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Lattices Related to Conway’s Construction

Abstract

In 2002 and 2012 some results on the lattice structure associated with
Conway’s construction were proved. It was also shown that the set of games
born by day n is a complete distributive lattice and that this structure is
maintained with a not-empty initial set, provided that it is self-generated.

This work deepens the sufficient condition for distributivity. The first
known example of non-distributive modular lattice from a Conway’s con-
struction is given. The main result is the Representation Theorem with
Games, which states that complete lattices, finite and infinite, can emerge
on the first day of a Conway’s construction for some initial set. Finally, the
transfinite construction is analyzed: a Convergence Theorem for Conway’s
construction is proved, and a condition that establishes whether the class of
games born in the days before a certain ordinal is a lattice is presented.





Reticulados Relacionados com a Construção de

Conway

Resumo

Em 2002 e 2012 foram provados alguns resultados sobre a estrutura de
reticulado associada à construção de Conway. Foi também mostrado que
o conjunto dos jogos nascidos até ao dia n é um reticulado distributivo
completo e que essa estrutura é mantida considerando um conjunto inicial
não vazio, desde que seja auto-gerado.

Neste trabalho é aprofundada a condição suficiente de distributividade
e é dado o primeiro exemplo conhecido de reticulado modular não distribu-
tivo proveniente de uma construção tipo Conway. O principal resultado é o
Teorema de Representação com Jogos que estabelece que reticulados com-
pletos, finitos e infinitos, podem emergir no primeiro dia de uma construção
de Conway para certo conjunto inicial. Finalmente, é analisada a construção
transfinita: é provado um Teorema de Convergência para a construção de
Conway, e é apresentada uma condição que estabelece se o conjunto dos
jogos nascidos em dias anteriores a um certo ordinal é um reticulado.
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Introduction

This work focuses on lattices that appear in Combinatorial Game Theory.
Although the existence of an order relation in the set of combinatorial games
is known, results on the lattice structure are recent. In the early 2000’s, Cal-
istrate, Paulhus, and Wolfe published a paper that states that the games
born by day n form a distributive lattice. Some more results on the lattice
of day n’s structure, such like bounds on the number of elements and lev-
els, have been introduced since, but there are still several open questions
on this issue. In particular, in 2012, Albert and Nowakowski introduced a
generalized Conway’s construction with an initial set of games, and proved
that the set of children of a set of games is a complete lattice. In the same
paper, a condition on the initial set is given that guarantees the lattice’s
distributivity. This condition is rather strong, what motivates the study of
weakener ones. More, Nowakowski conjectured that every modular lattice
was also distributive lattice. This proved to be wrong, and, in this text,
an example of a non-distributive modular lattice is given. More, the main
contribution of this work is to prove that every complete lattice can be gen-
erated from a set of combinatorial games, and show how to do it. Also,
Conway’s transfinite construction is studied, for which it is shown that Con-
way’s construction with an initial set coincides, at some point, with the
usual Conway’s construction. More, it is shown in which conditions the set
of games born in days before a certain ordinal is a lattice.

This text is structured in 5 chapters. Chapter 1 contains background re-
quired on orders, lattices, well-ordered sets, and ordinal numbers, and some
specific results needed in the remaining chapters. Chapter 2, is an introduc-
tion to Combinatorial Game Theory. Combinatorial Game Theory exists as
an independent subject from the later twentieth century, and studies two-
player games with no hidden information and no chance devices. Not only
does its results allow players to understand (and win) games, but it inter-
sects with other branches of Mathematics. Also, connections with several
other subjects, like Artificial Intelligence and Economics, have been made.

In Chapter 3, the lattice structure of the set of games born by day n is
introduced. It is shown that it is a distributive lattice, and the operations of
join and meet are defined. Also, it is shown that the set of all short games
is not a lattice, since it lacks the join of two fuzzy elements. Next, Conway’s
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construction with an initial set of games is introduced, and the resulting
set’s structure is studied. It is shown that the set of children of any set of
games is a complete lattice, and that, if the initial set is self-generated, then
the lattice is distributive.

Chapters 4 and 5 contain the main contributions of this work. In Chap-
ter 4, another condition on the initial set of games is given that implies the
distributivity of the lattice of children. When trying to characterize sets that
yield a distributive lattice of children, Nowakowski’s conjecture that every
modular lattice is distributive is disproved. Although the meant characteri-
zation is not obtained, an example of a non-distributive, modular lattice of
children is given.

In Chapter 5, a Representation Theorem with Games is proved. After es-
tablishing a first case, allowing the generation of all finite lattices, the result
is extended to the infinite case. This theorem states that for a well chosen
S (allowing the axiom of choice) every complete lattice is isomorphic to the
lattice of children, excluding the top and bottom elements. Also, Conway’s
transfinite construction is studied. A Convergence Theorem is proved, that
states that Conway’s construction with any initial set corresponds with Con-
way’s construction, that is, for every generating set S, there is an ordinal γ
such that Lγ(S) = Lγ(∅), and it is shown in which conditions the class of
games born in days before a certain ordinal is a lattice.

After the main chapters, some directions for future work are given.
In Appendix A, the application used to compute and draw the lattice of

children of a given set of games is presented.
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Chapter 1

Preliminaries

In this chapter some basic definitions on orders, lattices, well-ordered sets,
and ordinal numbers are presented, along with some results used in following
chapters. Most of them are usually found in introductory courses on algebra
or algebraic structures, and set theory, and their proofs do not require any
advanced tools on the subject. The proofs of more advanced results needed
can be found in the referred bibliography.

For a more detailed approach on orders and lattices, the reader can
consult [15], [11], [24], or any other book of the many available on the
subject. For results on well-ordered sets and ordinal numbers, the reader
can consult [19], [23], or any other book on set theory.

1.1 Orders

Definition 1.1.1. Let P be a nonempty set. A partial order on P is a
binary relation 6 on P that is reflexive, antisymmetric, and transitive, that
is, for all x, y, z ∈ P ,

1. x 6 x;

2. x 6 y and y 6 x⇒ x = y;

3. x 6 y and y 6 z ⇒ x 6 z.

Observation 1.1.2. A nonempty set equipped with a partial order, (P,6),
is called a partially ordered set or poset . For simplicity, when the relation 6

is understood, a poset (P,6) is denoted only by P .

Let P be a poset. If x, y ∈ P , then:

y > x means that x 6 y,
x < y means that x 6 y but x 6= y

y > x means that x < y.
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Also, x, y are comparable if x 6 y or y 6 x. If neither x 6 y nor y 6 x, then
x, y are called incomparable1, and it is denoted by x ‖ y.

Definition 1.1.3. Let P be a poset. An element y ∈ P covers x ∈ P ,
x ≺ y, if

1. x < y, and

2. x 6 z 6 y ⇒ z = x or z = y.

If P is a finite poset, then the covering relation uniquely determines the
order on P .

Proposition 1.1.4. Let P be a finite poset and x, y ∈ P . Then, x 6 y if
and only if there is a finite sequence of elements p1, p2 . . . , pn ∈ P such that

x ≺ p1 ≺ p2 ≺ . . . ≺ pn ≺ y.

This fact allows finite posets to be represented by a diagram, called Hasse
diagram. Roughly, a Hasse diagram is a graph whose nodes are labeled with
the elements of the poset and whose edges indicate the covering relation.

Example 1.1.5. Consider P = {1, 2, 3, 4, 5} ordered under division. A
Hasse diagram for this poset is:

1

2 3 5

4

Definition 1.1.6. Let P be a poset. A non-empty subset S of P is a chain
in P if every two elements of S are comparable, and it is an antichain in P
if every two elements of S are incomparable.

Example 1.1.7. In Example 1.1.5, {1, 2, 4} is a chain and {2, 3, 5} is an
antichain.

Definition 1.1.8. Let P and Q be posets. A map ϕ : P −→ Q is:

1. an order-preserving map if, for every x, y ∈ P , x 6 y ⇒ ϕ(x) 6 ϕ(y);

2. an order-embedding if, for every x, y ∈ P , x 6 y ⇔ ϕ(x) 6 ϕ(y);

3. an order-isomorphism if it is a surjective order-embedding.

1Usually, combinatorial game theory researchers use the term fuzzy.
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Example 1.1.9.

1. The map ϕ1 given by

a

b c
ϕ1

ϕ1(c)

ϕ1(b)

ϕ1(a)

is not an order-preserving map.

2. The map ϕ2 given by

a

b c

d

ϕ2

ϕ2(a)

ϕ2(b) = ϕ2(c)

ϕ2(d)

is an order-preserving map, but is not an order-embedding.

3. The map ϕ3 given by

a

b c
ϕ3

ϕ3(a)

ϕ3(b) ϕ3(c)

◦

is an order-embedding, but not an order-isomorphism.

Let P = (P,6) be a poset. The relation > is also a binary relation on P
that is reflexive, antisymmetric and transitive. Thus, (P,>) is also a poset,
called the dual of (P,6), usually denoted by P ∂ .

Observe that if P is finite, the Hasse diagram of P ∂ can be obtained by
turning upside down P ’s diagram.

Example 1.1.10. A Hasse diagram for the dual poset of Example 1.1.5 is:

1

2 3 5

4
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To each statement about a poset P , there is a corresponding one about
P ∂ : if Φ is a statement about orders, the dual of Φ, Φ∂ , is the statement
obtained from Φ replacing all occurrences of 6 by >.

An important and widely used fact about dual sentences is the following
Duality Principle:

Theorem 1.1.11 (Duality Principle). Let Φ be a statement about ordered
sets. If Φ is true in all orders, then its dual, Φ∂, is also true in all orders.

Let P be a poset. If an element ⊤ exists such that x 6 ⊤ for every
x ∈ P , it is unique, and is called the top element of P . Dually, if an element
⊥ exists such that ⊥ 6 x for every x ∈ P , it is also unique, and is called the
bottom element of P .

Example 1.1.12. The poset in Example 1.1.5 has bottom element 1, but
has no top element.

If a poset P lacks a top element, it is possible to adjoin one: consider an
element, say, ⊤, such that ⊤ 6∈ P , let

P⊤ = P ∪ {⊤},

and define 6 on P⊤ by

x 6 y if and only if y = ⊤ or x 6 y in P .

Analogously, it is possible to adjoin a bottom element, by considering
an element ⊥ 6∈ P , let

P⊥ = P ∪ {⊥},

and 6 on P⊥ by

x 6 y if and only if x = ⊥ or x 6 y in P .

Example 1.1.13. For Example 1.1.5, P⊤ = {1, 2, 3, 4, 5} ∪ {⊤} has Hasse
diagram:

1

2 3 5

4

⊤

Definition 1.1.14. Let P be a poset with ⊥. An element x ∈ P is an atom
of P if ⊥ ≺ x.
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Example 1.1.15. In Example 1.1.5, the elements 2, 3, and 5 are atoms.

Definition 1.1.16. Let P be a poset and S ⊆ P .

1. An element m ∈ S is a maximal element of S if

m 6 x and x ∈ S ⇒ x = m.

If S has a top element, it is called the maximum element of S.

2. An element m ∈ S is a minimal element of S if

x 6 m and x ∈ S ⇒ x = m.

If S has a bottom element, it is called the minimum element of S.

1.2 Lattices

Definition 1.2.1. Let P be a poset and S ⊆ P . An element p ∈ P is an
upper bound of S if x 6 p for every x ∈ S. Dually, p ∈ P is a lower bound
of S if p 6 x for every x ∈ S.

Denote by Su the set of all upper bounds of S, and by Sl the set of
all lower bounds of S. If Su has a least element, it is called the least upper
bound or supremum of S, and is denoted by

∨
S. Dually, if Sl has a greater

element, it is called the greatest lower bound or infimum of S, and is denoted
by
∧
S. When S is finite, say S = {s1, . . . , sn},

∨
S and

∧
S are usually

denoted by s1 ∨ · · · ∨ sn and s1 ∧ · · · ∧ sn, respectively.

Definition 1.2.2. A poset P is a lattice if x ∨ y and x ∧ y exist, for every
x, y ∈ P .

Example 1.2.3. The poset in Example 1.1.5 is not a lattice (for example,
2 ∨ 3 doesn’t exist). However, the set P = {1, 2, 3, 4, 6, 12} ordered under
division, is a lattice:

1

2 3

4 6

12

Definition 1.2.4. A lattice P is complete if
∨
S and

∧
S exist, for every

S ⊆ P .
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Example 1.2.5.

1. Every finite lattice is complete.

2. Let S be a set. The poset (2S ,⊆) is a complete lattice, with, for
X ⊆ 2S ,

∨
X =

⋃
X and

∧
X =

⋂
X.

3. The poset (Z,6) is a lattice, but it is not complete, since
∨

Z and
∧

Z
don’t exist.

If P is a lattice, then ∨ and ∧ are binary operations on P , called, re-
spectively, join and meet . It is possible to describe the lattice using these
operations:

Theorem 1.2.6.

1. Let L = (L,6) be a lattice. Then, for every x, y, z ∈ L,

(L1) x ∨ x = x and x ∧ x = x;

(L2) x ∨ y = y ∨ x and x ∧ y = y ∧ x;

(L3) (x ∨ y) ∨ z = x ∨ (y ∨ z) and (x ∧ y) ∧ z = x ∧ (y ∧ z);

(L4) x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x.

2. Let L be a nonempty set equipped with two binary operations ∨ and ∧
satisfying (L1)− (L4). Then L = (L,6), where, for every x, y ∈ L,

x 6 y ⇔ x ∨ y = y

(⇔ x ∧ y = x),

is a lattice.

If L and M are lattices, an order-preserving map ϕ : L −→ M may not
preserve joins and meets (see, for example, ϕ2 from Example 1.1.9).

Definition 1.2.7. Let L and M be lattices. A map ϕ : L −→M is:

1. a join-homomorphism if, for every x, y ∈ L, ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y)
(and dually, a meet-homomorphism if, for every x, y ∈ L, ϕ(x ∧ y) =
ϕ(x) ∧ ϕ(y));

2. a join-embedding if it is a one-to-one join-homomorphism;

3. a lattice-homomorphism if it is a join- and meet-homorphism;

4. a lattice-isomorphism if it is a bijective lattice-homorphism.

Example 1.2.8.

1. The map ϕ1 given by

8



a

b c

d

ϕ1

ϕ1(a)

ϕ1(b) ϕ1(c)

◦

ϕ1(d)

is a meet-homomorphism, but is not a join-homomorphism.

2. The map ϕ2 given by

a

b c

d

ϕ2

ϕ2(a)

ϕ2(b) ϕ2(c)

ϕ2(d)

◦

is a lattice-homomorphism, but is not a lattice-isomorphism.

A useful known fact is that ϕ is a lattice-isomorphism if and only if it
is an order-isomorphism, so, in general, it is usual to write that ϕ is an
isomorphism.

