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Apparently complex flow structures obey to scaling relations that enable to make it viable the study of
their configuration and flow dynamics. This is the case of flow structures that exhibit several branching
levels and are thought to perform optimally.

Here we present scaling relations of diameters and lengths of branching cylindrical channels with
pulsatile flows, and compare themwith other relations published in the literature. It is shown that, under
constant global volume of the flow tree, and for zero pulse frequency these scaling relations reduce to
Murrays's law of consecutive diameters. Optimal scaling depends on pulse frequency, distensibility of the
channel walls, and asymmetry of the daughter vessels. In case that in addition to global volume of the
flow tree, the pressure head is also kept constant, a similar scaling law of channel lengths emerges that
holds together with the law of diameter scaling. The effect of channel distensibility is shown to be
somehow important, such that for achieving optimal performance (lowest impedance) channels with
lower relative distensibility must have their diameter increased. Results are compared with those of
other models for the case of some arteries.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

Murray's Law [1e3] which states that the “cube of the radius of a
parent vessel equals the sum of the cubes of the radii of the
daughters” stays as a landmark scaling law of geometries of
branching channels with non-turbulent flows (see Fig. 1). It was
originally proposed by Cecil D. Murray (1926) for the circulatory
and respiratory systems, yet later on has been proved to hold for
every branching laminar flow [3,4].

Murray stated in his original work [2] that physiologic organi-
zation should be based on principle and pointed out minimum
work and balanced cooperation of the organs in the body as the
best candidate for such a principle. Sherman [3] provided a full
derivation of Murray's law based on that principle. Allometric
scaling laws are common in biology and, with the purpose of their
explanation, approaches have been developed based on optimal
performance of the whole system, either trough minimization of
energy dissipation [5] or through flow configuration that enables
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maximum flow access [6]. West and co-workers [5] presented a
general model of allometric scaling relations (WBE model) in that
the ratio between the diameters of consecutive arteries, Dkþ1/Dk, is
n�1/2 for arteries, and n�1/3 for small vessels (n stands for branching
ratio), regardless of the length of the vessels.

Murray's Law has also been considered in the context of engi-
neered systems. About a decade ago, Bejan and coworkers [4]
proved that Murray's law may be deduced from a general princi-
ple e the Constructal Law (1997) e which states: “For a finite-size
system to persist in time (to live), it must evolve in such a way that
it provides easier access to the imposed currents that flow through
it.” (see for instance Ref. [7]). Said another way, Constructal Law
entails evolution of flow architecture in such a way that under the
existing constraints the distribution of flow resistances evolves in
time to achieve minimum global flow resistance.

Under the conjecture that Nature has optimized in time the
living structures, Reis and coworkers [8] applied both Murray's Law
and Constructal Law to successfully anticipate some architectural
features of the lung tree. More complete information about the
successful application of the Constructal Lawmay be found in Bejan
[6], Reis [9], and Bejan and Lorente [10].

However, we note that with respect to optimal performance
Mauroy et al. [11] have put forward the idea that “the optimal
system is dangerously sensitive to fluctuations or physiological
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Fig. 1. Branching channels with distensible walls (D e diameter; L e length).
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variability, such that physical optimality cannot be the only crite-
rion for design”.

With respect to optimal scaling in asymmetric branching, Bejan
[7] has shown that

D1

D0
¼

�
1þ x3

��1=3
;
D1

D2
¼ L1

L2
(1)

where D2/D1 ¼ L2/L1 ¼ x, is the asymmetry factor of daughter
vessels, and the subscripts 0, 1, 2 represent the parent and each
one of the daughter vessels, respectively. The Eq. (1) which re-
lates homothety coefficient with asymmetry factor further adds
to the study of scaling in asymmetric flows, which are shown to
be important for achieving optimal performance of flow trees
[12].

In the following we will further extend this analysis to find out
the scaling relations of branching pulsatile flows.
2. Pulsatile flows

Flows that develop in circulatory trees are ubiquitous in Nature.
In some animals, namely the vertebrates, blood is rhythmically
pumped through the entire body at a broad range of pulse rates. It is
recognized that pulsatile flow performs best than continuous flow
because it induces lower overall resistances [13] and also better
blood perfusion [14].

