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Abstract
Main conclusion Co-cultures of Pinus pinaster with
Bursaphelenchus xylophilus were established as a
biotechnological tool to evaluate the effect of nemato-
toxics addition in a host/parasite culture system.

The pinewood nematode (PWN), Bursaphelenchus xy-

lophilus, the causal agent of pine wilt disease (PWD), was
detected for the first time in Europe in 1999 spreading

throughout the pine forests in Portugal and recently in

Spain. Plant in vitro cultures may be a useful experimental
system to investigate the plant/nematode relationships in

loco, thus avoiding the difficulties of field assays. In this

study, Pinus pinaster in vitro cultures were established and
compared to in vivo 1 year-old plantlets by analyzing shoot

structure and volatiles production. In vitro co-cultures were

established with the PWN and the effect of the phy-
toparasite on in vitro shoot structure, water content and

volatiles production was evaluated. In vitro shoots showed

similar structure and volatiles production to in vivo mar-
itime pine plantlets. The first macroscopic symptoms of

PWD were observed about 4 weeks after in vitro co-culture
establishment. Nematode population in the culture medium

increased and PWNs were detected in gaps of the callus

tissue and in cavities developed from the degradation of
cambial cells. In terms of volatiles main components,

plantlets, P. pinaster cultures, and P. pinaster with B. xy-

lophilus co-cultures were all b- and a-pinene rich. Co-
cultures may be an easy-to-handle biotechnological ap-

proach to study this pathology, envisioning the under-

standing of and finding ways to restrain this highly
devastating nematode.
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GC Gas chromatography
GC–MS Gas chromatography coupled tomass spectrometry

IBA Indole-3-butyric acid

LM Light microscopy
PAS Periodic acid–Schiff’s reagent

PWD Pine wilt disease

PWN Pinewood nematode (Bursaphelenchus
xylophilus)

RI Retention index

RWC Relative water content
SEM Scanning electron microscopy

SH Schenk and Hildebrandt medium

SHe Schenk and Hildebrandt elongation medium
SHm Schenk and Hildebrandt multiplication medium

t Trace

Introduction

The pine wilt disease (PWD) is caused by the pinewood
nematode (PWN), Bursaphelenchus xylophilus (Steiner &

Buhrer) Nickle, which is a highly pathogenic, migratory,
facultative endoparasite which generally infects some Pi-

nus species. In Portugal, maritime pine, Pinus pinaster

Aiton, is highly susceptible to infection. In 1999, the ne-
matode was detected in Portugal (Mota et al. 1999) en-

dangering European pine forests and has progressed

throughout large areas of the country (Mota and Vieira
2008). In 2010, it was also found in Madeira island (Fon-

seca et al. 2012), and in 2011 for the first time in Spain

(Abelleira et al. 2011). It was classified as an A2 type
quarantine pest by the European and Mediterranean Plant

Protection Organization (EPPO 2012).

The PWN dispersal and life cycle are dependent on
vectors, cerambycid Monochamus spp., that include M.

alternatus in East Asia, M. saltuarius in Japan, M. caro-

linensis in North America and M. galloprovincialis,
abundant in the Portuguese pine forest (Mota and Vieira

2008, Petersen-Silva et al. 2014). After feeding on the

fungus growing on dead or decaying wood (mycophagous
phase), the nematodes molt into dispersal ‘‘third-stage

dauer juvenile’’, JIII, able to outstand adverse conditions.

Gathering around the developing insect, ‘‘fourth-stage
dauer juvenile’’ (JIV) enters the tracheal system of the

emerging young callow adult through its spiracles. In-

fection of susceptible Pinus spp. occurs in the dispersal
phase when adult beetles transmit the JIV to other trees

while feeding on young tree branches (Futai 2013). At this

stage, PWNs are attracted to pine volatile cues that seem
to determine changes in their development, particularly

major terpenes ratio (Zhao et al. 2007) and/or b-myrcene

content, as well as internal PWN neutral lipid energy
reserves (Stamps and Linit 2001).

Once inside the host plant, the nematodes reproduce and

multiply at a very high rate in the resin canals, consuming
the epithelial cells (phytophagous phase), thus damaging

internal pine structure. As infection progresses, embolized

tracheids rapidly enlarge and water potential decreases
ultimately leading to abrupt cavitation in the whole xylem

area (Umebayashi et al. 2011). At this stage, cavitation

effects appear to be promoted by increase in production of
terpenes by ethylene cues (Wang et al. 2010).

As the tree very quickly begins displaying the charac-
teristic wilting symptoms, ‘‘drying out’’ and yellowing of

the pine needles, the oleoresin exudation decreases and as a

consequence nematodes are able to move freely through
the dying tree (Ikeda and Oda 1980; Kuroda 2008).

Although stem anatomy is thought to be linked to varia-

tions in pine susceptibility, for e.g. the arrangement of the
resin canals (Kuroda 2004) or lignification of infected pine

cell walls (Kusumoto et al. 2014), it is not yet established

which anatomy characteristics influence PWN progression.
The trees showing intensified wilting and yellowing of the

needles may collapse within 1–4 months (EPPO 2012).

The decaying trees are hosts to the oviposition of female
beetles and the remaining life cycle progresses as described

above (Mota and Vieira 2008).

