development of an Interactive Information

System.

72

III.1. INTRODUCTION

In a competitive market, the ability of enterprises to make their services available to

their clients and to be able to modify them easily might be an important advantage.

Even in a small enterprise (e.g. 10 persons) business processes (BPs) can be complex

including tasks in which performance, functionality and appropriateness (also called

correctness of the software) can be crucial for success creating the need for system

modifiability, most times with relevant time and cost constraints. In order to fully

control the implemented services, the user tasks that support it and the software

structure behind them, business processes (services), use cases (user tasks) and the

architecture of the Interactive Information System (the software structure) must be

documented.

The establishment of regular enterprise modeling activities for Business Processes

Management (BPM) and Software Engineering (SE) enables bridging these two

disciplines by means of a shared process (if the same notation is used). This

connection happens where persons and system meet, the use cases.

In particular, the Unified Modeling Language (UML) [Object Management Group,

2003] provides a notation that encloses important concepts and diagrams that can be

applied in both BPM and SE. Indeed, UML based techniques that make the mapping

between BPs and Interactive Information Systems design using use cases already exist

([Jana Koehler et al., 2002], [Remco Dijkman and Stef Joosten, 2002]), however, in our

opinion, not with the needed efficiency.

This chapter presents Process Use Cases (PUC), a methodology that guides the

stakeholders of a software project from the initial idea until the identification of use

cases during the identification and design (analysis, improvement, modeling and

automation) of BPs.

This chapter is organized as follows: Section IV.2 introduces Process Use Cases. Section

IV.3 presents the project used throughout section IV.4 to illustrate the methodology.

Section IV.5 presents the conclusions.

73

III.2. PROCESS USE CASES: AN OVERVIEW

Process Use Cases (PUC) is a methodology defined within Goals, and is a solution to

bind the phases of requirements identification and analysis rapidly, through the

identification of use cases (functional requirements) and information entities as a leap

to software analysis.

In order to achieve automation of the business processes, PUC covers partially the

lifecycle of Business Process Management (Figure 32) [Webinterx, 2006] assuring that

the BPs are analysed, improved and modeled before they are automated (Monitoring

is out of the scope of PUC). The “analysis” is understood as the inspection of the

current workflow of the BP, the “improvement” is the reorganization of the BP in a

way that it becomes more efficient (for example by deciding which tasks to automate).

After the “improvement”, the BP is “modeled” and finally it is “automated” by a

Software Engineering process that leads to the development of an Interactive

Information System.

Figure 32: Business Process Management lifecycle.

PUC describes the development of 4 artifacts: 1 statement and 3 models (respectively

high-level concept, domain model, Business Process Model and process use cases model) using

an information-oriented strategy for the identification and association of the

components generated: business processes, information entities, actors and use cases.

74

Consider Table 3 which enumerates the steps of PUC. Each step has a name

(Interiorize Project, Information Identification, etc...) and produces one artifact (high-

level concept, domain model, etc…) that is manipulated by an intervenient (architect,

analyst and/or client) towards components definition (Entities, Business Processes,

etc…).

Table 3: Steps of Process Use Cases methodology
Step Step Name Intervenient Artifact Name Components

Manipulated

1

Interiorize Project

Architect, Client High-Level Concept N/A

2 Information
Identification

Analyst, Client Domain Model Entities

3 Business Processes
Identification

Analyst, Client Business Process
Model

Business
Process,
Entities, Actors

4 Use Case
Identification

Architect, Analyst,
Client

Process Use Cases
Model

Tasks, Use
Cases

To illustrate the main steps of this methodology, consider Figure 33 that depicts the

business process that leads to the functional requirements identification which is the

goal of PUC. Notice that the domain model and the Business Process Model are outputs of

Step 2 and 3 respectively but can also serve as input for those phases meaning that

these two phases can be iterative.

Figure 33: Process Use Cases’s BP.

Goals suggests that a top-down, use case-driven, architectural centric analysis and/or

design Software Engineering methodology follows the application of PUC, taking full

advantage of the artifacts produced so far towards the construction of the Interactive

Information System.

The following sections present a case study and its illustration throughout each step

of Process Use Cases.

75

III.3. A PROJECT

In order to illustrate Process Use Cases (PUC), a project under development for a small

enterprise is presented. This (non-profitable) enterprise related to a local

governmental library (in Madeira, Portugal), is responsible for the bibliographic

investigation on gastronomy (the project is referenced as “Gastronomy Project” along

the thesis). The idea of the director is to divulgate the gastronomic events promoted

by the enterprise and the existing gastronomic recipes in a website. However, the

budget for the project is reduced and the development should be kept to its minimal.

After a first approach, in which an attempt was made to understand the main

activities of the enterprise, it was possible to know which were the enterprises’ main

products: the identification and cataloging of gastronomic recipes and the

organization of gastronomic events.

By knowing the enterprises products we were able to produce the High-Level Concept

contributing for the mutual agreement (with the client) on the mission of the project.

After that, the entities identified in the High-Level Concept were combined in a Domain

Model that later had the contribution of more information entities identified in the

modeling of the Business Process Model. The Business Process Model identified 3 relevant

business processes within the scope of the project and for each one was identified the

inputs, outputs and the actors involved. Finally the 3 business processes were detailed

with the process use cases model and the activities that needed automation were

identified and transformed into use cases (the functional requirements for the

Interactive Information System).

These steps of Process Use Cases are presented in the next sections.

76

III.4. THE STEPS OF PROCESS USE CASES

This section presents and illustrates each step of Process Use Cases using the project

presented in the previous section.

III.4.1. Step 1 – Interiorize Project

The interiorize project is the only unstructured part of PUC. The high-level concept

(HLC) is a paragraph (technology independent) that describes the part of the system

(or full system) that is going to be implemented. The high-level concept must be

understood by all the stakeholders (the community) of the project promoting a shared

vision that will help the project community to keep focused on the product

development.

In this step client and architect agree on a high-level concept for the project. To do this, it

is important to understand the scope of the project within the enterprise global

activity, so, it is necessary to understand how the enterprises’ activities lead to the

production of its main product(s) and what is the strategic reason that leads to the

need of automation. Access to artifacts such as enterprise hierarchical organizational

structure and legislation may provide important information, and by interviewing the

clients’ project manager, member preferably related to the enterprise’s process of

decision, sufficient information may already be compiled to produce the high-level

concept.

In the project presented in this thesis the high-level concept agreed with the client

(Figure 34) was: “Capture the attention of potential and actual clients for the

gastronomic patrimony and events of the enterprise”. The HLC expressed the

intention of the enterprise to enlarge the number of clients and promote client fidelity

by providing a quality service of information that combined the traditional historical

recipes and the events that promoted those recipes.

Figure 34: Step 1- High-level concept for the project.

77

III.4.2. Step 2 - Information Identification

The information identification is a crucial step in the goal of achieving requirements

definition. Based on the identified entities of information, it will be possible to identify

the business processes that need to be modeled according to the objective of enterprise

automation. At the same time, a domain model with the enterprises’ entities of

information that can be used in a Software Engineering process is already being

modeled.

Information is very stable within an enterprise. Mainly, information manipulated by

core business processes is persistent from the birth of the enterprise until its closure and

is independent from the technology used to manipulate it. Information parts relate to

each other naturally, and the objective is to produce a model, the domain model, that

contains and relates all the identified parts.

In this step, the analyst identifies the main concepts of information defined in the high-

level concept. These information concepts are transformed into entities that will be the

first ones in the domain model. An entity is defined in Wisdom [Nuno Nunes, 2001] as a

class used to model perdurable information (often persistent). It is also complemented

that entity classes structure domain (or business) classes and associate behavior often

representing a logical data structure. These entities represent information (not actions,

actors, nor business processes; but the may coincide) and relate to each other by the

composition of a meaningful structure. This structure has relations of hierarchy

(inheritance), dependency (composition) and possession (association) and is called

class diagram [Object Management Group, 2003].

The domain model is a classical class diagram as defined in UML [Object Management

Group, 2003]. In PUC, the entity (which is a class) stereotype is used instead of the

class stereotype which at this stage is a more accurate concept of information. This

model (since it is described using a standard language, UML) can be used along all

the Software Engineering process. At implementation stages, it is often used to

generate database tables and (programmed) classes to manipulate these entities. The

domain model must be updated at any stage in the process when new entities are

revealed (particularly as a result of Step 3 in an iterative process).

The domain model is defined based on the information entities identified in the high-

level concept statement. These information entities are placed in the domain model

relating to each other according to the natural relation between information entities

and their cardinality is also defined. After this first step, the domain model will be

78

updated whenever new information entities are identified during the modeling of the

Business Process Model (Step 3).

It is suggested that the analyst describes the class diagram in natural language to the

client in order to achieve diagram validation.

In the project presented in this thesis, the first entities derived from the high-level

concept (Capture the attention of potential and actual clients for the gastronomic

patrimony and events of the enterprise) were: “client”; “recipe” and “event”. The

entity “client” existence, although implicitly related to the events, was reinforced

when we noticed that the business process for recipe capture also involved donation of

recipes by “clients”. The first entities identified were then combined with other entities

(“Advertisement”, “Producers” and “Recipe Submitted for Approval”) identified in

Step 3 (Business Processes Identification) to compose a single information structure as

presented in Figure 35.

Figure 35: Step 2 - Domain model for the project.

79

III.4.3. Step 3 - Business Processes Identification

The objective of this step is to identify business processes for possible automation

based on the information entities identified until this stage. At the same time, valuable

information that can serve as documentation for future Business Process Management

activities is being produced.

Business processes (BP) exist in an enterprise to achieve a certain objective, a goal, a

product, that can be described by information (associated with this product). BPs

happen as many times as exist the need to give response to the needs of some

enterprise member or third party (e.g. client) with some responsibility (active or

passive, with some relation to the enterprise) within the activity of the enterprise.

Many enterprise members can interact with these processes by carrying out some

complete, unitary task, in which many different entities can be manipulated (consumed

or produced). In order to be able to control (e.g. reorganize) these BPs, it is important

for an enterprise to maintain complete and detailed information of relations among

BPs, their inputs, outputs, actors and triggering events.

In this step, analyst and client will identify, relate and detail business processes. The

identification of BPs should take place, at least, from the business unit (in a

hierarchical perspective) “directly” responsible for the information being managed,

i.e. unit(s) that consume or produce this information to achieve complete and

meaningful tasks. Business processes that relate “directly” to the information identified

until this stage must be documented in order to provide the understanding of all the

manipulation made over the identified information, if within the scope of the project

defined in the high-level concept.

BPs are named according to their goal (the product of the BP), whether it is a service,

information or a material product (e.g. product “television”, BP name “build TV”).

BPs products are represented by entities, the associated information.

The persons that interact with the business process are called actors which are users that

interact with a system. In process use cases, business processes are the “system”, and the

stereotype used is the UML’s “user”. Actors are associated with BPs using association

and their objective(s) are written in natural language (e.g. “approve recipe”) separated

by a plus signal (+) naming the association. When an actor triggers the business process,

an event is generated and its relation with the business process is represented with a

flow (arrow form).

80

The outputs and inputs (information, resource and output in the Business Process Model

(Eriksson, 2001 #2)) are represented by entities. Business processes can be related to each

other, i.e., the outcome of a business process (which is an event) serves as the income

to the next one providing an information entity shared by the two BPs in a horizontal

hierarchy. When the flow is towards the business process it is an input (and generates

an event) and the contrary direction represents an output. Associations can be bi-

directional representing event, input and output in both directions.

In the project presented in this chapter, 4 business processes that directly manipulated

the entities “client”; “recipe” and “event” (Step 2) were identified: “Obtain Recipe”;

“Make Event”; “Advertise” and “Obtain Gastronomic Information”.

The “Obtain Recipe” business process (Figure 36) generates the information for the

entity “recipe”. In this business process a donator or a gastronomy investigator

submit a new recipe (“recipe submitted for approval”) that is approved or not by a

gastronomy consultant according to its authenticity.

Figure 36: Business Process Model for the “Obtain Recipe” business process.

81

The “make event” business process (Figure 37) generates information for the entity

“event”. In this BP the business manager and the event organizer interact to create a

new event using the “producer” and “recipe” entities.

Figure 37: Business Process Model for the “Make Event” business process.

The “advertise” business process (Figure 38) was created in order to produce

information for the website represented by the entity “advertisement”. In this BP the

business manager delivers advertisements to the advertiser about recipes, events or

generalized news.

Figure 38: Business Process Model for the “Advertise” business process

82

The “obtain gastronomic information” is a new business process (Figure 39) that will

exist as a consequence of the new website and that represents the usage of that

website by the clients of the enterprise.

Figure 39: Business Process Model for the “Obtain Gastronomic Information” business
process.

Figure 40 depicts the complete Business Process Model for the project. The business

processes previously identified relate naturally to each other by sharing the entities of

information and actors can relate to more than one BP with different objectives.

Figure 40: Step 3 – The Business Process Model for the project.

After the Business Process Model was designed the client validated the diagram and the

domain model was updated. A new business process “certify producer” was identified

based on the entity “producer”, however, since this BP was out of the scope of the

project it was not documented.

83

III.4.4. Step 4 - Use Cases Identification

The identification of use cases is the purpose of this step. The business processes

identified in the previous step will now be detailed using an activity diagram in which

the activities that need automation will be transformed into use cases providing the

projects’ functional requirements.

The documentation of business processes in a language that every intervenient

(stakeholders of a project) understands is important to enable correct dialogue over

the actors, activities (tasks) and goals of the BP. BPs can be partially or completely

automated or not automated at all.

In this step, analyst and client model the tasks (activities) of the business process which

will be performed by the actors along the BP until achieving the targeted goal. A task

(task case, as defined in Usage-centered design [Larry Constantine, 2006]) represents a

single, discrete user intention in interaction with a system that is complete and

meaningful. For instance, an essential use case which is defined by the same author as a

specially structured form of a use case, called essential (use case), that is, abstract,

simplified, and independent of assumptions about technology or implementation.