The most complete model of pulsatile flows, was put forward by
Womersley [15] who solved NaviereStokes equation in channel
with elastic walls and periodic pressure forcing, and provided for-
mulas for the pressure wave, and the radial and longitudinal
components of the velocity field in the arteries. This work that stays
as a landmark in the field was used as one of the basis of the WBE
model [5].

Since then, other works have appeared that modeled pulsating
flows in rigid channels [16]. Noteworthy are those of Nield and
Kuznetzov [17], Siegel and Perlmutter [18] and Faghri et al. [19],
albeit these studies were also carried out under the “rigid channel”
assumption. Models using analogy with electric circuits date back
to about several years ago. Remarkable by its complexity are those
of Tsitlik et al. [20], Avolio [21], or recently that of Mirzaee et al.
[22].

With the purpose of optimizing branching structures with
pulsatile flows, in what follows we will further explore the parallel
RC model. Though Womersley's equations describe pulsatile flows
accurately, they are quite complex, and not easy to handle analyt-
ically in the study of branching vessels. This is why we use an RC
model as a suitable description of pulsatile flow. In this model the
flow induced by the pressure wave “charges the capacitor” (the
arterial elastic walls) while it is braked by a “Poiseuille resistance”
in the flow direction. The rationale for using Poiseuille flow, rather
than considering a more complex model based on the Naviere-
Stokes equation is explained in the following.
Let us start from NaviereStokes equation for unidirectional
flow: vu/vt þ u.gradu¼�r�1grad Pþ n lap u. In the case of pulsatile
flow in arteries, the inertial terms may be discarded because they
are, at least, of one order of magnitude smaller than the other
terms, as it is shown through scale analysis. In this way, let u denote
average blood velocity, t characteristic time related to pulse wave
frequency, Lc the characteristic length in the flow direction, D vessel
diameter, r blood density, DP pressure variation along the vessel
and n blood kinematic viscosity. Then, by assuming the following
scale values for large arteries: u~10�1ms�1, t~1 s, Lc~1m,D~10�3 m,
DP~103 Pa and n~10�5 m2 s�1, the orders of magnitude (in ms�2) of
the terms in the NaviereStokes equation are: vu/vt~10�1,
u.gradu~10�2, r�1gradP~1, r�1lap u~1, therefore justifying the use
of Poiseuille flow as a first approach in the study of the human
arterial system. Models that include the term vu/vt lead to greater
complexity in the calculations but did not cause a change in the
conclusions. For example, the RLC model developed by Jager and
co-workers [23] accounts for the “sleeve effect”, which arises from
the interaction between viscous and inertial terms in the
NaviereStokes equation. However, in the same study [23] it was
shown that the “sleeve effect” is important in some arteries at
frequencies higher than 15 rad s�1, which is somehow beyond the
normal range of the human pulse frequency.

In real systems, pressure waves of some frequency travel all
along the circulatory trees. Energy travels in the form of enthalpy
plus mechanical energy of the bulk fluid, and in the form of elastic
energy of the vessel walls.

As the basis for building up a model of a pulsatile flow driven by
a pressure difference DP in a vessel of length L and diameter D, one
starts from the HagenePoiseuille equation in the form:

I ¼ k�1
A L�1D4DP; (2)

where I is current (m3 s�1), kA ¼ 128mp�1, in which m is dynamic
viscosity of the fluid. In pulsatile flow, both DP and D are functions
of time, and therefore the same happens with the conductance
Kp ¼ kA

�1L�1D4. In what follows the variables D,L,V standing for
geometric features of vessels with pulsatile flow represent values
averaged over a cycle. In this way, as a first approximation we will
consider the actual conductance in the channel as the sum of the
average conductance (corresponding to diameter D) plus the de-
viation corresponding to diameter variation with pressure, i.e.

KpðtÞ ¼ K þ K
0 ¼ k�1

A L�1D4�1þ 2bðdP=dtÞ0Dt
�
; (3)

where b ¼ (2/D)(dD/dP) is the distensiblity coefficient and Dt is the
time elapsed after the channel diameter has reached the average
value. The Eq. (3) shows that the conductance is the sum of two
terms: the first one corresponds to the inverse of the usual resis-
tance while the second one is equivalent to the inverse of a
capacitive resistance. This aspect is made clearer if we consider
I(t) ¼ Kp(t)DP(t) together with Eq. (3) to obtain:

Izk�1
A L�1D4DP þ 2k�1

A L�1D4ðDtÞbDPðdP=dtÞ0; (4)

Eq. (4) shows that the flow in a channel with elastic walls is
composed of two terms: one corresponds to a resistive current,

Ir ¼ k�1
A L�1D4DP; (5)

while the other matches up a capacitive current,

Ic ¼ 2Ir
�
Dt

�
bðdP=dtÞ0: (6)

with capacitance C ¼ 2Ir(Dt)b, (see Fig. 2).