The effect of nematotoxic compounds on this phy-
toparasite has been well-documented, mainly using direct

contact bioassays (Choi et al. 2007; Barbosa et al. 2010,

2012; Andrés et al. 2012; Faria et al. 2013). However,
research is commonly performed on the nematode species

alone and very seldom on the host–parasite system, not

taking into account the cytotoxicity to the plant host or the
plant’s capability to metabolize or biotransform the ne-

matotoxic active substances.

By co-culturing host and parasite at the same time,
simulating the host-pathogen conditions, in vitro culture

can be a useful system to study plant/nematode interac-

tions, since it allows (a) eliminating variables due to en-
vironmental conditions, (b) having a contaminant-free

system, which, by being in a monoxenic culture, excludes

the diverse-associated microbiota (Amerson and Mott
1982; Vicente et al. 2012), (c) manipulating single vari-

ables, making possible the direct observation of plant/ne-

matode responses in a controlled environment, which is
very difficult to achieve in greenhouse or in field condi-

tions, and also (d) attaining more biomass using fewer

resources.
The present study aimed at developing a reliable hos-

t/pathogen system for PWD phytopathological research. To

accomplish this, in vitro P. pinaster and in vitro P. pina-
ster/B. xylophilus co-cultures were established. PWN

density in the co-culture medium was followed as well as

in vitro pine relative water content. Healthy 1-year-old
plantlets, pine in vitro cultures and pine/PWN co-culture
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structure and volatile production were also determined. The

present work proposes maritime pine/PWN co-cultures as
an adequate biotechnological tool to study the PWD, ca-

pable of simulating many conditions of the ex vitro ne-

matode infection.

Materials and methods

In vitro cultures establishment

Pinus pinaster cultures (shoots)

Seeds from maritime pine trees grown at Mata Nacional do

Escaroupim, Portugal, were washed with running tap water

for 5 min, then immersed in a commercial detergent (sur-
factants: anionic C15 and \30 %, non-ionic C5 and

\15 %, disinfectant: triclosan 0.1 %) solution (10 drops

per 100 ml of distilled water) for 10 min and dipped in an
ultrasonic bath, 5 times for about 1 min at a time. After

rinsing with running tap water, the seeds were surface

sterilized by immersion in ethanol 96 %, in an ultrasound
bath for 10 min, as before. In asepsis, the seeds were

rinsed, three times, with ultrapure sterile water, approx.

100 ml each, and the outer seed coat was broken with a
mechanical lathe. Pine nuts were hydrated in sterile ultra-

pure water, stratified at 4 "C for 2 days and sown in sterile

wetted filter paper in covered glass jars. Seedlings were
maintained in darkness, at 24 ± 1 "C, for 1 week and then

transferred to a 16 h light photoperiod [cool fluorescent

lamps (32 lE m-2 s-1)].
The seedling from one genotype was sectioned and the

upper portion (hypocotyl and cotyledon) was maintained

on multiplication medium (SHm), that is, on solid SH
culture medium (Schenk and Hildebrandt 1972) with

30 g l-1 sucrose, supplemented with 0.5 mg l-1 6-benzy-

laminopurine (BAP) and 0.1 mg l-1 indole-3-butyric acid
(IBA). The pH was adjusted to 5.8 prior to the addition of

0.8 % (w/v) agar and autoclaved at 121 "C for 15 min. P.

pinaster shoots were maintained in Combiness# (Belgium)
microboxes [9.7 cm base diameter per 8 cm height and

green filter (XXL?) on the lid, to facilitate air exchange],

in a growth chamber with temperature and photoperiod as
above. Under routine culture conditions, every 4 weeks,

each shoot cluster was subdivided into 3–4 smaller clusters

and transferred to microboxes with 100 ml fresh culture
medium.

For shoot elongation, P. pinaster shoot masses (7–10

shoots) were transferred to an elongation medium (SHe),
that is, to solid SH medium, without growth hormones and

with activated charcoal (3 g l-1), adapted from Tereso

et al. (2006). Elongation allowed shoots to be detached
from the main mass and individualized. In vitro cultures

were maintained as described above and subculture was

performed monthly. Elongation rate was followed monthly
by measuring individual shoot length, for 32 months. A

minimum of 30 in vitro shoots were measured per month.

The data were statistically analyzed using Microsoft Excel
2013.

Pinus pinaster with Bursaphelenchus xylophilus co-
cultures (co-cultures)

Bursaphelenchus xylophilus (isolate BxPt51T, retained at

NemaLab and available on request) was obtained as de-

scribed by Faria et al. (2013). Surface sterilization was
performed in aliquots of 500 ll, with 3250 ± 250 mixed-

stage PWNs in ultrapure water. In asepsis, nematodes were

suspended in a 50 % ethanol/ultrapure sterile water solu-
tion (v/v) (20 ml), for 5 min in a 20 lm mesh sieve, and

then washed 5 times in ultrapure sterile water, 20 ml each,

resuspended in 1 ml sterile water. PWNs sterilization was
tested on potato dextrose agar plates for 4 days at 25 "C.
Sterilized PWNs were used for inoculating in vitro P.

pinaster cultures.
Establishment of co-cultures was initiated by transfer-

ring P. pinaster shoots, maintained for 5–7 months in SHe,

with monthly subculture, to activated charcoal-free solid
SHe medium. A 100 ll suspension (250 ± 50 PWNs) was

added into a small hole made in the culture medium into

which the cut end of each shoot was inserted (Fig. 1).
Cultures were maintained as described above. For further

subculture, 4-weeks co-culture-grown PWNs were resus-

pended in 1 ml sterile water and used as described above.

