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1. INTRODUCTION
Constraint-Based Local Search (CBLS) consist in using

Local Search methods [4] for solving Constraint Satisfac-
tion Problems (CSP). In order to further improve the per-
formance of Local Search, one possible option is to take
advantage of the increasing availability of parallel compu-
tational resources. Parallel implementation of local search
meta-heuristics has been studied since the early 90’s, when
multiprocessor machines started to become widely available,
see [6]. One usually distinguishes between single-walk and
multiple-walk methods: Single-walk methods consist in us-
ing parallelism inside a single search process, e.g. for paral-
lelizing the exploration of the neighborhood, while multiple-
walk methods (also called multi-start methods) consist in
developing concurrent explorations of the search space, ei-
ther independently (IW) or cooperatively (CW) with some
communication between concurrent processes. Although good
results can be achieved just with IW [1], a more sophisti-
cated paradigm featuring cooperation between independent
walks should bring better performance. We thus propose a
general framework for cooperative search, which defines a
flexible and parametric strategy based on the cooperative
multi-walk (CW) scheme. The framework is oriented to-
wards distributed architectures based on clusters of nodes,
with the notion of “teams” running on nodes which group
several individual search engines (e.g. multicore nodes). The
idea is that teams are distributed and thus have limited
inter-node communication. This framework allows the pro-
grammer to define aspects such as the degree of intensifica-
tion and diversification present in the parallel search pro-
cess. A good trade-off is essential to reach high performance.
A preliminary implementation of the general CW framework
has been done in the X10 programming language [5], and
performance evaluation over a set of well-known benchmark
CSPs shows that CW consistently outperforms IW.

2. FRAMEWORK DESIGN
We present a flexible, highly parametric cooperative search

framework. This architecture allows the user to define a cus-
tom trade-off between intensification and diversification in
the search process.

The figure above shows that all available solvers (Explorers)
are grouped into Teams. Each team implements a mecha-
nism to ensure intensification in the search space. Simul-
taneously, the teams collectively provide diversification for
the search. Different teams will work on different regions
of the search space. Inter-team communication is needed
to ensure diversification while intra-team communication is
needed for intensification.

As shown above, a team is composed of one head node and
several explorer nodes, each one being an instance of a Local
Search method. Each explorer periodically reports to the
head node information on its search process (e.g. its current
configuration, the associated cost, the number of iterations
reached, the number of local minimum reached, etc.) The
head node then makes decisions to ensure intensification in
the search. To do so, it stores the configurations with the
best costs in its Elite Pool (EP) and provides it, on demand,
to explorers. Management of the elite pool has the potential
for several strategies.

Periodically, each explorer asks the head node for an elite
configuration. The head node may follow different strate-



gies in answering this request. Upon receiving the elite con-
figuration, the worker node may, in turn, opt for different
strategies in deciding what to do: to ignore or adopt it. The
framework can be customized thanks to several parameters:

explorers per team: this number controls the trade-off
between intensification and diversification.

team comm. topology: all-to-all (each team communi-
cates with all other teams), ring (each team only shares in-
formation with its “adjacent” teams) or random (two teams
are selected randomly to communicate each other).

team comm. interval: periodicity of the communication.

distance function: function used to check the closeness of
two teams (to detect too close teams and diversify).

corrective action: action to perform when two teams are
too close (e.g. the “worst” team can decide to clear or reset
part of its internal state to move to another location).

elite pool size: the size of the set of elite configurations.

elite pool insert policy: defines the strategy of the head
node when receiving a new configuration to insert in the EP.
E.g. only insert it if it is not already present and if its cost
is better than the worst already present.

elite pool request policy: defines the strategy of the head
node when it receives a request for a configuration from the
EP. E.g. pick a random configuration from the pool.

report interval: how frequently an explorer node commu-
nicates information to its head node.

update interval: how frequently an explorer node requests
an EP configuration from its head node.

continuation policy: defines the strategy followed by ex-
plorers when receiving a configuration from the EP. E.g. if
the received configuration is better than the current one,
whether the explorer node switches to the EP configuration.

3. RESULTS AND ANALYSIS
We have implemented a prototype using the X10 parallel

programming language. All explorers implement an instance
of Adaptive Search [2, 3] specialized for permutation prob-
lems. To assess the performance of our Cooperative Walks
(CW) implementation we compared it to an Independent
Multi-Walks (IW) version, which runs several similar and
isolated solvers in parallel (without any communication).
We tested both versions on a set of 4 classic benchmarks:
All-Interval Problem (AIP), Langford’s Numbers Problem
(LNP), Magic Square Problem (MSP) and the Costas Ar-
ray Problem(CAP). For all cases, we ran 100 samples and
averaged the times. The testing environment is a mixed
cluster with 5 AMD nodes and 3 Intel nodes.

The above figure compares, for each benchmark, the speed-
ups obtained with IW (dotted line) and CW (continuous
line). In most cases, CW is getting closer to the “ideal”
speedup. For instance, in CAP the cooperative strategy
actually reaches super linear speed-ups over the entire range
of cores (speed-up of 32.2 with 32 cores). The best gain
reaches 69% in the MSP.

4. CONCLUSION
We have proposed a general framework for cooperative lo-

cal search. It entails structuring the workers as teams, each
with the mission of intensifying the search in a particular
region of the search space. The teams are then expected to
communicate among themselves to promote search diversi-
fication. The concepts and entities involved are all subject
to parametric control (e.g., trade-off between intensification
and diversification, the team communication topology, . . .)

Initial experimentation with an early prototype has clearly
proved that CW is able to systemtatically outperform the
independent Multi-Walks parallel approach, even with very
incomplete parameter tuning.
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