The BP is designed with the process use cases model, through the use of an UMLs’

activity diagram [Object Management Group, 2003] with swimlanes. The tasks the actors

carry out are placed in the same swimlane. The activity diagram begins with an

“initial” stereotype and ends with a “final” stereotype. The transition relation is used

between tasks. UML’s activity stereotype is used to represent tasks of the BP which are

not use cases. Fork and decision are used to represent parallel activities and decision

points, respectively.

Once all activities are identified, it is important that the architect (with the client)

decides which tasks should be automated. When this happens, a use case (stereotype

change) takes the place of that activity.

In the project presented in this thesis, based on the analysis of the models produced

until the previous step (Step 3), we noticed (with the cooperation of the client) that the

BPs mostly able to contribute with relevant information for the website were “Obtain

Recipes” and “Advertise”. In another perspective, “Obtain Recipes” could provide

more valuable information for the website than “Make Event”, and by means of

generalization of the task “Advertise”, support could also be achieved to advertise

“news” about “recipes” and “events”.

84

Figure 41: Process use cases model for “Obtain Recipe” business process.

Following the analysis of the Business Process Model (Step 3) the business processes

were designed according to the process use cases model. Figure 41 depicts the design of

the business process “Obtain Recipe”, where in this business process the activity

“Catalog Recipe” was transformed into an use case (automated) for the purpose of

obtaining recipes information for the IIS.

Figure 42 depicts the business process “Make Event” in which the activity “Organize

Event” was eligible for automation. However, complex development was needed

resulting in more man/hour than what could be supported by the existing budget.

This was concluded once the management of the hired producers should be made in

this task, and for this reason it was decided that the information about events would

be published by means of an advertisement.

85

Figure 42: Process use cases model for “Make Event” business process.

Figure 43 depicts the business process “Advertise” which was created in order to

provide information for the website. It was defined that the automated activity

“Advertise” should be able to support information from Events, Recipes and general

Advertisements.

Figure 43: Process use cases model for “Advertise” business process.

Figure 44 depicts the “Obtain Gastronomic Information” business process. This

business process represents the website manipulation made by a user (client or not of

the enterprise) when searching for the gastronomic information provided by the

website.

86

Figure 44: Process use cases model for “Obtain Gastronomic Information” business

process

Process use cases is the model where users and Interactive Information System meet.

However, it is not the purpose of PUC to establish the relation between use cases and

entities. This is a task left for a Software Engineering process which carries along the

information generated until this stage and brings consistency to this relation in later

stages of that process.

87

III.5. CONCLUSIONS

Process Use Cases (PUC) is a methodology that identifies use cases as a leap for software

construction producing valid artifacts for both activities of Business Process

Management and Software Engineering. PUC has been already applied in over 10

different real software development projects for the Information and Computing

Center in University of Madeira (UMa), Portugal, for the automation of at least one

business process per project. It has been applied by both undergraduate students and IT

professionals and shared with UMa managers for both Business Process Management

and Software Engineering activities always resulting in a firm artifact that promoted

consensus between the stakeholders.

In a modeling perspective, to achieve the more appropriate level of abstraction

naming the use cases can be a very difficult task in Software Engineering if no global

comprehension exists of the scope of the project within the enterprise organization.

Using PUC it is easier to reach the appropriate abstraction to nominate the (essential)

use cases in a way that they make sense in both Business Process Management and

Software Engineering disciplines. This is possible through the definition of compatible

formalizations of the stereotypes used (entities, users, business processes, activities and

use cases), that are provided by LUCID [Charles Kreitzberg, 1999], Wisdom [Nuno

Nunes, 2001] and Usage-centered design [Larry Constantine, 2006], producing a

notation also suitable for the application of agile software analysis and design

methods.

88

89

IV. ANALYSIS & DESIGN (MULTIGOALS)

The development of Interactive Information Systems has largely benefited from the

improvements made in the field of Human-Computer Interaction (HCI) as a way to

produce usable enterprise systems that solve with relative success the needs for

automation. The internet has increased the possibilities of communication beyond the

limits of the enterprises’ local network representing a breakthrough for the product

towards the potential and actual clients. This phenomenon has inspired the

appearance of attractive technology to enrich web pages (that present the products) in

which Multimedia stands in a relevant place.

However, this recent crescent complexity of enterprise Interactive Information

Systems does not have a correspondence in the existing Software Engineering,

Multimedia or Hypermedia methods so that this integrated complexity can be

controlled and designed.

MultiGoals is a methodology for the analysis and design of complex Interactive

Information Systems (IIS) that describes the components of the application in detail:

user interface; system behavior and content, and that defines the usage of patterns for

the combination of both Interactive Information Systems applications and interactive

Multimedia documents.

90

IV.1. INTRODUCTION

This chapter presents MultiGoals, a methodology to guide the authoring of complex

applications for both Interactive Information Systems (IISs) and Interactive

Multimedia Documents (IISs). The result of the MultiGoals will yet be an hybrid IIS

application but with support for Multimedia attractive capability to manipulate

synchronized user interfaces media with or without user interaction.

MultiGoals defends the usage of hybrid application logic patterns in a way that they

can combine themselves to produce dynamic system behavior from the combination

of hybrid Interactive Information Systems’ business logic and interactive Multimedia

documents’ behavior. All the identified components are grouped into a single and

complete application structure assuring the traceability from use cases to code

generation.

This chapter is organized as follows: Section IV.3 is an overview of MultiGoals, Section

IV.4 presents an example application used throughout Section IV.5 to present the

Steps of MultiGoals in detail. Section IV.6 presents the conclusions. The stereotypes

used in MultiGoals are presented in Appendix B.

91

IV.2. MULTIGOALS: AN OVERVIEW

MultiGoals is a methodology for the modeling of applications with support for

Multimedia. The result of the application of MultiGoals can be: (i) an Interactive

Information System (IIS), i.e., a traditional Software Engineering application; (ii) a

Multimedia Application (Multimedia player, video-conference, etc…); (iii) an

Interactive Multimedia Document (IIS); or (iv) an Hybrid Application with both

support for IIS records manipulation and Multimedia presentation.

Table 4: Steps of MultiGoals methodology

Step Model Name
Components
Manipulated

Phase IIS Design Level

1 * Use Case Actor, Use Case Analysis Requirements

2 * Activity
Diagram

Interaction Space, Task,
System Responsibility

Analysis Requirements

3 * Interaction
Model

Task, System
Responsibility

Analysis User Interaction

4 Navigational
Model

Interaction Space Design Presentation

5 * Presentation
Model

Interaction Space, Task Design Presentation, User
Interaction

6 Application
Domain Model

Entity Design Presentation,
Content

7 Application
Object Model

Entity Object Detailed
Design

Presentation,
Content

8 Conceptual
Model

Interaction Space, Task,
System Responsibility,
Entity, Entity Object

Detailed
Design

Conceptual, Content

9 System
Behavior Model

System Responsibility Detailed
Design
(Multimedia)

Conceptual

10 Temporal
Model

Task, System
Responsibility

Detailed
Design
(Multimedia)

Conceptual

11 Multimedia
Architecture

Interaction Space, Task,
System Responsibility,
Entity, Entity Object

Detailed
Design

Conceptual

* MultiGoals simplified version.

As described in table 4 MultiGoals is composed of 11 steps. Each step adopts a

different modeling technique (use case, activity diagram, interaction model, etc…) to

produce the appropriate component (actor, task, system responsibility, etc…) that will

lead to the design of the application. Indeed, these steps can be followed differently

according to the level of detail needed. During the phase of analysis the author works

92

on the comprehension of the problem to be solved based on the tasks the user carries

out to accomplish his objective; during the phase of design the author will start the

conception of the system that will support the user tasks that solve the problem, and;

during the phase of detailed design the author will detail each component of the

system identified until that moment. The phase of detailed design is complementary

to the phase of design, for this reason it is not mandatory to achieve acceptable system

definition regarding system development. Note that models 9 (system behavior model)

and 10 (temporal model) exist only for describing Multimedia documents.

The simplified version of MultiGoals is conceived as a fast solution to model the most

essential issues of an IIS. Based on the analysis of the user tasks (use cases, activity

diagrams and interaction model) the author will be able to model the user interface and

identify relevant system responsibilities.

The MultiGoals simplified version is composed by the following models: (i) Model 1. -

Use cases model; (ii) Model 2 - Activity diagrams; (iii) Model 3 - Interaction model, and;

(iv) Model 5 - Presentation model. This version is directed to authors with few or no

experience on Software Engineering methods and because of that the modeling of the

domain was left out of the simplified version. It is intended to be used when there are

relevant time constraints and when the problem to be solved is relatively simple, i.e.,

when complex system behavior is not expected, when Multimedia requirements are

kept to a minimum (two media, one dynamic and one static) or when system

responsibilities are simple (select and set data directly to database tables).

The application of this simplified version of MultiGoals will be presented in a case

study in the next chapter.

93

IV.3. AN APPLICATION

The methodology based on UML presented in this chapter can be applied to support

the design of complex applications, however, in order to illustrate its application, a

simple, although real project application is used and presented in Figure 45.

The application used as example is part of an undergoing real project for an enterprise

in the gastronomy business (presented in the previous chapter) in which the objective

is the construction of an Interactive Information System that internally collects

information relative to recipes and events and displays it in a website. In this chapter

we illustrate MultiGoals by the application of the use case “Catalog Recipe” which was

identified in the “Obtain Recipe” business process as a result of the application of the

Process Use Cases methodology and defines the edition of a previously chosen “recipe”

in which the “name”, “type” (category of the recipe), “ingredients” (extensive list of

ingredients) and “directions” (the preparation of the recipe) must be defined. As a

complement, a video can also be included in the presentation. As additional

requirements for this example and as a way to illustrate the methodology with more

completeness, the text of the area dedicated to the recipe type must be made with

background color #FF6633 (Orange) and an audio sequence “ping-splash” must be

played to give feedback to the user of the availability of the application.

Figure 45: Illustration of an interactive Multimedia scenario

The main issues related to the design of applications using MultiGoals are addressed

in the sequel. The application of MultiGoals to the remaining use cases identified

previously is illustrated in the next chapter.

94

IV.4. THE STEPS OF MULTIGOALS

This section describes and illustrates each step of MultiGoals using the example given

in the previous section.

IV.4.1. Step 1 – Use Cases

An (essential) use case identifies a part of the application that will solve some specific

problem, and represents a single, discrete, complete, meaningful, and well-defined

task of interest to an external user as defined by Larry Constantine in [Larry

Constantine and Lucy Lockwood, 2000]. The use cases model in MultiGoals follows the

classical semantics and notation for the UMLs’ use case diagram [Object Management

Group, 2003].

In order to specify the use case, it is necessary to identify the user(s). The user

represents a single person or a group of persons that want to achieve a goal (task), and

more than one group of users can be related to the same use case. Notice that use cases

can relate to one another (extends - when one use case complements another, or

include - when a use case needs to include another one).

Figure 46: Step 1: Use Case and complementary information for the example

application.

In order to complete the understanding of the usage, the use case should be

complemented with the High Level Concept (defined in the first step of Process Use

Cases – Chapter III) which defines in one sentence what the complete application

should do (not only this use case). It is a statement defined in the LUCID Framework

(Logical User Centered Interaction Design) [Charles Kreitzberg, 1999] as the first step

for the envisioning of a product. The high-level concept is seen as a mission statement

for a product to help focus on the product development.

95

The high-level concept for the example is related to the existence of a gastronomic

patrimony and realization of events as a way to capture clients. The use case deals with

the gastronomic patrimony which is maintained by a gastronomy consultant who has

the objective of compiling the recipes of the enterprise (cataloging). The typical user of

this use case will be an experienced gastronomy consultant whose objective is to

catalog recipes.

96

IV.4.2. Step 2 – Activity Diagram (Interaction Spaces + Tasks)

The activity diagram will specify how the interaction between the user and the system

will happen, what is supposed to happen in each side (user and system) that will lead

to the accomplishment of the task. The Activity diagram follows the definition of the

decomposition of an essential use case into “user intentions and system responsibilities in

the course of accomplishing that task (use case), described in abstract, technology-free,

implementation independent terms using the language of the application domain and

of external users” as defined by Larry Constantine in [Larry Constantine and Lucy

Lockwood, 2000]. Since MultiGoals is tailored for the modeling of detailed interfaces,

the name of the interaction spaces where the user actions (tasks) occur should be

identified. The activity diagram for MultiGoals follows the classical semantics defined in

UML’s activity diagram [Object Management Group, 2003], but in contrast, the classical

notation of activities and sub-activities is replaced by the stereotypes of task (user

intention) and control (system responsibility). The addition of the interaction space

stereotype is a complement to the activity diagram.

The activity diagram is separated into user intentions and system responsibilities. User

intentions are tasks that the user wants to accomplish on the system, which at this stage

can be or not by means of direct user interactions, being most of the times a high level

task representing what the user is doing at this step in order to complete his task (e.g.

“Reserve Room”). Contrarily, system responsibilities are the response of the system to

the task carried out by the user (e.g. “Confirm Room Reservation”).

The activity diagram can begin in either side, system or user. Usually, in common cases,

2 to 6 tasks are enough so that user is able to accomplish what he needs. Of course, the

number of tasks depends on the complexity of the overall use case purpose. In general,

more than one user task and more than one system responsibility can be executed in

sequence.

After the activity diagram is completed with tasks and system responsibilities the

interaction spaces (user interfaces) in which the tasks will be performed must be

identified. Notice that one interaction space can support one or more tasks.

For instance, consider the activity diagram associated with the previous application

which is depicted in Figure 47. In this diagram, the user intentions initially describe the

intention of the user to “catalog a recipe” which is expressed in the “menu” interaction

space and immediately carried out by the system returning the recipes in the “Recipe

Browser” interaction space so that the user can select the recipe to edit or select a new

97

recipe. After selecting the recipe, the system will return the recipe cataloging tool

(“Recipe” interaction space) to the user where the edition of the recipe will be made.