There are several kinds of special lattices that have additional properties.
In this work, the following ones have special interest:

Definition 1.2.9. Let L be a lattice.

1. L is distributive if it verifies the distributive law, that is, for every
x, y, z ∈ L, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

2. L is modular if it verifies the modular law, that is, for every x, y, z ∈ L,
x 6 z ⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ z.

Observe that, if a lattice is distributive, then it is modular.

Example 1.2.10.

1. The lattice in Example 1.2.3 is modular and distributive.

2. The diamond latticeM3, in Figure 1.1, is modular but not distributive,
since a ∧ (b ∨ c) = a ∧ 1 = a but (a ∧ b) ∨ (a ∧ c) = 0 ∨ 0 = 0.

3. The pentagon lattice N5, in Figure 1.2, is not modular and not dis-
tributive, since a 6 c but a∧(b∨c) = a∧1 = a and (a∧b)∨c = 0∨c = c.

9



0

a b c

1

Figure 1.1: M3

0

a
b

c

1

Figure 1.2: N5

There are several ways to characterize distributivity and modularity. A
well-known and widely used one is the characterization by forbidden sublat-
tices.

Definition 1.2.11. Let L be a lattice. A nonempty subset S of L is a
sublattice if, for every x, y ∈ L,

x, y ∈ S ⇒ x ∨ y, x ∧ y ∈ S.

Example 1.2.12. Let S = {a, b, c}, and consider the lattice (2S ,⊆).

∅

{a} {b} {c}

{a, b} {a, c} {b, c}

S

It is easy to verify that {∅, {c}, {a, b}, S} is a sublattice of 2S .

The set X = {∅, {a}, {b}, S} is not a sublattice of 2S , since {a} ∨ {b} =
{a, b} 6∈ X. Observe, however, that (X,⊆) is a lattice.

∅

{a} {b}

S

Theorem 1.2.13 (M3 −N5 Theorem). Let L be a lattice.

1. L is modular if and only if does not contain a sublattice isomorphic to
N5.

10



2. L is distributive if and only of does not contain a sublattice isomorphic
to either M3 or N5.

In some cases, it is possible to obtain stronger results. In particular, an
important one for this work is the following.

Proposition 1.2.14 ([14]). Let L be a finite modular lattice. Then L is
distributive if and only if it does not contain a cover-preserving diamond,
that is, a sublattice isomorphic to M3 in which 0 ≺ a, b, c ≺ 1.

Definition 1.2.15. Let L be a lattice. An element x ∈ L is join-irreducible
if

x 6= ⊥ and x = y ∨ z ⇒ x = y or x = z.

Dually, x is meet-irreducible if x 6= ⊤ and x = y ∧ z ⇒ x = y or x = z.

Example 1.2.16. In Example 1.2.3, the elements 2, 3, and 4 are join-
irreducible.

A widely studied subject in lattice theory is how to represent a lattice.
There are several interesting results, being one of them the Birkhoff’s Rep-
resentation Theorem for distributive lattices. This theorem states that any
finite distributive lattice is isomorphic to a lattice of finite sets, in which the
operations of join and meet correspond to union and intersection, respec-
tively. The construction of this lattice depends heavily on some properties
related to join-irreducible elements, namely, that in a finite lattice, every
element is the join of join-irreducible elements. For an arbitrary lattice, this
decomposition may not be unique (for example, in the lattice M3, a, b, and
c are join-irreducible, and 1 = a∨ b = a∨ c), but if the lattice is distributive,
it is unique.

There are several generalizations of this theorem, obtained from weak-
ening the conditions on the lattice. In this work, the results used are the
following theorem and corollary.

Theorem 1.2.17 ([20]). Let (L,6) be a finite lattice, M its set of meet-
irreducibles and consider the lattice (2M ,⊆). Then,

ϕ : L → 2M ,

ϕ(a) = {y ∈M : y 6> a}

is a join-embedding of (L,6) into (2M ,⊆), that is,

ϕ(a ∨ b) = ϕ(a) ∪ ϕ(b).

Proof. See Theorem 2.6, page 179 of [20].

Corollary 1.2.18. In Theorem 1.2.17’s conditions, considering the range
of ϕ, R(ϕ), finite family of sets closed for unions, ϕ : L → R(ϕ) ⊆ 2M is
an isomorphism such that ϕ(a ∨ b) = ϕ(a) ∪ ϕ(b).

Proof. See page 176 of [20].
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1.3 Ordinal Numbers

Definition 1.3.1. Let W be a poset. W is a well-ordered set if every
nonempty subset of W contains a least element.

Example 1.3.2. The poset (N,6) is well-ordered.

Observe that a well-ordered set is necessarily a chain. The opposite is
not true: not every chain is a well-ordered set. For example, Z, with the
usual order, is a chain, but it is not well-ordered.

If two well-ordered sets are isomorphic, they are said to have the same
order-type.

Definition 1.3.3. Let T be a set. T is transitive if every element of T is a
subset of T .

Example 1.3.4. The set T = {∅, {∅}} is transitive.

Definition 1.3.5. Let α be a set. α is an ordinal (number) if:

1. α is transitive, and

2. (α,∈) is well-ordered.

Ordinals are usually denoted by lower case greek letters and the class of
all ordinals is denoted by Ord.

Observe that, using an argument similar to Russell’s paradox2, it is
possible to conclude that Ord is a proper class, that is, a class that is not a
set. More, every unlimited part of Ord is a proper class, and if A is a proper
class and f : A −→ B is an embedding, then B must also be a proper class.

The following facts are easy to obtain.

Proposition 1.3.6.

1. 0 = ∅ ∈ Ord.

2. If α ∈ Ord and β ∈ α, then β ∈ Ord.

3. If α, β ∈ Ord and α & β, then α ∈ β.

4. If α, β ∈ Ord, then either α ⊆ β or β ⊆ α.

In Ord, it is possible to define an order relation by

α < β if and only if α ∈ β,

for α, β ∈ Ord. Then, the previous proposition yields that:

2
Russell’s Paradox: Consider the set S whose elements are all those (and only those)

sets that are not members of themselves: S = {X : X 6∈ X}. Does S belong to S? If S
belongs to S, then S is not a member of itself, and so S 6∈ S. On the other hand, if S 6∈ S,
then S belongs to S. In either case, it is a contradiction, so one must conclude that S is
not a set.
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1. (Ord,<) is a chain.

2. For each α ∈ Ord, α = {β : β < α}.

3. If C is a nonempty class of ordinals, then
⋂
C ∈ Ord and

⋂
C = inf C.

4. If S is a nonempty set of ordinals, then
⋃
S ∈ Ord and

⋃
S = supS.

As a consequence, it is possible to prove that the definition of ordinals
provide order-types of well-ordered sets.

Theorem 1.3.7 ([19]). Every well-ordered set is isomorphic to a unique
ordinal number.

More, for every α, α ∪ {α} ∈ Ord and α ∪ {α} = inf{β : β > α}. Thus,
define α+ 1, the successor of α, by

α+ 1 = α ∪ {α}.

Definition 1.3.8. Let α ∈ Ord. α is a successor ordinal if α = β + 1, for
some β ∈ Ord. If α is not a successor ordinal, α is said to be a limit ordinal .

Observe that, if α is a limit ordinal, then α = sup{β : β < α}. Also, 0
is considered a limit ordinal, defining sup ∅ = 0.

The least nonzero limit ordinal is usually denoted by ω. The ordinals
less than ω are called finite ordinals or natural numbers:

0 = ∅

1 = 0 + 1 = {∅} = {0}

2 = 1 + 1 = {∅, {∅}} = {0, 1}

3 = 2 + 1 = {∅, {∅}, {∅, {∅}}} = {0, 1, 2}
...

The results needed in Chapter 5 concern a special kind of ordinals. To
obtain it, some facts about ordinal arithmetic are required.

For ordinal numbers, define addition in the following way:

1. α+ 0 = α,

2. α+ (β + 1) = (α+ β) + 1 for all β,

3. α+ β = lim
ξ→β

(α+ ξ) for all limit β > 0.

Observe that ordinal sums are associative, but not commutative: for
example, 1 + ω = ω 6= ω + 1.
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Definition 1.3.9. Let α ∈ Ord. α is additively indecomposable if it cannot
be decomposed into the sum of two smaller ordinals, that is,

β, ξ < α⇒ β + ξ < α.

Call H the proper class of additively indecomposable ordinals (German
“Hauptzahl”).

Proposition 1.3.10. The proper class H is unbounded.

Proof. See [23], page 48.

Finally, the Zermelo’s Well-Ordering Theorem (equivalent to the Axiom
of Choice):

Theorem 1.3.11 (Zermelo’s Well-Ordering Theorem). Every set S can be
well-ordered, i.e., there is α ∈ Ord and a one-to-one correspondence (enu-
meration) Ψ : S 7→ {ξ ∈ Ord : ξ < α}.

Proof. See [19], page 48.

The set {ξ ∈ Ord : ξ < α} is usually called initial segment of Ord
(given by α), and denoted by seg(α). A sequence of elements of S indexed
in ordinals of some initial segment, aξ, is usually called an enumeration of
S.

14



Chapter 2

Combinatorial Games

In this chapter some basic definitions and results on Combinatorial Game
Theory (CGT) are presented. CGT studies two-player games with no hidden
information and no chance devices. It was founded as an independent branch
of Mathematics in the 1970’s/1980’s, with the publication of On Numbers
and Games by John Conway and Winning Ways by Elwyn Berlekamp, John
Conway, and Richard Guy. Beyond its many interesting results that can help
players to win games, it has a rich algebraic structure that is not yet com-
pletely studied, and connections with several other subjects, like Artificial
Intelligence and Economics, have been made.

For better understanding, some concepts are accompanied with examples
(the chosen game is domineering

1). Every result presented can be found
in [3, 5, 10], and the reader can see [13] for a complete survey.

2.1 Basic Concepts

Definition 2.1.1. A combinatorial game is a game which satisfies the fol-
lowing conditions:

1. There are two players who take turns moving alternately;

2. No chance devices such as dice, spinners, or card deals are involved,
and each player is aware of all the details of the game state at all times;

3. The rules of a combinatorial game ensure that, even ignoring the al-
ternating move condition, there is no infinite sequence of legal moves;

4. The winner is determined on the basis of who made the last move.

1
domineering is a two-player game played in a grid. The two players take turns

placing domino pieces on the grid. Each piece covers two adjacent squares. One player,
Left, covers vertically adjacent squares, and the other player, Right, covers horizontally
adjacent squares. The game ends when one of the players can not make a move, and the
last move determines the winner.
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Under normal play , the last player to move wins, while in misère play ,
the last player loses.

In this work, games are always assumed to be played under normal play.
The two players of a combinatorial game are usually called Left (or L,

black or vertical) and Right (or R, white or horizontal).

Example 2.1.2. A game of domineering in a 3×4 grid, with Left playing
first:

L
−→

R
−→

L
−→

R
−→

Under normal play, Right wins. Under misère play, Left wins.

In CGT it is assumed that both players play perfectly. Although it is
not an easy concept to define, we can at least interpret it in the following
way: if a player can force a win, then he makes a move that allows him to
win.

Theorem 2.1.3 (Fundamental Theorem of CGT, [3]). Let G be a combina-
torial game. Then, either the first player or the second player to move can
force a win, but not both.

Proof. By induction, the game obtained after the first move is either a win
for second player moving first or a win for first player moving second. If any
legal first move belongs to the latter category, first player can force a win
by choosing it. Otherwise, second player can force a win.

As a consequence of this theorem, there are just four possible outcomes
for a combinatorial games: the first player to move wins, the second player
to move wins, Left can win regardless of who plays first, or Right can win
regardless of who plays first. So, four outcome classes are defined:

Class Name Definition

N fuzzy The N ext player can force a win

P zero The Previous player can force a win

L positive Left can force a win regardless of who
plays first

R negative Right can force a win regardless of
who plays first

Example 2.1.4. ∈ N , ∈ P, ∈ L, ∈ R.

Suppose that a particular game G is given. If it is Left’s turn to play,
he can choose from a certain set of moves determined by the rules of the
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game. The elements of this set are called the left options of G. The right
options of G are defined similarly. The options of G is the union of the left
and right options of G.

We can draw a game tree of a game using its options, in a rather natural
way.

Example 2.1.5. The game tree of is:

Game trees can be drawn with more or less details, that is, game trees
of options can be omitted and often some options are not presented (for
symmetry reasons, or because another option exists at least as good).

2.2 Basic Definitions

In this section some concepts on games are introduced, in a more mathe-
matical way. All the results presented here can be found in [3].

Definition 2.2.1. A combinatorial game G is a pair of sets of combinatorial
games

G =
{
GL
∣
∣ GR

}
,

where GL is the set of left options and GR is the set of right options of G.

A typical element of GL is denoted by GL and a typical element of GR

is denoted by GR.

Observation 2.2.2. Observe that this definition, as well as the next ones,
is recursive, with base case GL = GR = ∅. The game {∅ | ∅} = { | } is called
zero and is denoted by 0.

Example 2.2.3. The game in Example 2.1.5 can be represented in the form

=

{

, ,

∣
∣
∣
∣

,

}

.

Definition 2.2.4. Let G be a game. G is a short game if it has a form
{
GL
∣
∣ GR

}
such that GL and GR are finite sets of short games. Otherwise,

the game is a long game.
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Definition 2.2.5. Let G be a game. G’s followers are G and all the games
that can be reached by all the possible sequences of moves from G.

When playing combinatorial games, it is easy to observe that, in many
situations, independent components appear. This leads to the following
recursive definition.

Definition 2.2.6. Let G and H be games. The sum G+H is the game

G+H =
{
GL +H,G+HL

∣
∣ GR +H,G+HR

}
,

where, for a set of games S, G+ S = {G+ S : S ∈ S}.

Example 2.2.7. If G = and H = , then

G+H =
{

+ , +
∣
∣
∣ + , + , +

}

.

Observe that these correspond to the options of the game .

It is known that this operation is commutative, associative and has an
identity (see [3]).

Theorem 2.2.8. Let G, H and J be games. Then:

1. G+ 0 = G;

2. G+H = H +G;

3. (G+H) + J = G+ (H + J).

Proof.

1. By definition, G+0 =
{
GL
∣
∣ GR

}
+{ | } =

{
GL + 0, G + ∅

∣
∣ GR + 0, G + ∅

}
.

But G+ ∅ = ∅ and, by induction, GL + 0 = GL and GR + 0 = GR, so

G+ 0 =
{
GL
∣
∣ GR

}
= G.

2. By definition, G + H =
{
GL +H,G+HL

∣
∣ GR +H,G+HR

}
. By

induction,

GL +H = H +GL,

G+HL = HL +G,

GR +H = H +GR,

G+HR = HR +G,

so

G+H =
{
H + GL,HL +G

∣
∣ H +GR,HR +G

}
= H +G.
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3. A typical left option of (G+H) + J is

[(G +H) + J ]L =

= {(G +H)L + J, (G +H) + J L}

= {(GL +H) + J, (G +HL) + J, (G+H) + J L}

= {GL + (H + J), G+ (HL + J), G+ (H + J L)} (by induction)

= {GL + (H + J), G+ (H + J)L}

= [G+ (H + J)]L.