Fig. 2. Channel wall distensibility is accounted for by an analog to electric capacitance, while flow resistance is that of HagenePoiseuille flow.
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As the global conductance is the sum of the respective con-
ductances, one concludes that an equivalent parallel RC circuit is
the model suitable for describing pulsatile flow (see Fig. 3).
3. Minimization of impedance in branching pulsatile flows

As pressure increases in the channel, the elastic walls are
strained to accommodate more fluid. The capacitance C, which has
the same meaning as compliance in vessel physiology, is defined as
C ¼ dV/dP. For a cylindrical channel, with volume V ¼ pD2L/4, one
obtains:

C ¼ kBD
2L; (7)

with

kB ¼ pb=4:

The Eq. (7) provides the opportunity for conferring some sig-
nificance to Dt in Eq. (6). Then, by putting together C ¼ 2Ir(Dt)b and
C ¼ kBD

2Lwe get Dt ¼ (pD2L/8)/Ir. Therefore, Dtwould stand for the
time required for the averaged current Ir to fill half of the channel
volume. However, we note that Eq. (3) was put forward simply with
the purpose of justifying the existence a capacitive flow, together
with a resistive flow in the case of a deformable channel, and will
not be used in what follows.

Additionally, the resistance is given by (see Eq. (5)):

R ¼ kALD
�4: (8)

Let us consider a channel with elastic walls with a pressurewave
of frequency u. By analogy with the electric circuit model (Fig. 3),
the total impedance Z of such channel reads:
Fig. 3. Pulsatile flow as an analog to a parallel RC circuit.
jZj ¼ R
�
1þ u2R2C2

��1=2
; (9)
which with Eqs. (7) and (8) and x ¼ L/D, y ¼ D3, k ¼ kAkB becomes:

jZj ¼ kAxy
�1

�
1þ u2k2x4

��1=2
; kx2 ¼ 1=bu (10)

where bu represents the characteristic frequency of the channel.
3.1. Minimization of global impedance under constant volume

Now, let us consider a channel that branches in two different
channels, as represented in Fig. 1. For the vast majority of flow
systems in the conditions described above (Eqs. (7) and (8)) we
have (see Appendix).

jZjT ¼ jZjo þ
�
jZj�1

1 þ jZj�1
2

��1
: (11)

By taking into account Eq. (10), the Eq. (11) reads.

jZjT ¼ kAx0y�1
0�

1þ u2k20x
4
0

�1=2

þ

0
B@
�
1þ u2k21x

4
1

�1=2
kAx1y�1

1

þ
�
1þ u2k22x

4
2

�1=2
kAx2y�1

2

1
CA

�1

: (12)

The volume of a cylindrical vessel is V ¼ (p/4)D2L. With
~V ¼ 4V=p, the total volume ~VT occupied by the flow system is.

~VT ¼ D2
0L0 þ D2

1L1 þ D2
2L2 ¼ x0y0 þ x1y1 þ x2y2: (13)

In Eqs. (12) and (13) x and y are free variables that describe the
branching structure. The condition of easiest flow access is ach-
ieved with the minimization of the global flow impedance under
constant global volume of the channels, ~VT ,

djZjT � ld~VT ¼ 0; (14)

where l is a constant.
We chose the aspect ratios {x0, x1, x2} as design variables subject

to optimization for the reason that x ¼ L/D defines channel geom-
etry better than either D or L alone.



