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ABSTRACT 

This document describes an approach to perform sentiment analysis on social media Portuguese 

content. In a single system, we perform polarity classification for both the overall sentiment, and target 

oriented sentiment. In both modes we train a Maximum Entropy classifier. The overall model is based 

on BoW type features, and also features derived from POS tagging and from sentiment lexicons. Target 

oriented analysis begins with named entity recognition, followed by the classification of sentiment 

polarity on these entities. This classifier model uses features dedicated to the entity mention textual 

zone, including negation detection, and the syntactic function of the target occurrence segment. Our 

experiments have achieved an accuracy of 75% for target oriented polarity classification, and 97% in 

overall polarity. 

Keywords: Sentiment Analysis; Opinion Mining; Text classification; Machine Learning; Natural Language 

Processing. 

1 Introduction 

Microblogging and social networks are used by people of all ages. These platforms offer a new form of 

Web based socialization, simplifying communication to restricted groups or to crowds. They aggregate 

user-generated content, such as opinions that people write and publish online, and are now valued for 

market research and trend analysis. 

In this paper we describe the use of Natural Language Processing (NLP) techniques for Sentiment 

Analysis (SA) of social media texts, in Portuguese, sensing the overall and the target oriented sentiment 

polarity. To automatically extract such information from text, it is necessary to deal with the challenges 

of natural language, plus the present-day web writing style, full of symbols, tags, abbreviations and 

misspellings. Given a post or tweet text, the system must find the overall polarity and also the polarity of 

any specific entity mention. Figure 1 has three examples, of increasing complexity, with the original text 

in Portuguese, and the respective translation. In the first case we must detect negative polarity in the 

overall sentiment. For 1(b), beyond the overall sentiment it is necessary to detect the reference to 

benfica, and that it is positive. The third example is more complicated, because the second and third 
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sentences both mention two entities, and with opposite polarities. In each sentence, Belenenses has a 

negative polarity, while Benfica is referred with positive polarity. 

The system being described here is a continuation of previous work on overall polarity classification [1] 

and aspect based sentiment analysis [2] with English texts. We use a supervised machine learning 

classifier for both overall and target oriented sentiment polarity, with different tuning in feature 

extraction. Opinion target entities are automatically detected with named entity recognition, 

complemented with an entity catalog. The analysis pipeline is explained in detail in section 3.  

 

Figure 1: Different examples of text to be analyzed: without entities (a); with a single entity (b); and having 
more than one entity (c). 

2 Related Work 

There are many works in the SA field, from industry and from academia, which differ in the specific 

objectives, in their subdomain of expertise, on the language in which they operate, or in the approach 

taken for polarity classification. 

Twitómetro [3] is a system to gauge sentiment towards five political leaders, via Twitter, during the 

campaign for the 2011 portuguese elections. His politics domain predecessor was OPTIMISM [4], an 

opinion mining system using an ontology of political entities to assist in entity recognition, and whose 

polarity classifier combines rules on lexical-syntactic patterns with machine learning. POPSTAR is a 

research initiative on public opinion and sentiment tracking, producing indicators on entity mentions 

frequency, and their polarity, over time. Several sub-projects emerged from there, particularly on 

reputation as described in [5]. Besides Twitter, news feeds are also used for opinion mining, as in [6], 

through an UIMA-based pipeline for SA, in Portuguese. 

Modern systems and SA’s state of the art can be seen in NLP Workshops and competitive challenges, 

such as RepLab [7], SemEval Twitter SA [8], and aspect based SA tasks [9,10]. These events attract 

participants around the world, but most focused in the English language. One of the top participating 

systems in SemEval aspect based SA task, in 2014, was the NRC-Canada system [11], which extended the 

base training corpus with additional customer reviews corpora, and used Stanford CoreNLP to perform 

tokenization, POS tagging, and dependency analysis. Polarity classification was dealt with a linear SVM 

classifier, having features for the target and its surrounding words, POS based features, dependency 

tree based features, unigrams and bigrams, and lexicon based features. 
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3 Method 

In this paper, we assume the existence of a posts and tweets collector module. Our system has a REST 

API, where the content of those publications can be sent for analysis. 

3.1 Underlying Platform and Preprocessing 

This work reuses the basic framework of a recent real-time SA system [2] for English texts. Our system is 

developed in Java, using the tool MALLET [12], a package for statistical natural language processing and 

machine learning applications to text. Jersey1 RESTful Web Services framework was used in the system 

frontend, for making the core functionality available as a service. 