Figure 47: Step 2 - Activity diagram for the example application.

98

IV.4.3. Step 3 – Interaction Model (Task + System Responsibility)

The interaction model details the user interaction in order to perform a task (identified

in the previous step) and specifies which will be the response of the system to each

one of the user (sub) tasks, relating these tasks to the interaction spaces where they

occur.

The interaction model details (decomposes) tasks into sub-tasks, and the corresponding

system responsibilities into sub-system responsibilities. The higher level of an interaction

model diagram is a combination task -> system responsibility taken from the activity

diagram presented in step 2. Thus, a task from the activity diagram is decomposed by

means of concur task trees (CTT) [Fábio Paternò et al., 1997] up to the description of an

interaction on the user interface. Similarly, corresponding system responsibilities (which

are controls, system functions) are decomposed (if needed) into lower level controls,

which are executed whenever that user task takes place. The sub-user tasks are then

associated with the corresponding sub-system responsibilities.

The decomposition of tasks into sub-tasks is carried out using aggregation, e.g.

“Reserve Room” decomposes into “Select Room”, “Select Customer” and “Select

Duration”. Moreover, an operator also must be specified among the sub-tasks in order

to determine their order. These operators can be [Fábio Paternò et al., 1997]: Choice (T1

[] T2); Independent concurrency (T1 ||| T2); Disabling (T1 [> T2); Enabling (T1 > T2);

Suspend/Resume (T1 |> T2); Order independent (T1 |=| T2). For further information on

these operators see [Fábio Paternò et al., 1997].

In the interaction model, the system responsibilities are the response of the system to a

user interaction, thus, specific system response can be described at this stage. For that

purpose, the system responsibilities can be defined according to the Static Patterns

defined in Appendix A.

This decomposition should be made until reaching specific interaction with the

system (e.g. “confirm reservation”, which means clicking a button). Then, such as in

the activity diagram, it is necessary to identify in which user interfaces (sub-interaction

spaces in this diagram) the tasks will be performed.

99

Figure 48: Step 3 - Interaction model for the example application.

For instance, Figure 48 illustrates the interaction model for the previous application.

According to this figure, the combination “Catalog Recipe”-“Return Recipe

Cataloging Tool” is placed at top of the diagram and all the tasks are decomposed

until reaching user interaction. These user interactions (which are user intentions) are

then associated with the corresponding system responsibility that will produce the

necessary system response to the user intention. After this, the user interactions (user

intentions) are associated with the interaction spaces where they take place.

100

IV.4.4. Step 4 – Navigational Model (Interaction Spaces)

The navigational model combines in one model all the interaction spaces identified in the

previous diagrams and relates them into a single structure specifying the different

possibilities of navigation.

In this model, two kinds of relations are used among the existing interaction spaces:

Navigate and Contains. These are the UML extensions used in the navigational model

which are specified in Wisdoms’ Presentation Model [Nuno Nunes, 2001]:

<<Navigate>> is an association stereotype between two interaction classes denoting a

user moving from one interaction space to another. The navigate association can be

unidirectional or bi-directional (which means there is an implied return in the

navigation).

<<Contains>> is an association stereotype between two interaction space classes

denoting that the source class (container) contains the target class (content). The

"contains" association can only be used between interaction space classes and is

unidirectional.

The construction of the navigational model starts with the interaction spaces identified in

Step 2 – Activity Diagram. If more than one interaction space is identified in Step 2 then

those interaction spaces can be aggregated into a higher-level interaction space which

will name the application built for the current use case. After that, the interaction spaces

identified in Step 2 are decomposed into the interaction spaces originally identified in

Step 3. The navigation between interaction spaces (of the same level or not) will occur

when an interaction space replaces another.

For instance, in the application presented in this chapter, the interaction spaces

“Menu”, “Recipe Browser” and “Recipe” taken from Step 2 – Activity Diagram, were

aggregated into a higher-level interaction space called “Gastronomy Application”. The

interaction spaces identified in Step3 – Interaction Model were then aggregated into the

corresponding interaction space “Recipe”. This is illustrated in Figure 49.

101

Figure 49: Step 4 - Navigational model for the example application.

102

IV.4.5. Step 5 – Presentation Model (Interaction Spaces + Tasks)

The presentation model is the design of the interaction spaces of the application in terms

of the aspect (spatial layout) of each interaction space and its associated functionality.

The presentation model is based on the interaction spaces identified in the navigational

model (Step 4), and the visual aspect of each area is modeled using Canonical Abstract

Prototypes (CAPs) [Larry Constantine, 2003]. The functionalities, which are the user

tasks supported by the application, are associated with the visual representation of

each interaction space. The audio interaction spaces are represented by the class

stereotype of the interaction spaces.

CAPs allow the modeling of a complete set of user interactions that can occur in the

components of the user interface. For instance, for the selection of a room, a list must

be displayed and its appropriate CAP used (abstract selectable collection material,

should be used to specify this situation). CAPs are applied to detail all the interaction

spaces of an Interactive Information System.

The interaction spaces identified are represented by regions (which describe spatial

coordinates for the presentation of interaction spaces) and are identified with the

interaction space name within parenthesis. The user tasks performed in each interaction

space are placed inside the area of the interaction space if possible; if not, they are

associated with the interaction space with a dashed line. Audio interaction spaces are

represented by a class with the audio task stereotype.

103

Figure 50: Step 5 – Presentation model for the example application.

For instance, consider Figure 50 which describes the presentation model for the previous

Application. In the description of this picture “Recipe Name”; “Recipe Type”; “Recipe

Ingredients”; “Recipe Directions”; “Recipe Video” are interaction spaces where a

modify action will take place (CAP). Note that in “Recipe Video” this is also a modify

action where the modification will be made over a media instead of text, and that the

interaction spaces “Recipe Play Video” and “Recipe Stop Video” will have a direct

action over the “Recipe Video” media. The audio interaction space “Audio” will

present the sequence “Ping-Splash”.

104

IV.4.6. Step 6 – Application Domain Model (Entities)

The application domain model describes the persistent structure for the content of the

application in its perspectives of user interface interaction space values, user interface

media values and user information values. It describes the information concerning

each visual region (regions domain model), the content of each media object composing

the application (media domain model), and the semantic composition of the application

(ontological domain model).

The application domain model is described through three phases:

• The regions domain model specifies the attributes of each region. Thus, the

interaction spaces identified in the presentation model (Step 5) are transformed into

generic UML classes (alternatively, the representation can also be made using the

interaction space stereotypes). For this purpose, the necessary attributes for each

region/interaction space were defined, and a pattern was proposed for each kind of

region (visual or audio interaction space) with their appropriate attributes.

• The media domain model defines which media will be presented in each

interaction space of the application. For this purpose, a pattern was proposed for each

kind of media (audio, video, image, text, etc…). Each class of the media domain model is

associated with the corresponding region and the cardinality is defined.

• The ontological domain model relates to the concrete things (entities) and

conceptual things (concepts) that support the user information that will be presented

by the application. In the ontological domain model (can be a domain model that has

already been drawn in a previous phase of analysis or requirements) the classes must

have their attributes defined and relations among classes must have their cardinality

and optionally their names (of the relations) defined.

It is important to emphasize that in order to illustrate all the Multimedia features for

the design of the application, the attributes for the definition of the regions domain

model and media domain model were based on the description of these components from

the language SMIL [The World Wide Web Consortium, 2007].

The description of the application domain model begins with the regions domain model. In

this part of the model the interaction spaces detailed in Step 5 - Presentation Model are

now represented by classes (with attributes) that correspond to “regions” that follow

the composition defined in Step 4 - Navigational Model. The next step is the media

domain model, in this part of the model each “region” is associated with a class

105

representing the type of media related to it and the cardinality of that association. The

media attributes defined for the media domain model classes also follow the SMIL

convention for the definition of the class attributes. The last step is the ontological

domain model, this diagram follows the classical UMLs’ class diagram [Object

Management Group, 2003] that relates the concrete and conceptual things

manipulated by the application. These classes are then associated with the media

domain model classes and their cardinality are defined according to needs of the user

interface in terms of media for each ontological domain model Class, i.e. for each part of

the user interface that will contain a media with information from the ontological

domain model an association is made and its cardinality is defined.

Figure 51: Step 6 - Application Domain Model for the example application.

106

For instance, consider Figure 51 which illustrates the definition of the class diagram

for the description of the regions domain model, media domain model and ontological

domain model associated with the previous Application. Notice that in this model the

regions domain model classes were associated with the media domain model classes for the

cases when a region will contain one or more media object, for example “Audio

Channel” will present two audio media objects and “Recipe Video” will present a

video object. A relation was also made between the ontological domain model classes

and the media domain model classes according to the needs of the user interface. Thus,

“Recipe” has been associated with the “Video” and “Text” classes once the attributes

of “Recipe” will be presented in 4 text media objects and 1 video object.

107

IV.4.7. Step 7 – Application Object Model (Entities Objects)

The application object model is the instantiation of the application domain model and it is

used to define initial values for the user interface interaction spaces, existing user

interface media and user information. In this last case, it can be used to simulate the

ontological domain model with possible run-time values.

The application object model describes the instantiation of the application domain model

associated with: regions domain model, media domain model and ontological domain model,

resulting respectively in the regions object model, media object model and ontological object

model diagrams.

Figure 52: Step 7 - Object model for the example application.

All the classes of the application domain model can be instantiated in the application object

model for purposes of value definition and validation of: the existence of the classes;

cardinality, name and existence of the relations (among classes); and existence and

coherence of the attributes. When classes are instantiated, they assume the run-time

values for their attributes allowing for the validation of the class model.

In this model, all classes from the application domain model are instantiated if they need

value definition or validation. The classes are instantiated, the objects are named and

default values are defined for the attributes such as “title” for a region, “src” (source)

for a media or any attribute of an object from the ontological object model.

108

In the example presented in Figure 52 some possible run time values were defined

according to existing relations from the application domain model (Step 6): (i) Source

Media for “Recipe_Play_Video”, “Recipe_Stop_Video” and “Audio Channel” regions;

(ii) during run-time the existing video (once playing) will restart and repeat itself; (iii)

the backGroundColor of the “Recipe Type” region will have the value FF6633

(Orange) and (iv) some example values for “Recipe”.

109

IV.4.8. Step 8 – Conceptual Model (System Responsibilities + Source)

The conceptual model is the diagram that defines both application business logic (in the

case of IISs) and/or multimedia behavior (in the case of IMDs). The same interaction

space can have more than one associated behavior (a system responsibility) that has as a

source of information a class or an object (run-time) from the application domain model

or the application object model respectively.

The goal of the conceptual model is to associate each interaction space or associated user

task with a system responsibility, and that system responsibility with a source of

information. Some patterns were tailored for the hybrid functioning of the application

in its perspectives of business logic and Multimedia behavior. As a result, the conceptual

model aims at associating the products of the methodology so far, i.e., the presentation

model (visual design of the interface, Step 5) with the application domain model (Step 6)

and/or application object model (Step 7).

Some patterns for the hybrid functioning of the application which combine business

logic for applications and Multimedia behavior are presented in Appendix A.

For the construction of this model, interaction spaces and/or user tasks of the

presentation model are related to system responsibilities, according to the interaction model

or existing functional requirements. These system responsibilities are then related to a

source, i.e., classes or objects depending on what is predicted in the applied pattern.

110

Figure 53: Step 8 - Conceptual model for the example application.

In the example presented in Figure 53 the tasks “Describe Name”, “Describe Type”,

“Describe Ingredients”, “Describe Directions” were associated with source by means

of the Get/Set Class Attribute pattern. The task “Upload Video” is associated with

source by means of the Get/Set Correspondent Media pattern. The interaction spaces

“Recipe Play Video” and “Recipe Stop Video” were associated in a two-tier relation

with their source image (Source Media pattern). The “Audio Channel” interaction space

was associated with their source media “Splash” and “Ping” by means of the Sequence

pattern.

111

IV.4.9. Step 9 – System Behavior Model (System Responsibilities)

The system behavior model details each system responsibility identified until this moment

into sub-system responsibilities using an activity diagram. The system behavior model can

be especially important to define Multimedia behavior, but can also be helpful to detail

specific application business logic needs, in a sequence of sub-system responsibilities.

A multimedia behavior system responsibility is defined as a system responsibility that has

Present or Interrupt keywords in the begin of the system responsibility name. Moreover,

the presentation duration of a media object is placed in brackets as follows: [Minimal

duration of media, Maximum duration of media]. Notice that the maximum duration

of a media can be undetermined which means that the duration is unknown and in

this case is represented by +∞.

Activity diagrams follow the classical activity diagram as defined in UML [Object

Management Group, 2003] except for the exclusive fork which is an extension to the

UML’s parallel fork. The multimedia behavior system responsibilities can be detailed into

sub-system responsibilities in the following way:

• Sequence (one system responsibility is executed after the other)

Figure 54: Sequence (of system responsibilities).

Figure 54 depicts a sequence, in this kind of structure the system responsibilities are

executed sequentially, and as a consequence “Media 1” is presented in the first place,

and, once its presentation ends “Media 2” is presented.

112

• Parallel (all system responsibilities are executed at the same time)

Figure 55: Parallel Fork.

Figure 55 depicts a parallel fork, in this kind of structure, the system responsibilities

within the fork are executed at the same time and as a consequence “Media 1” and

“Media 2” will be presented simultaneously.

• Exclusive (all system responsibilities are executed but never simultaneously).

Figure 56: Exclusive Fork.

Figure 56 depicts an exclusive fork, in this kind of structure, the system responsibilities

within the fork are all executed but not at the same time and as a consequence “Media

1” and “Media 2” will be presented but never simultaneously.