Similarly, [(G+H)+J ]R = [G+(H+J)]R, so (G+H)+J = G+(H+J).

It is also natural to think about inverses.

Definition 2.2.9. Let G be a game. The negative of G is the game

−G =
{
−GR

∣
∣ −GL

}
.

Example 2.2.10. For G = , then −G = .

To verify that the game −G is the inverse ofG, it is necessary to formalize
the meaning of equality of games.

Definition 2.2.11. Let G and H be games. G = H if, for all games X,
G+X and H +X have the same outcome.

It is easy to verify that “=” is an equivalence relation.
Next theorem is known as the Fundamental Theorem of Normal Play

(see [3]).

Theorem 2.2.12 (Fundamental Theorem of Normal Play). Let G be a
game. Then G = 0 if and only if G ∈ P.

Proof. Suppose that G = 0. Then, by definition, for all games X, G + X

and 0 +X have the same outcome. In particular, for X = 0, the games G
and 0 have the same outcome. Since 0 ∈ P (the first player has no legal
move available, so he loses), then G ∈ P.

Conversely, suppose that G ∈ P, and let X be a game. To prove that
G = 0, we must show that G+X has the same outcome as X.

If Left can win moving second on X, he can also win moving second on
G+X: whenever Right plays on G, Left responds on G, and whenever Right
plays on X, Left responds on X. Since G ∈ P, Left can win moving second
on G, so he can win moving second on G+X.

If Left can win moving first on X, he can also win moving first on G+X:
Left, playing first, moves on X, and then proceeds like in the previous case.

Using symmetric arguments, if Right wins X, he also wins G+X. There-
fore, G+X has the same outcome as X.
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This means that the equivalence class of 0 is exactly P. The following
corollary is a direct consequence of this theorem.

Corollary 2.2.13. Let G be a game. Then G+ (−G) = 0.

Solving equations involving games is possible, using the following result.

Proposition 2.2.14. Let G, H and J be games. Then G = H if and only
if G+ J = H + J .

Proof. Suppose that G = H. Let X be a game and consider

X ′ = J +X.

By definition of G = H, the games G + X ′ and H + X ′ have the same
outcome, that is, G+(J+X) and H+(J+X) have the same outcome. But,
by Theorem 2.2.8, G+(J+X) = (G+J)+X andH+(J+X) = (H+J)+X,
so G+ J = H + J .

Conversely, suppose that G + J = H + J . Then, using (⇒), (G + J) +
(−J) = (H + J) + (−J). So, using Theorem 2.2.8 and Corollary 2.2.13,

G = G+ (J − J) = (G+ J)− J = (H + J)− J = H + (J − J) = H.

The following corollary gives a constructive way to prove that two games
are equal.

Corollary 2.2.15. Let G and H be games. Then G = H if and only if
G−H = 0.

This means that, to prove that two games G and H are equal, it suffices
to play the game G−H and verify that G−H ∈ P.

Following, the definition of inequality of games and some related results.

Definition 2.2.16. Let G and H be games.

1. G > H if, for all games X, Left wins G+X whenever Left wins H+X;

2. G 6 H if, for all games X, Right wins G + X whenever Right wins
H +X.

Observe that, if G > H then replacing H by G can never be bad for
Left, no matter the context.

It isn’t difficult to prove that G > H if and only if H 6 G.

The following results are an important tool in proving inequalities, giving
a constructive way to do it.
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Proposition 2.2.17. Let G be a game. The following are equivalent:

1. G > 0;

2. Left wins moving second on G (that is, G ∈ P or G ∈ L);

3. For all games X, if Left wins moving second on X, then Left wins
moving second on G+X;

4. For all games X, if Left wins moving first on X, then Left wins moving
first on G+X.

Proof. Let G be a game.
To prove that (2 ⇒ 3), suppose that Left wins moving second on G, and,

for any game X, Left wins moving second on X. Then Left can win moving
second on G+X by responding to Right’s moves on one component with a
winning move on the same component.

Taking X = 0, it is immediate that (3 ⇒ 2).
The proof of (2 ⇒ 4) is analogous to the proof of (2 ⇒ 3).
To prove that (4 ⇒ 2), suppose the equivalent condition: if Left does

not win moving first on G + X then Left does not win moving first on X.
Since G − G = 0, Left does not win moving first on G − G, so Left does
not win moving first on −G, that is, Right can not win moving first on G.
Therefore, Left wins moving second on G.

It is immediate that (1 ⇒ 3, 4).

Proposition 2.2.18. Let G, H and J be games. Then G > H if and only
if G+ J > H + J .

Proof. Suppose that G > H. Let X be a game, and consider X ′ = J +X.
By definition of G > H, Left wins G+X ′ whenever Left wins H +X ′, that
is, Left wins (G+J)+X whenever Left wins (H+J)+X, so G+J > H+J .

Conversely, suppose that G+ J > H + J . Then, using (⇒),

(G+ J) + (−J) > (H + J) + (−J).

So,

G = G+ (J − J) = (G+ J)− J > (H + J)− J = H + (J − J) = H.

Proposition 2.2.19. Let G and H be games. Then G > H if and only if
Left wins moving second on G−H.

Proof. Taking J = −H in Proposition 2.2.18,

G > H ⇔ G−H > H −H ⇔ G−H > 0.
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This means that comparing G and H is equivalent to determining the
outcome of G−H:

G−H ∈ L if and only if G > H

G−H ∈ P if and only if G = H

G−H ∈ R if and only if G < H

G−H ∈ N if and only if G � H
where G > H means that G > H and G 6= H, and G � H means that
neither G > H nor G 6 H. More, writing G H if G � H or G > H,

G > H G−H ∈ L ∪ P Left wins moving second on G−H

G H G−H ∈ L ∪ N Left wins moving first on G−H

G 6 H G−H ∈ R ∪ P Right wins moving second on G−H

G� H G−H ∈ R ∪N Right wins moving first on G−H

Example 2.2.20. > 0 and � 0.

Also, > , because Left wins regardless of who plays first.

An important result for this work is the following theorem.

Theorem 2.2.21. The relation > is a partial order on the set of combina-
torial games.

Proof. Let G, H and J be games.

Suppose that G > H and H > J . Then Left wins moving second on
G − H and on H − J , so Left wins moving second on (G − H) + (H − J)
by responding to Right’s moves on each summand with a winning move on
the same summand. Since (G−H) + (H − J) = G− J , then G > J , and >

is transitive.

Since G −G = 0, Left wins moving second on G −G, so G > G and >

is reflexive.

Suppose that G > H and H > G, that is, for all games X, Left wins
G+X whenever Left wins H +X and Left wins H +X whenever Left wins
G + X. But then G + X and H + X have the same outcome, so G = H,
and > is antisymmetric.

A consequence from “=” being an equivalence relation is that a game G
can be replaced by any other in its equivalence class. More, in G’s equiva-
lence class, a unique game with game tree with fewer nodes exists, which is
called G’s canonical form. This game can be obtained from G by removing
dominated options and bypassing reversible options (which will be defined).
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Theorem 2.2.22 (Reduction to Canonical Form). Let G be a short game,
and suppose G = {A,B,C, . . . | . . .}.

1. If A 6 B, then

G = {B,C, . . . | . . .}

(A is dominated by B for Left).

2. If, for some right option AR of A, AR 6 G, then

G = {A1, A2, . . . , B,C, . . . | . . .},

where A1, A2, . . . are the left options of AR (A reverses through AR to
the left options of AR).

Proof.

1. Let G′ = {B,C, . . . | . . .} and consider the game

G−G′ = {A,B,C, . . . | . . .}+ {. . . | −B,−C, . . .}.

The only first move that doesn’t have a corresponding negative in the
other component (leaving 0) is Left’s move to A. But if Left moves
to A, Right can respond to −B, leaving A − B 6 0, so Right wins.
Therefore, G−G′ ∈ P, that is, G−G′ = 0.

2. Let G′ = {A1, A2, . . . , B,C, . . . | . . .} and consider the game

G−G′ = {A,B,C, . . . | . . .}+ {. . . | −A1,−A2, . . . ,−B,−C, . . .}.

Any first move different from Left’s move to A or Right’s move to one
of −A1,−A2, . . . has a corresponding negative in the other component,
leaving 0.

If Right moves to one −A1,−A2, . . ., say, to A1, leaving G−A1, then
Left can win because, since exists AR such that G−AR > 0 (that is,
Left can win playing second on G − AR), Left can win, after Right
plays to G−A1, moving to G−AR.

If Left moves to A, leaving A−G′, Right can win by moving to AR−G′:
to this move, Left can only respond to some Ai −G′ (and Right then
moves to Ai − Ai = 0 and wins) or to some AR − GR, which is an
option from AR −G 6 0, so Right wins playing second.

Hence, G−G′ = 0.

If ARL = ∅, the option A of G is said to reverse out .

23



Observation 2.2.23. Analogously, let G = {. . . |W,X, Y . . .} be a short
game.

If W > X, then G = {. . . | X,Y, . . .} (W is dominated by X for Right);
and if, for some left option WL of W , WL > G, then

G = {. . . | W1,W2, . . . ,X, Y, . . .},

where W1,W2, . . . are the right options of WL (W reverses through WL to
the right options of WL).

In other words, if two moves are available but one is better than the
other for that player, the worst can be removed from the options of the
game, and is said to be dominated.

Example 2.2.24. Consider G = . Then

G =
{

,
∣
∣
∣

}

.

The option is better for Left than , so is dominated by

, and

G =
{ ∣

∣
∣

}

.

The concept of reversibility is more elaborated. In fact (for Left), if, for
some right option AR of A, AR 6 G, then AR would be better for Right
than every right option of G. So, if Left moves to A, it is certain that Right
will move to AR, so Left’s move to A can be replaced by all the left options
of AR, and A is reversible.

Example 2.2.25. Consider G = . The game

is a left option of G, and has as a right option. This is better for

Right than G because Left, playing second, wins:

− = .

Therefore, can be replaced by its left options, which are .
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Definition 2.2.26. Let G be a short game. G is in canonical form if G and
all G’s followers have no dominated or reversible options.

Theorem 2.2.27 (Unicity of the Canonical Form). Let G and H be short
games. If G and H are in canonical form and G = H, then GL = HL and
GR = HR.

Proof. Suppose that G and H are in canonical form, that is, G, H, and all
their followers have no dominated or reversible options.

Since G = H, Left wins moving second on G−H. In particular, for each
GR, Left has a winning move from GR−H. That move must be to GR−HR:
if it was to GRL −H, Left would win playing second on GRL −H, that is,
GRL > H = G, and G would have a reversible move. So GR−HR > 0, that
is, GR > HR.

Analogously, for each HR, some GR
′
exists such that HR > GR

′
, so

GR > HR > GR
′
. Since G has no dominated options, GR = GR

′
. Hence

GR = HR, and GR ⊆ HR.
Symmetrically, HR ⊆ GR, and GR = HR.
Analogously, GL = HL.

2.3 Conway’s Construction of Numbers and Games

In [10], Conway gives an axiomatic construction of numbers and ordinal
arithmetic. This construction is made by a recursive process, based in a
transfinite sequence of days, using a notation based on Dedekind cuts. Also,
using this process and notation, he constructs the set of all combinatorial
games. More, with this notation, it is possible to see that some games
are numbers, some games are infinitesimals, and some games are neither
numbers nor infinitesimals.
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Definition 2.3.1. Let G be a game. The birthday of G, b(G), is defined
recursively by

b(G) =
{
b(GL),b(GR)

∣
∣
}
,

where
{
GL
∣
∣ GR

}
is a simplest form of G, that is, another form

{
G′L

∣
∣ G′R

}

doesn’t exists with

sup{b(H) : H ∈ G′L ∪ G′R} < sup{b(H) : H ∈ GL ∪ GR}.

A game G is said to be born by day n if b(G) 6 n.

Observation 2.3.2. A game G is short if its birthday is finite, that is, if
b(G) < ω. Long games are born on day ω or after.

It is easy to see that, for a short game G =
{
GL
∣
∣ GR

}
in canonical form,

b(G) = 1 + max{b(H) : H ∈ GL ∪ GR}.
On day 0, GL = GR = ∅, so the only game born by day 0 is 0.
On day 1, 0 already exists, so GL,GR ⊆ {0}. Therefore, there are four

games born by day 1: 0, {0 | }, { | 0}, and {0 | 0}.
The game {0 | } is a game where Left has available one option, to a game

of value 0, and Right has no options available. This game is naturally called
1. Analogously, { | 0} is called −1. The game {0 | 0} is a game where both
players have the option of moving to 0, and is called ∗.

Observe that

1 = {0 | } ∈ L,

−1 = { | 0} ∈ R,

∗ = {0 | 0} ∈ N ,

that is, 1 > 0, −1 < 0, and ∗ � 0.
On day 2, 22 games are born; on day 3, 1474 games are born, and on

day 4, somewhere between 3 trillion and 10434 games are born (see [30]).
The exact number of games born by day n < ω or even a good asymptotic
formula is not known.

2.4 Numbers, Infinitesimals, and Others

In this section, some examples of short games are presented.

Definition 2.4.1. Let G be a game in canonical form. G is a number if all
GL, GR are numbers and GL < GR for every GL ∈ GL, GR ∈ GR.

It is easy to see that 0, 1, and −1 are numbers and that ∗ is not a
number.

Integers are defined in a rather natural way. In fact, on day n, with
n > 1, the game

n = {n− 1 | }
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is born. In this game, Left has one move to the game of value n − 1, while
Right has no move. By definition, it is easy to see that it is a number, and
that n > 0. Also,

−n = { | −n+ 1}

is a number, born on day n, −n < 0, and n+ (−n) = 0.
On day 2, several other games are born. One of the new games is G =

{0 | 1}. By definition, G is a number. Also, it is easy to see that 0 < G < 1
and G+G = 1, so it is natural to say that G = 1

2 . More generally,

Definition 2.4.2. Let j,m ∈ N, with m odd. The number m
2j

is defined by

m

2j
=

{
m− 1

2j

∣
∣
∣
∣

m+ 1

2j

}

.

If a game is not in canonical form, it may not be immediate to recognize
which number it is. An important tool to solve this problem is given by the
next theorem.

Theorem 2.4.3 (Simplest Number). Let G be a short game, and suppose
that G = {a | b} is a number. If a and b are also numbers, then G = x where
x is given by:

1. If there is (are) integer(s) n such that a < n < b, then x is the one
that is smallest in absolute value;

2. Otherwise, x is the number of the form i
2j

between a and b for which
j is minimal.

Proof. Let G = {a | b}, with a, b numbers, and suppose that G > 0 (if G < 0
the arguments are analogous).

