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Abstract: We study the irreducible decomposition under Sp(2n,R) of the space of tor-

sion tensors of almost symplectic connections. Then a description of all symplectic quadratic

invariants of torsion-like tensors is given. When applied to a manifold M with an almost

symplectic structure, these instruments give preliminary insight for finding a preferred lin-

ear almost symplectic connection on M . We rediscover Ph. Tondeur’s Theorem on almost

symplectic connections. Properties of torsion of the vectorial kind are deduced.
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1 Torsion tensors and symplectic quadratic invariants

1.1 Introduction

In [3] a variational principle was discovered over the space of symplectic connections of a

given symplectic manifold. It enables us to select a preferred type of connection amongst

those important instruments of symplectic geometry. The Euler-Lagrange equations, or field

equations, were deduced in the same article and properties of the preferred connections were

subsequently studied in [6–8].

Already in [19] we find the decomposition into irreducible components of the curvature

tensor of a symplectic connection, which satisfies the Bianchi identity due to the torsion-free
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condition. There exist two types of symplectic curvature tensors, which have been given the

names of Ricci and Weyl. The so-called Ricci-type connections are then defined to be those

for which the Weyl part of the curvature vanishes. The main reason for their importance is

that Ricci-type connections are included in the above set of preferred connections.

It was proved, cf. [6,8,20], that the Ricci type connections solve the integrability equations

of the respective twistor space of the symplectic manifold, i.e. the bundle of linear tangent

complex structures endowed with a canonical complex structure induced by the symplectic

connection. Further insight into twistor theory was given in [2], sustaining the idea that

more interactions with Hamiltonian mechanics and complex geometry should be pursued.

Hence our present and hopefully future interest in the subject.

In this article we wish to explore the almost symplectic case, i.e. we consider a smooth

manifold M endowed with a non-degenerate 2-form ω and a linear connection ∇ such that

∇ω = 0. Recall the vanishing of the torsion yields ω closed. Since the Lie algebra sp(2n,R)

identifies with S2(R2n), the space of almost symplectic connections is in 1-1 correspondence

with the space of sections of 2-symmetric tensors with values on T ∗M .

We prove a few original results following our study of almost symplectic structures. We

rediscover one remarkable result of Ph. Tondeur, Theorem 2.1, which seems to have been left

aside through time. Our main focus is on the torsion tensor, its Sp(2n,R)-irreducible com-

ponents and the study of its scalar invariants. We deduce there is essentially one quadratic

invariant.

The subject of almost symplectic structures appeared in foundational works such as

those of the mathematicians H.-C. Lee, P. Libermann, A. Lichnerowicz and Ph. Tondeur.

Many new developments have emerged on symplectic Yang-Mills theories, symplectic Dirac

operators and the geometry of Fedosov manifolds. We refer the interested reader to [9,10,18].

1.2 Representation of tensors under Sp(2n,R)

Let (V, ω) be a real symplectic vector space of dimension m = 2n and let G be the symplectic

group Sp(2n,R). Let SkV and ΛkV denote respectively the space of symmetric and skew-

symmetric multivectors. Notice S0V = Λ0V = R and S1V = Λ1V = V .

We wish to study here the decomposition into irreducibles under the group G of the

space V ⊗Λ2V , which, as is well known, agrees with the fibre of the vector bundle of torsion

tensors of a linear connection over an m-dimensional manifold.

We start by recalling an exact sequence, due to Koszul:

0→ SlV
Al,1−→ Sl−1V ⊗ V → . . . Sl−kV ⊗ Λk−1V

Al−k,k−→ Sl−k−1V ⊗ ΛkV . . .→ ΛlV → 0 (1.1)
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where Ap,q : SpV ⊗ Λq−1V → Sp−1V ⊗ ΛqV is given by