Furthermore, causal relations between media objects can also be described. These

relations assume that a media object presentation can be initiated or interrupted

whenever an appropriate event takes place (e.g., start of a media object or a user

interaction). Thus, the presentation or interruption of a media presentation can be

generated by:

• a user task that generates an event over a multimedia behavior system

responsibility;

113

Figure 57: Causal interruption generated from a user interaction.

Figure 57 depicts the representation of a causal relation that was generated from the

task “Stop Media” which will have as a consequence the interruption of “Media 1”.

• by the sequence of two multimedia behavior system responsibilities in which

sequence a system responsibility generates an event over another.

Figure 58: Causal relation generated by the behavior of the system.

Figure 58 depicts the representation of a causal relation generated from the behavior

of the system in which the end of the presentation of “Media 1” (that can last between

0 and 5 seconds) will generate the interruption of “Media 2” (which has unknown

duration).

Figure 59: Step 9 - System behavior model for the example application.

For instance, consider Figure 59 that illustrates the system behavior model for the

previous application. The interactions “Play Video” and “Stop Video” generate causal

relations over “Play Recipe Video” and “Stop Recipe Video” system responsibilities

respectively. “Play Recipe Video” is then decomposed into the “Interrupt Video” and

“Present Video” (with undetermined duration). The system responsibility “Stop Recipe

Video” is modeled by only one system responsibility producing the interruption of the

114

video through “Interrupt Recipe Video”. The system responsibility “Play Audio

Sequence” is implemented by the sequence “Present Ping” and “Present Splash”.

Moreover, notice that using a CASE (Computer Assisted Software Engineering) tool it

is possible to represent a composite element which can be further detailed within

other (sub-) activity diagrams. This is an important potentiality of MultiGoals, since it

eliminates scalability problems. An alternative view of the (logical/temporal)

behavior of the system is the temporal model (step 10).

115

IV.4.10. Step 10 – Temporal Model

The temporal model is a time-dependent graphic (timeline) of the multimedia behavior of

the application. This model also explicits the causal relations between the Multimedia

system responsibilities, whether it was originated by user tasks or by Multimedia logic.

This timeline is described into three different parts:

• System Responsibilities (on the upper left side of the graphic depicted in Figure 60) -

describes the presentation of all the multimedia behavior system responsibilities identified

in the system behavior model (step 9);

• Multimedia Logic (on the upper right side of the graphic) - describes the Multimedia

behavior of the media objects of the application in time (placed along-side their

multimedia behavior system responsibilities). For this purpose, this presentation must

describe the parallel, sequence and exclusive presentation of all the media objects of

the application with their respective presentation duration. Furthermore, the causal

relations between the media objects can also be described in this part of the graphic by

means of a dashed line between the media elements;

• User Interaction (on the down right side of the graphic) - describes the possible

occurrence of user interactions associated with a media object described in the second

part of the timeline by means of a dashed line between the user tasks and the media.

Moreover, it might also be important to describe on this graphic the system

responsibilities and their impact on the presentation of the media objects. Tasks and system

responsibilities that influence the media presentation are placed along the time line

from the first moment that they can occur.

116

Figure 60: Step 10 - Temporal model for the example application.

Consider Figure 60 which depicts the temporal model. The multimedia system

responsibilities responsible for the presentation of media objects are placed in the

“System Responsibilities” zone and the corresponding media durations are

represented in the “Multimedia Behavior” area where it is possible to identify each

Present and Interrupt functions that influence the presentation of elements. The user

tasks “Play Video” and “Stop Video” placed in the “User Interaction” area generate

causal relations that affect the video presentation.

117

IV.4.11. Step 11 – Application Architecture

The application architecture is the representation of all the relevant components of the

system and the relations among them. The structure of these components (which are

relevant for the implementation) is organized from left to right (see Figure 61). These

components are: interaction spaces, tasks, system responsibilities and source.

Figure 61: Step 11 - Application architecture for the example application.

An architecture of the system is essential to evaluate the system size (and complexity)

and to control the system implementation, since it is possible to identify the

precedence of implementation between components, e.g. in order to be able to

implement the controls “Get/Set Recipe Name” and “Get/Set Recipe Ingredients” the

source “Recipe” must already be available.

Furthermore, the architecture is an overall documentation of the system that

encourages dialogue between system stakeholders (e.g. client and developing team) in

order to reach negotiation over, for instance, the implementation project or system

maintenance for the introduction of new requirements.

118

IV.5. CONCLUSIONS

This work presents MultiGoals, a methodology that aims to bridge Software

Engineering and Multimedia authoring. MultiGoals is a lightweight, use case-driven,

architectural centric methodology that guides the software conceptualization by

means of the simplification of the system design concerning usability and

maintainability.

The use of MultiGoals induces the author of an application into a straight lined (few

iterations are suggested) and fast software definition process towards

implementation. The models of the methodology are intended to be simple, intuitive

and scalable. A simple example is used to illustrate how the methodology can be

applied, however, MultiGoals can be used to develop complex applications.

Despite the proposal of 11 steps for the design of Interactive Information Systems,

these steps support completely the design of complex applications. However, as a

matter of simplicity, many of these steps can be omitted in order to achieve faster

products of the methodology.

119

V. CASE STUDY (MULTIGOALS)

The previous chapters presented the Process Use Cases and MultiGoals methodologies.

However, the examples provided to support the presentation were applied by the

author of the methodologies and as a result have a considerable academic weight. For

this reason was important to test the methodologies in a real environment so that the

training and the modeling could be evaluated.

Once Process Use Cases had already been applied several times (it has been used for

around two years in the University of Madeira), it was found that the focus should be

on MultiGoals. Due to human resources knowledge and time restrictions it was only

possible to apply the MultiGoals simplified version which is presented in the sequel.

120

V.1. INTRODUCTION

This chapter presents the application of the simplified version of MultiGoals. To

present this case study we apply the Gastronomy Project that was previously used for

the presentation of the Process Use Cases and MultiGoals methodologies in chapters III

(which presents the project comprehensively) and IV, respectively.

As presented in the previous chapter, the MultiGoals simplified version should be

applied when the nature of the problem to be solved is relatively simple. The

Gastronomy Project presented in this thesis fits this approach since no complex

system behavior is predicted and the Multimedia requirements are kept to a

minimum. Another advantage of the simplified version is that it can be used by

persons with no training on Software Engineering methods like usually happens with

Multimedia designers.

The simplified version of MultiGoals methodology was applied by two Multimedia

designers. These designers - Filipe Freitas [Filipe Freitas, 2007] and Paulo Vieira

[Paulo Vieira, 2007] - work daily on digital Multimedia producing logos, pamphlets,

animations and web sites using tools like ®Adobe Photoshop [Adobe, 2007b] and

®Adobe Flash [Adobe, 2007a]. The designers where hired to participate in the

Gastronomy Project to partially model the application and to develop the designed

system interface.

In order to apply the methodology, a 2 hour training session took place, in which the

Gastronomy Project was presented using the material illustrated along the Chapter III

- Requirements. After the project was introduced, the training focused on the

simplified version of MultiGoals (models: 1 – Use cases model; 2 – Activity diagrams; 3 –

Interaction model; and 5 – Presentation model) using the material illustrated along the

Chapter IV – Analysis and Design.

After the training session (October 16th 2007), the two Multimedia designers were able

to model by themselves (October 30th 2007) the diagrams that are presented in this

chapter. A final revision of the models was made (November 14th 2007) where a final

iteration of the process was carried out. Finally, the produced user interfaces were

redrawn with digital support (November 25th 2007) and presented to the client for

121

approval (November 27th 2007). Each produced model is commented and for each one

the relevant conclusions for the evolution of the methodology are presented.

This chapter is organized as follows: Section V.1 presents the training session of the

MultiGoals simplified version, Section V.2 presents the diagrams that were produced

for the Gastronomy Project, and Section V.3 presents some conclusions about the

results of the application of the methodology.

122

V.2. TRAINING

The MultiGoals training had the purpose of providing the two Multimedia designers

with the sufficient knowledge to make (without help) the analysis and design of the

Gastronomy Project based on the use cases previously identified in Chapter III, by the

application of the Process Use Cases methodology: “Catalog Recipe” (to be remodeled

during the training session); “Advertise” and “Obtain Gastronomic Information”. Due

to time constraints, the training session had to be scheduled (Table 5) for only two

hours.

Table 5: MultiGoals training session schedule.
Topic Duration

(m)
Begin
(m)

End
(m)

Content

Objectives 5 0 5 Learn to model applications using MultiGoals.

Context 5 5 10
Software Engineering Basics: Requirements,
Analysis and Design.

Project 20 10 30
Project Interiorization using Process Use Cases
models (Chapter III).

Use Cases 30 30 60
What is a use case? (Model 1 – Use Cases)
Activity Diagrams (Model 2 – Activity
Diagrams)

Interaction
Model

30 60 90
Task decomposition using CTT and association
to System Responsibilities (Model 3 –
Interaction Model)

Presentation 30 90 120
Presentation Modeling and task association
(Model 5 – Presentation Model).

The session, as depicted in the previous table, included the following topics:

• Objectives – it was explained the objective of the training session as to learn how to

model Interactive Information Systems using the MultiGoals simplified version;

• Context – it was explained a Software Engineering process having several phases

and, that the designers would work on the phases of analysis and design following

the already completed phase of requirements;

• Project – the Gastronomy Project was presented using the models introduced in

Chapter III focusing on the high-level concept , the identification of business processes

and their design (process use cases model);

• Use Cases – it was explained what an essential use case is, how it can be decomposed

into user intentions and system responsibilities using an activity diagram, and how an

interaction space could be associated with each task;

123

• Interaction Model – it was explained how a pair task-system responsibility can be

decomposed into sub-tasks (using CTTs) and sub-system responsibilities;

• Presentation – it was presented how the user interface could be designed and how

each interaction space should be associated with each user task.

Following the training session, an agreement was made with the two Multimedia

designers that they would complete the modeling of the system within 15 days (until

the end of October).

The next section presents the diagrams that were produced in the different sessions of

modeling until the final client approval.

124

V.3. PRODUCED DIAGRAMS

In this section we present the diagrams produced for the design of the system for the

Gastronomy Project. For each diagram (use cases model, activity diagrams, interaction

model, and presentation model), we present the title, the author(s), the date, a description

of the diagram, and brief conclusions aiming at the evolution of the MultiGoals

methodology.

The diagrams are presented in its original, digitalized paper version in order to

preserve all the information produced e.g. handwritten notes. To ease the

understanding of the diagrams presented, we provide pointers (in orange) to the

diagrams classes so that text and figures can be easily related.

V.3.1. Step 1 - Use Cases

The first diagram was produced just after the training session and indicated the use

cases that needed to be analyzed.

Use Cases diagram

Figure 62: Step 1 - Use cases of the Gastronomy Project.

Author(s): Pedro Valente

Date: October 16th 2007

125

Description: The diagram presents the use cases of the Gastronomy Project (Figure 62).

The “Advertise” and “Obtain Gastronomic Information” use cases were designed by

hand and the “Catalog Recipe” was copy-pasted in order to complete the use cases

diagram. Some informal annotations were made in the diagram by Filipe Freitas and

Paulo Vieira (“Events” and “General Advertisement”)

Following the presentation of the use cases model, we now present the activity diagrams

related to each identified use case.

V.3.2. Step 2 - Activity Diagram

Following the definition of the use cases we now present the activity diagrams for the

“Catalog Recipe”, “Advertise” and “Obtain Gastronomic Information” use cases.

“Catalog Recipe” Activity Diagram

Figure 63: Step 2 - Activity diagram for the "Catalog Recipe" use case.

Author(s): Filipe Freitas and Paulo Vieira (Version 1); Filipe Freitas, Paulo Vieira and

Pedro Valente (Version 2).

Date: October 16th 2007 (Version 1, during the training session), November 14th 2007

(Version 2).

126

Description: The first version of this diagram (Figure 63) starts with the system

“Offering Choices”(“Oferece Escolhas”)(1), then the user “Choose(s)

Gastronomy”(“Escolher Gastronomia”)(2) then the system responds “Show(ing)

Gastronomy Panel”(“Mostrar Painel Gastronomia”)(3), after that the user “Fill(s) the

Gastronomy Fields”(“Preencher Campos Gastr.”)(4), and finally the system “Keeps

the Gastronomy Data”(“Guardar Dados Gastron.”)(5).

By analyzing the diagram, we notice that the “Fill the Gastronomy Fields” (4) task was

decomposed into the tasks: “Name”(“Nome”)(a); “Type”(“Tipo”)(b);

“Ingredients”(“Ingred.”)(c); “Directions”(“Prep.”)(d), “Video”(e), “Preparation Time”

(“Tempo Prepar.”)(f), and “Difficulty Level” (“Grau Dific.”)(g).

The task “Video” was still decomposed into the tasks: “Click Video Search”(“Clicar

Pesq. Video”)(h); and “Search Video”(“Pesq. Video”)(i); and it was also associated

with the following system responsibilities: “Return Video Browser” (“Devolv. Browser

Video”)(j); and “Upload Video”(k). This premature decomposition of the “Fill the

Gastronomy Fields” task was a training error that was not detected during the session

that would influence the modeling of the activity diagrams for the remaining use cases.

The following interaction spaces were identified: “Application Menu” (“Menu

Aplicação”) and “Recipe” (“Receita”).

Conclusions: The premature decomposition of the “Fill the Gastronomy Fields” task

was made in the activity diagram by mistake. This task should only be decomposed

during the Step 3 - Interaction Model, however, during the training session the two

Multimedia designers drawn this decomposition on the same diagram. When

questioned about this mistake, they answered that they thought that this

decomposition should be made in a different diagram due to whiteboard space

restrictions. However, even resulting from a mistake this approach should be taken

into account for being a “two (diagrams) in one”, and since the same cognitive steps

are carried out, the result of that interpretation of the system structuring is being

accomplished. However, this mistake led to a much more complex diagram.

