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Abstract: NeMODe is a declarative system for computer network intrusion detection, providing 
a declarative domain specific language for describing network intrusion signatures which can 
span several network packets, by stating constraints over network packets, describing relations 
between several packets in a declarative and expressive way. It provides several back-end 
detection mechanisms, all based on a constraint programming framework, to perform the 
detection of the desired signatures. 
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1 Introduction 

Maintaining the security of computer networks is a crucial 
task and plays an important role in keeping the users data 
safe and the network a safe place to work. Such task can be 
accomplished by network intrusion detection system (IDS) 
e.g., Snort (Roesch, 1999). 

Distributed network attacks are very popular among 
hacker communities, since they are driven from several 
places and easily elude the detection mechanisms, since 
these attacks originate from several places at once, being 
difficult to identify the network traffic as an attack. 

There are certain aspects that should be verified in order 
to maintain the security of the user’s data, as well as the 
quality and integrity of the services provided by a computer 
network. Being able to describe these aspects, together with 
a verification that they are met can be considered as an 
network intrusion detection task. Describing those 
conditions, in terms of properties which must be verified in 
the network traffic, also describe the desired or unwanted 
state of the network, which can be induced by a system 
intrusion or another form of malicious access. 
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While using a declarative programming approach, such 
as constraint programming (CP) (Rossi et al., 2006) or 
constraint-based local search (CBLS) programming  
(Van Hentenryck and Michel, 2005), we can de scribe those 
condition, in an easier, natural and expressive way. 

NeMODe IDS (Salgueiro et al., 2011) is a declarative 
system that provides a domain specific language enabling an 
easy and very descriptive way to describe the network 
intrusion signatures by following the CP methodologies. 
Besides using CP paradigm to describe the desired network 
situation, it also in relies CP to perform the detection of 
such intrusions, providing several back-end detection 
mechanisms based on CP, such as propagation-based 
solvers, using Gecode (GC); and CBLS, using adaptive 
search (AS). 

NeMODe is able to analyse network traffic logs, but 
also provides a mechanism which simulate real-time 
network traffic monitoring, through the use of a sliding 
network traffic window, over a large traffic log. This allows 
to access the performance of the system on a live network 
link. 

This paper is organised as follows. Section 1 introduces 
the work and makes a brief description of network IDSs, CP 
and some of its flavours. Section 2 describes the  
main characteristics of NeMODe, together with a brief 
description of the language used to model the problems and 
its architecture. Section 3 describes how to model intrusion 
detection problems using propagation-based solvers,  
Section 4 describes how to model network intrusion using 
CBLS and Section 5 describes how to use model a network 
situation as a SAT problem. Section 6 introduces the sliding 
network traffic window used in NeMODe, allowing a  
real-time intrusion detection. Section 7 presents some 
examples, demonstrating how to model them in NeMODe. 
It also shows how they can be described in Snort, so we can 
evaluate the NeMODe against other systems. Section 8 
presents the experimental results of both NeMODe and 
Snort, Section 9 evaluates NeMODe, and Section 10 
presents the conclusions and the future work. 

Throughout this paper, we mention some TCP/IP and 
UDP/IP technical terms, such as packet flags, URG, ACK, 
PSH, RST, SYN, FIN, acknowledgment, source port, 
destination port, source address, destination address, 
payload, described in Comer (2006). 

1.1 Intrusion detection systems 

Network IDSs are very important and one of the first lines 
of defence against network attacks or other types of 
malicious access, which constantly monitors the network 
traffic looking for anomalies or undesirable communications 
in order to keep the network a safe place. 

There are several methods to perform network intrusion 
detection, but, among them two of them are more used 
(Zhang and Lee, 2000): 

1 based on the network intrusion signatures 

2 based on anomaly detection. 

On network IDSs based on signatures, the network attacks 
are described using their signatures, particular properties of 
network packets used to achieve the desired intrusion or 
attack, which are then looked in the network traffic. IDSs 
based on anomaly detection, tries to understand the normal 
behaviour of the systems by modelling its behaviour using 
statistical methods and/or data mining approaches. The 
network behaviour is then monitored, and if considered 
anomalous according the network model, the network is 
probably under some kind of attack. NeMODe uses an 
approach based on signatures. 

Snort (Roesch, 1999) is a widely used network IDS, 
primarily designed to detect signatures that can be identified 
in a single network packet, using efficient pattern-matching 
techniques to detect the desired intrusion signature. 