Fig. 4. The effect of the relative characteristic frequencies of parent (bu0) and daughter
channel ðbu1Þ, (with c ¼ bu1=bu0 ¼ 0.8, 0.5, 0.3, 1, 1.25, 3.3), on impedance as function of
pulse frequency.
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By minimizing the global impedance jZjT (Eq. (12)) under con-
stant volumewith respect to each of design variables {x0, x1, x2} one
obtains, respectively:

l ¼ kA
y20

�
A�1=2
0 � 2u2k20x

4
0A

�3=2
0

�
; (15)

l ¼ kAB2

x21

�
A1=2
1 � 2u2k21x

4
1A

�1=2
1

�
; (16)

l ¼ kAB2

x22

�
A1=2
2 � 2u2k22x

4
2A

�1=2
2

�
: (17)

where Ai ¼ 1þ u2k2i x
4
i , i ¼ 0,1,2, and B ¼ ðA1=2

1 x�1
1 y1þ

A1=2
2 x�1

2 y2Þ�1. Therefore, with the definition of Ai, and Eqs. (16) and
(17) one obtains:

�
A1=2
1 � 2A�1=2

1

�
ðA1 � 1Þ�1=2 ¼

�
A1=2
2 � 2A�1=2

2

�
ðA2 � 1Þ�1=2:

(18)

A solution to Eq. (18) is.

A1 ¼ A2: (19)

This first result, indicates that for minimal resistance to flow the
characteristic frequencies bui ¼ 1=RiCi ¼ 1=kix2i (see Eq. (10)) of the
two daughter channels must be equal.

By using Ai ¼ 1þ u2k2i x
4
i together with Eqs. (16), (17) and (19)

one obtains:

D1

D0
¼ q1=6

�
1þ x3

��1=3
; (20)

D2

D0
¼ q1=6

�
1þ x�3

��1=3
; (21)

where

q ¼
�
2A�3=2

i � A�1=2
i

� �
2A�3=2

0 � A�1=2
0

�
; i ¼ 1;2

.
(22)

and x ¼ L2/L1 stands for branching asymmetry. Taking together the
Eqs. (20) and (21) one has,

D3
0 ¼ q�1=2

�
D3
1 þ D3

2

�
: (23)

For non-pulsatile flow (Ai ¼ 1; q ¼ 1) the Eq. (23) reduces to the
known form of Murray's Law:

D3
0 ¼ D3

1 þ D3
2: (24)

Additionally, from the Eqs. (20) and (21) we obtain the following
relationship:

D2

D1
¼ L2

L1
¼ x; (25)

or, in view of Eq. (19):

x1 ¼ x2; b1 ¼ b2: (26)

The Eq. (26) show that in optimal flow branching the daughter
channels share the same aspect ratio x and distensibility coeffi-
cient b.
By using the Eqs. (19)e(21), and (26) as the results of the opti-
mization, and bui ¼ 1=kix2i , and Ai ¼ 1þ u2k2i x

4
i , we obtain the

minimal impedance from Eq. (12) in the form.

jZjT ;opt ¼
4

pb0L0D2
0bu0A

1=2
0

�
1þ L1

Lo

�
1þ x3

�1=3
f�1

�
; (27)

where

f ¼ q2=3
�
A1

A0

�1=2
: (28)

Now we are able to assess the effect of pulsation on the
impedance of the bifurcation represented in Fig. 1. By noting that
non-pulsatile flow corresponds to A1 ¼ A0 ¼ 1 and q ¼ 1, therefore
jZjT reduces to the usual resistance R, we can represent the ratio
jZjT=R as a function of frequency as shown in Fig. 4 for various
values ofc ¼ bu1=bu0, and for the particular case of symmetric
branching x ¼ 1 and L1 ¼ 0.5L0. For the same x ¼ L/D, we note that
c < 1 stands for a daughter channel of higher distensibility with
relation to the father channel (b1/b0 > 1), while c > 1 represents just
the reverse. As shown in Fig. 4 the effect of pulsation only becomes
significant as the pulse frequency approaches the characteristic
vessel frequencybu0, namely foru=bu0 >0:1. In the case when the
daughter channel is less distensible(c > 1) pulse frequency signif-
icantly reduces flow impedance, an effect that for the same x ¼ L/D
increases with the inverse of the distensibility ratio
b0=b1 ¼ bu1=bu0 ¼ c (see Fig. 4). On the contrary, in the case when
the daughter channel is more distensible pulse frequency increases
impedance as the pulse frequency falls in the vicinity of the char-
acteristic parent channel frequencybu0.
3.2. Minimization of global impedance under constant volume and
pressure head

Reis [9] has shown that minimal global flow resistance in a
branching tree under constant total pressure head DP, is achieved
with a tree configuration in which total flow resistances allocated