Characterization of in vitro cultures and plantlets

Pinus pinaster cultures and P. pinaster with B. xylophilus

co-cultures were evaluated in terms of structure, relative

water (RWC), PWN population growth and volatiles con-
tent. For in vitro culture characterization, maritime pine

shoots were subcultured to microboxes [8 cm base di-

ameter per 6 cm height and green filter (XXL?) on the lid]
with 20 ml solid SH medium (2 shoots per microbox).

Whereas some shoots were kept uninfected, as control,

others were infected with sterilized PWN suspension as
described above. Sampling was performed before infection

(time 0) and 1, 2, 7, 28, and 35 days after inoculation

(DAI), both for P. pinaster shoots and for P. pinaster
shoots inoculated with B. xylophilus. Culture conditions

were maintained as described above. Two independent

experiments were separately run and four replicates were
used in each experiment. All statistical analyses were

performed using Microsoft Excel 2013.

For comparison purposes, samples from greenhouse
grown 1-year-old P. pinaster plantlets were harvested for
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structure and volatiles characterization. Plantlets were ob-
tained from a mainland Portuguese nursery field (Alcácer

do Sal, from seeds made available from Mata Nacional do

Escaroupim, Portugal) maintained under natural 16 h light
photoperiod, with average 30 "C day/18 "C night tem-

perature and about 60 % of relative humidity. As above,

two independent experiments were separately run and 4
replicates were used in each experiment. All statistical

analyses were performed using Microsoft Excel 2013.

Nematode population in the co-culture

Pinewood nematodes present in the co-culture medium
were counted as a measure of nematode population growth

over time. Nematodes were counted by sampling 100-ll
aliquots, three times, from 2 ml used to wash the co-culture
medium of each microbox. To rule out nematode feeding

on SH culture medium, the PWN population was compared

between in vitro cultures with and without maritime pine
shoots, at 28 DAI. PWNs were counted under an inverted

microscope [Diaphot, Nikon, Japan (409)].

At 28 DAI, the length and diameter of 30 of each ran-
domly selected PWN females, males and juveniles (J2–J4)

were measured using a stage micrometer calibrated eye-

piece reticle and compared with that of PWN population
grown on Botrytis cinerea. Permanent slides were prepared

as described by Ryss (2003).

Shoots and co-cultures relative water content

Relative water content (RWC) was evaluated at 0, 1, 2, 7,
28 and 35 DAI, through the following formula:

Relative water content %ð Þ
¼ fresh weight% dry weightð Þ= fresh weightð Þ½ ' ( 100

In vitro shoot fresh weight determination was performed
after carefully rinsing and blotting culture medium excess

with filter paper. For dry weight calculation, samples were

frozen for 24 h followed by freeze-drying for 2 days, in an
Alpha I-5 (Martin Christ GmbH, Osterode, Germany) ap-

paratus, at 0.1 mbar and -42 "C.

Plantlets, shoots and co-cultures structure

In vitro shoots and co-cultures morphology and anatomy
were analyzed by scanning electron microscopy (SEM) and

light microscopy (LM). Sampling was performed before

infection (time 0) and at the 7, 28, and 35 DAI. At each
sampling time point, in vitro shoot cross-sections were

processed after striping the in vitro pine needles. Samples

from greenhouse grown 1-year-old P. pinaster plantlets
were processed in a similar way.

For SEM, P. pinaster shoots and co-culture shoots were

fixed with glutaraldehyde 2.5 % (v/v) in 0.1 M sodium
phosphate buffer at pH 7.2. Samples were kept in fixative

under vacuum at room temperature for 20 min, followed by

24–48 h at 4 "C. The material was then washed in the
fixative buffer, dehydrated in a graded ethanol series, and

critical point-dried in a Polaron E3500, according to As-

censão et al. (2005). Dried specimens were sputter coated
with gold in a Polaron E5350. Observations were carried

out on a JEOL T220 scanning electron microscope (JEOL

Ltd., Tokyo, Japan) at 15 kV.
For LM, P. pinaster shoots and co-culture shoots were

fixed as described for SEM, but after the washes in fixative

buffer and dehydration through an ethanol series, the ma-
terial was infiltrated and embedded in Leica historesin#

according to Ascensão et al. (2005). To highlight the

contrast between the plant tissues and PWNs, longitudinal
and cross-sections (3 lm thick) were stained with periodic

acid–Schiff’s (PAS) reagent for polysaccharides, counter-

stained with Toluidine Blue O (Feder and O’Brien 1968)
for general histology, and with Coomassie blue stain

(Fisher 1968) for proteins. Observations were made with a

Leica DM-2500 microscope (Leica Microsystems CMS
GmbH, Wetzlar, Germany), images were recorded digitally

a b c

Fig. 1 Schematic representation of P. pinaster with B. xylophilus co-cultures establishment. Under asepsis, small holes were made in the culture
medium (a), into which a 100 ll PWNs suspension (250 ± 50 PWNs) was added (b) together with each pine shoot (c)
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using a Leica DFC-420 camera (Leica Microsystems Ltd.,

Heerbrugg, Switzerland) and the Leica Application Suite
software (version 2.8.1).