“Advertise” Activity Diagram

Author(s): Filipe Freitas and Paulo Vieira.

Date: October 30th 2007.

Description: The diagram depicted in Figure 64 starts with the system “Show(ing)

News/Event/Publicity Panel” (“Mostrar Painel Noticia/Evento/Publicidade”)(1),

then the user “Fill(s) the Fields” (“Preencher Campos”)(2) which was decomposed

127

into the tasks “Title”(“Título”), “News”(“Notícia”), “Media”, “Link” and

“Save”(“Guardar”). The task “Media”(3) is further decomposed into “Click Search”

(“Clicar Pesquisar”) and “Search Media” (“Pesquisar Media”). The “Media” task is

associated with the “Return Image Browser” (“Devolver Browser Imag.”) and

“Upload Image” (“Upload Imagem”). Following the task “Save” (“Guardar”)(4), the

system responds “Saving the Data”(“Guardar Dados”)(5).

Figure 64: Step 2 - Activity diagram for the "Advertise" use case.

The following interaction space was identified: “News/Event/Publicity”

(“Notícias/Evento/Publicidade”).

Conclusions: Following the previous diagram, the same task decomposition was

made in the activity diagram and it has resulted in a more confusing and difficult to

understand diagram. However, the objective of the Step 3 - Interaction Model was

accomplished since two extra system responsibilities were identified: “Return Image

Browser” (“Devolver Browser Imag.”) and “Upload Image” (“Upload Imagem”).

“Obtain Gastronomic Information” Activity Diagram

Figure 65: Step 2 - Activity diagram for the "Obtain Gastronomic Information" use case.

Author(s): Filipe Freitas and Paulo Vieira (Version 1), Filipe Freitas, Paulo Vieira and

Pedro Valente (Version 2).

Date: October 30th 2007 (Version 1, during the training session), November 14th 2007

(Version 2).

128

Description: The diagram (Figure 65) starts with the user “Introduc(ing) the

URL/Site” (“Introduz URL/Site”)(1), the system responds “Presenting the site

choices+(plus) Last Recipe+More Searched Recipe+News (ordered descending by

date) + Events (ordered descending by date)”(“Apresenta Escolhas Site+Ultima

Receita + Receita+Procurada + Notícias (>Data)+Eventos (>Data)”)(2), then the user

“Select(s) one of the Choices”(“Selecciona Escolhas”)(3), and the system responds

“Return(ing) the Chosen Category”(“Mostra Categoria Escolhida”)(4). Finally, the

user “Watches the Category”(“Ver Categoria”)(5). The “Select(s) one of the Choices”

task is further decomposed into “Recipe” (“Receitas”), “News” (“Notícias”), “Events”

(“Eventos”), “Search” (“Pesquisa”) and “Authentication” (“Autenticação”). At the top

right of the diagram there is a draft for the interaction space of the “Authentication”

task.

The following interaction spaces were identified: “Site” and “HomePage”.

Conclusion: This diagram follows the method already applied in the previous

diagrams.

V.3.3. Step 3 – Interaction Model

As it was possible to conclude in the previous section, there was a mistake and the

steps 2 and 3 of the methodology were drawn in a single diagram. However, during

the modeling of the diagrams, the two Multimedia designers needed to further

decompose existing tasks and, for that purpose, used the same principle and

decomposed their tasks always associating them with system responsibilities which is

the principle applied in the Step 3 – Interaction Model.

“Select one of the Choices”- “Return the Chosen Category” (Recipe Situation)

This interaction model is related to the pair task-system responsibility “Select one of the

Choices” (“Selecciona Escolhas”)-“Return the Chosen Category” (“Mostra Categoria

Escolhida”) of the “Obtain Gastronomic Information” activity diagram. Since the task

“Select one of the Choices” (“Selecciona Escolhas”) – Step 3 of the diagram depicted in

Figure 65 - can be decomposed into several sub-tasks, the two Multimedia designers

have chosen to draw the diagram for the “Recipe” situation.

Author(s): Filipe Freitas and Paulo Vieira (Version 1).

Date: October 30th 2007.

129

Description: The diagram depicted in Figure 66 starts with the user task “Select Recipe

Menu”(“Escolher Menu Receitas”)(1) and the system responds with the “Show(ing)

the Recipes”(“Mostra Receitas”)(2) system responsibility which is further decomposed

into “More Recent Recipes”(“Receitas + Recentes”) and “Recipes by Type”(“Receitas

por Tipo”). Then, the user “Select(s) Recipe from the List”(“Selecciona Receita da

Lista”)(3) and the system responds “Show(ing) the Recipe”(“Mostra a Receita”)(4),

finally the user “Visualize(s) the Recipe”(“Visualiza Receita”)(5). This last task

“Visualize Recipe” is further decomposed into “Download”, “Print” (“Imprimir”),

“Send Mail” (“Enviar Mail”), “Save in Site” (“Guardar no Site”) and “Watch Media”

(“Ver Media”) which is further decomposed into “Save Video to Disk” (“Guardar

Video no Disco”).

Figure 66: Step 3 - Interaction model for the pair task-system responsibility “Select one of

the Choices”- “Return the Chosen Category” (Recipe Situation).

The following interaction space was identified: “Recipe” (“Receita”), which was already

previously identified.

Conclusion: The interaction model was incorrectly drawn once it was designed just like

the previous activity diagrams. However, the objectives of the diagram were

accomplished since a further iteration was made on the detail of user intentions and

system responsibilities. There is the need to study a solution to aggregate all the

information resulting from this diagram into the interaction model. The choice to model

the “Recipe” situation was a correct one, once the Recipes are the more important

issue of the application. By analyzing the diagram, we can note that one interaction

space is missing, the “Recipe List”, in which the task “Select Recipe from the List”

(“Selecciona Receita da Lista”) would take place. As a result, this interaction space was

not designed.

130

“Select one of the Choices”- “Return the Chosen Category” (Search Situation)

Following the previous decomposition, the need to decompose the “Search” situation

was noticed. This diagram was made with the monitoring of the author of this thesis

and was an attempt to give a different format to the model, making the decomposition

of the tasks from left-to-right instead of top-to-bottom.

Author(s): Filipe Freitas, Paulo Vieira and Pedro Valente.

Date: November 14th 2007.

Figure 67: Step 3 - Interaction model for the pair task-system responsibility “Select one of

the Choices”- “Return the Chosen Category” (Search Situation)

Description: The diagram depicted in Figure 67 “Select one of the Choices”- “Return

the Chosen Category” starts with the task “Search”(“Pesquisa”)(1) which is

decomposed into:

• “Simple Search”(“Pesquisa Simples”)(2) that is further decomposed into “Introduce

Term” (“Introduzir Termo”) and “Click Search” (“Clica Pesquisar”) and the system

responds “Returning results related to the term ordered by date and category”

(“Devolve Resultados Relacionados com o Termo por Data e Categoria”)(3);

• “Advanced Search”(“Pesquisa Avançada”)(4) which is further decomposed into

“Select Category of Search”(“Selecciona Categoria Pesquisa”)(5) and “Click

OK”(“Clicar OK”)(6). “Select Category of Search” if further detailed into

“Recipes”(“Receitas”), “News”(“Notícias”), “Events”(“Eventos”). The categories of

search where further detailed into:

131

o “Recipes” – “Difficulty Level”(“Grau Dificuldade”); “Type” (“Pesquisa por

Tipo”); “Ingredient”(“Por Ingrediente”); “Name” (“Por Nome”); and “Time”

(“Por Tempo”);

o “News” – “Title”(“Título”) and “Date”(“Data”);

o “Events” - “Title”(“Título”) and “Date/Month”(“Data/Mês”) and

“Location”(“Localização”).

The following tasks were associated with the following system responsibilities:

• “Select Category of Search” was associated with “Return Recipe/News/Events

Options”(“Devolve Opções Receitas/Notícias/Eventos”);

• “Recipes” was associated with “Return Fields of Recipe Search” (“Devolver Campos

Pesquisa Receita”);

• “News” was associated with “Return Fields of News Search” (“Devolver Campos

Pesquisa Notícias”);

• “Events” was associated with “Return Fields of Events Search” (“Devolver Campos

Pesquisa Eventos”);

• “Click OK” was associated with “Return Results following the selected category and

filled fields” (“Devolve Resultados Consoante a Categoria Escolhida e Campos

Preenchidos”).

The following interaction spaces were identified: “Simple Search” (“Pesquisa Simples”);

“Select Search Category” (“Seleccionar Cat. Pesquisa”); “Recipe Advanced Search”

(“Pesq. Av. Receitas”); “Events Advanced Search” (“Pesq. Av. Eventos”); and “News

Advanced Search” (“Pesq. Av. Notícias”).

Conclusions: This diagram was drawn according to the Step 3 – Interaction Model.

However, by the analysis of the diagram, it can be concluded that the resulting

diagram is complex when there are many decompositions of the identified tasks.

Although, it is natural that a diagram turns out to be complex when there is a complex

problem to be solved, it should be identified a solution to generate less confusing

diagrams.

V.3.4. Step 5 – Presentation Model

As a result of the modeling of the previous diagrams, the following interaction spaces

(ISs) were identified: “Recipe”; “News/Events/Publicity”; “Site”; “HomePage”;

“Application Menu”; “Simple Search”; “Select Search Category”; “Recipe Advanced

Search”; “Events Advanced Search”, and; “News Advanced Search”. The presentation

132

model defines the spatial relations of the user interface objects. These ISs are

respectively presented along this section.

“Recipe”

Author(s): Filipe Freitas and Paulo Vieira (version 1, paper support blue ink); Filipe

Freitas, Paulo Vieira and Pedro Valente (version 2, paper support red ink); Pedro

Valente (version 2.1, digital support); João Dionísio (the client) and Pedro Valente

(Version 3, digital support with manuscript red ink).

Date: October 16th 2007 (version 1), November 14th 2007 (version 2) November 25th

2007 (version 2.1); November 27th 2007 (version 3).

Figure 68: Step 5 - "Recipe" IS versions 1 (blue ink) and 2 (red ink).

Description: The first version of the “Recipe” IS (Figure 68) is composed of the

following objects: “Name” (“Nome”); “Type” (“Tipo”); “Ingredients” (“Ing.”);

“Directions” (“Prep.”); “Video”; “Video Search” (“Pesq. Video”) and “OK” which are

described as buttons. The second version of the IS added the objects: “Difficulty

Degree”(“Grau Dificuldade”) and “Preparation Time”(“Tempo Prep.”). Each object of

the IS is associated with the task which is performed on it. On the right side of the

diagram, separated by a blue vertical line is the design of the ISs whose main purpose

is: (upper right side) the introduction of the recipe types, and; (lower right side)

browse of the media for the recipe.

The version 2.1 of the IS (Figure 69) is a copy of the version 2 except that the “Play”

and “Stop” buttons were added. This version was presented to the client for approval,

from that, a third version was generated in which the “Source” and “Recipe History”

fields were added to complete the final and approved version of the IS.

133

Figure 69: Step 5 - "Recipe" IS versions 2.1 and 3 (red ink, approved by the Client).

Conclusions: The association of the user tasks with the objects of the IS (version 1)

might have contributed for the identification of the two (extra) ISs for the introduction

of the recipe types and media browser. This is assumed once the modeler is guided to

extensively think about the tasks that the user must accomplish in the IS that is being

designed.

“News / Event / Advertisement”

Author(s): Filipe Freitas and Paulo Vieira (version 1, paper support pencil); Filipe

Freitas, Paulo Vieira and Pedro Valente (version 2, paper support red ink); Pedro

Valente (version 2.1, digital support).

Date: October 30th 2007 (version 1), November 14th 2007 (version 2) November 25th

2007 (version 2.1).

Description: The first version of the “News/Event/Publicity” IS (Figure 70) is

composed of the following objects: “Title”(“Título”); “Text”(“Texto”); “Search

Media”(“Pesq. Media”) which is a button; “Link”, and; “OK” which is also a button.

The second version of the IS introduced the “Location” (“Localização”), “Date”

(“Data”) and “Keywords” (“Pal. Chave”) fields. Each object of the IS is associated

with the task which is performed by it. On the right side of the diagram is the design

of the ISs to browse the media for the advertisement.

134

Figure 70: Step 5 - "Advertise" IS versions 1 (pencil) and 2 (red ink).

Figure 71: Step 5 - "News/Event/Publicity" IS version 2.1 (Approved by the Client).

The version 2.1 of the IS (Figure 71) is a copy of the version 2 except that the “Play”

and “Stop” buttons were added. This version was presented to the client and

approved without changes.

“Site”, “HomePage”, “Application Menu”, “Simple Search”

Author(s): Filipe Freitas and Paulo Vieira (version 1, paper support pencil); Pedro

Valente (version 1.1, digital support); João Dionísio (the client) and Pedro Valente

(Version 2, digital support with manuscript red ink).

Date: October 30th 2007 (version 1), November 25th 2007 (version 1.1), November

27th 2007 (version 2).

135

Figure 72 : Step 5 - "HomePage" IS version 1.