The received input is preprocessed through noise removal, tokenization, POS tagging and lemmatization. 

Data representing social media content is rich in metadata tags and hyperlinks. These noisy parts may 

hinder the automatic understanding of sentences. Thus, in preprocessing we remove certain elements 

such as URL addresses and retweet prefixes. However, other elements cannot be removed at this point, 

because they are potential indicators for polarity, as in the case of hashtags. Instead of using MALLET’s 

default tokenization pipe, we implemented a new tokenization and POS tagging module, based on 

Apache OpenNLP2 library, with Portuguese trained models. The lemmatizer is a proprietary software 

that depends on the POS tag and the textual context of words. 

3.2 Overall SA 

For this phase, the system must search for sentiment clues on the message transmitted globally by the 

text. To determine the general sentiment polarity we used a machine learning solution, with a 

supervised approach and Maximum Entropy classifier, through MALLET classification libraries. To build 

the model, the classifier was trained from a set of 59000 labeled instances with texts on popular 

expressions, and online comments on music, festivals, television, sports and politics domains. Two 

sentiment lexicons are used to assist in feature extraction. The first is SentiLex-PT [13], a sentiment 

lexicon for Portuguese, made up of 7014 lemmas, and 82347 inflected forms of verbs, nouns, adjectives 

and idiomatic expressions. The other lexicon is a complementary polarity table, contained in a linguistic 

knowledge base from a previous work [14]. It has evolved with the gradual introduction of new 

Portuguese expressions, including idioms, but also popular English expressions, Internet jargon, and 

common symbols and abbreviations. Our classifier model is then trained with the following features: 

 Bag-of-Words (BoW) on lemmas: instead of counting the occurrences of the original text on each 

token, we consider the frequency of their respective lemmas. To illustrate, let’s consider the 

sentence from the example in Figure 1(a). Some of its features would be: 

ficar=1, aborrecer=1, com=1, o=1, exame=1, nacional=1 . 

 A pair (POS tag, simple polarity), for each token, and the counting of these values. The second 

token in the example would have the feature (v-fin.negative)=1 . 

 Bigrams of pairs (POS tag, simple polarity). Like the previous feature, but on each consecutive 

token pair. The first value in the given example would be (v-fin.neutral,v-fin.negative)=1 . 

                                                           

1 https://jersey.java.net 
2 http://opennlp.apache.org  
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 Trigrams of pairs (POS tag, simple polarity), as before but over three consecutive tokens. 

 Bigram before/after polarized terms (positive or negative), according to each sentiment lexicon. 

If a sentiment lexicon identifies a token T as positive or negative, we generate two features: one 

with the previous word and T, and another with T and the next token’s text, all in lemma form. In 

the example, it would be ficar.aborrecer and aborrecer.com. 

 Subject/object polarity, if a sentiment lexicon determines the polarity that some expression 

originates, on the subject and on the object, inside that sentence. As example, the verb defeated 

is positive for the subject, but negative for the entity in the object. 

 Presence of terms with positive/negative polarity within the last five tokens. Because sometimes 

the last words summarize the main idea or polarity. 

 Balance of polarity, according to each sentiment lexicon, calculated by the total of positive 

expressions minus the total of negative expressions, considering also denial detection. 

 Bigrams after verbs, and after negation terms, using the lemmatized forms. 

Figure 2 shows the result of processing the text in Figure 1(a), with the negative polarity shown in the 

overallPolarity field. If this field is zero, the polarity is neutral; if the value is less than zero, we have 

negative polarity; and a value greater than zero corresponds to a positive polarity. The remaining two 

fields denote the absence of entities in the text, and will be explained in the next section. The service 

output can be in JSON or XML format.  

 

Figure 2: Overall result for sentence in Fig. 1(a). 

3.3 Target Oriented SA 

The system starts by identifying entity mentions on the text. These mentions can be opinion targets, and 

when they are not, the system should give them neutral sentiment classification. Our process to detect 

target entities comprises a named entity recognition (NER) module, complemented by the use of an 

entity catalog. For NER, we use an OpenNLP classifier with a model trained for Portuguese. Entities 

whose categories are currency, time, numeric or abstract are discarded. The most plausible, in 

categories person, organization, brand, and location, are selected. The entity catalog is an inventory 

whose records contain the entity canonical name, possible name aliases, and the entity type. This 

resourse allows the system to realize that, for example, SCP is an alias or alternative designation for 

Sporting Clube de Portugal, an organization. 