Plantlets, shoots and co-cultures volatiles

Pinus pinaster shoots and co-cultures volatiles were sampled

at 0, 2, 7, 14, 28, 35 days after subculture and at 1 h, 8 h and
1, 2, 7, 14, 28 and 35 DAI, respectively. Isolation was

performed by distillation–extraction, for 3 h, using a
Likens–Nickerson type apparatus (Likens and Nickerson

1964). Distillation was run at a distillation rate of

3 ml min-1, using in-lab distilled n-pentane (50 ml)
(Honeywell Riedel-de Haën, Hanover, Germany) as organic

solvent. The volatiles recovered in distilled n-pentane were

concentrated at room temperature under reduced pressure on
a rotary evaporator, collected in a vial, and concentrated to a

minimum volume, again at room temperature, under nitro-

gen flux. In vivo pine essential oils were isolated by hy-
drodistillation for 3 h using a Clevenger type apparatus

according to the European Pharmacopoeia (Council of

Europe 2010). Hydrodistillation was run at a distillation rate
of 3 ml min-1. The volatile oils were stored at -20 "C until

analysis. Volatiles were analyzed by gas chromatography

(GC), for component quantification, and gas chromatogra-
phy coupled to mass spectrometry (GC–MS) for component

identification, as detailed by Faria et al. (2014).

Results and discussion

Pinus pinaster cultures establishment

Pinus pinaster in vitro shoots multiplication and elongation
growth regulators requirements were optimized as reported

by Calixto and Pais (1997) and Álvares et al. (2009). P.

pinaster shoots subculture in SHm, induced meristem
multiplication along the apical meristem shoot, within

4 weeks after subculture, and lead to the formation of

clusters of apical needles buds (shoot clusters) (Fig. 2a).
These were detached from the main multiplying shoot and

subcultured monthly in the SHm. For shoot elongation, the

shoot clusters were transferred from SHm to SHe medium,
containing activated charcoal. Activated charcoal acts by

adsorbing many organic and inorganic molecules, released

from growing explants or from the culture medium. To
ensure in vitro culture stability, shoots were transferred

from SHm to SHe medium only after approx. 12 months in

SHm culture, with routine subculture. Elongation period
resulted in 3 cm shoots being obtained within about

5 months (Fig. 2b). In this period, maintenance in SHe

induced shoot elongation at rates of about 0.9 mm week-1

(R2 = 0.99), that became very low after 5 months. Shoots

with 5–7 months of subculture in SHe were selected for

infection with the sterilized PWN.

P. pinaster with B. xylophilus co-cultures establishment

Within 3–4 weeks after P. pinaster inoculation with B. xy-

lophilus, thefirst external signs of thePWDwereobserved,with

several of the shoot pine needles exhibiting wilting symptoms
like chlorosis and droopingwhen compared to control (Fig. 2c–

f). These symptomswere detected in the older pine needles and
progressed to the younger, towards the shoot apex, 5–6 weeks

after infection the shoot was entirely brown and necrotic.

In vitro infection showed to be similar to in vivo PWD phe-
notype as a similar symptomatology was observed in trees in-

fected by the pine wilt disease, as reported by Kuroda et al.

(1988) for P. thunbergii and P. densiflora saplings. In these
species, thefirst symptomobservedwas the suddenbrowningof

older needles that spread to younger needles accompanied by

wilting and followed by host death within 1–2 months after
inoculation. Symptom development in these pine species varies

depending on tree age, as younger seedlings appeared to de-

velop symptoms more rapidly than older saplings and older
trees (Kuroda et al. 2007). Studying the pathogenicity of aseptic

PWNs in in vitroP. densiflora, Zhu et al. (2012) obtained PWD

symptomatology at 20 days of infection with a 250 nematode
initial inoculum. Wilting and browning were observed with

infection performed on the upper portion of the micro-cutting.

The authors proved that aseptic PWNs maintain their patho-
genicity and infection progressed to micro-cutting death. Being

immature tissue, the in vitro shoots may be affected more

promptly. This observation is in agreement with that herewith
reported. Overall co-cultures showed similar symptoms to

maritime pine under natural infection conditions.

There is an ongoing debate on the role of bacterial
communities associated to the PWN on PWD. Population

variations of bacterial communities generally follow those

of PWN progression (Xie and Zhao 2008; Roriz et al. 2011;
Nascimento et al. 2014) and evidence as pointed towards

being potential triggers for disease symptomatology (Han

et al. 2003; Vicente et al. 2012) and even promoters of
PWN reproduction and fecundity (Zhao et al. 2006).

The data obtained in the present work for in vitro grown

pine tissue, support Zhu et al. (2012), in that PWD symp-
tomatology does not seem to be solely dependent on as-

sociated microorganism communities.