Description: During the modeling of the “Obtain Gastronomic Information” activity

diagram an IS named “Site” was identified. However, when questioned about the

meaning of this IS, the two Multimedia professionals answered that it was related to

the web browser (where the URL was typed). For this reason, the IS does not need

representation. This “HomePage” IS is closely related to the “Obtain Gastronomic

Information” activity diagram in which the user tasks “Recipes”, “News”, “Events”,

“Search” and “Authentication” were identified. Based of the information acquired in

this diagram, the IS is composed of the following sub-ISs:

• “Application Menu” IS (1), which is composed of the buttons “Recipes”

(“Receitas”), “Events” (“Eventos”) and “News” (“Notícias”) to support the tasks

“Recipes”, “Events” and “News”;

• “Simple Search” IS (not formally identified previously)(2) which is the button that

leads the user to the “Advanced Search” that supports the task “Search”;

• “Authentication” IS (not formally identified previously)(3) of the user which is in

the fields “User” and “Pass(word)” and supports the task “Authentication”;

• “Last Recipe” (“Última Receita”) IS (not formally identified previously)(4) that is

the “Recipe” IS in a read-only mode filtered by the last recipe introduced in the

system;

• “Last News” (“Última Notícia”) IS (not formally identified previously)(5) which is

the “News/Event/Publicity” IS in a read-only mode filtered by the last news

introduced in the system;

• “Next Event” (“Próximo Evento”) IS (not formally identified previously)(6) which

is the “News/Event/Publicity” IS in a read-only mode filtered by the next event;

136

• “On-Going Event” (“Evento a Decorrer”) IS (not formally identified previously)(7)

which is the “News/Event/Publicity” IS in a read-only mode filtered by the event

that is running, and;

• “Last Event” (“Evento Anterior”) IS (not formally identified previously)(8) which

is the “News/Event/Publicity” IS in a read-only mode filtered by the last event.

Figure 73: Step 5 - "HomePage" IS versions 1.1 and 2 (red ink, approved by the Client).

The version 1.1 of the IS (Figure 73) is a copy of the version 1. This version was

presented to the client and a second version of the IS was generated, since the Client

only wanted to show the fields “Recipe Name”, “Recipe Type” and “Recipe History”

of the “Recipe” read-only IS.

Conclusions: Although the majority of the ISs that compose the “HomePage” IS were

not formally identified in the previous diagrams, the detailed analysis of the user tasks

led/enabled the identification of 6 ISs that can help the user in existing user tasks.

“Select Search Category”, “Recipe Advanced Search”, “Events Advanced

Search”, “News Advanced Search”

Author(s): Filipe Freitas, Paulo Vieira and Pedro Valente (version 1, paper support

pencil); Pedro Valente (version 1.1, digital support).

Date: November 14th 2007 (version 1), November 25th 2007 (version 1.1).

137

Figure 74: Step 5 - "Advanced Search" IS version 1.

Description: The “Advanced Search” IS (Figure 74) was not formally identified in the

“Select one of the Choices”-“Return the Chosen Category” (Search Situation)

interaction model. However, it is related to the “Advanced Search” task. In this IS the

user selects the search category in the “Select Search Category” (“Seleccionar

Categoria de Pesquisa”) IS (1). Once the category is chosen, the user fills out the

search criteria in the correspondent IS:

• “Advanced Search - Recipe” (“Pesquisa Avançada - Receitas”)(2) where the user

fills out the fields: “Name”(“Nome”)(d); “Type”(“Tipo”)(b); “Ingredients”

(“Ingrediente”)(c); “Difficulty Degree” (“Grau Dificuldade”)(a) which can assume

the values “Easy”(“Fácil”), “Regular”(“Normal”) and “Hard” (“Difícil”);

“Preparation Time”(“Tempo Prep.”)(e) which can assume the values “0-20”

(minutes), “20-60” and “+60”;

• “Advanced Search - Events” (“Pesquisa Avançada - Eventos”)(3) where the user

fills out the fields: “Title”(“Título”)(f); “Month”(“Mês”)(g) and “Location”

(“Localização”)(h);

• “Advanced Search - News” (“Pesquisa Avançada - Notícias”)(4) where the user

fills out the fields: “Title”(“Título”)(i) and “Month”(“Mês”)(j).

The version 1.1 of the IS (Figure 75) is a copy of the version 1. This version was

approved without changes which denotes a mistake since the “History” field that was

added to the “Recipe” IS clearly should be a search criteria.

138

Figure 75: Step 5 - "Advanced Search" IS version 1.1.

Following the presentation of the diagrams we now present some conclusions on this

work.

139

V.4. CONCLUSIONS

This chapter presented a case study of the application of the simplified version of

MultiGoals. In order to test the efficacy of the methodology two Multimedia designers

without modeling experience were trained to carry out the analysis and design of the

system for a Gastronomy Project.

The analysis and design of the system resulted in: one use cases model; three activity

diagrams; two interaction models, and; four presentation models. The modeling of the

diagrams was made within 3 sessions: (i) training session – 3 persons for 2 hours; (ii)

second session – 2 persons for 2 hours; (iii) final modeling session – 3 persons for 1

hour; and the approval session 2 persons for 1 hour. These sessions make a total of 15

hours of modeling including 1 hour of the client.

The modeling resulted in 4 user interfaces that were presented to the client and

approved by him, two of them without changes. This can be considered a good result

taking into account that the modelers had no previous experience and only received 2

hours of training.

By the analysis of the diagrams produced, we can also conclude that a clarification of

the interaction model must be done in such a way that the users of the methodology do

not confuse it with the activity diagram. There also should be a way of relating the

interaction model’s user tasks, system responsibilities and interaction spaces in such a way

that the resulting diagram is not so complex.

The identification of the user tasks in the presentation model contributed for the

identification of additional interaction spaces that were not previously identified in the

interaction model. The interaction model has contributed to identify additional system

responsibilities that will play important parts in the system construction.

As a final conclusion, the methodology must be refined following the previous

assumptions and be put into practice more times in order to get more feedback for its

evolution.

140

141

VI. CONCLUSIONS

Goals, including Process Use Cases and MultiGoals contribute with a set of methods that

can be applied to define an Interactive Information System in detail. Indeed, Process

Use Cases has been applied sufficiently so that it can be considered useful for

professional use. MultiGoals has already been applied with success in its simplified

version and has potential to become a useful tool in the both areas of enterprise IISs

and Multimedia.

We believe that the work presented in this thesis is useful in real-life IISs design and

that still can be enhanced in the future to achieve optimal results in the discipline of

Software Engineering.

142

VI.1. GENERAL CONCLUSIONS

Goals has been proposed as a solution to organize human resources in order to

produce the required artifacts for the requirements, analysis and design phases. Goals

has proven to be very useful to guide a software development team (this has been

done informally at a professional level) through the steps to be taken in order to

achieve the definition of a software system.

In particular, for the phases of analysis and design, Goals can be considered highly

compatible with Wisdom [Nuno Nunes, 2001], and Usage-centered design [Larry

Constantine, 2006]. Goals can also be compliant with methodologies such as: (i)

Extreme Programming (XP) [Kent Beck, 1999] connecting use cases with the “user

stories” and the domain model with the “architectural spike” predicted in XP, and, with

(ii) the Rational Unified Process (RUP) [Philippe Kruchten, 1999] which provides an

extensive set of models to complete the phases of analysis and design. As an extra

requirement, the compatibility of the definitions of: essential use case (use case) [Larry

Constantine, 2006], entity (set of information) [Nuno Nunes, 2001] and actor should

also be observed.

We discuss on the next sections some specific conclusions related to the phases of

requirements (Process Use Cases), analysis and design (MultiGoals).

VI.1.1. Requirements (Process Use Cases)

Process Use Cases (PUC) is a methodology that identifies use cases as a leap for software

construction producing valid artifacts for both activities of Business Process

Management (BPM) and Software Engineering (SE). The identification of business

processes and their design can be used for BPM activities, while the domain model and

the identified use cases can be used for SE activities.

In a modeling perspective, achieving the correct level of abstraction to name use cases

can be a very difficult task in SE if no global comprehension exists of the scope of the

project within the enterprise organization. Using PUC it is easier to reach the

appropriate abstraction to nominate the (essential) use cases in a way that they make

sense in both BPM and SE disciplines.

143

PUC is distinct from the other approaches in the way that: (i) it makes the

reorganization of the business towards automation more elucidative to users, since

BPs and use cases are designed in a single model that can be understood by every

stakeholder; (ii) it includes an information-oriented strategy that enables the selection

of the BPs that really need to be designed in order to achieve automation, and; (iii) it is

oriented to software development, once both use cases and information entities are

already identified when PUC is finished.

Table 6: Requirements methodologies comparison.
 PUC Dijkman Gonzales Štolfa NA Wisdom UCD
Project Interiorization X X

Business Strategy Description X

Data Modeling X 2 X 3
Business Process Context X X X
Goals Identification X X
Business Process Design X X X X X X X
Business Rules X

Business Processes Resources 1 X X

Use Cases Identification X X X X X X X
1 Only Information Resources
2 Domain model of the used resources
3 Systems, Artifacts and Tools Identification

By the analysis of Table 6, we can conclude that PUC only lacks the Business Strategy

Description and the definition of the Business Rules. However, PUC can be enhanced

in the future to cover the missing issues as discussed on the next section.

PUC has already been applied within over 10 different real software development

projects for the Information and Computing Center at University of Madeira (UMa),

Portugal, for the automation of at least one business process per project. It was applied

by both undergraduate students and IT professionals, and it was shared with UMa

managers always resulting in a consistent artifact that promoted consensus among the

stakeholders.

VI.1.2. Analysis and Design (MultiGoals)

MultiGoals is a methodology that aims to bridge SE and Multimedia authoring. It is a

lightweight, use case-driven, architectural centric methodology that guides the

software conceptualization by means of the simplification of the system design

concerning usability and maintainability.

The use of MultiGoals induces the author of an IIS into a straight lined (few iterations

are suggested) and fast software definition process towards implementation. The

models of the methodology are intended to be simple, intuitive and scalable.

144

The development of MultiGoals has proven to be a very difficult task once all

requirements of both regular SE applications and IMDs had to be taken into account.

The full definition of the system behavior could only be reached by the description of

a set of patterns that are applied to define the structure of system responsibilities and

domain classes (or objects) that support the system functionalities.

Despite the proposal of 11 steps for the design of Interactive Information Systems,

these steps support completely the design of complex applications. However, as a

matter of simplicity, many of these steps can be omitted in order to rapidly achieve

the products of the methodology. In the simplified version of MultiGoals only 4

models are applied and satisfactory results can be achieved, as presented in Chapter V

- Case Study of MultiGoals.

When comparing the MultiGoals methodology with the other approaches, we can

conclude that it is a more balanced and complete methodology, since it considers all

modeling aspects from user requirements definition to Multimedia specific

implementation problems. MultiGoals is a structured methodology that allows the

modeling of all the IISs tiers taking into account the user interaction and navigation

with support for Multimedia.

Furthermore, a special attention is given to the maintenance and reusability of the IIS

where each component of the system: interaction space (user interface), task, system

responsibility or entity, assumes a relevant and well defined role. MultiGoals was

proposed to offer user friendly diagrams supporting different components of an IIS.

In particular, this characteristic enables the traceability of the IIS design.

Table 7: Analysis and Design methodologies comparison.
 MultiGoals UWE W2000 OMMMA

Use Cases X X X
Interface Design X X X
Navigation X X X
Interaction X X X X
System Responsibilities X 1
Synchronization X X
Database Modeling X X X
Content Modeling X X
1 Rules are defined in the use cases model for the access to the information

that will be later implemented by the system responsibilities.

By the analysis of Table 7, we can conclude that MultiGoals covers all the defined

criteria integrating in a single methodology the contribution of both Hypermedia-

oriented (UWE and W2000) and IMD-oriented (OMMMA) methodologies.

The first application of the simplified version of MultiGoals (Chapter V – Case Study)

has proven that the methodology is easy to use even for modelers with no experience

145

and can produce acceptable results. However, the remaining steps of the methodology

have only been applied academically for the conception of small examples including

those presented in this thesis.

146

VI.2. FUTURE WORK

Some general enhancements can still be proposed for Goals, such as:

• Completion of the SE lifecycle phases

Goals should be completed in order to cover the remaining phases of development,

test, installation (and maintenance). Some clues for the development phase can be the

code generation from the modeled classes as a boost for software implementation. As

for the testing phase, it could be based on a black-box approach following the defined

user tasks.

• Quality of the Software

The definition of software quality attributes could represent a major advance on the

requirements which are not captured by use cases. Examples of this situation are

availability and performance. Some of the software quality attributes are defined at a

global level like Cost and Schedule, others, like performance would be defined by the

chosen methodologies for requirements, analysis and design.

• Project Management

The definition of solutions for the parallel activity of project management would be a

major improvement. Issues like scheduling, viability, risk management, and team

work directives can be very useful for large projects.

Some specific enhancements can also be proposed for PUC and MultiGoals, as follows.

VI.2.1. Requirements (Process Use Cases)

Process Use Cases could benefit from the following enhancements:

• Efficiency and Efficacy Measurement

As already mentioned in Chapter III.2. (Process Use Cases: An Overview), PUC does

not cover the phase of monitoring BPs of a Business Process Management lifecycle.

For this purpose, it would be interesting to analyze the flow of the business process

measuring efficacy and efficiency of each task to easily identify bottlenecks and,

consequently, reorganize the BPs based on measured evidences.

147

• Implementation Effort Estimation

Important decisions must be taken at the end of the phase of requirements in a

Software Engineering lifecycle, normally related to the cost of implementation of the

identified requirements, and related to the decision of what to be implement first. If in

one hand it is easy to know what is most valuable to the client, on the other hand it is

really difficult to know what will be the “price” of the requirements.

However, there are some indicators that can provide valuable information for this

purpose, even if with relatively big margin of error, these indicators are: estimation of

the number of information entities manipulated by the use case, number of records of

the manipulated information entities, number of users related to the use case.

• Business Strategy

Business strategy is closely related to business goals. PUC already establishes a direct

connection between business processes and business goals. The establishment of a

relation to the business strategy in a top-down approach would be a major

advancement in order to ensure the alignment between business and information

system. Business strategy allied to the effort estimation could ease the decision for the

activity of prioritizing the implementation of the software.

Proposals already exist that model strategy and business goals, such as [André

Vasconcelos et al., 2001] which is based on the well known Balanced Scorecard [The

Balanced Scorecard Institute, 2007].

• Business Rules

The capture of business rules is an important feature regarding the implementation of

an Interactive Information System, since these business rules have to be implemented

within the system responsibilities. During the design of the business processes, an

additional effort could be made in order to identify these rules in advance, also

providing a good contribution for implementation effort estimation. The identification

of the consumption and production of physical resources could also be related to the

business rules.