In the next step, the system must assign a sentiment polarity (positive, negative or neutral) to every 

detected entity mention, according to the text content. For such, we prepared a second Maximum 

Entropy classifier, now based on different features. In this supervised learning, the training labeled 

instances do not include only the text content, as before. Each instance also has the target entity, and 

there is an indication of where it is mentioned. Due to the added complexity in corpus annotation, this 
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training set is smaller than the used for the overall sentiment classifier. Here we have only 13100 

instances. We seek the sentiment for each specific entity mention. So for these instances we want 

features related to that same mention, probably more confined to a short text area. The features for the 

target oriented classifier are: 

 Bag-of-Words for the mention’s text area. We define a feature for the original text of each token 

inside the short sentence that includes the entity mention. The entity name is replaced by 

TARGET , to facilitate harmonization of cases of sentences with similar structure but in which the 

opinion focuses on different names. Taking the example shown in Figure 1(b), these first features 

are [o=1, TARGET=1, é=1, vencedor=1] . 

 Lemma bigrams for tokens within the metion’s text area. For the same mention, it would be: 

[m.bigram_o.TARGET=1, m.bigram_TARGET.ser=1, m.bigram_ser.vencedor=1]. 

 Syntactic function associated with the target. When possible, indicate whether the target 

appears in the subject or object, according to sentence structure. 

 Subject/object polarity. As before, if a sentiment lexicon determines the polarity that some 

expression originates, on the subject or on the object part, we create a feature for it. Returning 

to the example, vencedor is an adjective with positive polarity to the subject, which in this case 

is benfica. 

 Lemma bigrams, after the target, and before the target mention. 

 Pairs and bigrams and trigrams of (POS tag, simple polarity) pairs, as before, for the full text. 

 Bigrams before/after polarized expressions, as before, across the full text. 

 

Figure 3: Analysis result for the example in Fig. 1(b) 

In Figure 3 we can see the detailed output returned by the system, result of analyzing the text in Figure 

1(b). In targetCount field we have the number of entities mentioned in the text. Then we have a list with 

the sentiment polarity for each target entity. In this case we have benfica, an entity with positive 

polarity, and one (positive) reference, which takes place in the first sentence (by sentenceNumber field), 

more precisely in the text between the position 23 and the position 30. 

Having all this detail in the answer, we can provide a friendly visual output. With the polarity and the 

precise location of the target entity, we can assign colors to facilitate the interpretation of the results, as 

shown in Figure 4. 

http://dx.doi.org/10.14738/tmlai.33.1297
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Figure 4: Visual output of the analysis for Fig. 1(b) 

Sometimes we may have different opinions on the same document, or even in the same sentence, on 

the same entity or not. This is the case of the example shown in Figure 1(c). The JSON code with our 

system’s output for such example is listed on Figure 5. The targetCount field shows us that there are 

references to two entities. Belenenses is referred to twice, in the second and in the third sentences, and 

both times having negative polarity, resulting in a target polarity value of -1.47. Benfica is also referred 

to twice, but with positive polarity. With four entity mentions, this is an example where the visual 

output is clearly easier to read. The result for this case is shown in Figure 6. 

 

Figure 5: Analysis result for the example in Fig. 1(c) 

 

Figure 6: Visual output of the analysis for Fig. 1(c). 

3.4 Model Improvement 

The system can evolve, by adjustments in the framework that contribute to a faster running, and 

improvements in the classification model, for better performance in terms of accuracy and precision. 

The priority is the second case, on system output quality. For the detection of entities, the opinion 
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targets, the main NER tool may be replaced, if necessary. And minor flaws can be overcomed by the 

introduction of new entries in the supplementary entities catalog. 

For this system’s most important component, the sentiment polarity classification, we chose two 

aspects to monitor: the adequacy of the model features, and the training set. By studying the output of 

the system, we seek clues to distinguish the characterization of mislabeled instances. Observing their 

respective text, we can add features on the sentences structure, about new symbols, or context aspects 

based. On the other hand, and in parallel, the training set will grow, being added new annotated 

instances, both for overall sentiment and target oriented model tuning. For this purpose, we set up an 

interface for collecting feedback, which facilitates marking the sentiment polarity. This way, on the next 

model iteration, these new instances are already used to train the classifier. Figure 7 illustrates the 

collection of feedback on the third sentence of the last example. The user may indicate the sentiment 

polarity regarding Belenenses, leading to a new labeled instance. Also, when collecting this feedback, if a 

marked target entity was not yet known, it will be added to the system catalog. 