Ap,q(u1 · · ·up ⊗ v1 ∧ · · · ∧ vq−1) =

p∑
i=1

u1 · · · ûi · · ·up ⊗ v1 ∧ · · · ∧ vq−1 ∧ ui (1.2)

and A0,q = 0. It is trivial to see Ap−1,q+1Ap,q = 0. To see that the kernel of Ap−1,q+1 is in the

image of Ap,q we recall a dual exact sequence of maps Bp,q : Sp−1V ⊗ ΛqV → SpV ⊗ Λq−1V

defined by

Bp,q(u1 · · ·up−1 ⊗ v1 ∧ · · · ∧ vq) =

q∑
i=1

(−1)iviu1 · · ·up−1 ⊗ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vq

and Bp,0 = 0. We have Ap+1,q ◦ Bp+1,q − Bp,q+1 ◦ Ap,q+1 = (−1)q(p+ q)Id on Sp ⊗ Λq (so we

conclude B is a right inverse on the kernel of A and reciprocally), thus proving exactness

of (1.1). Recall that any isomorphism g ∈ GL(V ) acts by g · (u1 · · ·up ⊗ v1 ∧ · · · ∧ vq) =

gu1 · · · gup⊗gv1∧· · ·∧gvq, inducing natural representation spaces SpV ⊗ΛqV . Then clearly

the maps A and B above are GL(V )-homomorphisms or equivariant.

Now we concentrate on the short exact sequence

0 −→ S3V
A1−→ S2V ⊗ V A2−→ V ⊗ Λ2V

A3−→ Λ3V −→ 0 (1.3)

where Ai = A4−i,i, just to notice that we must study A2 carefully. From now on we consider

just the symplectic group and so the first thing to notice is that the isomorphism V ∼=
V ∗, v 7→ v∗ = ω(v, ) is a G-morphism. Let us define also a map ϕ by

S3V
A1−→ S2V ⊗ V ϕ−→ V −→ 0

ϕ(u1u2 ⊗ v) = ω(u1, v)u2 + ω(u2, v)u1.
(1.4)

It is clearly well defined and a G-epimorphism. Then A1(S
3V ) ⊂ kerϕ because

ϕ(A1(u1u2u3)) = +�
i∈Z3

ω(ui, ui+2)ui+1 + ω(ui+2, ui)ui+1 = 0.

There is a right inverse for ϕ defined through each symplectic basis e1, . . . , en, en+1, . . . , e2n
(we assume ω(ei, ej) = 0, ω(ei, ej+n) = δij, ω(ei+n, ej+n) = 0 for i, j = 1, . . . , n). Let us fix

one of these bases and let ξ be given by

ξ(v) =
1

2n+ 1

n∑
i=1

eiv ⊗ ei+n − ei+nv ⊗ ei. (1.5)

Proposition 1.1. The map ξ : V → S2V ⊗ V is a G-monomorphism, does not depend on

the basis and satisfies ϕξ = Id.
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Proof. We notice that ξ(v) = −1
2n+1

B2,2(v⊗ω), so the first property follows. Let g ∈ G. Since

gω = ω = ei ∧ ei+n (we use Einstein’s convention on sums from 1 to n here and from now

on), ξ is G-equivariant and does not depend on the basis. Finally, let v = viei + vi+nei+n.

Then

(2n+ 1)ϕ(ξ(v)) = ω(ei, ei+n)v + ω(v, ei+n)ei − ω(ei+n, ei)v − ω(v, ei)ei+n

= 2nv + viei + vi+nei+n = (2n+ 1)v

as required. �

Let π = −1
3
B3,1 : S2V ⊗ V → S3V be the left inverse of A1. Hence π is defined by

π(u1u2 ⊗ v) = 1
3
u1u2v. One immediately checks that πA1 = Id and π(ξ(v)) = 0. Now let η

be the G-endomorphism of S2V ⊗ V defined by η = Id− A1π − ξϕ, hence given by

η(u1u2 ⊗ v) = u1u2 ⊗ v − A1(π(u1u2 ⊗ v))− ξ(ϕ(u1u2 ⊗ v))

= 2
3
u1u2 ⊗ v − 1

3
u2v ⊗ u1 − 1

3
u1v ⊗ u2 − ξ(ϕ(u1u2 ⊗ v)).

(1.6)

Theorem 1.1. We have that Im η = kerϕ ∩ kerπ = A′ and

S2V ⊗ V = S3V ⊕A′ ⊕ V (1.7)

is the decomposition into G-irreducible subspaces. The dimension of A′ is 8
3
(n3 − n).