VI.2.2. Analysis and Design (MultiGoals)

MultiGoals could benefit from the following enhancements:

• QoE and QoS Measurement

The Quality of Experience (QoE) of an application is the degree of satisfaction related

to the experience the user has interacting with the used application. QoE is difficult to

measure, however it is our belief that usability can be measured based on the try-and-

148

error attempts made by the user to successfully achieve the completion of a complete

and meaningful task. An usability coefficient would provide an important indicator

for QoE measurement.

Especially concerning Multimedia, Quality of Service (QoS) indexes can be associated

with each multimedia system responsibility in order to provide the application with an

indicator of the priorities (related to each media) that need to be guaranteed. These

QoS requirements could be introduced during the modeling of the system, since the

author has a general and privileged perspective of all the components involved in it.

• CASE Tool

The implementation of a CASE tool would definitely be a major improvement. This

would involve the construction of an integrated environment including the modeling

tools and the authoring tools for Multimedia. A solution would possibly be the

integration of the models in a tool like metaSketch [Leonel Nóbrega, 2007].

Meanwhile, the authoring of applications using MultiGoals can also be accomplished

using any UML 2.0 [Object Management Group, 2003] compliant CASE tool. In this

work, special attention must be taken to usability, regarding the integration of both

system and media information in order to achieve self-explained applications.

Diagrams Improvement

As a result from the analysis of the models of the first application of the MultiGoals

simplified version, it was concluded that the interaction model must be improved in

order to produce the same results with a less complex and confusing diagram. The

same approach must be used to the complete version of the methodology in order to

be able to obtain propose solutions for the evolution of MultiGoals.

• Patterns Improvement

The number of patterns should be enlarged in order to support more system

behaviors, and as a complement it also would be a major improvement the

implementation of a system of validation for the used patterns, possibly integrated in

a CASE tool.

This thesis presented three approaches that have as purpose the professional use in

the area of Software Engineering. It is our belief that our work has contributed with

one more and important step to close the existing gap between traditional Interactive

Information Systems and Interactive Multimedia Documents modeling.

149

LIST OF PUBLICATIONS

Pedro Valente, Paulo Sampaio. (2006) Defining Goals for the design of Interactive

Multimedia Documents. In P. Kommers & G. Richards (Eds.), Proceedings of World
Conference on Educational Multimedia, Hypermedia and Telecommunications. pp.
955-962. June 2006, Chesapeake, VA: AACE.

Pedro Valente, Paulo Sampaio. (2007). Goals: Interactive Multimedia Documents

Modeling. In K. Luyten (Ed.), Lecture Notes in Computer Science. Vol. Volume
4385/2007, pp. 169-185. Hasselt, Belgium: Springer Berlin / Heidelberg. ISBN: 978-3-
540-70815-5.

Pedro Valente, Paulo Sampaio. (2007). Process Use Cases: Use Cases Identification. In
Proceedings of ICEIS´2007 - 9th International Conference on Enterprise Information
Systems, Funchal, Madeira, Portugal. Vol. Information Systems Analysis and
Specification, pp. 301-307.

150

REFERENCES

[Adobe, 2007a] Adobe. (2007a). Adobe Flash CS3 Professional. Retrieved December 19th 2007:
http://www.adobe.com/products/flash/

[Adobe, 2007b] Adobe. (2007b). Adobe Photoshop CS3. Retrieved December 19th 2007:
http://www.adobe.com/br/products/photoshop/photoshop/

[Alberto Silva and Carlos Videira, 2005] Alberto Silva, Carlos Videira. (2005). UML, Metodologias

e Ferramentas CASE (2ª ed. Vol. 1). Centro Atlântico. ISBN: 989-615-009-5.

[Alejandro Jaimes et al., 2006] Alejandro Jaimes, Nicu Sebe, Daniel Gatica-Perez. (2006, Aug.
2006). Human-Centered Computing: A Multimedia Perspective. In Proceedings of ACM.
International Conference on Multimedia, USA. pp. 855-864.

[André Vasconcelos et al., 2001] André Vasconcelos, Artur Caetano, João Neves, Pedro Sinogas,
Ricardo Mendes, José Tribolet. (2001). A Framework for Modeling Strategy, Business
Processes and Information Systems. In Proceedings of Enterprise Distributed Object
Computing Conference (EDOC). pp. 69-80.

[Athula Ginige et al., 1995] Athula Ginige, David Lowe, John RobertsonAthula Ginige, David
Lowe, John Robertson. (1995). Hypermedia Authoring. IEEE Multimedia. Vol. 2(4).

[Autodesk, 2007] Autodesk. (2007). 3D Studio Max. Retrieved December 19th 2007:
www.autodesk.com/3dsmax

[Bashar Nuseibeh and Steve Easterbrook, 2000] Bashar Nuseibeh, Steve Easterbrook. (2000).
Requirements Engineering: A Roadmap. In Proceedings of International Conference on
Software Engineering (ICSE-2000), Limerick, Ireland. pp. 35-46.

[Boris Shishkov and Jan Dietz, 2005] Boris Shishkov, Jan Dietz. (2005). Deriving Use Cases from
Business Processes. In S. Netherlands (Ed.), Enterprise Information Systems V. Vol.
Computer Science, pp. 249-257. ISBN: 978-1-4020-1726-1 (Print) 978-1-4020-2673-7
(Online).

[Charles Kreitzberg, 1999] Charles Kreitzberg. (1999). The LUCID Framework (Logical User

Centered Interaction Design) (Pre-Release Version 0.4). Retrieved December 19th 2007:
http://www.cognetics.com

[Christopher Alexander, 1979] Christopher Alexander. (1979). The Timeless Way of Building.
Oxford University Press. ISBN: 978-0195024029.

151

[Chung-Ming Huang et al., 2004] Chung-Ming Huang, Jyh-Shiou Chen, Chih-Hao Lin, Chian
Wang, Chung-Ming Huang, Jyh-Shiou Chen, Chih-Hao Lin, Chian Wang. (2004).
MING-I: a distributed interactive multimedia document development mechanism.
Multimedia Systems. Volume 6(Number 5 / September, 1998), pp. 316-333. ISSN: 0942-
4962 (Print) 1432-1882 (Online).

[Daniel Schwabe and Gustavo Rossi, 1998] Daniel Schwabe, Gustavo Rossi. (1998). Developing
Hypermedia Applications using OOHDM. In Proceedings of Workshop on Hypermedia
Development Process, Methods and Models. Hypertext´98, Pittsburg, USA

[Dave Robert et al., 1998] Dave Robert, Dick Berry, Scott Isensee, John Mullaly. (1998). Designing

for the user with OVID : bridging user interface design and software engineering (Lst Ed
edition (September 17, 1998) ed.). Macmillan Technical Pub. ISBN: 978-1578701018.

[Donald Chamberlin and Raymond Boyce, 1974] Donald Chamberlin, Raymond Boyce. (1974).
Structured English Query Language. In Proceedings of International Conference on
Management of Data Archive, Ann Arbor, Michigan. pp. 249 - 264.

[Edward Yourdon and Larry Constantine, 1979] Edward Yourdon, Larry Constantine. (1979).
Structured design : fundamentals of a discipline of computer program and systems design.
Prentice Hall. ISBN: 978-0138544713.

[Fábio Paternò et al., 1997] Fábio Paternò, Cristiano Mancini, Sílvia Meniconi. (1997).
ConcurTaskTrees: A Diagrammatic Notation for Specifying Task Models. In Proceedings of
INTERACT '97, Proceedings of the IFIP TC13 International Conference on HCI.362-369.

[Filipe Freitas, 2007] Filipe Freitas. (2007). Masilli. Retrieved December 19th 2007:
www.masilli.com

[Franca Garzotto et al., 1993] Franca Garzotto, Paolo Paolini, Daniel Schwabe. (1993). HDM—a
model-based approach to hypertext application design. ACM Transactions on Information
Systems (TOIS). Vol. 11(1), pp. 1-26. ISSN: 1046-8188.

[Hans-Erik Eriksson and Magnus Pencker, 2001] Hans-Erik Eriksson, Magnus Pencker. (2001).
Business Modeling With UML: Business Patterns at Work (1st edition ed.). John Wiley &
Sons. ISBN: 0471295515.

[Ian Sommerville, 2005] Ian Sommerville. (2005). Integrated Requirements Engineering: A
Tutorial. IEEE Software archive. Vol. 22(1), pp. 16 - 23. ISSN: 0740-7459.

[International Standards Organization, 1999] International Standards Organization. (1999). ISO
13407:1999. Human-centred design processes for interactive systems. First edition.

[James Rumbaugh et al., 1999] James Rumbaugh, Ivar Jacobson, Grady Booch. (1999). The
Unified Modeling Language Reference Manual. Addison-Wesley Professional. ISBN: 978-
0201309980.

[Jana Koehler et al., 2002] Jana Koehler, Giuliano Tirenni, Santhosh Kumaran. (2002, 17-20
September 2002). From Business Process Model to Consistent Implementation: A Case for
Formal Verification Methods. In Proceedings of IEEE International Enterprise Distributed
Object Computing Conference (EDOC), Lausanne, Switzerland. pp. 96-106.

[Jose González and Juan Sánchez Díaz, 2007] Jose González, Juan Sánchez Díaz. (2007, 11-15
June 2007,). Business process-driven requirements engineering: a goal-based approach. In
Proceedings of 8th Workshop on Business Process Modeling, Development, and
Support (BPMDS'07), Trondheim, Norway.

152

[Kent Beck and Ward Cunningham, 1989] Kent Beck, Ward Cunningham. (1989, October 1-6). A
Laboratory For Teaching Object-Oriented Thinking. In Proceedings of Object-Oriented
Programming, Systems, Languages, and Applications 89, New Orleans, Louisiana. Vol.
24, pp. 1-6.

[Kent Beck, 1999] Kent Beck. (1999). Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional; US Ed edition. ISBN: 978-0201616415.

[Khalil Mehdi El-Khatib, 2005] Khalil Mehdi El-Khatib. (2005). A QoS Content Adaptation
Framework for Nomadic Users. Phd Thesis. School of Information Technology and
Engineering University of Ottawa, Ottawa, Ontario, Canada.

[Kyoungro Yoon and Bruce Berra, 1998] Kyoungro Yoon, Bruce Berra. (1998, 5-7 August).
TOCPN: interactive temporal model for interactive multimedia documents. In Proceedings of
International Workshop on Multi-Media Database Management Systems. pp. 136 - 144.

[Larry Constantine and Lucy Lockwood, 2000] Larry Constantine, Lucy Lockwood. (2000).
Structure and Style in Use Cases for User Interface Design. In Object Modeling and User

Interface Design. Boston: Addison Wesley. ISBN: 978-0201657890.

[Larry Constantine, 2002] Larry Constantine. (2002). Usage-Centered Engineering for Web
Applications. IEEE Software. Vol. 19(2), pp. 42-50.

[Larry Constantine, 2003] Larry Constantine. (2003). Canonical Abstract Prototypes for Abstract
Visual and Interaction Design. LNCS - Lecture Notes in Computer Science, pp. 1-15. ISSN:
0302-9743 (Print) 1611-3349 (Online).

[Larry Constantine, 2006] Larry Constantine. (2006). Activity Modeling: Toward a Pragmatic
Integration of Activity Theory with Usage-Centered Design. LabUSE, Universidade da
Madeira. Retrieved December 19th 2007:
http://www.foruse.com/articles/activitymodeling.htm.

[Leonel Nóbrega, 2007] Leonel Nóbrega. (2007). metaSketch. Retrieved December 19th 2007:
http://dme.uma.pt/labuse/?page_id=4

[Luciano Baresi et al., 2001] Luciano Baresi, Franca Garzotto, Paolo Paolini. (2001). Extending

UML for Modeling Web Applications. In Proceedings of 34th Hawaii International
Conference on System Sciences, Maui, Hawaii. Vol. 3.

[Maria Escalona et al., 2003] Maria Escalona, Manuel Mejías, Jesús Torres, Antonia Reina.
(2003). The NDT Development Process. Lecture Notes in Computer Science. Vol.
2722/2003, pp. 19-25. ISSN: 0302-9743 (Print) 1611-3349 (Online).

[Mark Van Harmelen, 2001] Mark Van Harmelen. (2001). Designing with Idiom. In M. v.
Harmelen (Ed.), Object Modeling and User Interface Design. pp. 71-113: Addison-Wesley.
ISBN: 978-0201657890.

[Nora Koch and Andreas Kraus, 2002] Nora Koch, Andreas Kraus. (2002). The Expressive Power

of UML-based Web Engineering. In Proceedings of International Workshop on Web-
Oriented Software Technology (IWWOST’02), Málaga, Spain. pp. 105-119.

[Nuno Nunes, 2001] Nuno Nunes. (2001). Object Modeling for User-Centered Development and User
Interface Design: The Wisdom Approach. Phd Thesis. Universidade da Madeira.

[Object Management Group, 2003] Object Management Group. (2003). Unified modeling language

superstructure, version 2.0. final adopted specification. Retrieved December 19th 2007:
http://www.omg.org/docs/formal/05-07-04.pdf.

153

[Paulo Vieira, 2007] Paulo Vieira. (2007). Buscarov. Retrieved December 19th 2007:
http://www.buscarov.com/

[Pedro Valente and Paulo Sampaio, 2007a] Pedro Valente, Paulo Sampaio. (2007a). Goals:
Interactive Multimedia Documents Modeling. In K. Luyten (Ed.), Lecture Notes in
Computer Science. Volume 4385/2007, pp. 169-185. Hasselt, Belgium: Springer Berlin /
Heidelberg. ISBN: 978-3-540-70815-5.