Fig. 5. Daughter to parent unstrained diameter ratios as function of pulse frequency
for various channel distensibilities for the case when c ¼ 1.25.
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to flow are the same at each branching level. This means that in the
best performing (optimal) flow system design both the overall
resistance and pressure drop distribute in such a way that their
respective values do not change from a branching level to the next
one. This result enables generalize the scaling laws of channel
length for pulsatile flow. The Eq. (27) shows that the minimal
impedance of the branching channel is the sum of 2 terms: the first
one corresponds to the father channel while the second one stands
for the global impedance of the branching channels. Because they
must have the same value one obtains:

L1
Lo

¼ f
�
1þ x3

��1=3
; (29)

where we used Ai as defined above. Similarly, one obtains:

L2
Lo

¼ f
�
1þ x�3

��1=3
; (30)

To conclude, in case that both volume and pressure head are
kept constant, the global impedance of an optimal tree with N�1
branching levels with pulsatile flow of frequency u reads,

jZjT ;opt ¼ N
4

pb0L0D2
0bu0A

1=2
0

; (31)

where bu0¼ðk0L20=D2
0Þ�1 is the characteristic frequency of the parent

channel.
Fig. 6. Daughter to parent unstrained diameter ratios as function of pulse frequency
for various channel distensibilities for the case when c ¼ 0.8.
3.3. Scaling of unstrained channel diameters with different
distensibilities

We recall that D in Eqs. (20)e(25) refer to channel diameters
averaged over a cycle. Because average channel diameter D may be
expressed in terms of its unstrained value Dus plus a term corre-
sponding to an average dilation, i.e. D ¼ Dus(1þbPþ/2),
wherePþ ¼ P(D) � P(Dus), the Eqs. (20) and (21) read:

D1us

D0us
¼

�
1þ b0Pþ

�
2
��

1þ b1Pþ
�
2
�q1=6�1þ x3

��1=3
;

D2us

D0us
¼

�
1þ b0Pþ

�
2
��

1þ b2Pþ
�
2
�q1=6�1þ x�3

��1=3
:

(32)

As a consequence the unstrained diameters ratios of parent to
daughter channels will be affected as function of channel disten-
sibilities and the pressure excursion during the pulse (see Eq. (32)).

Fig. 5 shows the unstrained diameter ratios (D1us/D0us) as
function of frequency for the case when c ¼ 1.25, and for various
values of b0Pþ. With c fixed, becausec ¼ bu1=bu0 ¼ ðb0=b1Þðx20=x21Þ
(see Eqs. (7)e(10)), note that the ratio b0/b1 depends only upon the
ratio x20=x

2
1 , therefore making it possible to explore both the cases

when b1 > b0 and b1 < b0. We observe that for optimal performance
(lowest impedance) the unstrained diameter ratios must decrease
with b0P

þ, which means that decreasing distensibility of parent
channel leads to increase in its diameter. The same behavior is
observed for the case when c ¼ 0.8(see Fig. 6). Specifically
foru=bu0 >0:1 the unstrained diameter ratios (D1us/D0us) increase
with pulse frequency when c ¼ 1.25, and decrease with pulse fre-
quency when c ¼ 0.8.

The human arterial system is an example of a tree with pulsatile
flow in which the average pressure head varies in time. Therefore,
optimal scaling of such a tree is described by the Eqs. (19)e(28) and
(32).

A key aspect of scaling that match minimal impedance in
branching channels with pulsatile flow, and with variable pressure
head, is that scaling depends upon pulse frequency. For non-
pulsatile flow (u ¼ 0, Ai ¼ 1) in channels with asymmetric
branching the Eqs. (20) and (21) reduce to the already known
scaling for continuous flow (Eq. (1)).

The Eqs. (20)e(23) and (29)e(30) represent a generalization of
Murray's Law for pulsatile flow in a channel with branching
asymmetry. Asymmetry of branching is accounted for the param-
eter x ¼ L2/L1, which through Eqs. (20) and (21) assigns a smaller
diameter to the shorter branch. On the other hand, the global
impedance of the pulsatile flow tree depends upon the pulse fre-
quency u. This is a new and very important result that will be
explored in a subsequent study of the human circulatory system
viewed as a flow tree with pulsatile flow.
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3.4. Comparison of the results of the models of Murray, WBE and
this model

In order to compare the predictions of the model above devel-
oped with those of other models that present scaling relations for
diameters in dichotomous branching, we start from the general
scaling relation:

Dnþ1

Dn
¼ að1þ εÞ�a; (33)

where as a rule ε ¼ 1 appears in the scaling relations of dichoto-
mous branching, a is the scaling exponent, and a is an additional
parameter. To the parameters in Eq. (33) Murray's law assigns the
fixed values: a ¼ 1, ε ¼ 1 and a ¼ 1/3, while in the WBE model [5]
a ¼ 1, ε ¼ 1, and a ¼ 1/2 for the branching levels up to a non-
specified level k, while a ¼ 1/3 “for large k, corresponding to
small vessels” [5]. In the present model, a ¼ q1/6, ε ¼ x3 or
ε ¼ x�3(depending on the degree of asymmetry of daughter ves-
sels), and a ¼ 1/3 (see Eqs. (20) and (21)). For the sake of com-
parison we further define the variable

J ¼ ln
�
Dnþ1

Dn

�
; (34)

Therefore, Murray's law is represented by J ¼ �(1/3)
ln2 ¼ 0.231, in the WBE model J ¼ �(1/2)ln2 ¼ 0.347, or for large
branching order k, J ¼ �(1/3)ln2 ¼ 0.231. In the present model,
J ¼ (1/6)lnq � (1/3)ln(1 þ x±3).

To calculate J we used the extensive dataset of diameters,
lengths and distensibilities of arteries provided in Ref. [24]. We kept
the identification number of the each arterial segments used in
Fig. 2 and Table 2 of Ref. [24]. The ratio of lengths x ¼ L2/L1 respects
to arterial segments that converge at a bifurcation. On the values
given in Ref. [24] we have no absolute guarantee that some of these
segments do not have small (or very small) intermediate branches.
Table 1
Diameter scaling between parent and daughter human arterial segments, as observed, an
and present model (see Eq. (34)).

Artery Distensibility
coeff. (Pa s)

D (mm) L (mm) x

4 subclavian A 2.176 9.0 34.0 3.7
7 subclavian B 1.643 8.1 422.0 52.0
6 vertebral 1.095 3.7 149.0 40.2
7 subclavian B 1.643 4.7 422.0 89.7
8 radial 1.118 3.7 235.0 63.5
9 ulnar A 1.148 3.7 67.0 18.1
9 ulnar A 1.148 3.4 67.0 19.7
10 interosseous 0.810 2.1 79.0 37.6
11 ulnar B 1.043 3.2 171.0 53.4
14 aortic arch 2 3.361 20.8 39.0 1.8
18 thoracic aorta 1 3.196 18.9 52.0 2.7
19 subclavian A 2.108 11.0 34.0 3.0
41 abdominal aorta 2.221 10.4 20.0 1.9
42 common iliac 1.793 7.9 59.0 7.4
43 common iliac 1.793 7.9 59.0 7.4
42 common iliac 1.793 7.0 59.0 8.4
50 external iliac 1.613 6.4 144.0 22.5
51 inner iliac 1.238 4.0 50.0 12.5
37 abdominal aorta C 2.371 11.8 20.0 1.6
38 renal 1.448 5.2 32.0 6.1
39 abdominal aorta D 2.303 11.6 106.0 9.1
50 external iliac 1.613 6.1 144.0 23.6
52 femoral 1.328 5.2 443.0 85.1
53 deep femoral 1.208 4.0 126.0 31.5
52 femoral 1.328 3.8 443.0 116.5
55 anterior tibial 0.930 2.6 343.0 131.9
54 posterior tibial 1.035 3.1 321.0 103.5
This can occur especially in very long segments in which it is likely
to find small branches not represented in Fig. 2 and Table 2 of
Ref. [24]. A sign of this is that the proximal and distal diameters of
these segments differ a lot. For this reason, the data for lengths of
arterial segments are used with some caution. We chose arterial
segments that correspond to dichotomous branching in which
parent and daughter vessels are clearly defined. In total 22 arteries
were included in the calculation of J.

Table 1 presents the J values as predicted by Murray's law, the
WBE model, and the present model. For the most part of the cases
the present model predicts the observed values with better
approximation than Murrays's law, or the WBE model. This is
especially true for the cases of asymmetric branching. The cases in
which predictions deviate a lot from the observed values respect to
very long vessels, i.e. those that are likely to present very small
branches not considered in the dataset used.