Proof. Since V ⊂ kerπ via ξ, we find that πη = π − πA1π = 0. Furthermore, we proved

ImA1 ⊂ kerϕ. Hence ϕη = ϕ − ϕξϕ = 0. Moreover η is the identity in A′. It is well

known that all powers SkV are G-irreducible. Now for the irreducibility of A′ we appeal to

a result of J. Rawnsley, Notes on W = 0 (unpublished). The methods are also explained

in [4], as the reader may see, relying on a classical Theorem for the decomposition of tensor

products of irreducible representations such as S2V and V . The highest weights are known

for each factor, the Theorem says the highest weights correspond to irreducibles and gives

an immediate algorithm on how to get them for the tensor product.

Recall that for any m-dimensional vector space V , we have dimSkV =
(
m+k−1

k

)
. There-

fore

dimA′ = m(m+ 1)m

2
− (m+ 2)(m+ 1)m

6
−m =

m3 − 4m

3
and the formula for m = 2n follows. �

There is another natural endomorphism of S2V ⊗ V which is important to be aware of.

It is defined by χ(u1u2 ⊗ v) = vu2 ⊗ u1 + vu1 ⊗ u2. One easily checks that χ2 − χ− 2Id = 0

and that ker π and S3V are respectively the −1 and 2 eigenspaces of χ.



Albuquerque — Picken 5

1.3 Torsion tensors

Now we continue with the study of the torsion-like tensors. Consider the map C : V ⊗Λ2V →
V given by C(v ⊗ u ∧ w) = ω(u,w)v + ω(v, u)w − ω(v, w)u — which is clearly well defined.

Theorem 1.2. The space of torsion-like tensors has the decomposition into G-irreducible

subspaces

Λ2V ⊗ V ' A′ ⊕ V ⊕ T ′ ⊕ V (1.8)

where T ′ = kerC ∩ Λ3V . Then T ′ satisfies T ′ ⊕ V = Λ3V .

Proof. The decomposition follows from sequence (1.3) and the previous Theorem. We must

check A2(S
2V ⊗ V ) = A2(A′ ⊕ V ) = kerA3 is contained in kerC. This is true since

C(v ⊗ w ∧ u+ u⊗ w ∧ v) =

ω(w, u)v + ω(v, w)u+ ω(u, v)w + ω(w, v)u+ ω(v, u)w + ω(u,w)v = 0.

Each v ∈ V appears on the right hand side, i.e. inside Λ3V , as v⊗ω = v⊗ ei ∧ ei+n because

then A3(v) = ω ∧ v. Therefore

C(v) = C(v ⊗ ω) = ω(ei, ei+n)v + ω(v, ei)ei+n − ω(v, ei+n)ei = (n− 1)v

and so an element f ∈ Λ3V verifies C2f = (n−1)Cf . Moreover, it decomposes as f− 1
n−1Cf+

1
n−1Cf according to T ′ ⊕ V . The irreducibility of T ′, the primitive 3-forms, is well known

and part of the Hodge-Lepage sequence. Its dimension is
(
2n
3

)
− 2n = 2

3
n(2n2 − 3n− 2). �

A torsion-like tensor in any of the invariant subspaces V is said to be of vectorial type.

We shall see their natural formulation in section 2.3.

The above result is very close to the orthogonal group decomposition of metric torsion

tensors found by É. Cartan, as one may see in [1], due to the fact that U(n) = G ∩ O(2n).

Further obstacles in other geometrically relevant representation spaces are to be found also

in [12, 16]. According to [19, 21], an approach to the irreducibility of A, T ′ relies on the

quadratic invariants which we study below.