[Pedro Valente and Paulo Sampaio, 2007b] Pedro Valente, Paulo Sampaio. (2007b). Process Use
Cases: Use Cases Identification In Proceedings of ICEIS´2007 - 9th International
Conference on Enterprise Information Systems, Funchal, Madeira, Portugal. Vol.
Information Systems Analysis and Specification, pp. 301-307.

[Philippe Kruchten, 1999] Philippe Kruchten. (1999). The Rational Unified Process (An
Introduction). Addison-Wesley Professional. ISBN: 978-0201707106.

[Remco Dijkman and Stef Joosten, 2002] Remco Dijkman, Stef Joosten. (2002). Deriving Use Case
Diagrams from Business Process Models. University of Twente.

[Rikard Land, 2002] Rikard LandRikard Land. (2002). A Brief Survey of Software Architecture.
MRTC Technical Report. ISSN: 1404-3041.

[Robert Bretl et al., 1999] Robert Bretl, Allen Otis, Marc San Soucie, Bruce Schuchardt, R.
Venkatesh. (1999). Persistent Java Objects in 3 tier architectures. In Proceedings of 3rd
International Workshop on Persistence and Java (PJW3): Advances in Persistent Object
Systems. pp. 236-249.

[Roberto Willrich, 1996] Roberto Willrich. (1996). Conception formelle de documents hypermedias
portables. Phd Thesis. Paul Sabatier, Toulouse, France.

[Stefan Sauer and Gregor Engels, 2001] Stefan Sauer, Gregor Engels. (2001). UML-based Behavior

Specification of Interactive Multimedia Applications. In Proceedings of IEEE Int'l
Symposium on Human-Centric Computing Languages and Environments (HCC),
Stresa, Italy248--255.

[Stefano Ceri et al., 2003] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara
Comai, Maristella Matera. (2003). Designing Data-Intensive Web Applications. Morgan
Kaufmann; 1 edition. ISBN: 978-1558608436.

[Susanne Boll and Wolfgang Klas, 2001] Susanne Boll, Wolfgang Klas. (2001). ZYX - A
Multimedia Document Model for Reuse and Adaptation. In Proceedings of IEEE
Transactions on Knowlegde and Data Engineering. Vol. 3, pp. 361-382.

[Svatopluk Štolfa and Ivo Vondrák, 2006] Svatopluk Štolfa, Ivo Vondrák. (2006). Mapping from
Business Processes to Requirements Specification. Universitat Trier.

[The Balanced Scorecard Institute, 2007] The Balanced Scorecard Institute. (2007). Balanced
Scorecard. Retrieved December 19th 2007: http://www.balancedscorecard.org/

[The World Wide Web Consortium, 2007] The World Wide Web Consortium. (2007).
Synchronized Multimedia Integration Language 2.0. Retrieved December 19th 2007:
http://www.w3.org/AudioVideo/

[Tom Dayton et al., 1998] Tom Dayton, Al Mcfarland, Joseph Kramer. (1998). Bridging User
Needs to Object Oriented GUI Prototype via Task Object Design. In L. Wood (Ed.), User

Interface Design: Bridging the Gap from Requirements to Design. pp. 15-56. ISBN: 0-8493-
3125-00.

154

[Webinterx, 2006] Webinterx. (2006). Services. Retrieved December 19th 2007:
http://www.webinterx.com/services/index.html

155

APPENDIX A: STATIC AND RUN-TIME

PATTERNS

The MultiGoals patterns are a solution to model system behavior by means of the

definition of a structure of system responsibilities (or alternatively interaction spaces),

classes and/or objects.

Each system responsibility has a “(system responsibility) name” that defines which

pattern is being used. The composition of the “system responsibility name” is based

on “Keywords” that are combined with references to attributes of classes (e.g.

“attribute name”) and/or classes (e.g. “class name”). The “system responsibility

name” is concatenated by means of spaces (“ ”).

The pattern structure has an associated meaning in terms of the functioning of the

system which is defined by its “purpose”.

Static Patterns

The static patterns define a structure composed by a system responsibility that has an

action over a source, which is a class or a structure of classes from the application

domain model.

Get / Set Class Attribute

PURPOSE: when the objective is to read or change the value of an attribute of a class,

the user tasks associated with an interaction space (where the attribute is manipulated)

can be associated with a system responsibility, and that respective system responsibility

associated with a class from the ontological domain model where the attribute exists.

156

SYSTEM RESPONSIBILITY NAME: [keyword: GET (or SET, or GET/SET)]+[]+[Class

Name]+[]+[Attribute Name]

SOURCE: Class from the ontological domain model.

Figure 76: Get/Set Class Attribute pattern.

In the example presented in figure 76, the system responsibility will perform an action

(read or write) over an attribute (defined in the system responsibility name) of the

associated class.

Get/Set Correspondent Media

PURPOSE: when the objective is to read (Get) or change (Set) the value of a media (from

the media domain model) associated with a class from the ontological domain model, the

user tasks associated with an interaction space (where the media is manipulated) can be

associated with a system responsibility, and that respective system responsibility

associated with a class from the ontological domain model where the media exists.

SYSTEM RESPONSIBILITY NAME: [keyword: GET (or SET, or GET/SET)] +[]+[keyword:

CORRESPONDENT] +[]+[Class Name]+[]+[Media Class Name]

SOURCE: Class from the media domain model.

Figure 77: Get/Set Correspondent Media pattern.

157

In the example presented in figure 77, the system responsibility will perform an action

(read or write) over a media class (defined in the system responsibility name) that has a

relation of association with the class that the system responsibility is associated with.

Action Over Correspondent Media

PURPOSE: when the objective is to perform/execute an action (e.g. Present or Interrupt)

over a media (from the media domain model) associated with a class from the ontological

domain model, the user tasks associated with an interaction space (where the media is

manipulated) can be associated with a system responsibility, and that system

responsibility associated with a class from the media domain model where the media

exists.

Figure 78: Action Correspondent Media pattern.

SYSTEM RESPONSIBILITY NAME: [Action Name] +[]+[keyword: CORRESPONDENT] +[

]+[Class Name]+[]+[Media Class Name]

SOURCE: Class from the media domain model.

In the example presented in figure 78, the system responsibility will perform an action

(for example present or interrupt) over a media class (defined in the system

responsibility name) that has a relation with the class that the system responsibility is

associated with.

Run-Time Patterns

The run-time patterns define a structure composed by an interaction space or system

responsibility that has a relation with a source, which is one or more objects from the

application object model.

158

Source Region (No System Responsibility and no Source)

PURPOSE: If an interaction space has no associated system responsibilities, a two-tier

association can be made from the interaction space to the correspondent object

instantiated with default values from the region object model.

SYSTEM RESPONSIBILITY NAME: N/A1

SOURCE: Object from the region object model.

Figure 79: Source Region pattern

In the example presented in Figure 79 the object provides the default values for the

interaction space.

Source Media

PURPOSE: If an interaction space has no associated system responsibilities but has a media

as a static source, a two-tier association can be made from the interaction space to the

correspondent object instantiated with default values from the media object model.

SYSTEM RESPONSIBILITY NAME: N/A

SOURCE: Object from the media object model (media).

Figure 80: Source Media pattern

In the example presented in Figure 80 the object provides the media for the interaction

space.

1 Not Applicable

159

Exclusive (system responsibility)

PURPOSE: If an interaction space has an associated system responsibility that has more

than one media object as a dynamic source in a condition of an exclusive presentation

(all media are executed but never simultaneously), a three-tier association can be

made from the interaction space to the correspondent objects instantiated with default

values from the media object model.

Figure 81: Exclusive pattern

SYSTEM RESPONSIBILITY NAME: [Exclusive Name]+[]+[keyword: EXCLUSIVE]

SOURCE: Objects instantiated preferably with default values from the media object

model.

In the example presented in Figure 81 a system responsibility and two media objects

define a structure of an exclusive presentation.

Parallel (system responsibility)

PURPOSE: If an interaction space has an associated system responsibility that has more

than one media object as a dynamic source in a condition of a parallel presentation (all

media are executed at the same time), a three-tier association can be made from the

interaction space to the correspondent objects instantiated with default values from the

media object model.

SYSTEM RESPONSIBILITY NAME: [Parallel Name]+[]+[keyword: PARALLEL]

SOURCE: Objects instantiated preferably with default values from the media object

model.

160

Figure 82: Parallel pattern

In the example presented in Figure 82 a system responsibility and two media objects

define a structure of a parallel presentation.

Sequence (system responsibility)

PURPOSE: If an interaction space has an associated system responsibility that has more

than one media object as a dynamic source in a condition of sequence (one media after

another), a three-tier association can be made from the interaction space to the

correspondent objects instantiated with default values from the media object model.

SYSTEM RESPONSIBILITY NAME: [Sequence Name]+[]+[keyword: SEQUENCE]

SOURCE: Objects instantiated preferably with default values from the media object

model.

Figure 83: Sequence pattern

In the example presented in Figure 83 a system responsibility and two media objects

define a structure of sequence.

161

APPENDIX B: STEREOTYPES

This section presents the meaning of the stereotypes used along the modeling of both

Process Use Cases and MultiGoals methodologies.

Actor

An actor is someone who carries out a task/activity within a business process (in

interaction or not with the system).

Goal

A goal is the final product of a business process.

Business Process

A business process is a sequence of activities/tasks carried out by actors in order to

achieve an enterprise goal.

Use Case

An use case is a top-level task carried out by a user in a business process that is

understandable by every stakeholder of the Interactive Information System as a

complete action. This definition is complemented and completed with the definition

of use case provided by Larry Constantine and Lucy Lockwood in [Larry Constantine

and Lucy Lockwood, 2000] as previously presented in section II.4.4.Analysis and

Design Base Techniques -> Essential Use Cases.

162

Task

In MultiGoals the definition of task follows the definition provided within Wisdom

[Nuno Nunes, 2001]: “Task classes are used to model the structure of the dialogue

between the user and the system in terms of meaningful and complete sets of actions

required to achieve a goal. Task classes are responsible for task level sequencing,

consistency of multiple presentation elements and mapping back and forth between

entities and presentation classes (interaction spaces). Task classes encapsulate the

complex temporal dependencies and other restrictions among different activities

required to use the system and that cannot be related to specific entity classes.

Thereby, task classes isolate changes in the dialogue structure of the user interface.”

This definition is compatible with the definition provided by Fábio Paternò in

ConcurTaskTrees [Fábio Paternò et al., 1997] except that only tasks carried out by the

user are used in MultiGoals (excluding the application type of task provided by the

same document which is carried out by the system, defined in MultiGoals as a system

responsibility): “A task defines how the user can reach a goal in a specific application

domain. The goal is a desired modification of the state of a system or a query to it.”

The audio task is a particular case of task in which the dialogue between user and

system is made by audio.

Activity

An activity is a top-level task performed by a user with no interaction with a system.

Interaction Space

In MultiGoals the definition of interaction space follows the definition provided within

Wisdom [Nuno Nunes, 2001]: “The interaction space class is used to model interaction

between the system and the human users. An interaction space class represents the

space within the user interface of a system where the user interacts with all the

functions, containers, and information needed to carry out some particular task or set

of interrelated tasks. Interaction space classes are responsible for the physical interaction

with the user, including a set of interaction techniques that define the image of the

system (output) and the handling of events produced by the user (input). Interaction

space classes isolate change in the user interface of the system, interaction spaces are

technology independent, nevertheless they often represent abstraction of windows,

forms, panes, etc.”

163

The audio interaction space is a particular case of interaction space in which both input

and output are made by audio.

Control (System Responsibility)

In MultiGoals the definition of control follows the definition provided within Wisdom

[Nuno Nunes, 2001]: “The control class represents coordination, sequencing,

transactions and control of other objects. Control classes often encapsulate complex

derivations and calculations (such as business logic) that cannot be related to specific

entity classes. Thereby, control classes isolate changes to control, sequencing,

transactions and business logic that involves several other objects.”

Entity

In MultiGoals the definition of control follows the definition provided within Wisdom

[Nuno Nunes, 2001]: “The entity class is used to model perdurable information (often

persistent). Entity classes structure domain classes and associate behavior, often,

representing a logical data structure. As a result, entity classes reflect the information

in a way that benefits developers when designing and implementing the system

(including support for persistence). Entity objects isolate changes to the information

they represent.”

Class

A class represents a discrete concept within the application being modeled [James

Rumbaugh et al., 1999]. A class is the descriptor for a set of objects with similar

structure, behavior, and relationships that have state and behavior. The state is

described by attributes and associations. Attributes are used for pure data values such

as numbers and strings. Individual pieces of invocable behavior are described by

operations; a method is the implementation of an operation.

Object

An object is an instance of a class [James Rumbaugh et al., 1999]. An instance is a run-

time entity with identity, that is, something that can be distinguished from other run-

time entities. An object has one data value for each attribute in its corresponding class.

164

Association

Association defines a relationship between classes of objects [Alberto Silva and Carlos

Videira, 2005]. It is a semantic relation among two elements of a model. In a class

diagram, an association defines the rules that establish and guarantee the integrity of

the relation among objects of the participating classes. This includes: the relation

name; the number of objects that can take part of the association.

Generalization

Generalization is a relation between a general element (the super-class) and a specific

element (sub-class) [Alberto Silva and Carlos Videira, 2005]. Generalization is a

relation of the type “is a kind of”.

Aggregation and Composition

The aggregation association is a relation of the kind “is part of” that corresponds to

the fact that an instance of a given class is composed by one or more instances of

another class [Alberto Silva and Carlos Videira, 2005].

Composition, also called “strong aggregation” is a variant of the aggregation

association. It means that the sub-class can not exist without the existence of the

super-class.

Usage

Usage is a relation of dependency and reflects a relation of the type client-supplier,

where a change in the supplier element means a change in the client element, but the

contrary is not necessarily true [Alberto Silva and Carlos Videira, 2005].

Transition

A transition leaving a state defines the response of an object in the state to the

occurrence of an event. In general, a transition has an event (usually the completion of

an activity), a guard condition, an action, and a target state.