Consider the game G− x.
Suppose that x is given by condition 1. Left playing first can only move

to a − x < 0, so he loses. Right playing first can move to b − x > 0, and
loses, or to G− x+ 1. To this move, Left can respond moving to a− x+ 1.
But, since a > x− 1, Left wins.

Otherwise, suppose that x is given by condition 2, that is,

G− x = G+

{

−
i+ 1

2j

∣
∣
∣
∣
−
i− 1

2j

}

,

with j minimal.
Left playing first can move in either component. If he moves to a − x,

using the previous argument, he loses. If he moves to G − i+1
2j

, Right can

respond to b − i+1
2j

. But b 6 i+1
2j

for, if not, j wouldn’t be minimal, and so
Right wins.

Right playing first can move in either component. If he moves to b− x,
using the previous argument, he loses. If he moves to G − i−1

2j
, Left can
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respond to a− i−1
2j

. But a > i−1
2j

for, if not, j wouldn’t be minimal, and so
Left wins.

Either way, G− x = 0.

If a < b, the number given by this theorem is usually called the simplest
number between a and b, and it is, in fact, the number strictly between a

and b with the least birthday.

Example 2.4.4. Using Theorem 2.4.3, it is easy to see that {−2 | 5} = 0,
{
1
2

∣
∣ 3
}
= 1,

{
1
8

∣
∣ 5
8

}
= 1

2 , and
{
1
2

∣
∣ 7
8

}
= 3

4 .

An important result concerning numbers and sums of games is that it is
usually reasonable to avoid playing on numbers.

Theorem 2.4.5 (Weak Number Avoidance). Let G and H be games such
that H is a number and G is not. If G+H  0, then GL+H > 0 for some
GL.

Proof. Suppose that G+H  0, that is, that Left can win moving first on
G+H.

Suppose that the winning move is on H, HL. Then G+HL > 0. Since
G is not a number, G 6= −HL, so G +HL > 0, and Left wins moving first
on G+HL. By induction, GL+HL > 0. But H > HL, so GL+H > 0.

Another two important games born by day 2 are

{0 | ∗} = ↑ and {∗ | 0} = ↓,

which are not numbers. It is easy to see that ↑ > 0, and that ↑ < x, for all
positive numbers x.

Definition 2.4.6. Let G be a game. G is infinitesimal if −x < G < x, for
all positive numbers x.

So, ↑ and ↓ are infinitesimal. More, using Theorem 2.4.5, it is possible
to prove that ∗ is also infinitesimal.

The game ↑∗ = ↑+ ∗ = {0, ∗ | 0} is also an infinitesimal, born by day 2.
After day 2, more infinitesimals of this kind appear. In fact, the following
pattern arises:

↑ = {0 | ∗} ↑∗ = {0, ∗ | 0}
⇑ = {0 | ↑∗} ⇑∗ = {0 | ↑}
3 · ↑ = {0 | ⇑∗} 3 · ↑∗ = {0 | ⇑}
4 · ↑ = {0 | 3 · ∗} 4 · ↑∗ = {0 | 3 · ↑}
...

...
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where, for an integer n and a game G, n ·G denotes

G+ · · ·+G
︸ ︷︷ ︸

n

.

Another example of games that are infinitesimals are impartial games.
An impartial game is a game where left and right options are the same for
the game and all its followers. Such is the case of nimbers (or stars):

∗k = {0, ∗, . . . , ∗(k − 1) | 0, ∗, . . . , ∗(k − 1)}.

It is known that all impartial games are nimbers (Sprague-Grundy The-
ory, see [16, 28]), and how to determine which one it is: for a set S ⊆ N,
define the minimum excluded value of S, mex(S), as the least integer which
is not included in S. The nim-value of an impartial game G, denoted by
G(G), is given by

G(G) = mex({G(H) : H is an option of G}).

The value of an impartial game G is the nimber ∗G(G).
The Infinite Sprague-Grundy Theorem applies also to long games where

transfinite nimbers ∗α, with α ∈ Ord, are games such that the left and right
options are all the games ∗β where β ∈ Ord and β < α (see [5]).

The nim-sum of two nonnegative integers is the exclusive or (XOR), writ-
ten ⊕, of their binary representations. It can also be described as adding the
numbers in binary without carrying. One important result about impartial
games is that if G = H + J , then G(G) = G(H) ⊕G(J) (see [3, 5, 10]).

A combinatorial game G is all-small if either G = { | } or every follower
of G is either { | } or has both left and right options. The class of all-small
games extends the class of impartial games, that is, every impartial game is
all-small, and it is widely studied (see, for example, [9]).

There are also games that are neither numbers nor infinitesimals. One
particular case of such a game is the switch

{x | −x} = ±x.

Switches are games of the form {y | z}, with y, z numbers, and y > z, and
are also an example of a hot game, that is, a game where each player has a
strong interest in making the next move, for it will improve his position.
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Chapter 3

Lattices of Games

As it was seen in the previous chapter, the set of combinatorial games
equipped with the relation 6 is a poset. In this chapter, it is seen that, in
some cases, a lattice structure is defined, and some properties are presented.
Also, Conway’s construction with an initial set of games is introduced, and
the resulting set’s structure is studied.

The following definitions are fundamental for the remaining chapters.

Definition 3.0.7. Let S be a set of games. The set of children of S, L(S),
is the set of games

L(S) =
{

G : G =
{
GL
∣
∣ GR

}
, where GL,GR ⊆ S

}

.

In Conway’s construction, games born by day n are the children of the
games previously born. A generalized construction for any generating set S
can be defined:

Definition 3.0.8. Let S be a set of games. Define

L0(S) = L(S)

Lγ(S) = L({G ∈ Lδ(S) : δ < γ and δ, γ ∈ Ord}).

Next, two cases will be considered: S = ∅ and S 6= ∅.

3.1 Case S = ∅

When S = ∅ and γ ∈ Ord, Lγ(S) corresponds to the usual Conway’s con-
struction. When considering just short games, γ is a finite ordinal and, to
simplify the notation, for an integer n, the set of games born by day n will
be denote by Ln. That is, in the short case,

L0 = L(∅) = {0}

Ln = L(Ln−1) =
{{

GL
∣
∣ GR

}
: GL,GR ⊆ Ln−1

}
.

Observe that, by induction, Ln−1 ⊆ Ln.
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3.1.1 Games Born by Day 2

In the previous chapter, it was observed that L1 = {−1, 0, ∗, 1}. More,
−1 < 0 < 1, 0 � ∗, and, since ∗ is infinitesimal, −1 < ∗ < 1. So, it is
possible to draw L1’s Hasse diagram.

1

0 ∗

−1

Figure 3.1: L1

From Figure 3.1, it is immediate to conclude that L1 is a distributive
lattice.

On day 2, 256 games can be constructed, but not all are different. One
significant reduction of the number of games that are born by day n can
be obtained just by observing that if two comparable options are available
to one player, one of them is dominated. So, the left and right options
for games born by day n can be obtained from day n − 1’s antichains. In
particular, for day 2, day 1’s antichains are:

{1}, {0}, {∗}, {0, ∗}, {−1}, and {∅}.

Therefore, by day 2, at most 36 different games are born.

In order to obtain Ln, a table can be constructed, using antichains. For
each player, the antichains are usually arranged so that player’s preferred
options appear first.

Right

L
ef
t

−1 0, ∗ 0 ∗ 1 ∅

1 ±1 1 | 0, ∗ 1 | 0 1 | ∗ 1∗ 2

0, ∗ 0, ∗ | −1 ∗2 ↑∗
↑ 1

2 1
0 0 | −1 ↓∗ ∗

∗ ∗ | −1 ↓

0−1 −1∗ −1
2

∅ −2 −1

Table 3.1: L2 antichains table
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In [17] and [18], Richard Guy presented the following Hasse diagram of
L2:

Figure 3.2: L2’s diagram drawn by Richard Guy in [18]

This diagram contains a mistake, corrected in [6], in 2002. In Guy’s
diagram, the game {1 | 0, ∗} is incomparable with both {1 | ∗} and {1 | 0},
but, in fact,

{1 | 0, ∗} < {1 | ∗}, {1 | 0}.

Consider G = {1 | ∗} + {0, ∗ | −1}. Left, playing first, can play in the
second component, moving to {1 | ∗} + 0. To this move, Right can only
respond playing to ∗ � 0, so he loses. Right, playing first, can move either
in the first component or in the second. If he moves in the first component,
leaving ∗ + {0, ∗ | −1}, Left can respond moving to ∗ + ∗ = 0, and wins.
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If he moves in the second component, leaving {1 | ∗} − 1, Left can respond
moving to 1−1 = 0, and also wins. Therefore, G > 0, so {1 | 0, ∗} < {1 | ∗}.

{1|∗}+ {0, ∗| − 1}

{1|∗} + 0

∗

0

∗+ {0, ∗| − 1}

∗+ ∗

{1|∗} − 1

1− 1

Consider now H = {1 | 0} + {0, ∗ | −1}. Left, playing first, can play
in the second component, moving to {1 | 0} + ∗. To this move, Right can
respond either playing to 0 + ∗ � 0 or to {1 | 0} + 0 � 0. Either way, he
loses. Right, playing first, can move either in the first component or in the
second. If he moves in the first component, leaving 0 + {0, ∗ | −1}, Left
can respond moving to 0, and wins. If he moves in the second component,
leaving {1 | 0} − 1, Left can respond moving to 1 − 1 = 0, and also wins.
Therefore, H > 0, so {1 | 0, ∗} < {1 | 0}.

{1|0} + {0, ∗| − 1}

{1|0} + ∗

0 + ∗

0

{1|0} + 0

1

0 + {0, ∗| − 1}

0

{1|0} − 1

1− 1

Guy’s diagram led to the idea that L2 was not distributive, since it
contained
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±1

{1|∗} {1|0} {1|0, ∗}

1∗

as a sublattice.
The correct Hasse diagram of L2 is now widely known (see Figure 3.3),

and it is also not difficult to see that it is, in fact, a distributive lattice.
This arises the question of what happens in general, that is, is Ln a

distributive lattice, for any n ∈ N?

3.1.2 Games Born by Day n

The ordered structure of the games born by day n was first analyzed in [6],
when it was proved that the set of games born by day n is a distributive
lattice. In order to study this structure, it is necessary to define the meet
and join of two games, based on the following principles:

Proposition 3.1.1 (Identity Principle). Let G be a game. If G =
{
GL
∣
∣ GR

}
,

then, for every GL ∈ GL and GR ∈ GR, GL � G and GR  G.

Proof. Suppose that, for some GL ∈ GL, GL > G, that is, Left wins playing
second on GL−G. But then Left has a winning move playing first on G−G,
so G G, which is a contradiction.

Proposition 3.1.2 (Gift Horse Principle). Let G and H be games. If G =
{
GL
∣
∣ GR

}
and H � G, then

{
GL,H

∣
∣ GR

}
= G.

Proof. Consider the game
{
GL,H

∣
∣ GR

}
− G. The only move that doesn’t

have a corresponding negative is Left’s move to H−G. Since H � G, Right
has a winning move in H −G, so

{
GL,H

∣
∣ GR

}
−G = 0.

The Identity Principle states that, for a given form of a game G, its
options cannot be better, to each player, than G itself. More, the Gift
Horse Principle states that it is possible to add to a player’s options any
other, provided that is is not better, for that player, than G itself.

The remaining principle is the Greediness Principle, which basically
states that it is always better to have more options and to have an opponent
with fewer options.

Proposition 3.1.3 (Greediness Principle). Let G and H be games, G =
{
GL
∣
∣ GR

}
and H =

{
HL

∣
∣ HR

}
. If HL ⊆ GL and GR ⊆ HR then G > H.
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2

1 1∗

1
2 {1|∗} {1|0}

↑ ↑∗ {1|0, ∗}

0 ∗ ∗2 ±1

↓ ↓∗ {0, ∗| − 1}

−1
2 {∗| − 1} {0| − 1}

−1 −1∗

−2

Figure 3.3: L2

Proof. Right, playing first on G − H, can not win. If he plays in the first
component, leaving GR −H, and since GR ⊆ HR, GR  H, so Left wins.
If he plays in the second component, leaving G −HL, and since HL ⊆ GL,
G HL, Left wins.

If, instead of canonical forms, complete forms (defined below) are con-
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sidered, these three principles provide a direct way of comparing games. Of
course that, sometimes, it can not be easy to obtain the complete form of a
game, but, if it is available, it solves completely the problem of comparing
games.

Definition 3.1.4. Let G be a game. For n ∈ N, G is in its day n complete
form if G = {⌊G⌋ | ⌈G⌉}, where ⌊G⌋ = {H ∈ Ln−1 : H � G} is the floor
and ⌈G⌉ = {H ∈ Ln−1 : H  G} is the ceiling of G.

Observe that this form of G is well defined, due to Propositions 3.1.1
and 3.1.2.

Example 3.1.5. Figure 3.4 shows day 2 complete form of every element of
L2.

Calistrate, Paulus and Wolfe, in [6], successfully defined the meet and
join of two games. Their idea was to define these operations using complete
forms, and unions and intersections of sets (in Figure 3.4, it is possible to
observe the relations between the complete forms of any two elements and
their meet and join). To carry out their idea, the following result it is also
necessary.

Proposition 3.1.6. Let G and H be games. If H =
{
HL

∣
∣ HR

}
> G then,

for every HR ∈ HR, HR  G.

Proof. If a HR exists such that HR 6 G, then HR −G 6 0, that is, Right
wins moving second on HR − G. But then, Right can win moving first on
H −G, that is, H � G.

Theorem 3.1.7 (Calistrate, Paulus, Wolfe, [6]). The set of games born on
day n, Ln, is a lattice.

Proof. Let G,H ∈ Ln and define

G ∨H = {⌊G⌋ ∪ ⌊H⌋ | ⌈G⌉ ∩ ⌈H⌉},

G ∧H = {⌊G⌋ ∩ ⌊H⌋ | ⌈G⌉ ∪ ⌈H⌉}.

To prove that G ∨H is, in fact, the join of G and H, it is necessary to
see that:

- G ∨H > G,H; and

- for every X ∈ Ln, if X > G,H, then X > G ∨H.

Since ⌊G⌋, ⌊H⌋ ⊆ ⌊G⌋ ∪ ⌊H⌋ and ⌈G⌉ ∩ ⌈H⌉ ⊆ ⌈G⌉, ⌈H⌉, using the
Greediness Principle (Proposition 3.1.3), it is immediate that G∨H > G,H.