1.3.1 Curvature tensors

The curvature-type tensors we shall use later live in the space <G = S2V ⊗ Λ2V . To study

them we have the exact sequence

0 −→ S4V
A1−→ S3V ⊗ V A2−→ S2V ⊗ Λ2V

A3−→ V ⊗ Λ3V
A4−→ Λ4V −→ 0 (1.9)
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where Ai = A5−i,i. Curvature tensors may or may not satisfy the Bianchi identity. This

corresponds exactly with the kernel of A3; indeed it is easy to see that the Bianchi map is

IdV ⊗ A3 with A3 of (1.3) composed with the inclusion S2V ⊗ Λ2V ↪→ V ⊗ V ⊗ Λ2V , and

this composition is the map A3 of (1.9).

We know from [19] that kerA3 = E⊕W , irreducibly. The contraction of V with S3V using

ω yields one S2V , which corresponds to the so-called Ricci-type curvatures (of Ricci-type

connections, for which a formula is found eg. in [3]).

1.4 Symplectic quadratic invariants

Let us continue with the symplectic vector space (V, ω) of dimension m = 2n. Associated to

the space of k-tensors Q ∈ ⊗kV we have polynomial symplectic invariants in the components

of Q. We refer to the theory explained in [19]. By [21] it is known that every polynomial

invariant is algebraically generated by so called h-products of symplectic traces, i.e. degree

h homogeneous polynomials

r(Q) =
2n∑

i1,...,i2t=1

σ̂(⊗hQ)i1,...,i2tω
i1i2 · · ·ωi2t−1i2t , (1.10)

where kh = 2t and σ ∈ S2t is some fixed permutation acting on the indices of ⊗hQ. As usual,

ωij denotes the inverse matrix of ω(ei, ej) given from some chosen basis ei, i = 1, . . . , 2n.

Indeed, since for g ∈ G the induced transformations are eα = gαiei and ωαβ = gαigβjωij,

implying ωαβ = gi
′αgj

′βωi
′j′ , the G-invariance holds.

Now we concentrate on a 3-tensor Q and the quadratic invariants. Note that for odd

tensors we can only consider even degree h-products of symplectic traces. The symbol “...”

will always denote QijkQpql. We also use the Einstein summation convention throughout.

Theorem 1.3. i) If Q is symmetric in any two indices, then every quadratic symplectic

invariant on Q is 0.

ii) If n > 1, the quadratic symplectic traces are classified by the following list:

r1(Q) = ... ωikωjpωql r2(Q) = ... ωijωkpωql

r3(Q) = ... ωikωjlωpq r4(Q) = ... ωiqωjlωkp
(1.11)

which are linearly independent symplectic invariants.

iii) If n = 1, then in (1.11) we have r1 = r2 = −r3 = r4 6= 0. If moreover Q is skew-

symmetric in any two indices, then every quadratic symplectic invariant is 0.

iv) Up to scalar factor there is a unique non-vanishing quadratic symplectic trace:

r(Q) = QijkQpqlω
ijωkpωql. (1.12)
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on the space of tensors Q such that Qijk = −Qjik.

v) If Qijk is totally skew-symmetric, then r(Q) = 0.

Proof. As we observed previously, our study is restricted to quadratic symplectic traces. Let

Qijk denote any 3-tensor. It is easy to understand that is enough to analyse the following

traces (note the r1, r2, r3, r4 below are not those in the Theorem). With i, j, k in a first fixed

position:

r1Q = ... ωikωjqωpl r2Q = ... ωikωjpωql r3Q = ... ωikωjlωpq

and then in a second fixed position:

r4Q = ... ωipωjlωkq r6Q = ... ωiqωjpωkl r8Q = ... ωilωjpωkq

r5Q = ... ωipωjqωkl r7Q = ... ωiqωjlωkp r9Q = ... ωilωjqωkp

(applying σ̂ on the, of course, equivalent to (1.10) with the different permutations). Now in

cases a = 1, 4, 5, 6, 9, the invariant raQ is 0 because of the labelling permutation i↔ p, j ↔
q, k ↔ l. For instance, in case 1 we find

r1Q = QpqlQijkω
plωqjωik = −r1Q = 0

and in case 4 the permutation yields

r4Q = QpqlQijk ω
piωqkωlj = −r4Q = 0.

Cases 5, 6 and 9 are analogous. By the same permutation, r8 = ... ωpkωqiωlj = −r7 and,

finally, r9 = ... ωpkωqjωli = −r9 = 0.