The morphometric parameters of PWN co-cultured with
P. pinaster showed adult male body greatest diameter/length

15.6 ± 0.6 lm/685.7 ± 17.7 lm, female 20.1 ± 0.5 lm/

760.5 ± 26.4 lm and juveniles (J2–J4) 12.4 ± 0.5 lm/
421.9 ± 17.7 lm, were slightly smaller than those from lab-

grown PWN in Botrytis cinerea: adult male 19.5 ± 0.4 lm/

837.7 ± 12.2 lm, female 21.1 ± 0.3 lm/896.1 ± 14.8 lm
and juveniles 15.7 ± 0.5 lm/555.3 ± 21.8 lm. The
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morphometric values (body length and greatest diameter)
obtained in the present study for phytophagous PWNs are in

accordance with those obtained by Penas et al. (2008) and

Fonseca et al. (2008). The tendency for smaller individuals
in PWNs obtained from the field, from naturally infected P.

pinaster trees when compared with lab-grown mycophagous

PWNs was also recorded by Penas et al. (2008).

Shoots and co-cultures relative water content and PWN

density in co-culture medium

Being pine needle wilting one of the symptoms of ne-

matode infection, P. pinaster co-cultures shoots relative

water content (RWC) was assessed at 0, 1, 2, 7, 28 and 35
DAI, as a measure of PWN infection mechanism. The

RWC of in vitro pine shoots varied between 72 and 85 %,

not showing substantial variations (Fig. 3). Although
other symptoms of PWD such as needle chlorosis were

visible at latter stages of growth, the fact that no major

needle desiccation was observed, during the period
evaluated, may reflect the growth under in vitro-specific

conditions that prevents main water loss by evaporation.

Under natural conditions, interruption of the water col-
umn leads to the process of pine cavitation which di-

minishes water content. PWD-derived cavitation leads to

discoloration in the pine needles and a decrease in

Fig. 2 Pinus pinaster shoots under routine culture conditions grown
in SH multiplication medium (SHm) (a) and in elongation medium
(SHe) (b), with monthly subculturing. c–f Details of P. pinaster
shoots (c, e) and of P. pinaster with Bursaphelenchus xylophilus co-

culture 4 weeks after infection (d, f). Note, in d and f, that shoot
needles exhibited wilting, that is, a yellow-brownish color due to
chlorosis and drooping. Scale bar 1 cm
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photosynthesis (Kuroda 2008) and is responsible for pine

needle desiccation.
Nematode population in the co-culture medium was

measured 1, 2, 7, 28 and 35 DAI. PWN inoculum of

250 ± 50 nematodes per shoot increased, having doubled
by the end of the first week (Fig. 3). After 4 weeks in

culture, PWNs amounted 1900 ± 204 nematodes per

shoot, while solely in SH medium remained at 242 ± 60.
An approx. 89 increase indicates that nematodes repro-

duced and completed their life cycle as in natural condi-
tions, consuming shoot tissue to increase population

numbers. PWN population numbers continued to increase

and at the end of the 5th week reached 4340 ± 504 PWN
per shoot. Given optimal conditions, PWN life cycle can be

completed in 4 days, which is very rapid when compared

with other Bursaphelenchus species (Futai 2013). In the
present study, PWN population doubling time was ap-

proximately 1 week, which indicates that even though

feeding may have occurred on the shoot basal zone in
contact with culture medium, PWN population increase

was still considerable.

P. pinaster plantlets, shoots and co-cultures structure

Maritime pine in vitro shoots showed the typical structure
from young pine plantlets—a pith with a medullar

parenchyma, a vascular ring with axial and radial resin

ducts, a starch-rich cortical parenchyma with several tan-
nin-containing cells and axial resin ducts (Figs. 4a, c, 5b).

Recently developed P. pinaster in vitro grown shoots

showed ducts with a very narrow lumen. At the cut end of

the shoots, resulting of the separation from the parent
shoots clusters, and facing the culture medium, a callus

tissue formed, characterized by an unorganized mass of

loosely arranged parenchyma cells (Fig. 2e, f). In general,
depending on the plant material, medium composition and

environmental conditions during culture period, callus

growth characteristics may be variable in the extent and
type of differentiation.

Callus tissue of the pine in vitro shoot facing the culture
medium showed clusters of cells giving rise to meristem-

atic zones (Figs. 4b, 5a). This basal shoot zone in contact

with the culture medium is a sink for endogenous phyto-
hormones and lesion-derived stress compounds that sti-

mulate tissue dedifferentiation and formation of cell

meristematic centers (Washer et al. 1977; Aitken-Christie
et al. 1985). These centers with starch-rich cells continued

to grow throughout the culture period surrounding pri-

mordial tracheary elements (Fig. 4b, arrows). The growth
and development of the meristematic centers was accom-

panied by the formation of fissures in the parenchyma

tissue due to movement of cell masses.
One week after co-culture establishment of P. pinaster

with PWN, numerous nematodes were found within callus

parenchyma tissue gaps (Figs. 4e, 5c, d). Parasite feeding
may have stimulated callus tissue development since, in

addition to mechanical injury, callus tissue may be pro-

duced as a response to an invading organism. Four weeks
after infection, at less than one centimetre above the cut

end of the shoots, vascular bundles were already present

and nematodes were observed in cavities formed in the
cambium between the xylem and phloem (Fig. 4d, arrow).