Suppose now that X ∈ Ln is such that X > G,H, and consider the game
X −G ∨H. Right, playing first, can either move to some XR − G ∨H or
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2={−1,0,∗,1| }

1={−1,0,∗| } 1∗={−1,0,∗,1|1}

1
2
={−1,0,∗|1} {1|∗}={−1,0,∗,1|∗,1} {1|0}={−1,0,∗,1|0,1}

↑={−1,0,∗|∗,1} ↑∗={−1,0,∗,0,1|} {1|0,∗}={−1,0,∗,1|0,∗,1}

0={−1,∗|∗,1} ∗={−1,0|0,1} ∗2={−1,0,∗|0,∗,1} ±1={−1,0,∗,1|−1,0,∗,1}

↓={−1,∗|0,∗,1} ↓∗={−1,0|0,∗,1} {0,∗|−1}={−1,0,∗|−1,0,∗,1}

− 1
2
={−1|0,∗,1} {∗|−1}={−1,∗|−1,0,∗,1}{0|−1}={−1,0|−1,0,∗,1}

−1={ |0,∗,1} −1∗={−1|−1,0,∗,1}

−2={ |−1,0,∗,1}

Figure 3.4: L2’s elements complete forms

to some X − (G ∨H)R. In the first case, by Proposition 3.1.6, XR  G,H,
so, XR ⊆ ⌈G⌉ ∩ ⌈H⌉, and Left can win playing first on XR −G∨H. In the
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second case, since (G∨H)R ∈ ⌊G⌋ ∪ ⌊H⌋, X − (G∨H)R is either an option
of X −G or of X −H. In either case, Left can win moving second, so Right
loses.

Analogously, G ∧H is the meet of G and H, so Ln is a lattice.

To prove that Ln is distributive, two lemmas will be used.

Lemma 3.1.8. Let G and H be games, G,H ∈ Ln. Then

⌊G ∨H⌋ = ⌊G⌋ ∪ ⌊H⌋ and

⌈G ∧H⌉ = ⌈G⌉ ∪ ⌈H⌉.

Proof. If X ∈ ⌊G ∨ H⌋, then X ∈ Ln−1 and X � G ∨ H. Since X ∈ Ln

(because, in Conway’s construction, k < n implies that Lk ⊆ Ln), if X 6∈
⌊G⌋ ∪ ⌊H⌋, then X > G and X > H. But then X > G ∨ H, which is a
contradiction.

Reciprocally, if X ∈ ⌊G⌋∪ ⌊H⌋, then X ∈ Ln−1, and X � G or X � H.
If X 6∈ ⌊G ∨H⌋, then X > G ∨H > G,H, which is a contradiction.

The other equality is similar.

Lemma 3.1.9. Let G and H be games, and let
{
GL
∣
∣ GR

}
and

{
HL

∣
∣ HR

}

be any form of G and H. Then

G ∨H =
{
GL ∪HL

∣
∣ ⌈G⌉ ∩ ⌈H⌉

}
and

G ∧H =
{
⌊G⌋ ∩ ⌊H⌋

∣
∣ GR ∪HR

}
.

Proof. To prove that G ∨H =
{
GL ∪HL

∣
∣ ⌈G⌉ ∩ ⌈H⌉

}
, consider the game

G ∨H −
{
GL ∪HL

∣
∣ ⌈G⌉ ∩ ⌈H⌉

}
, that is,

{⌊G⌋ ∪ ⌊H⌋ | ⌈G⌉ ∩ ⌈H⌉}+
{
−(⌈G⌉ ∩ ⌈H⌉)

∣
∣ −(GL ∪HL)

}
.

Right, playing first, can move in either component. If he moves in the
first component, Left has a correspondent move available in the second com-
ponent, so he loses. Suppose, without loss of generality, that he moves in
the second component, to some

{⌊G⌋ ∪ ⌊H⌋ | ⌈G⌉ ∩ ⌈H⌉} −GL.

By the Identity Principle, 3.1.1, G − GL  0 and, so, Left has a winning
move in

{⌊G⌋ | ⌈G⌉} −GL.

If this move is in {⌊G⌋ | ⌈G⌉}, it is also available for Left in

{⌊G⌋ ∪ ⌊H⌋ | ⌈G⌉ ∩ ⌈H⌉} −GL.

39



If it is in GL, then {⌊G⌋ | ⌈G⌉}−GLR > 0 for some GLR. By the Greediness
Principle, 3.1.3,

{⌊G⌋ ∪ ⌊H⌋ | ⌈G⌉ ∩ ⌈H⌉} > {⌊G⌋ | ⌈G⌉},

so Left’s move to {⌊G⌋ ∪ ⌊H⌋ | ⌈G⌉ ∩ ⌈H⌉}−GLR is a winning move. Either
way, Right loses.

Left, playing first, can move in either component. If he moves in the
second component, Right has a correspondent move available in the first
component, so he loses. Suppose, without loss of generality, that he moves
in the first component, to some

X +
{
−(⌈G⌉ ∩ ⌈H⌉)

∣
∣ −(GL ∪HL)

}
,

with X ∈ ⌊G⌋. Since G =
{
GL
∣
∣ ⌈G⌉

}
and X � G, Right has a winning

move in

X +
{
−⌈G⌉

∣
∣ −GL

}
.

If this move is in
{
−⌈G⌉

∣
∣ −GL

}
, it is also available for Right in

X +
{
−(⌈G⌉ ∩ ⌈H⌉)

∣
∣ −(GL ∪HL)

}
.

If it is in X, then XR+
{
−⌈G⌉

∣
∣ −GL

}
6 0, for some XR. By the Greediness

Principle, 3.1.3,

{
GL
∣
∣ ⌈G⌉

}
6
{
GL ∪HL

∣
∣ ⌈G⌉ ∩ ⌈H⌉

}
,

so Right’s move to XR+
{
−(⌈G⌉ ∩ ⌈H⌉)

∣
∣ −(GL ∪HL)

}
is a winning move.

Either way, Left loses, and therefore G ∨H =
{
GL ∪HL

∣
∣ ⌈G⌉ ∩ ⌈H⌉

}
.

A similar argument yields the other equality.

Theorem 3.1.10 (Calistrate, Paulus, Wolfe, [6]). The lattice of games born
on day n, Ln, is distributive.

Proof. Let G,H, J ∈ Ln. Then,

G ∧ (H ∨ J) =

= {⌊G⌋ ∩ ⌊H ∨ J⌋ | ⌈G⌉ ∪ ⌈H ∨ J⌉} (by definition)

= {⌊G⌋ ∩ ⌊H ∨ J⌋ | ⌈G⌉ ∪ (⌈H⌉ ∩ ⌈J⌉)} (Lemma 3.1.9)

= {⌊G⌋ ∩ (⌊H⌋ ∪ ⌊J⌋) | ⌈G⌉ ∪ (⌈H⌉ ∩ ⌈J⌉)} (Lemma 3.1.8)

= {(⌊G⌋ ∩ ⌊H⌋) ∪ (⌊G⌋ ∩ ⌊J⌋) | (⌈G⌉ ∪ ⌈H⌉) ∩ (⌈G⌉ ∪ ⌈J⌉)} (de Morgan)

=
{
(G ∧H)L ∪ (G ∧ J)L

∣
∣ ⌈G ∧H⌉ ∩ (⌈G ∧ J⌉

}
(Lemma 3.1.9)

= (G ∧H) ∨ (G ∧ J) (by definition).
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Observation 3.1.11. Observe that, if long games are considered, all proofs
are analogous. Therefore, for Conway’s construction, Lω(∅) is a distributive
lattice.

Another interesting result from the same paper is the following:

Theorem 3.1.12 (Calistrate, Paulus, Wolfe, [6]). The collection of short
games is not a lattice.

Proof. Let

L =
⋃

n>0

Ln

be the collection of all short games.

Let G,H ∈ L, G =
{
GL
∣
∣ GR

}
, H =

{
HL

∣
∣ HR

}
, and G � H. Suppose

that the join of G and H in L exists, say, S =
{
SL
∣
∣ SR

}
, where SL and SR

are sets of short games. Define

J =
{
G,H,GL ∪HL

∣
∣ S,SR

}
.

Since G,H,S ∈ L, then J ∈ L. More, J > G: consider the game

J −G =
{
G,H,GL ∪HL

∣
∣ S,SR

}
+
{
−GR

∣
∣ −GL

}
.

Left, playing first, can move in the first component to G − G = 0 and
wins.

Right, playing first, can move in either component. If he moves in the
second component, Left has a corresponding one in the first component, so
he loses. If he moves in the first component to S−G, since S > G, he loses.
If he moves in the first component to some SR − G, since, by the Identity
Principle, 3.1.1, SR  S, and S > G, then SR  G, and he loses.

Analogously, J > H.

Consider now the game

S − J =
{
SL
∣
∣ SR

}
+
{
−S,−SR

∣
∣ −G,−H,−(GL ∪HL)

}
.

Left, playing first, can move in the second component to S − S = 0 and
wins.

Right, playing first, can move in either component. If he moves in the
first component, Left has a corresponding one in the second component, so
he loses. If he moves in the second component to S −G or to S −H, since
S > G,H, he loses. If he moves in the second component to S − X with
X ∈ GL∪HL, then, since X � G < S or X � H < S, X � S, and he loses.

Therefore, S − J > 0, which contradicts the definition of join.
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3.2 Case S 6= ∅

In the previous section, the lattices Ln of games born by day n were studied.
In [1], 2012, Albert and Nowakowski study the ordered structure of the
games of L(S) for an arbitrary set of games S.

Definition 3.2.1. Let S be a set of games. For G ∈ L(S), ⌊G⌋ = {H ∈ S :
H � G} is the floor of G relative to S and ⌈G⌉ = {H ∈ S : H  G} is the
ceiling of G relative to G.

Using the Identity, Gift Horse, and Greediness principles, it is possible
to define complete form.

Definition 3.2.2. Let S be a set of games. For G ∈ L(S), G is in complete
form if G = {⌊G⌋ | ⌈G⌉}.

Example 3.2.3. Let S = {0, {1 | ∗}, 1∗}. Then 1 = {0 | 1∗} ∈ L(S), and
its complete form is {0, {1 | ∗}, 1∗ | {1 | ∗}, 1∗}.

The idea of defining the meet and join of two games using complete
forms, and unions and intersections of sets is still feasible.

Theorem 3.2.4 (Albert, Nowakowski, [1]). Let S be a set of games. Then
L(S) is a complete lattice.

Proof. To prove that L(S) is complete, define

∨

Gi =
{⋃

⌊Gi⌋
∣
∣
∣

⋂

⌈Gi⌉
}

and
∧

Gi =
{⋂

⌊Gi⌋
∣
∣
∣

⋃

⌈Gi⌉
}

and the proof is analogous to the proof of Theorem 3.1.7.

Unlike the case S = ∅, for an arbitrary set of games S, L(S) may not be
distributive.

Example 3.2.5. Let S = {0, {1 | ∗}, 1∗}. Then L(S) = {−1, ∗, 0, {1∗ | 0}, 1}
is a N5.

−1

∗
0

{1∗|0}

1
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In the same paper [1], Albert and Nowakowski study conditions that
ensure the distributivity of L(S). Observing the proof of Lemma 3.1.8,
a fundamental fact was that Ln−1 ⊆ Ln. In the previous example, this
property isn’t observed, because {1 | ∗} and 1∗ are elements of S but are
not elements of L(S). This motivates the following definition:

Definition 3.2.6. Let S be a set of games. S is self-generated if S ⊆ L(S).

Observation 3.2.7. Observe that self-generation is a property of a set of
games in general (short and long).

Next, it will be proved that self-generation implies the distributivity of
L(S). However, in order to check if a set of games S is self-generated, the
computation of L(S) is needed. Because of this, Albert and Nowakowski
defined the concept of hereditarily closure for short games.

Definition 3.2.8. Let S be a set of short games. S is hereditarily closed if
for each G ∈ S, all the options in the canonical form of G belong to S.

Observation 3.2.9. Observe that hereditarily closure is a property of a set
of short games because it needs the concept of canonical form. Also, it is a
thinner condition that implies self-generation but, knowning the canonical
forms of the games of S, avoids the computation of L(S).

Proposition 3.2.10. Let S be a set of short games. If S is hereditarily
closed then S is self-generated.

Proof. Let G ∈ S, and suppose that G =
{
GL
∣
∣ GR

}
is in canonical form.

By Definition 3.2.8, GL ⊆ S and GR ⊆ S. So, G ∈ L(S).

It is now possible to obtain a lemma, analogous to Lemma 3.1.8:

Lemma 3.2.11. Let S be a set of games and G,H ∈ L(S). If S is self-
generated, then

⌊G ∨H⌋ = ⌊G⌋ ∪ ⌊H⌋ and

⌈G ∧H⌉ = ⌈G⌉ ∪ ⌈H⌉.

Proof. Since S is self-generated, the proof is analogous to the proof of
Lemma 3.1.8.

The result correspondent to Lemma 3.1.9 is valid for any set of games.

Lemma 3.2.12. Let S be a set of games, G,H ∈ L(S), and let
{
GL
∣
∣ GR

}

and
{
HL

∣
∣ HR

}
be any form of G and H. Then

G ∨H =
{
GL ∪HL

∣
∣ ⌈G⌉ ∩ ⌈H⌉

}
and

G ∧H =
{
⌊G⌋ ∩ ⌊H⌋

∣
∣ GR ∪HR

}
.
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Proof. Analogous to the proof of 3.1.9.

Theorem 3.2.13. Let S be a set of games. If S is self-generated, then L(S)
is a distributive lattice.

Proof. Analogous to the proof of Theorem 3.1.10

Although Corollary 3.2.14 appears in [1] as the main result, the authors
refer that the key condition to its proof is the self-generation of S.

Corollary 3.2.14 (Albert, Nowakowski, [1]). Let S be a set of short games.
If S is hereditarily closed, then L(S) is a distributive lattice.

In the remaining chapters, which constitute the main contribution of
this work, a more detailed analysis of these results can be found. Also, the
modularity of L(S) is studied, and the possibility of constructing all kind of
lattices, finite and infinite, is discussed. Conway’s transfinite construction
is studied, and a condition guaranteing that the set of games born in days
before a certain ordinal is is a lattice is obtained.

44



Chapter 4

Modularity of Lattices of

Games

In face of the previous chapter, the following questions are natural:

Question 1: Characterize the sets S such that L(S) is a distributive lattice.

Question 2: What lattices are generated?

For example, Nowakowski conjectured that if L(S) is a modular lattice
then it is also a distributive lattice. (More specifically, if the lattice M3 is
generated then so is N5.)

Although Question 1 is not answered, in this chapter the condition pre-
sented in Theorem 3.2.13 is deepened, and non-distributive, modular lattices
are generated. The method used to generate the “first” known example of a
non-distributive, modular L(S), introduced in [7], uses the same techniques
that are used in Section 4.2.

4.1 Strongly Self-Generation ⇔ Hereditarily Clo-

sure

Theorem 3.2.13 states that the self-generation of S implies the distributivity
of L(S). The question arises of if self-generation implies hereditarily closure
in the universe of short games. The answer is negative as is shown in the
next two examples.