Notice we have other cases to consider, formally analogous to the above ra, a = 1, 2, 3:

r1′Q = ... ωijωkqωpl r2′Q = ... ωijωkpωql r3′Q = ... ωijωklωpq

r2′′Q = ... ωjkωipωql

and the reader may further see a r1′′ = −r2 and a r3′′ = −r2′ . Apart from r′2, all these

are only formally new, since we have r1′ = ... ωpqωljωik = −r3, clearly r3′ = 0 and r2′′ =

... ωqlωpiωjk = −r2′′ = 0.

For the case of r2 with Qpql symmetric in ql or in pl, then clearly we get r2Q =

... ωikωjpωql = 0. If it is symmetric in pq, then r2Q becomes

QjikQpqlω
jkωipωql = QqplQjikω

qlωpiωjk = 0.

In case of r7, with Qpql symmetric in ql, then we have

r7Q = ... ωilωjqωkp = QpqlQijkω
pjωqkωli = ... ωpkωqjωli = 0.
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The same is true for symmetries in pq or pl, as straightforward computations would show.

Since r3 and r′2 are similar to r2 we have proved i).

Finally we must prove linear independence in general of r2, r2′ , r3, r7, which agree with

the r1, r2, r3, r4 in (1.11). This is a simple task running through four examples, easy to find,

which make all invariants vanish except one. For instance, if we take Q = 1113 + 1324, then

r2 = 1, r2′ = 0, r3 = 0, r7 = 0 using a symplectic basis — for which the first four vectors

satisfy ω1,2 = ω1,4 = ω2,3 = ω3,4 = 0, ω1,3 = ω2,4 = 1. With r2′ we take Q = 1131 + 1324, with

r3 we take Q = 1123 + 1244 and with r7 we take Q = 1122 + 1434.

Notice the case n = 1 is different. We use a symplectic basis, such that ω12 = −ω21 = 1.

Then we compute:

r2Q = Q112Q212 −Q112Q221 −Q122Q112 +Q122Q121

−Q211Q212 +Q211Q221 +Q221Q112 −Q221Q121

r2′Q = Q121Q212 −Q122Q112 +Q122Q121 −Q121Q221

−Q211Q212 +Q212Q112 −Q212Q121 +Q211Q221 = r2Q

r3Q = Q112Q122 −Q122Q121 −Q112Q212 +Q122Q211

−Q211Q122 +Q221Q121 +Q211Q212 −Q221Q211 = −r2Q

r7Q = Q111Q222 −Q112Q122 −Q121Q221 −Q211Q212

+Q221Q211 +Q212Q112 +Q122Q121 −Q222Q111 = r2Q

and this is non zero as the example Q = 1112 + 1122 shows. This proves ii) and iii).

To prove iv) suppose Q is such that Qijk = −Qjik. Then it is easy to see

r2Q = QjikQqplω
jkωiqωpl = QpqlQijkω

plωqiωkj = −r2Q = 0

and in the same way r2′ = r3 and r7 = r6 = 0. We should also verify that r2′ does not vanish:

let Q be given by

Qijk =


1 (i, j, k) = (1, 3, 2) or (4, 3, 1)

−1 (i, j, k) = (3, 1, 2) or (3, 4, 1)

0 elsewhere

,

which in the previous notation would be Q = 1132 − 1312 + 1431 − 1341. Then Q is skew in ij

and r2′Q = 2Q132Qpqlω
13ω2pωql = 2.

Finally, to prove v) we see that the hypothesis on Q implies r2′Q = r1Q = 0. �

We may state, directly from case iv) above, the following.

Corollary 1.1. If Qijk = Qh
ijωhk is skew-symmetric in ij, then the space of quadratic sym-

plectic invariants is generated by Qp
ijQ

q
pqω

ij.

Proof. Indeed, r(Q) = Qh
ijQ

o
pqωhkωolω

ijωkpωql = Qp
ijQ

q
qpω

ij. �
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2 Almost symplectic connections

2.1 The Theorem of Tondeur

It is well known that a manifold M admits a non-degenerate 2-form ω ∈ Ω2 if and only if

M is almost complex. So we will be considering the category of almost complex manifolds,

but from the perspective of symplectic geometry. We only assume M has a preferred non-

degenerate 2-form ω.