Above this shoot basal region no more nematodes were

found, although shoots exhibited the typical anatomy of a
Pinus species. Fully-developed resin canals were yet scarce

and presented narrow lumens, being only frequent secre-

tory ducts in early ontogenic stages.
Iwahori and Futai (1990) analyzed calli obtained from

several susceptible and resistant pine species (P. densiflora,

P. thunbergii, P. massoniana, P. thunbergii 9 P massoni-
ana, P. taeda) as well as Nicotiana tabacum and Medicago

sativa as a method to obtain clean PWN populations.

Although high PWN growth rates were detected, probably
due to an easy access to food source, callus tissue culture

unorganized nature was not faithful to in vivo pine charac-

teristics. Thin-walled metabolically very active cambial cells
may serve for nematode feeding during the infection pro-

cess. In fact, it is now well-known that nematode secretions

are rich in cell wall degrading enzymes such as the b-1,4-
and b-1,3-glucanases, pectate lyase and also expansins and

cellulose-binding proteins (Haegeman et al. 2012; Shinya

et al. 2013a, b). In the current study, nematode secretions
may have influenced greatly in vitro shoot PWD symptom
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Fig. 3 Relative water content (%) of in vitro P. pinaster shoots (open
squares) and of P. pinaster shoots with PWN co-culture (filled
squares). Nematode population density in the microbox culture
medium (filled triangles) at the different time points of the time-
course study and at 0 and 28 days without pine shoots (open
triangles). Two shoots were maintained per container in 20 ml of
solid culture medium. Arrow time points when, macroscopically, pine
needles started to exhibit wilting (drooping and a yellow-brownish
color due to chlorosis)
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development, namely, macroscopically, pine shoot wilting

(desiccation, chlorosis and drooping). Plant tissue degen-

eration was noticeable as nematode population increased,
probably not solely due to nematodes feeding, as well as to

parasite secretions. In fact, Melakeberhan and Webster

(1992) analyzing the energy requirements of the PWN in P.

sylvestris, concluded that food consumption is not a sig-
nificant factor in the cause of pine death.

Fig. 4 Light micrographs of historesin sections of shoots from
1-year-old Pinus pinaster seedlings (a), from in vitro shoot cultures
(b, c), and from shoot co-cultures with Bursaphelenchus xylophilus
(d, e). a Cross-section showing the characteristic anatomy of a pine
shoot. Note the presence of several tanniniferous cells (arrows) in the
cortical parenchyma. Resin ducts (asterisks) are clearly seen in the
cortex and xylem. b Callus tissue, in the zone facing the culture
medium, showing the dedifferentiation centers (arrowheads) and

tracheary elements (arrows). c A vascular ring, surrounding the pith
and showing tanniniferous cells (arrows), is observed in shoot cross-
sections some millimeters above the culture medium. d, e Nematodes
were found in cavities developed in the vascular bundles between the
xylem and the phloem (d, arrow) and in gaps formed in the callus
tissue during the dedifferentiation process (e). Scale bars 200 lm (a),
50 lm (b), 100 lm (c) and 40 lm (d, e)
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P. pinaster plantlets, shoots and co-cultures volatiles

Volatiles isolated from in vitro grown P. pinaster cultures

and P. pinaster with B. xylophilus co-cultures were com-

pared with those isolated from one-year-old plantlets.
Although Table 1 reports only the isolated volatiles main

components (C1 %), they were all fully chemically char-

acterized, in a total of 80 compounds for the plantlets
volatiles, 46 for P. pinaster cultures and for P. pinaster

with B. xylophilus co-cultures.

Plantlets volatiles were b- and a-pinene rich (47 and
28 %, respectively) (Table 1). Likewise, in vitro pine

cultures were also b- and a-pinene rich (38–47 % and

24–33 %, respectively), although the relative importance
of several compounds differed between plantlets and pine

cultures volatiles. Whereas a-terpineol (7 %) and bornyl

acetate (4 %) were the third- and fourth- plantlets volatiles

main components, they were always\2 and\0.5 %, re-
spectively, in the pine shoots volatiles. Conversely, ger-

macrene D (3–9 %), an unidentified compound (UI B Ppi,

4–7 %) and b-caryophyllene (2–5 %) that attained
relatively high percentages in the pine shoots volatiles,

were either \2 % (b-caryophyllene) or in trace amounts

(germacrene D and UI B Ppi) (Table 1).
Co-culture of P. pinaster with B. xylophilus did not alter

substantially the volatile composition compared to pine

cultures volatiles. Again b- and a-pinene dominated the co-
cultures volatiles (36–47 % and 24–32 %, respectively),

followed by germacrene D (3–7 %), UI B Ppi (4–8 %) and

b-caryophyllene (1–5 %).