Example 4.1.1. The set S = {1, 1∗} is self-generated: 1 = {1∗ | 1∗} and
1∗ = {1 | 1}. However, S is not hereditarily closed because, in canonical
form, 1 = {0 | } and 0 6∈ S.

Considering infinite sets, it is possible to construct an example with only
numbers.
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Example 4.1.2. Consider the set

S = {all dyadic rationals G such that 0 < G < 1}.

S is self-generated because m
2j

=
{
2m−1
2j+1

∣
∣ 2m+1

2j+1

}
(Definition 2.4.2), but is

not hereditarily closed because, in canonical form, 1
2 = {0 | 1} and 0 6∈ S

(also, 1 6∈ S).

Next, hereditarily closure is characterized.

Definition 4.1.3. Let S be a set of games. S is strongly self-generated if,
for every G ∈ S, there are games A,B, . . . , A′, B′, . . . ∈ S with

b(A),b(B), . . . ,b(A′),b(B′), . . . < b(G)

and G = {A,B, . . . | A′, B′ . . .}.

Observation 4.1.4. Observe that strongly self-generation is a property of
a set of games in general (short and long).

Theorem 4.1.5. Let S be a set of short games. Then S is hereditarily
closed if and only if S is strongly self-generated.

Proof.
(⇒) Exactly as in the proof of Proposition 3.2.10. (Note that, when a

game is in canonical form, the options have smaller birthdays than the game
itself.)

(⇐) Because S is strongly self-generated, for every G ∈ S a form

G = {A1, A2, . . . | B1, B2 . . .}

exists with Ai, Bj ∈ S and b(Ai),b(Bj) < b(G) for all i and j.
Given a game G ∈ S and some form of G, define a (infinite) birthday

sequence 〈ci〉, where ci is the number of options in the form of G with
birthday i. Order these sequences by 〈ci〉 > 〈di〉 if there is some k so that
ci = di for i > k and ck > dk. (A game may have more than one associated
vector if it has more than one form.)

Suppose that S is not hereditarily closed. Then there is some game in S
that has an option of the canonical form that is not in S. Choose

G = {A1, A2, . . . | B1, B2 . . .} ∈ S

to be such a game that also has the least associated birthday sequence.
Since dominated options can be eliminated, giving a smaller birthday

sequence, then this form of G has no dominated options. Since this form
cannot be the canonical form of G, it must have a reversible option, say the
right option

B1 = {D1,D2, . . . | E1, E2, . . .}
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where D1,D2, . . . , E1, E2 . . . ∈ S, and with, say, D1 > G (necessarily,
b(D1) < b(G)).

Again, since S is strongly self-generated then there is a form

D1 = {F1, F2, . . . | H1,H2, . . .},

F1, F2, . . . ,H1,H2, . . . ∈ S and b(Fi),b(Hj) < b(D1).

Now, in the originalG = {A1, A2, . . . | B1, B2 . . .}, it is possible to replace
B1 by H1,H2, . . ., that is,

G = {A1, A2, . . . | H1,H2, . . . , B2, B3, . . .}.

This is a contradiction since this form of G has a smaller birthday sequence
than that chosen as the smallest (the coefficient of ci where b(B1) = i has
been reduced by 1).

Thus S is hereditarily closed.

Example 4.1.6.

1. Let

S = {−1, 0, 1, ∗, ∗2, ∗4, ∗5, ∗6, {0, ∗, ∗3 | −1}, {1 | 0, ∗, ∗3}, A,−A} ,

where A = {1 | {0, ∗, ∗3 | −1}}.

S is not hereditarily closed, but it is self-generated.

In this example, the canonical forms of 1, −1, 0, ∗, ∗2, A and −A can
be obtained with games in S.

The game ∗6 = {A, ∗2, ∗4, ∗5 | −A, ∗2, ∗4, ∗5} can be obtained with
options with smaller birthdays, but it can not be obtained in the
canonical form.

The games {0, ∗, ∗3 | −1} = {A | −1}, {1 | 0, ∗, ∗3} = {1 | −A}, ∗4 =
{A, ∗2 | −A, ∗2} and ∗5 = {A, ∗2, ∗4 | −A, ∗2, ∗4} can be obtained, but
not with options with smaller birthdays.

2. Let S = {0, 1, . . . (all nonnegative integers), ω}.

This set is strongly self-generated, but it cannot be said to be heredi-
tarily closed because ω is not a short game (it doesn’t have a canonical
form).

Observation 4.1.7. Essentially, what the previous results established was
that if S is strongly-self generated, all the options of canonical forms of the
short games of S are in S and, as a natural corollary, in the universe of short
games, strongly-self generation and hereditarily closure are equivalent.
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4.2 Modularity of Lattices of Games

In this section, the problem of determining when L(S) is modular is studied.

The next example illustrates some of the issues when trying to determine
whether L(S) is modular.

Example 4.2.1. Consider the set of games S = {∗, ∗2, ∗3, 1∗, 1∗2, 1∗3} and
the associated L(S) (see Figure 4.1).

The following sublattice is a diamond (M3).

0

{1∗ | ∗2} {1∗2 | ∗3} {1∗3 | ∗}

1

However, there are elements in L(S) strictly between an atom and 1 (or
0) of the M3, which construct a N5 as well. The original conjecture was
based on such evidence.

0

{1∗ | ∗2} {1∗2 | ∗3} {1∗3 | ∗}

{1∗,1∗2,1∗3 | ∗2}

1
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1

{1∗,1∗2,1∗3|∗2} {1∗,1∗2,1∗3|∗3} {1∗,1∗2,1∗3|∗}

{1∗,1∗3|∗2} {1∗,1∗2,1∗3|∗2,∗3} {1∗,1∗2|∗2} {1∗2,1∗3|∗2} {1∗,1∗2,1∗3|∗,∗2} {1∗,1∗3|∗3} {1∗,1∗2|∗3} {1∗2,1∗3|∗3} {1∗,1∗3|∗} {1∗,1∗2,1∗3|∗,∗3} {1∗,1∗2|∗} {1∗2,1∗3|∗}

{1∗|∗2} {1∗,1∗3|∗2,∗3} {1∗3|∗2} {1∗,1∗2|∗2,∗3} {1∗2,1∗3|∗2,∗3} {1∗2|∗2} {1∗,1∗3|∗,∗2}{1∗,1∗2,1∗3|∗,∗2,∗3}{1∗,1∗2|∗,∗2} {1∗2,1∗3|∗,∗2} {1∗|∗3} {1∗3|∗3} {1∗2|∗3} {1∗|∗} {1∗,1∗3|∗,∗3} {1∗,1∗2|∗,∗3} {1∗3|∗} {1∗2,1∗3|∗,∗3} {1∗2|∗}

{1∗|∗2,∗3} {1∗3|∗2,∗3} {1∗2|∗2,∗3} {1∗|∗,∗2} {1∗,1∗3|∗,∗2,∗3} {1∗,1∗2|∗,∗2,∗3} {1∗3|∗,∗2} {1∗2,1∗3|∗,∗2,∗3} {1∗|∗,∗2} {1∗|∗,∗3} {1∗3|∗,∗3} {1∗2|∗,∗3}

{1∗|∗,∗2,∗3} {1∗3|∗,∗2,∗3} {1∗2‖∗,∗2,∗3}

0

F
igu

re
4.1:

L
(S

)
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From 1.2.14, it is known that if a lattice L is finite, modular, and non-
distributive, then it contains a cover-preserving diamond. So, to understand
when L(S) is a non-distributive modular lattice, it is important to under-
stand when cover-preserving diamonds exist.

The next result states a necessary condition for diamonds to exist.

Theorem 4.2.2. Let S be a set of games where L(S) is a finite non-
distributive modular lattice. Let {G∧H ∧F,G,H,F,G ∨H ∨F} be a cover
preserving diamond in L(S). One of the following situations must happen:

⌈G⌉

6=∅

∅ ∅

∅

⌈H⌉

6=∅

⌈F ⌉

6=∅

and

⌊G⌋

∅

∅ ∅

∅

6=∅

⌊H⌋

∅

⌊F ⌋

∅

or the symmetric picture changing ⌊ ⌋ with ⌈ ⌉.

Proof. Consider the cover-preserving diamond

D = {G ∧H ∧ F,G,H,F,G ∨H ∨ F}

of L(S):

G∧H=G∧F=H∧F

H G F

G∨H=G∨F=H∨F

Claim 1: (⌈G⌉ ∩ ⌈H⌉) \ ⌈F ⌉ = ∅,
(⌈G⌉ ∩ ⌈F ⌉) \ ⌈H⌉ = ∅,
(⌈H⌉ ∩ ⌈F ⌉) \ ⌈G⌉ = ∅ and
(⌊G⌋ ∩ ⌊H⌋) \ ⌊F ⌋ = ∅,
(⌊G⌋ ∩ ⌊F ⌋) \ ⌊H⌋ = ∅,
(⌊H⌋ ∩ ⌊F ⌋) \ ⌊G⌋ = ∅.
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Proof. SupposeX ∈ (⌈G⌉∩⌈H⌉)\⌈F ⌉. Then, X 6 F , X  G, and X  H.
Consider

K = {⌊G⌋ ∪ ⌊H⌋ | X}.

Right, playing first, loses in the game

K −G = {⌊G⌋ ∪ ⌊H⌋ | X}+ {−⌈G⌉ | −⌊G⌋},

so K > G. Similarly K > H, so K > G ∨ H = G ∨ F > F . However,
K − F � 0 because Right, playing first, wins moving to X − F 6 0, a
contradiction.

The other equalities are proved using a similar argument.

Claim 2: One of the sets ⌈G⌉ \ (⌈H⌉ ∪ ⌈F ⌉),
⌈H⌉ \ (⌈G⌉ ∪ ⌈F ⌉),
⌈F ⌉ \ (⌈G⌉ ∪ ⌈H⌉),
⌊G⌋ \ (⌊H⌋ ∪ ⌊F ⌋),
⌊H⌋ \ (⌊G⌋ ∪ ⌊F ⌋),
⌊F ⌋ \ (⌊G⌋ ∪ ⌊H⌋) must be nonempty.

Proof. If these 6 sets are all empty then

⌈G⌉ = ⌈H⌉ = ⌈F ⌉ and ⌊G⌋ = ⌊H⌋ = ⌊F ⌋.

So, G = H = F which is a contradiction.

Claim 3: Suppose that, without loss of generality, ⌈G⌉ \ (⌈H⌉ ∪ ⌈F ⌉) 6= ∅.
Then ⌊H⌋ = ⌊F ⌋.

Proof. Take A ∈ ⌈G⌉ \ (⌈H⌉ ∪ ⌈F ⌉). Thus A 6 H, A 6 F and A  G, and
suppose that there is an

X ∈ ⌊F ⌋ \ ⌊H⌋,

that is, X � F and X > H. Since (⌊G⌋ ∩ ⌊F ⌋) \ ⌊H⌋ = ∅, then X > G.
Now, consider the game

K = {⌊G⌋ ∪ ⌊F ⌋ | ⌈G⌉}.

Then, G ∨ F > K because Right loses playing first in

{⌊G⌋ ∪ ⌊F ⌋ | ⌈G⌉ ∩ ⌈F ⌉} + {−⌈G⌉ | −(⌊G⌋ ∪ ⌊F ⌋)}

and, if Left plays first, G∨F −A is a winning move (A 6 F < G∨F ). Also,
K > G because Right loses playing first in

{⌊G⌋ ∪ ⌊F ⌋ | ⌈G⌉} + {−⌈G⌉ | −⌊G⌋}

since the left option X−G is a winning move in the game K−G. But then
D wouldn’t be a cover-preserving diamond.
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Given that ⌈G⌉ \ (⌈H⌉ ∪ ⌈F ⌉) 6= ∅, then either ⌈H⌉ \ (⌈G⌉ ∪ ⌈F ⌉) 6= ∅ or
⌈F ⌉ \ (⌈H⌉ ∪ ⌈G⌉) 6= ∅. If these two sets are both empty then ⌊H⌋ = ⌊F ⌋
and ⌈H⌉ = ⌈F ⌉ and so H = F , which is a contradiction. Therefore, say

⌈H⌉ \ (⌈G⌉ ∪ ⌈F ⌉) 6= ∅

and it follows, as in Claim 3, that ⌊G⌋ = ⌊F ⌋.
Finally, it is also the case that

⌈F ⌉ \ (⌈G⌉ ∪ ⌈H⌉) 6= ∅.

If not, ⌈F ⌉ ⊆ ⌈H⌉ and, by Lemma 3.1.3,

H = {⌊H⌋ | ⌈H⌉} = {⌊F ⌋ | ⌈H⌉} 6 {⌊F ⌋ | ⌈F ⌉} = F,

which is a contradiction.
The assumption, in Claim 3, that ⌈G⌉ \ (⌈H⌉ ∪ ⌈F ⌉) 6= ∅, results in the

first case presented in the theorem. Assuming ⌊G⌋ \ (⌊H⌋ ∪ ⌊F ⌋) in Claim
3 would give the second case.

Even with this necessary condition, it is still not easy to get an example
of a finite non-distributive modular L(S). To do so, start with the following
scheme.

In many examples, the following “bad” (that is, almost distributive)
picture occurs:

{⌊G⌋∩⌊H⌋∩⌊F ⌋|A,B,C}

{⌊G⌋∩⌊H⌋∩⌊F ⌋|C,B} {⌊G⌋∩⌊H⌋∩⌊F ⌋|A,C} {⌊G⌋∩⌊H⌋∩⌊F ⌋|A,B}

H F G

It is necessary to manipulate the sets so as to create the situation

{⌊G⌋ ∩ ⌊H⌋ ∩ ⌊F ⌋ | A,B,C} = {⌊G⌋ ∩ ⌊H⌋ ∩ ⌊F ⌋ | C,B} =

= {⌊G⌋ ∩ ⌊H⌋ ∩ ⌊F ⌋ | A,C} =

= {⌊G⌋ ∩ ⌊H⌋ ∩ ⌊F ⌋ | A,B}

so, in the game {⌊G⌋ ∩ ⌊H⌋ ∩ ⌊F ⌋ | A,B,C}, all the right options can be
eliminated but, and very importantly, no more than one option at a time.
This can be achieved by using reversible options. For instance, consider the
game

{1 | {{3 | ∗, ∗2} | −3} , {{3 | ∗, ∗3} | −3} , {{3 | ∗2, ∗3} | −3}}.
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All its right options can be eliminated, but no more than one at the same
time. The game, in canonical form, is the game {1 | ∗, ∗2, ∗3}. With this in
mind, it is possible to obtain a cover-preserving diamond.

Let

A = {{3 | ∗, ∗2} | −3},

B = {{3 | ∗, ∗3} | −3},

C = {{3 | ∗2, ∗3} | −3}, and

S = {1, A,B,C}.