In the theory of linear connections one may consider almost symplectic connections ∇ :

Ω0(TM)→ Ω1(TM), i.e. such that ∇ω = 0. If the torsion

T∇(X, Y ) = ∇XY −∇YX − [X, Y ] (2.1)

is 0, ∀X, Y ∈ XM = Ω0(TM), then the connection is called symplectic.

Proposition 2.1 (cf. [3, 19]). Let M admit a non-degenerate 2-form ω.

i) There exists an almost symplectic connection ∇ on M .

ii) The space of all almost symplectic connections with fixed torsion is Ω0(S3T ∗M).

Proof. Let ∇̃ be any connection on M . Let ∇ = ∇̃ + A, with A ∈ Ω1(EndTM) given by

ω(AXY, Z) = 1
2
∇̃Xω(Y, Z). Then

∇Xω(Y, Z) = ∇̃Xω(Y, Z)− ω(AXY, Z)− ω(Y,AXZ) = 0

as required. If∇′−∇ = A is the difference between two connections such that∇′ω = ∇ω = 0,

then we may say A belongs to Ω0(S2T ∗M⊗T ∗M) = Ω1(S2T ∗M). If moreover AXY = AYX,

the condition for equal torsion, then we have that A is a completely symmetric 3-tensor. �

It is quite frequently stated that a symplectic manifold admits a symplectic connection.

We were pleased to be able to generalise this result to make it into an equivalence statement,

but it turned out the result was already known, due to Philippe Tondeur, cf. [9, 17]. We

present it here with a simple original proof.

Theorem 2.1 (Ph. Tondeur). There exists an almost symplectic connection ∇ on M such

that, ∀X, Y ∈ XM ,

ω(T∇(X, Y ), Z) =
1

3
dω(X, Y, Z). (2.2)

A symplectic connection exists on M if and only if dω = 0.

Proof. On any manifold we always have a torsion free linear connection ∇0. Suppose ∇ =

∇0 +A is an almost symplectic connection, given by the above Proposition, and let a 1-form

B ∈ Ω1(EndTM) be defined by

ω(BXY, Z) = a[ω(AYX,Z) + ω(AZX, Y )] + b[ω(AYZ,X) + ω(AZY,X)] (2.3)
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with a, b to be determined. Since (2.3) is symmetric in Y, Z, the resulting connection ∇1 =

∇+B is almost symplectic. Since T∇
1
(X, Y ) = T∇

0
(X, Y ) +AXY −AYX +BXY −BYX,

we find

ω(T∇
1

(X, Y ), Z) = (1− a)ω(AXY − AYX,Z) + (a− b)ω(AZX, Y )

−bω(AXZ, Y ) + (a− b)ω(−AZY,X) + bω(AYZ,X).

Choosing a, b such that a− b = b and 1− a = b, that is, a = 2/3 and b = 1/3, yields

ω(T∇
1

(X, Y ), Z) =
1

3

(
ω(T∇(X, Y ), Z) + ω(T∇(Y, Z), X) + ω(T∇(Z,X), Y )

)
which is equal to 1

3
dω(X, Y, Z), due to the well known formula

dω(X, Y, Z) = +�
X,Y,Z

(
∇Xω (Y, Z) + ω(T∇(X, Y ), Z)

)
.

The last formula shows, reciprocally, that any ∇ symplectic implies ω closed, which

completes our proof. �

Suppose we are in the Hermitian setting (M,J, g, ω), with g the metric, ω = Jyg and

J compatible. Then we have an almost symplectic connection: the canonical Hermitian

connection ∇X = DX − 1
2
J(DXJ) induced from the Levi-Civita connection D of M . Indeed

∇ is a u(n)-connection. Then the equation given by Tondeur’s Theorem T∇ = 1
3
dω is verified

by the nearly Kähler structures, i.e. those J satisfying

g((DXJ)X, Y ) = 0, ∀X, Y. (2.4)

Notice by Gray-Hervella’s classification of almost Hermitian geometries through the triple

J, ω,D, the nearly Kähler condition is equivalently given as Dω = 1
3
dω.