Based on the present model, a recently published study of the
arterial structure [25] also showed that, in general arterial lengths
are not optimized with respect to hemodynamic performance, and
then an explanationwas offered for the elongation of the ascending
aorta in healthy people during lifetime. The same study also
showed that impedance of the ascending aorta, descending aorta
and carotid artery decreases during body growth, therefore sug-
gesting a trend for improvement of hemodynamic performance
during that period of life.
4. Conclusions

In this study, based on the minimization of global impedance,
the scaling relations of lengths and diameters of the parent and
daughter channels in a branching channel are generalized to the
case of pulsatile flow.

It is shown that in case of constant tree volume, scaling depends
both on pulse frequency and branching asymmetry. Another
important parameter that influences optimal scaling is the
d predicted throughJ by the scaling relations defined by Murray's law, WBE model,

x J

Observed
J

Murray
J

WBE
J

This model

78 0.353
99 �0.105 �0.231 �0.347 �0.016
70 �0.889 �0.231 �0.347 �1.057
87 0.285
14 �0.239 �0.231 �0.347 �0.008
08 �0.239 �0.231 �0.347 �1.262
06 2.165
19 �0.482 �0.231 �0.347 �0.804
38 �0.061 �0.231 �0.347 �0.032
75 0.654
51 �0.096 �0.231 �0.347 �0.082
91 �0.637 �0.231 �0.347 �0.507
23 1.000
68 �0.275 �0.231 �0.347 �0.231
68 �0.275 �0.231 �0.347 �0.231
29 0.347
00 �0.090 �0.231 �0.347 �0.014
00 �0.560 �0.231 �0.347 �1.070
95 3.313
54 �0.819 �0.231 �0.347 �1.207
38 �0.017 �0.231 �0.347 �0.009
07 0.284
92 �0.160 �0.231 �0.347 �0.008
00 �0.422 �0.231 �0.347 �1.266
79 0.936
23 �0.379 �0.231 �0.347 �0.199
48 �0.204 �0.231 �0.347 �0.265
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coefficient of distensibility of the channel walls, which is a
parameter widely used in the characterization of the arteries in the
circulatory tree.

In the limit of zero pulse frequency these scaling relationsmatch
Murray's law of diameters and also the scaling relations of lengths
of branching channels with minimal global flow resistance under
the existing constraints.

We also show that if the additional constraint of constant global
pressure head is imposed to the flow in parent and daughter
channels, the optimal ratio of daughter to parent channels lengths
follows a law similar to that of channel diameters.

In case that the daughter channel has lower relative distensi-
bility global impedance decreases with pulse frequency.
Conversely, if the daughter channel is more distensible pulse fre-
quency increases impedance as the pulse frequency falls in the
vicinity of the characteristic frequency of the parent channel.

The effect of the relative distensibility of parent and daughter
channels is shown to be important somehow. In this way, the
channel with lower relative distensibility must have their
diameter increased to perform optimally, i.e. to achieve minimal
impedance.

For the case of the human arterial trees, the predictions of the
present model were compared with those of Murray's law, and the
WBE model, and especially in the cases of asymmetric branching
provided a better approximation to the observed values.
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Appendix

The impedance is represented by a phase vector (phasor), Z. For
a channel that branches in two different channels (Fig.1) the overall
impedance reads.

ZT ¼ Zo þ
�
Z�1
1 þ Z�1

2

��1
; (A1)

where Zi ¼ Ri/(1 þ juRiCi), i ¼ 0,1,2, and with j ¼
ffiffiffiffiffiffiffi
�1

p
. In polar

coordinates, the generic phasor reads:

Zi ¼ jZijðcos fi þ j sin fiÞ; (A2)

with fi ¼ arctan(uRiCi). For the flow system of Fig. 1, from Eqs. (7)
and (8), we get

fi ¼ arctanð32uxbmÞ; (A3)

We assume that in (A2) the imaginary part of Zi may be
neglected if sinfi is of order 10�2. In that case, cosfiz1. Then, for a
flow system that condition implies.

uxbm<3:2� 10�4 (A4)
The inequality (A4) is verified for the vast majority of flow
systems. For example, for the human arterial system,
uxbmz10.102.10�5.10�3z10�5.

Therefore, in such conditions, Eq. (A1) reduces to.

jZjTyjZjo þ
�
jZj�1

1 þ jZj�1
2

��1
(A5)

With sinfi of order 10�2, when the two members of (A5) are set
equal, the associated relative error is of order 10�4.
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