For this set of games, the antichain table is:

1 A B C A,B A,C B,C A,B,C ∅

1 1∗ {1 | ∗, ∗2} {1 | ∗, ∗3} {1 | ∗2, ∗3} {1|∗, ∗2, ∗3} 2
A

B

C

A,B 0
A,C
B,C
A,B,C

∅

The Hasse diagram of L(S) is:

2

1∗

{1|∗,∗2} {1|∗2,∗3}{1|∗,∗3}

{1|∗,∗2,∗3}

0

This example is also the first known non-distributive modular L(S).

The previous necessary condition can be useful to analyze some particu-
lar universes of games.
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Corollary 4.2.3. Let S be a set of games. If L(S) is a finite non-distributive
modular lattice then there are A,B,C ∈ S such that A � B, A � C and
B � C.

Proof. By Theorem 4.2.2, exists

A ∈ ⌈G⌉ \ (⌈H⌉ ∪ ⌈F ⌉),

B ∈ ⌈H⌉ \ (⌈G⌉ ∪ ⌈F ⌉), and

C ∈ ⌈F ⌉ \ (⌈H⌉ ∪ ⌈G⌉)

or the symmetric situation (for which the proof is similar). So,

A  G, A 6 H, A 6 F and B  H, B 6 G, B 6 F.

If A 6 B then A 6 B 6 G which contradicts A  G. If A > B then
H > A > B which contradicts B  H. Therefore, A � B.

The arguments for A � C and B � C are similar.

Corollary 4.2.4. Let S be a finite linear order of games. Then, modularity
of L(S) implies distributivity of L(S).

Proof. Because S is a finite linear order, it cannot contain A,B,C such
that A � B, A � C and B � C. So, by Corollary 4.2.3, L(S) cannot be a
non-distributive modular lattice.

The question What conditions on S force L(S) to be a modular lattice?
is still open. However, in the next chapter, Question 2 (What lattices are
generated?) will be completely answered: all complete lattices can be gene-
rated. The finite case is shorter and more direct, the infinite case is more
involved.
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Chapter 5

Representation With Games

In this chapter, some results from [7] and [8] are presented. A Representation
Theorem with Games allowing the generation of all finite lattices in game
context is proved, and is extended to the infinite complete case, proving that,
for a well chosen S, allowing the axiom of choice, every complete lattice is
isomorphic to L(S) \ {⊥,⊤}. Also, when researching [1], sets S were found
such that Ln(S) 6= Lm(∅) for any finite n andm. This motivated the general
question of whether Lγ(S) = Lγ(∅) for some γ ∈ Ord, that will be solved
in the last section of this chapter. Also, a condition that ensures that the
class of games born in days before a certain ordinal is a lattice.

Nimbers play a very important role in the choice of S. In particular,
transfinite nimbers will be very useful so, when the word nimber occurs, it
may be a transfinite nimber.

5.1 Representation Theorem: Finite Case

The construction of a non-distributive modular L(S) made in the previous
chapter was based on the careful choice of a set of games S involving nimbers
and reversible options. In this section, using the same ideas, a general
representation theorem, which shows that, for every finite lattice L, there is
a set of games S such that L(S) \ {⊥,⊤} is isomorphic to L, is proven.

Consider the universe

{JA = {A | −1} : A a set of fuzzy nimbers} .

(Note, fuzzy nimbers include all nimbers except 0.) In this universe it is
easy to see that:

U1: JA = JB if and only if A = B;

U2: JA > JB if and only if B is strictly contained in A;

U3: JA � JB if and only if B \A 6= ∅ and A \B 6= ∅.
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These are consequences of the fact that, if ∗k ∈ A\B, then, in the game
{A | −1}+ {1 | B}, Left, moving first, has the winning move ∗k + {1 | B}.

Using reversibility, it is possible to define a more thin and useful universe
of games.

Definition 5.1.1. Let F be a family of sets of fuzzy nimbers. Let F∗ be
the set of games

F∗ = {GA : GA = {2 | {A | −2}} and A ∈ F} ;

and

UF = {JA : JA = {GA | −1} and GA ∈ F∗} .

For any set F , let

F =
⋃

T ⊆F

(
⋃

A∈T

A

)

be the closure of F under unions, and define F
∗
and UF as in the previous

sentence.

The following lemma highlights some important facts about the elements
of UF .

Lemma 5.1.2. Let F be a family of sets of fuzzy nimbers. Then,

JA = {{2 | {A | −2}} | −1} = {A | −1}

and the elements of UF have the properties U1, U2 and U3 of the previous
universe.

Proof. Since {A | −2} < {{2 | {A | −2}} | −1} then, by reversibility,

{{2 | {A | −2}} | −1} = {A | −1}.

The proof of the second claim is the same as that already given.

For the intended purposes of this work, the set of games F∗ needs to be
extended to

S = F∗ ∪ {−1}.

Following, some properties of L(S) for that specific S.

Proposition 5.1.3. Let F be a family of sets of fuzzy nimbers and let
S = F∗ ∪ {−1}. Then, L(S) = {0,−2} ∪ {−1∗} ∪ UF .
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Proof. Consider X ∈ L(S).

Suppose that each right option of X is a GA, for some A. Since each GA
is fuzzy, then, regardless of the left option, X = 0. Thus, to generate any
other game, −1 must be a right option. In this case, again since each GA is
fuzzy, X is negative if there is a left option and X = 0 otherwise. Therefore,
the maximum element of L(S) is 0.

Suppose

X =
{
XL

∣
∣ GA1

, GA2
, . . . , GAk

,−1
}
.

Since X 6 0, a move by Right to some GA gives Left a move to 2, which is
clearly greater than X. Therefore, all of right’s options, except −1, reverse
out.

The game { | −1} = −2 is the mimimum element of L(S) (by Lemma
3.1.3, nothing can be worse for Left than having no options).

By definition of L(S), the other possibilities are the games {−1 | −1} =
−1∗ and {GA1

, GA2
, . . . , GAk

| −1} such that Ai ∈ F .

The fact

{GA1
, GA2

, . . . , GAk
| −1} = {GA1∪A2∪...∪Ak

| −1}

= {A1 ∪A2 ∪ . . . ∪Ak | −1}

finishes the proof.

Proposition 5.1.4. Let F be a family of sets of fuzzy nimbers and let
S = F∗ ∪ {−1}. Then {−1∗} ∪ UF is a sublattice of L(S).

Proof. This is a direct consequence of the inequalities

−1∗ < {GA1
, GA2

, . . . , GAk
| −1}

and

{F∗ | −1} > {GA1
, GA2

, . . . , GAk
| −1} (Lemma 3.1.3).

The following picture illustrates the structure of L(S):
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0

{F∗| − 1}

UF \ {F∗| − 1}

−1∗

−2

Theorem 5.1.5. Let F be a family of sets of fuzzy nimbers. Consider the
set of games S = F∗ ∪ {−1} and the family of sets F ∪ ∅. Consider the
lattices

(
{−1∗} ∪ UF ,6

)
, and (F ∪ ∅,⊆). Then, the map ψ defined by

ψ : {−1∗} ∪ UF −→ F ∪ {∅},

where ψ(−1∗) = ∅ and ψ({GA1∪A2∪...∪Ak
| −1}) = A1 ∪ . . .∪Ak, is a order-

and join-preserving isomorphism.

Proof. The order-preserving property ψ(JS1
) 6 ψ(JS2

) iff S1 j S2 follows
from applying Lemma 5.1.2:

{GA1∪A2∪...∪Ak
| − 1} 6

{
GB1∪B2∪...∪Bj

| − 1
}

⇔ {A1 ∪A2 ∪ . . . ∪Ak | −1} 6 {B1 ∪B2 ∪ . . . ∪Bj | −1}

⇔ A1 ∪A2 ∪ . . . ∪Ak j B1 ∪B2 ∪ . . . ∪Bj.

Also, the one-to-one correspondence is consequence of

{GA1∪A2∪...∪Ak
| − 1} =

{
GB1∪B2∪...∪Bj

| − 1
}

⇔ A1 ∪A2 ∪ . . . ∪Ak = B1 ∪B2 ∪ . . . ∪Bj .

Finally, if, say, JS1
= −1∗, then

ψ(JS1
∨ JS2

) = ψ(JS2
) = ∅ ∪ ψ(JS2

) = ψ(JS1
) ∪ ψ(JS2

).

Suppose that JS1
6= −1∗ and JS2

6= −1∗. Then,

ψ(JS1
∨ JS2

) = ψ({S1 ∪ S2| − 1}) = S1 ∪ S2 = ψ(JS1
) ∪ ψ(JS2

),

i.e. ψ is join-preserving.
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Propositions 5.1.3 and 5.1.4 and Theorem 5.1.5 establish a way to iden-
tify finite sets with finite lattices of games. Theorem 1.2.17 and Corollary
1.2.18 establish a way to identify finite lattices with finite sets. Therefore,
it is possible to identify finite lattices with sets of games.

Theorem 5.1.6 (Representation Theorem with Games). Let (L,6) be a fi-
nite lattice. ConsiderM its set of meet irreducibles labelled with the nimbers,
∗1, ∗2, . . . , ∗k. Then,

L
ϕ
→ R(ϕ)

ψ−1

→ {−1∗} ∪ UR(ϕ)\∅

is a lattice isomorphism and ψ−1 ◦ ϕ(a ∨ b) = ψ−1(ϕ(a) ∪ ϕ(b)).

Proof. Note that R(ϕ)\∅ is a family of sets of fuzzy nimbers closed under
unions. Thus this result is consequence of Theorem 5.1.5 and Corollary
1.2.18.

So, given a finite lattice L, it is possible to choose a set S in such way
that

L(S) \ {0,−2} ∼= L.

The set S = (R(ϕ)\∅)∗ ∪ {−1} or, even better,

S = (J (R(ϕ))\∅)∗ ∪ {−1}

produces the intended finite lattice, where J (R(ϕ)) is the set of join-irreducibles
of R(ϕ).

Example 5.1.7. Consider the lattice M3 from Figure 1.1.

0

a b c

1

The set of meet-irreducibles ofM3 isM = {a, b, c, 1}. Consider it labeled
with the fuzzy nimbers ∗, ∗2, ∗3 and ∗4, in the following way:

·

∗ ∗2 ∗3

∗4
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Then R(ϕ) is given by the following diagram:

∅

{∗2, ∗3} {∗, ∗3} {∗, ∗2}

{∗, ∗2, ∗3}

If S was considered to be the set
{
{G | −1} : G ⊆ 2{∗,∗2,∗3}

}
, then {∗ | −1}

would be an element of S, yielding that S would have more elements than
the intended.

So, consider F =
{
{∗, ∗3}, {∗2, ∗3}, {∗, ∗2}, {∗, ∗2, ∗3}

}
. Then

F∗ =
{
{2 | {∗, ∗3 | −2}}, {2 | {∗2, ∗3 | −2}}, {2 | {∗, ∗2 | −2}}, {2 | {∗, ∗2, ∗3 | −2}}

}

and UF =
{
{∗, ∗3 | −1}, {∗2, ∗3 | −1}, {∗, ∗2 | −1}, {∗, ∗2, ∗3 | −1}

}
. For

S = F∗ ∪ {−1}, the lattice L(S) is given in the following diagram.

−2

−1∗

{∗, ∗2| − 1} {∗, ∗3| − 1} {∗2, ∗3| − 1}

{∗, ∗2, ∗3| − 1}

0
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Example 5.1.8. The lattice M3[D], the congruence preserving extension of
D, where D is the three-element chain, is a non-distributive modular lattice
with a beautiful tridimensional visualization (see [26]).

b

b

b

b

b

b

b

b

b

b

b

b

Figure 5.1: L(S) ∼=M3[D] (with triangular dipyramidal picture [25])

The next picture shows how to use the Representation Theorem 5.1.6 to
generate M3[D] from games.

∗7

∗5∗4 ∗6

·∗ ∗3∗2

···

·

M ⊆ M3[D] labeled with fuzzy nimbers.

ϕ
−→

{∗,∗2,∗3,∗4,∗6}

{∗,∗2,∗3}

{∗,∗2,∗3,∗5,∗6}

{∗,∗2,∗3,∗4,∗5,∗6}

{∗,∗2}

{∗,∗2,∗3,∗4,∗5}

{∗2,∗3,∗5,∗6}

∅

{∗,∗2,∗4,∗5}{∗,∗3,∗4,∗6}

{∗,∗3}{∗2,∗3}

R(ϕ)

Figure 5.2: Example of application of Theorem 5.1.6

61



Considering

A = {2 | {∗2, ∗3 | −2}}

B = {2 | {∗, ∗3 | −2}}

C = {2 | {∗, ∗2 | −2}}

D = {2 | {∗2, ∗3, ∗5, ∗6 | −2}}

E = {2 | {∗, ∗3, ∗4, ∗6 | −2}}

F = {2 | {∗, ∗2, ∗4, ∗5 | −2}}

and
S = {−1, A,B,C,D,E, F},

then L(S) is

{∗,∗2,∗3,∗4,∗6|−1}

{∗,∗2,∗3|−1}

{∗,∗2,∗3,∗5,∗6|−1}

0

{∗,∗2,∗3,∗4,∗5,∗6|−1}

{∗,∗2|−1}

{∗,∗2,∗3,∗4,∗5|−1}

−2

{∗2,∗3,∗5,∗6|−1}

−1∗

{∗,∗2,∗4,∗5|−1}{∗,∗3,∗4,∗6|−1}

{∗,∗3|−1}{∗2,∗3|−1}

5.2 Representation Theorem for Complete Lattices

In the previous section, it was proved a Representation Theorem with Games
allowing the generation of all finite lattices in game context. From Chapter
3, it is known that L(S) is a complete lattice. Therefore, a natural step is
trying to generate all complete lattices (finite or infinite) in game context.

The idea for the finite case was to establish a composition

L −→ Set of sets −→ L(S) \ {⊥,⊤}
finite lattice (closed for unions) lattice of games.
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The second part of the composition was based in some results that are
true allowing transfinite nimbers. To summarize the previous results, it is
possible to attach an isomorphism ψ to any family of sets of fuzzy nimbers
H closed under unions, that is

ψ : {−1∗} ∪ UH −→ H ∪ {∅} = H ∪ {∅}.

From the set of games S = H∗ ∪ {−1}, the lattice

L(S) = {0,−2} ∪ {−1∗} ∪ UH

is obtained and, applying Theorem 5.1.5, the sublattice

(L(S) \ {⊥,⊤},j)

is isomorphic to (H ∪ {∅},j). The following results will establish the ap-
propriate (H ∪ {∅},j), an object, in lattice theory, called interior system,
in order to prove the more general Representation Theorem with Games.
Observe that the top and bottom of (H ∪ {∅},j),

⊤ =
⋃

H and ⊥ = ∅

are identified with the games {
⋃

H | −1} and {−1 | −1} = −1∗, respectively
the top and bottom of L(S) \ {⊥,⊤} = {−1∗} ∪ UH. All these previous
results, with the same proofs, work for the transfinite case.