Fig. 5 Scanning electron microscopy micrographs from cross-sec-
tions of Pinus pinaster shoots cultures (a, b) and from P. pinaster
shoots in co-culture with Bursaphelenchus xylophilus (c, d). a Several
dedifferentiation centers (arrows) are observed in the callus tissue

facing the culture medium. b A nearly continuous vascular ring
(arrows) is clearly seen in the shoot some millimeters above the
culture medium. c, d Nematodes (arrows) are found in callus tissue
gaps forming during the dedifferentiation process. Scale bars 100 lm
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Lima et al. (2010) characterized the volatiles from

2-year-old uninoculated healthy P. pinaster plants (HP)

and from mechanically wounded uninoculated (C) and
inoculated (In) individuals. As in the present study, Lima

et al. (2010) did not find relevant qualitative and quan-

titative differences between HP, C and In isolated
volatiles.

PWN shows chemotaxis to volatile terpenes, altering its

behavior due to different volatile cues (Futai 2013; Zhao

et al. 2014). The terpenes a-pinene, b-pinene and longi-
folene appear to be decisive in a fundamental step of the

nematode life cycle. Zhao et al. (2007, 2014) showed that

different ratios of these terpenes, observed in the host
species P. massoniana and released by larval vector

Table 1 Percentage composition of the volatiles ([1 %) isolated
from P. pinaster 1-year-old plantlets aerial parts (plantlets), from
in vitro grown P. pinaster shoots at 0, 2, 7, 14, 28 and 35 days after

subculture (shoots) and from P. pinaster/PWN co-cultures at 1 h, 8 h
and 1, 2, 7, 14, 28 and 35 days after infection (co-cultures)

Components ([1 %) RI Plantlets Shoots Co-cultures

0 2 7 14 28 35 1 h 8 h 1 2 7 14 28 35

a-Pinene 930 27.9 23.7 25.5 24.4 27.1 31.5 32.8 30.9 28.9 24.2 24.5 25.4 27.0 31.6 30.5

Camphene 938 2.2 0.2 0.2 0.5 0.6 0.6 0.5 0.5 0.5 0.3 0.4 0.6 0.6 0.5 0.5

b-Pinene 963 46.6 37.7 38.0 42.4 43.9 46.8 43.8 44.4 38.6 36.3 38.9 39.7 42.3 47.3 42.3

b-Myrcene 975 0.4 1.1 1.1 1.5 1.2 1.1 1.2 1.2 0.9 2.1 1.1 1.1 2.0 1.1 1.1

b-Phellandrene 1005 0.5 1.1 1.2 1.2 1.3 1.3 1.2 1.2 1.0 0.8 1.1 1.1 1.2 1.2 1.2

Limonene 1009 2.7 1.0 1.0 1.1 1.2 1.2 1.4 1.1 0.9 0.5 0.9 1.2 1.1 1.4 1.6

Terpinolene 1064 1.4 0.1 0.7 0.4 0.5 0.6 0.5 0.2 0.3 0.2 0.3 0.3 0.3 0.7 1.0

a-Terpineol 1159 7.1 0.2 0.3 1.5 1.7 1.6 1.5 0.5 0.8 0.4 1.2 1.3 1.5 2.0 4.0

Bornyl acetate 1265 3.6 0.1 0.1 0.3 0.4 0.3 0.4 0.1 0.3 0.2 0.2 0.2 0.3 t t

a-Copaene 1375 t t 1.3 0.1 0.2 0.1 t 0.1 0.2 0.1 0.2 0.1 0.2 t t

b-Caryophyllene 1414 1.4 4.6 3.7 2.9 2.1 1.5 2.0 3.2 3.1 4.6 3.4 3.2 2.5 1.3 1.7

a-Humulene 1447 0.2 0.3 1.1 0.2 0.2 0.2 0.4 0.4 0.5 0.3 0.2 0.9 0.4 t t

Phenyl ethyl 2-methyl
butanoate

1467 1.7 0.2 0.1 0.3 0.4 0.4 0.5 0.2 0.3 0.2 0.2 0.5 0.5 0.2 0.2

Phenyl ethyl isovalerate 1468 t 0.4 0.9 1.1 1.0 1.3 1.4 0.7 0.8 0.4 0.6 1.1 1.3 1.7 1.5

Germacrene D 1474 t 8.8 5.3 4.4 3.6 3.3 3.2 5.0 5.1 6.9 6.8 4.5 3.1 2.6 2.9

c-Cadinene 1500 0.1 0.4 2.7 1.2 0.4 0.2 0.3 0.3 1.9 1.2 1.2 1.5 0.6 1.0 1.0

d-Cadinene 1505 0.1 0.7 0.1 0.9 1.5 1.0 1.1 1.6 0.5 0.5 0.8 1.0 1.8 t t

b-Caryophyllene oxide 1561 0.2 0.3 0.3 0.3 0.2 t 0.1 0.2 0.2 0.6 0.9 1.0 0.2 t t

a-Cadinol 1626 t 0.9 0.1 0.2 0.2 0.2 t 0.2 0.4 0.5 1.3 0.4 0.4 t t

Palmitic acid 1908 t 2.1 2.2 0.9 0.5 0.2 0.2 0.5 1.0 1.4 2.0 0.7 0.7 0.8 1.7

UI B Ppia 2309 t 4.5 6.0 7.2 5.6 4.6 3.6 3.9 5.5 4.6 6.5 7.8 4.2 5.0 3.7

% Identification 99.8 85.7 88.1 87.9 90.0 94.5 94.1 93.2 88.6 84.1 87.8 87.7 90.3 93.2 91.0