2.2 Symplectic invariants of torsion tensors

Let M be an almost symplectic 2n-manifold, distinguished by a non-degenerate 2-form. Let

∇ be any almost symplectic connection and T∇ denote its torsion. Let e1, . . . , e2n denote any

local frame on M , let ωij = ω(ei, ej) and ωpq denote the inverse: ωijω
jq = δqi . Furthermore,

let

Tijk = ω(T∇(ei, ej), ek) = T hijωhk. (2.5)

By Theorem 1.3, in particular by (1.12), we may define the invariant

t∇ = TijkTpqlω
ijωkpωql. (2.6)

Of course, the summation indices i, j, k, p, q, l vary from 1 to 2n.
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Remark. By Corollary 1.1 we also have t∇ = T pijT
q
qpω

ij. And t∇ = −ρ∇ijωij, where

ρ∇(X, Y ) = Tr T∇(T∇(X, Y ), ·), which is a 2-form on M . This is a straightforward compu-

tation. Other possible traces will only give the trivial invariant.

Theorem 2.2. Up to a scalar multiple, t∇ is the only real quadratic Sp(2n,R)-invariant on

the torsion of linear connections on M .

If ω(T∇(X, Y ), Z) is totally skew-symmetric or T∇ is in the space of torsion tensors

corresponding to A′ in Theorem 1.2, then t∇ = 0.

Proof. The first part is straightforward from Corollary 1.1. The second follows from part

v) of Theorem 1.3. For the third statement notice A′ can only be in the kernel of the trace

map T 7→ Tpqlω
ql. Then recall the definition of t∇. �

Proposition 2.2. If M is a symplectic manifold, then t∇ = 0 for any almost symplectic

connection ∇.

Proof. By Theorem 2.1 we may assume the existence of a symplectic connection. The dif-

ference between this and any given almost symplectic ∇ is a tensor A such that ω(AXY, Z)

is symmetric in Y, Z. Since T∇(X, Y ) = AXY − AYX, we find

t∇ = (Aijk − Ajik)(Apql − Aqpl)ωijωkpωql = 0

by part i of Theorem 1.3. �

Remark. Given an almost symplectic ∇ and a direction A ∈ Ω1(sp(TM,ω)), we have

a ray of almost symplectic connections ∇s = ∇+ sA, s ∈ R, and then we easily deduce its

variation:
∂

∂s |s=0
t∇

s

=
(
2AijkTpql − AqplTijk

)
ωijωkpωql. (2.7)

This corresponds to dt∇(A), the derivative of the quadratic invariant at the point ∇ in the

space of connections. We lack a characterization of the critical points of t∇, i.e. we do not

know what the vanishing of (2.7) for all A tells us about ∇.

We may also consider gauge transformations: we choose any g ∈ Ω0(Sp(TM,ω)) and

produce ∇′XY = g ◦∇X ◦ g−1 Y = ∇XY − (∇Xg)g−1Y . The direction A = −(∇g)g−1 is not

stable under the quadratic invariant, nor is its derivative.

Now let φ : M −→M be a symplectomorphism on the manifold M endowed with a linear

connection. We shall restrict our attention to the case of an almost symplectic connection ∇,

although this is not essential. Furthermore, what follows may be said in the wider context

of symplectomorphisms between two almost complex manifolds with chosen ω and ∇. The

reader can easily adapt what follows to the latter framework.
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Recall that any diffeomorphism φ acts on vector and tensor fields. It also acts on con-

nections,

(φ · ∇)XY = φ ·
(
∇φ−1·Xφ

−1 · Y
)

(2.8)

∀X, Y ∈ XM . The functoriality of this action is well known: T φ·∇ = φ · T∇, and analogously

with the curvature tensor.

Proposition 2.3. The group Symp(M,ω) acting on the space of almost symplectic connec-

tions transforms the invariant t∇ by

tφ·∇ = t∇ ◦ φ−1. (2.9)

Moreover,
∫
M
t∇ ω

n

n!
is an invariant of the orbit of ∇.