The crucial part to solve, when thinking about a generalization for com-
plete lattices, is the first part of the composition. The results in [1] were
based in Theorem 1.2.17 and Corollary 1.2.18 that are of no use for the
general complete case:

Definition 5.2.1. Let L be a lattice. A family I of subsets of L is said
to be a interior system if I is closed under unions, that is, for all H ⊆ I,
⋃

H ∈ I.

Observe that
⋃

∅ = ∅ ∈ I.
Interior systems, as families of subsets, have the following property.

Proposition 5.2.2. Let I be an interior system. Then (I,⊆) is a complete
lattice.

Proof. If A is a set of elements of I, it is easy to argue that

1.
∨

A =
⋃

A, and

2.
∧

A =
⋃
(B ∈ I : B ⊆

⋂
A).
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More, for any complete lattice, it is possible to construct an interior
system in a rather natural way.

Proposition 5.2.3. Let L be a complete lattice. Then, the family

I =
{
{x ∈ L : x� a} : a ∈ L

}

is an interior system.

Proof. To prove that
⋃

a∈A⊆L

{x ∈ L : x� a} ∈ I, it is enough to prove that

⋃

a∈A⊆L

{x ∈ L : x� a} =

{

x ∈ L : x� ∨

a∈A

a

}

∈ I.

This is a consequence of x� ∨

a∈A

a if and only if, for some b ∈ A, x � b and

the existence of
∨

a∈A

a ∈ L is guaranteed because L is a complete lattice.

These results allow any complete lattice to be represented by an interior
system.

Proposition 5.2.4. Let L be a complete lattice. Then, L is isomorphic to
some interior system.

Proof. By Proposition 5.2.3, the family I = {{x ∈ L : x � a} : a ∈ L} is an
interior system and, by Proposition 5.2.2, this family, with ⊆ is a complete
lattice.

Consider the map

ϕ : a ∈ L 7→ {x ∈ L : x� a} ∈ I.

The map ϕ is an isomorphism, and ϕ(a ∨ b) = ϕ(a) ∪ ϕ(b):

1. Let a, b ∈ L and suppose that a 6 b. Let x ∈ L be such that x � a.
It follows that x � b as well, since otherwise b 6 x and a 6 b 6 x ⇒
a 6 x. Therefore

ϕ(a) = {x ∈ L : x� a} ⊆ {x ∈ L : x� b} = ϕ(b),

and ϕ is order-preserving.

2. For a, b ∈ L,

ϕ(a ∨ b) = {x ∈ L : x� a ∨ b}

= {x ∈ L : x� a} ∪ {x ∈ L : x� b}

= ϕ(a) ∪ ϕ(b).
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3. Let a, b ∈ L, and suppose that ϕ(a) = ϕ(b), that is,

{x ∈ L : x� a} = {x ∈ L : x� b}.

Then a = b, since, otherwise, a � b or b � a. Without loss of
generality, suppose that a � b. Then a ∈ {x ∈ L : x � b}, which
yields a contradiction with the fact that a 6∈ {x ∈ L : x� a}.

It is now possible to establish the first part of the composition, and prove
the rest of the infinite case.

Theorem 5.2.5 (Representation Theorem with Games for Complete Lat-
tices). Let (L,6) be a complete lattice. Then, for some set of games S, L
is isomorphic to L(S) \ {⊥,⊤}.

Proof. Consider the isomorphism ϕ : (L,6) 7→ (I,⊆),

ϕ(a) = {x ∈ L : x� a}

defined in Proposition 5.2.4).

By Theorem 1.3.11, for some α ∈ Ord, consider the bijection

Ψ : L 7→ {ξ ∈ Ord : ξ < α}.

Then, the map ∗Ψ : (I,⊆) 7→ (∗I,⊆), where

∗Ψ({x ∈ L : x� a}) = {∗(Ψ(x)) : x ∈ L, x � a}

is an isomorphism and (∗I,⊆) is an interior system of sets of nimbers. Note
that ∗(Ψ(x)) is a nimber, eventually transfinite.

Also, the map

ψ−1 : (∗I,⊆) 7→ ({−1∗} ∪ U∗I ,6)

given by Theorem 5.1.5 is an isomorphism.

So, if F is the family of sets of fuzzy nimbers of ∗I and S is the set
of games F∗ ∪ {−1} then, ψ−1 ◦ ∗Ψ ◦ ϕ is an isomorphism mapping L to
L(S) \ {⊥,⊤}.

Some Applications

Next, two applications of the Representation Theorem with Games for Com-
plete Lattices are shown.
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Example 5.2.6. In an infinite lattice, there may be no meet-irreducible or
no join-irreducible elements at all, not considering the trivial cases ⊥ and
⊤. So, Theorem 1.2.17 is not applicable.

Consider lattice of nonnegative integers, ordered with the reverse of the
usual divisibility ordering, x 6 y when x divides y. The set of non-zero
join-irreducible elements is empty.

1

2 3 5 7 (. . .)

4 6 9 10 14 15 21 (. . .)

8 12 18 20 27 28 30 42 44 45 50 52 (. . .)

(. . .)
0

In this example, x ∨ y = gcd(x, y) and x ∧ y = lcm(x, y).

To find the representation with games, note that

ϕ(a) = {x ∈ N0 : a ∤ x}.

So, define the game Ga = {2 | {∗x | −2}} where x ∈ N0 and a ∤ x, and
choose

S =




⋃

a∈N0

{Ga}



 ∪ {−1}.

The following L(S) is obtained.
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0

{∗x| − 1}
(x ∈ N0 \ {1})

{∗x| − 1}
(x ∈ N0 \ {1, 2})

{∗x| − 1}
(x ∈ N0 \ {1, 3})

{∗x| − 1}
(x ∈ N0 \ {1, 5})

(. . .)

{∗x| − 1}
(x ∈ N0\{1, 2, 4})

{∗x| − 1}
(x ∈ N0\{1, 2, 3, 6})

{∗x| − 1}
(x ∈ N0\{1, 3, 9})

(. . .)

(. . .)

−1∗

−2

Example 5.2.7. The lattice Q ∪ {−∞,+∞} is a not complete infinite lat-
tice. In fact, sets such as {r ∈ Q : r2 < 2} have no joins or meets. In this
case, the family

I = {{x ∈ Q ∪ {−∞,+∞} : x < a} : a ∈ Q ∪ {−∞,+∞}}

is not an interior system and the representation method exposed in the last
section fails.

However, the lattice R ∪ {−∞,+∞} is complete and, for this case, the
family

I = {{x ∈ R ∪ {−∞,+∞} : x < aξ} : ξ < α}

is an interior system. Consider a enumeration of R, aξ, ξ < α, ξ, α ∈ Ord.

Define, for r ∈ R ∪ {−∞,+∞}, Gr = {2 | {nimbers∗ξ | −2}} where
aξ < r and choose

S =

(
⋃

r

{Gr}

)

∪ {−1}.

The following L(S) is obtained.
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0

−1∗ (7→ −∞)

−2

{∗ξ| − 1}, aξ < s (7→ s ∈ R)

{∗ξ| − 1}, aξ < r (7→ r ∈ R)

{∗ξ| − 1}, ξ ∈ seg(α) (7→ +∞)

(. . .)

(. . .)

(. . .)

b

b

b

b

b

b

5.3 Transfinite Conway’s Construction

Starting Conway’s transfinite recursion with S 6= ∅ raises the question of
whether Lγ(S) = Lγ(∅) for some γ ∈ Ord. For instance, consider S = {0}.
For every n ∈ N0, Ln(S) 6= Ln(∅) because, if k ∈ N, k ∈ Lk−1(S) and
k 6∈ Lk−1(∅). However it is possible to prove a general convergence to
Conway’s construction, beginning with the empty set.

Theorem 5.3.1. Let S be a set of games. Then, for some γ ∈ Ord,

Lγ(S) = Lγ(∅).

Proof. There is a natural embedding of B ( Ord, the ordinals that are
birthdays of at least one game of S, into S. The images may be obtained
applying the Axiom of Choice to the family

{G ∈ S : b(G) = ξ}ξ∈B .

Therefore B must be a set because S is a set. Also, B must be bounded (an
unbounded class of ordinals is not a set).

Consider α ∈ Ord such that b(G) 6 α for all G ∈ S. Let γ be an
additively indecomposable ordinal such that γ > α (it exists because, by
Proposition 1.3.10, H is unbounded).

To prove that Lγ(∅) ⊆ Lγ(S), consider a game J ∈ Lγ(∅). By definition,
J ∈ L(U), where U is the set of games with birthday less than γ. Since
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0 ∈ L0(S), every game in U is also born before day n in the recursive
process with initial set S. So, again by definition, J ∈ Lγ(S).

To prove that Lγ(S) ⊆ Lγ(∅), consider a game J ∈ Lγ(S). By definition,
J ∈ L(U), where U is the set of games born on day β < ω in the recursive
process with initial set S. But, since b(G) 6 α for all G ∈ S, all games in S
are also in Lα(∅). Therefore, J ∈ L(U ′), where U ′ is the set of games born on
day α+β beginning with ∅. Observing that γ is additively indecomposable,
α+ β < γ, and, so, U ′ is contained in the set of games that are born before
day γ in the process beginning with ∅, and therefore J ∈ Lγ(∅).

Example 5.3.2.

1. If S = {1, ∗7, {20 | −30}}, then Lω(S) = Lω(∅) and, indeed, if S is a
set of short games, then Lω(S) = Lω(∅).

2. If S = {1, ∗7, ∗(ω + 1)}, then Lω
2

(S) = Lω
2

(∅).

Theorem 3.1.12 states that the collection of short games is not a lattice.
It is also interesting to understand what happens with the collection of
games born in the days before γ, for γ ∈ Ord. In fact, it can be observed
that the key fact is not whether the games are short or long, but if γ ∈ Ord
is a successor or a limit ordinal.

Theorem 5.3.3. Let γ ∈ Ord be a limit ordinal. Then the collection of
games born before γ is not a lattice.

Proof. Let
Cγ = {G : b(G) < γ}

be the collection of games born before γ.
Let G,H ∈ Cγ , G � H, and suppose that the join of G and H in Cγ , S,

exists. Let G =
{
GL
∣
∣ GR

}
, H =

{
HL

∣
∣ HR

}
, and S =

{
SL
∣
∣ SR

}
be forms

of G, H, and S where the birthdays of the options are less than the birthday
of the game itself, and define

J =
{
G,H,GL ∪HL

∣
∣ S,SR

}
.

Since G,H,S ∈ Cγ , then b(G),b(H),b(S) < γ, and

b(J) 6 max{b(G),b(H),b(S)} + 1.

Since γ is a limit ordinal, then b(J) < γ, and J ∈ Cγ . More, J > G: consider
the game

J −G =
{
G,H,GL ∪HL

∣
∣ S,SR

}
+
{
−GR

∣
∣ −GL

}
.

Left, playing first, can move in the first component to G − G = 0 and
wins.
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Right, playing first, can move in either component. If he moves in the
second component, Left has a corresponding one in the first component, so
he loses. If he moves in the first component to S−G, since S > G, he loses.
If he moves in the first component to some SR − G, since, by the Identity
Principle, 3.1.1, SR  S, and S > G, then SR  G, and he loses.

Analogously, J > H.
Consider now the game

S − J =
{
SL
∣
∣ SR

}
+
{
−S,−SR

∣
∣ −G,−H,−(GL ∪HL)

}
.

Left, playing first, can move in the second component to S − S = 0 and
wins.

Right, playing first, can move in either component. If he moves in the
first component, Left has a corresponding one in the second component, so
he loses. If he moves in the second component to S −G or to S −H, since
S > G,H, he loses. If he moves in the second component to S − X with
X ∈ GL∪HL, then, since X � G < S or X � H < S, X � S, and he loses.

Therefore, S − J > 0, which contradicts the definition of join.

Observe that Theorem 3.1.12 is, in fact, a corollary of this result.
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Final Remarks and Future

Work

In this work, it is shown that all complete lattices can be generated in Com-
binatorial Game Theory context. This is an important result, for it cannot
be expected to find any particular properties of lattices of combinatorial
games. If all modular lattices of games were distributive, that should be
because of game properties. However, statements like this one are false,
since every complete lattice can be obtained. This conclusion is a main
contribution of this work.

There are still many unanswered questions when the universe of games
is restricted.

The obvious unanswered questions are:

Question 1: Which families of games generate distributive lattices and which
generate modular lattices?

Other interesting lattices can be found. For example, in [22], it is shown
that the set of option-closed games born on day n form a planar lattice.
Preliminary examples suggest that S such that

⋂

G∈S

I(G) = ∅

(I(G) is the confusion interval of G) is an interesting universe.

This text considered on normal games. Misère games also form an equi-
valence relation and a partial order. Unfortunately, most equivalence classes
are small and most games are incomparable with each other. Moving to
a restricted universe will increase the number of comparabilities and sizes
of the equivalence classes. However, in general, few universes have been
explored. The only lattices found in [4] are linear orders but most families
considered there generated non-lattice partial orders.

Question 2: Is there a universe of misère games that can be used to repre-
sent all lattices?
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OSLO (One-Sided LOopy) games are ones in which one player (say Left)
is given an option to pass in all positions except in a terminal position. In [2]
it is shown that the OSLO games born on day n form a distributive lattice.
This lattice is not the same as that generated by all the short games born
on day n. However, there is a lattice homomorphism from day n normal
play games into the lattice of OSLO games born on day n.

Question 3: Can sets of OSLO games be used to generate all lattices?

In [12] and [29], universes of scoring games with elements (points) of
some group ε that are endgames without options were proposed (the only
Conway’s form without options is { | }).

Question 4: Is there a lattice structure emerging of scoring recursive pro-
cesses?
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Appendix A

Drawing Lattices of Games

In this appendix, a computational tool for drawing L(S) when S is finite is
presented.

The software application LatticeMaker was developed to compute the
lattice L(S) of a given set of games S. The application also produces a
graphic, in PSTricks format, useful to visualize and include in mathematical
texts (like most of the pictures from this work).

This was done by the implementation of the following tasks:

1. A CGsuite (see [27]) script that receives the initial set of games S,
outputting two lists, the first list describing the set L(S), and the
second with the pairs of the relation R = {(G1, G2) : G1 < G2, Gi ∈
L(S)};

2. These lists are then read by a Java program that translates them into
the standard dot format for graphs;

3. This dot file is processed by a set of GraphViz tools such that a transi-
tive reduction is found (i.e., the minimal relation over L(S) such that
the transitive closure of the original relation R is preserved);

4. This reduced lattice is then translated into several PSTricks files, each
with different focuses on the lattice structure, which can be easily
integrated in LATEX documents.

The current open source software version can be obtained at the following
site http://homepages.di.fc.ul.pt/~jpn/lattice.
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