Grouped components

Monoterpene hydrocarbons 82.6 65.2 68.0 71.6 75.7 83.4 81.5 79.6 71.1 64.6 67.4 69.7 74.6 83.7 78.0

Oxygen-containing
monoterpenes

12.9 0.3 0.6 2.1 2.5 2.0 1.9 0.8 1.2 0.7 1.6 1.6 2.1 2.0 4.0

Sesquiterpene hydrocarbons 1.8 15.4 14.9 10.3 8.7 6.7 7.3 10.7 12.1 14.3 13.1 12.0 9.4 4.9 5.5

Oxygen-containing
sesquiterpenes

0.3 2.0 1.4 1.3 0.9 0.4 1.0 0.7 1.7 2.1 2.7 2.0 1.4 t 0.3

Oxygen-containing
diterpenes

0.1

Phenylpropanoids 0.4

Fatty acids t 2.1 2.2 0.9 0.5 0.2 0.2 0.5 1.0 1.4 2.0 0.7 0.7 0.8 1.7

Others 1.7 0.7 1.1 1.8 1.8 1.8 2.2 1.0 1.6 1.0 1.2 1.8 2.2 1.9 1.7

RI in-lab calculated retention index relative to C9–C24 n-alkanes on the DB-1 column, t trace (\0.05 %)
a Unidentified compound detected on Pinus pinaster and on in vitro cultures and co-cultures (standard deviation\5 %)
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attracted different nematode juvenile stages, and may be

the cue to altering from de propagative to the dispersal
form. Pine volatile response to inoculation with PWN was

analyzed in six-year-old P. thunbergii, by Kuroda et al.

(1991). In that study, volatile production was enhanced by
nematode introduction, associated to the beginning of

desiccation; the total volatile terpenes (e.g. a-pinene, b-
pinene, b-myrcene, longifolene) showed a higher concen-
tration when compared with those of healthy trees.

Takeuchi et al. (2006) also recorded high emissions of
terpenes, like a-pinene, while profiling the volatiles of in-

fected P. thunbergii. This increase in volatile emissions not

only attracts the vector beetle species but appears to con-
tribute to the wilting of the tree, by weakening the tensile

strength of the sap, promoting embolism in the tracheids

(Kuroda 1991).
Although the present study, using in vitro cultures and co-

cultures, supported earlier observations with plantlets, that

showed no major qualitative differences between the volatiles
from healthy and from inoculated plants, further studies on

the chemical cues that promote nematode attraction would be

relevant. P. pinaster in vitro cultures and P. pinaster with
PWN in vitro co-cultures established and characterized in the

present study may constitute a complementary biotechno-

logical tool to investigate not only these chemical cues, but
also host and parasite response to nematotoxics.
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Tereso S, Gonçalves S, Marum L, Oliveira M, Maroco J, Miguel C
(2006) Improved axillary and adventitious bud regeneration from
Portuguese genotypes of Pinus pinaster Ait. Propag Ornam
Plants 6:24–33

Umebayashi T, Fukuda K, Haishi T, Sotooka R, Zuhair S, Otsuki K
(2011) The developmental process of xylem embolisms in pine
wilt disease monitored by multipoint imaging using compact
magnetic resonance imaging. J Exp Bot 59:3371–3381

Vicente CSL, Nascimento F, Espada M, Barbosa P, Mota M, Glick
BR, Oliveira S (2012) Characterization of bacteria associated
with pinewood nematode Bursaphelenchus xylophilus. PLoS
ONE 7:e46661. doi:10.1371/journal.pone.0046661

Wang Z, Wang CY, Fang ZM, Zhang DL, Liu L, Lee MR, Li Z, Li JJ,
Sung CK (2010) Advances in research of pathogenic mechanism
of pine wilt disease. Afr J Microbiol Res 4:437–442

Washer J, Reilly KJ, Barnett JR (1977) Differentiation in Pinus
radiata callus culture: the effect of nutrients. J For Sci
7:321–328

Xie LQ, Zhao BG (2008) Post-inoculation population dynamics of
Bursaphelenchus xylophilus and associated bacteria in Pine Wilt
Disease on Pinus thunbergii. J Phytopathol 156:385–389

Zhao B, Liu Y, Lin F (2006) Mutual influences in growth and
reproduction between pine wood nematode Bursaphelenchus
xylophilus and bacteria it carries. Front For China 1:324–327

Zhao L, Wei W, Kang L, Sun JH (2007) Chemotaxis of the pinewood
nematode, Bursaphelenchus xylophilus, to volatiles associated
with host pine, Pinus massoniana, and its vector Monochamus
alternatus. J Chem Ecol 33:1207–1216

Zhao L, Mota M, Vieira P, Butcher RA, Sun J (2014) Interspecific
communication between pinewood nematode, its insect vector,
and associated microbes. Trends Parasitol 30:299–308

Zhu LH, Ye J, Negi S, Xu XL, Wang ZL, Ji JY (2012) Pathogenicity
of aseptic Bursaphelenchus xylophilus. PLoS ONE 7:e38095.
doi:10.1371/journal.pone.0038095

1336 Planta (2015) 241:1325–1336

123