Proof. Since φ∗ω = ω, we also have φ · ∇ ω = 0. Now, since (φ−1 · ei)x = dφ−1y (ei), ∀x ∈M ,

where y = φ(x) and ei is any basis of TyM , we have

ωy(T
φ·∇(ei, ej), ek) = ωx(T

∇(φ−1 · ei, φ−1 · ej), φ−1 · ek).

Then we use the invariance of ω and ω−1 under φ. Hence we get the stated formula and∫
M

tφ·∇
ωn

n!
=

∫
M

φ∗
(
tφ·∇

ωn

n!

)
=

∫
M

t∇
ωn

n!

since φ preserves orientation. �

Finally we observe that t∇ is a Symp(M,ω) invariant real function of the almost sym-

plectic connection (and not of the almost symplectic structure, because there exists always

a connection such that t∇ = 0, cf. Theorems 2.1 and 2.2). The same is true with the scalar

invariant
∫
t∇ seen in the last Proposition. Nevertheless, the values taken by these invari-

ants are strongly dependent on ω and may, in some cases, be determined by ω, as shown by

Proposition 2.2.

2.3 Almost symplectic connections with vectorial torsion

As we saw earlier, almost symplectic connections of vectorial torsion can be of two types.

We now give some results on the quadratic invariant for these.

In [15] we find the notion of “conformal class of an almost symplectic manifold (M,ω)

with a fixed almost symplectic connection ∇”:

C = {(e2fω,∇f ) : f ∈ C∞M(R)} (2.10)

where

∇f
XY = ∇XY +X(f)Y + Y (f)X + ω(X, Y )grad f (2.11)
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and grad f is the symplectic gradient: ω(grad f,X) = X(f).

Since (∇f )g = ∇f+g we deduce the transitivity of the conformal factor; the class arises

from an equivalence relation.

It is proved in [15] that ∇f (e2fω) = 0 and T∇
f

= T∇ + 2ω grad f . We add the following

remark.

Proposition 2.4. Writing ∇f = ∇ + Af , we have a R-linear map A : C∞M →Ω1(EndTM)

such that Af1f2 = f1A
f2 + f2A

f1. Two connections ∇,∇f share the same unparametrized

geodesics on the level sets of f .

Now we shall consider the case when ω is closed, and hence we may assume that ∇ is

torsion-free. We then fix a function f and introduce another vector field U ∈ XM . We shall

study the more general case of ∇U,f given by

ω(∇U,f
X Y, Z) = ω(∇f

XY, Z) +
1

2

(
ω(X, Y )ω(U,Z) + ω(U, Y )ω(X,Z)

)
. (2.12)

Notice the symmetry in Y, Z on the rhs, implying that ∇U,f is still an almost symplectic

connection for ω′ = e2fω.

Proposition 2.5. Let ∇ be a torsion-free, symplectic connection on M,ω and let U ∈ XM

be any vector field. Then the torsion of ∇U,f is given by

T∇
U,f

(X, Y ) = ω(X, Y )(2grad (f) + U) +
1

2
ω(U, Y )X − 1

2
ω(U,X)Y (2.13)

and hence t∇
U,f

= 2e−2f (2n2 − n− 1)U(f).

Proof. The first formula is trivial. For the second, consider the following tensor

T (X, Y ) = ω(X, Y )A+ ω(X,W )Y − ω(Y,W )X (2.14)

with A,W fixed. Then a long but simple computation yields

TijkTpqlω
ijωkpωql = 2(2n2 − n− 1)ω(A,W ).

The result now follows introducing A = U + 2grad f, W = 1
2
U , which is the case for the

torsion of ∇U,f , finding

t∇
U,f

= 2e−2f (2n2 − n− 1)ω(A,W ) = 2e−2f (2n2 − n− 1)U(f).

The conformal factor is indeed e(2−3)2f . �
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The torsion in (2.13) is of vectorial type of the most general kind, as we deduce from

(1.8) in section 1.3. Notice W = −A corresponds with the totally skew symmetric case, cf.

(2.14).
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