 

Figure 7: Web interface for gathering feedback and corpus annotation 

4 Results 

The perception of the performance in the main components of a system is critical, because only then we 

can realistically improve the service. To evaluate our classification model, on both analysis types, we 

have used a k-fold cross-validation method. The labeled instances are partitioned into k subsets. Then 

there are k rounds of evaluation, in which, and in turn, each of the k instance sets is used to test the 

classifier trained with the other k-1 sets. At the end of the process, all subsets were used only once for 

testing, and their results are combined. We used the typical 10-fold evaluation, which means that each 

training round has 90% of the instances. Table 1 has the accuracy values, for both overall and target 

oriented SA. It is a general measure for success on the predicted polarity. The underlying set of labeled 

instances is not equal in both cases. In overall SA we have more instances, but fundamentally with short 

texts, often with a single short sentence, for which the classifier worked fine. 

Increasing the evaluation detail, we calculated the precision, recall and F-measure, for each polarity 

class, and these metrics' results are shown in Table 2. The overall polarity classifier has the top 

performance, reaching 98% precision and recall for the negative class, and slightly less in the positive 

class. The target oriented classifier achieved poorer results, particularly on the effectively polarized 

classes (positive and negative). Its best precision and recall were obtained in neutral class, being noticed, 

on the other side, a weak coverage for positive class, with only 64%. 

Table 3 shows the weight of each polarity class in training, for both the classifiers. Considering also the 

information from the previous table, we notice, as expected, that in classes with more training instances 

http://dx.doi.org/10.14738/tmlai.33.1297
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the evaluation results are better. An important part in target oriented SA is the detection of the 

sentiment target entities. When evaluating our entity recognition method with the annotated corpus we 

used for polarity training, the accuracy is 88%. 

Table 1: Accuracy for sentiment polarity. 

Analysis accuracy 

overall 0.97 

target oriented 0.75 

Table 2: Detailed evaluation result. 

Analysis class precision recall f-measure 

overall positive 0.96 0.96 0.96 

negative 0.98 0.98 0.98 

neutral 0.78 0.77 0.78 

target oriented positive 0.67 0.64 0.65 

negative 0.75 0.75 0.75 

neutral 0.77 0.80 0.78 

Table 3: Polarity class weight in the training instances. 

Analysis positive negative neutral 

overall 19% 72% 9% 

target oriented 21% 40% 39% 

 

5 Conclusion 

We described a sentiment analysis system for social media content, thought to classify both overall 

sentiment, and sentiment towards specific targets mentioned in the text. Despite the good accuracy, in 

development time, of our overall sentiment classifier, its use in post-development period reveals more 

errors. We think this is due to the differences between training instances and these recent input texts, 

which have greater length and a more complex structure than the former. Portuguese corpus for overall 

sentiment usually do not have many long texts. 

As in other NLP tasks, small errors in the modules that carry the first part of the analysis can 

compromise the quality of the final classification result. Establishing a comparison with our previous 

experiences in English language target oriented SA [2], in this work we got 3% less accuracy. But in 

English we have more tools to work the text, and more labeled data resources, than those available for 

Portuguese. 

As future work, we plan to increase the size of the corpus annotated for training, as a measure to 

mitigate the difference in results between classes. At the same time, we will continue to experiment 

with new features, looking to improve precision and recall. Apart from the performance of our current 

system, there is a feature that could be introduced: aspect classification. The analysis result would be 

richer, pointing out a particular aspect of the target that is affected by some sentiment polarity. In the 

case of comments on some restaurant, possible aspects could be the price or the food. And for each of 

them we could then examine the sentiment polarity, independently. 
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Although there still is a significant error rate, of approximately 25% for target oriented SA, this tool can 

greatly facilitate the analyst work. Let us consider a collection of posts or tweets, where only 40% are 

not neutral. On average, to find 40 positive or negative opinions, a human would have to read 100 

documents, whereas using a system like the one presented in this paper, the human analyst would only 

have to filter the classification results. Even on the worst case, the gain is that the work will be halved. 
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