Although Snort provides some basic mechanisms which 
allow the writing of rules that spread over several network 
packets, such as the Stream4 or Flow preprocessors, they 
do so in a very limited and counterintuitive way, not 
allowing the description of more complex relations between 
packets, such as the temporal distance between two packets. 

Most of the work in the area of IDSs consists in the 
development of faster detection methods (Arun, 2009), but 
there is also some work focused on how the network 
signatures are described and detected, such as in the work 
(Kumar and Spafford, 1995), where the authors present a 
declarative approach to specify intrusion signatures which 
are represented as a specialised graph, allowing the 
description of signatures that spread across several network 
packets. 

1.2 Constraint programming 

CP is a declarative programming paradigm consisting in the 
formulation of a solution to a problem specified as a 
constraint satisfaction problem (CSP) (Rossi et al., 2006), 
in which a number of variables are introduced, with  
well-specified domains and which describe the state of the 
system. A set of relations, called constraints, is then 
imposed on the variables which make up the problem. These 
constraints are understood to have to hold true for a 
particular set of bindings for the variables, resulting in a 
solution to the CSP. 

There are several types of constraint solvers, in this 
work we use: 

1 propagation-based solvers 

2 CBLS. 

1.3 Propagation-based solvers 

Problems in propagation-based (Rossi et al., 2006) solvers 
are described by stating constraints over each variable that 
composes the problem. These constraints states what values 
are allowed to be assigned to each variable. Then, the 
constraint solver will propagate all the constraints and 
reduce the domain of each network variable in order to 
satisfy all the constraints and instantiate the variables that 
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compose the problem with valid results, thus reaching a 
solution to the initial problem. 

GC (Schulte and Stuckey, 2004) is a constraint solver 
library based on propagation, implemented in C++ and 
designed to be interfaced with other systems or 
programming languages. 

1.4 Boolean satisfiability problems (SAT) 

A SAT (Biere and Press, 2009) problem consists on 
determining if there is a valid assignment to all variables of 
a Boolean function, so that such Boolean function is 
satisfiable, or determining that there is no valid assignment 
that can make such Boolean function True, implying that 
the Boolean function is False. 

In order to solve a SAT problem, there is the need to 
make a description of the problem as a Boolean function 
composed by Boolean variables which can only take  
True or False values. Usually this function is specified in 
the conjunctive normal form (CNF) (Biere and Press, 2009), 
a conjunction of clauses, where each clause is a disjunction 
of literals, and each literal is a Boolean variable or its 
negation. 

There are a number of SAT solvers which participate in 
several SAT competitions to evaluate their performance. 
MiniSat (Sörensson and Een, 2005) is widely used SAT 
solver, awarded in such those competitions (Een and 
Sörensson, 2006). 

MiniSat is implemented in a way to be a small, complete 
and efficient SAT solver. One of the major concerns of 
MiniSat authors was to provide a tool that can easily be 
adapted to the needs of the users and which could be easily 
interfaced with other tools, making it an adequate tool to use 
as a back-end detection mechanism to NeMODe. 

1.5 Constraint-based local search 

CBLS (Van Hentenryck and Michel, 2005) is a fundamental 
approach to solve combinatorial problems such as CSPs. 
Although not a complete algorithm and unable to provide a 
complete or optimal solution, CBLS is a method that can 
solve very large problems. Usually, this approach initiates 
with an initial, candidate solution to the problem which is 
then iteratively improved though small modifications until 
some criteria is satisfied. The modifications to the candidate 
solution are usually driven by heuristics that guide the 
solver to a solution. 

AS (Codognet and Diaz, 2001) is a CBLS  
(Van Hentenryck and Michel, 2005) algorithm, taking  
into account the structure of the problem and using  
variable-based information to design general heuristics 
which help solve the problem. The iterative repairs to the 
candidate solution in AS are based on variable and 
constraint error information which seeks to reduce errors on 
the variables used to model the problem. 

2 Intrusion detection with constraints 

Detecting network intrusions with constraints consists on 
identifying a set of network packets in the network traffic, 
which identifies and makes proof of the desired network 
signature attack. The identification process is achieved by 
matching the intrusion signature described through the use 
of constraints stated over a set of network packet variables, 
describing relations between several network packets. 

In order to use the CP mechanism to perform network 
intrusion detection, there is the need to model the desired 
signature as a CSP. A CSP which models a network 
situation is composed by a set of variables, V, representing 
the network packets involved in the description of the 
network situation; the domain of the network packet 
variables, D; and a set of constraints, C, which relates the 
variables in order to describe the network situation. We call 
such a CSP a network CSP. On a network CSP, each 
network packet variable is a tuple of integer variables,  
19 variables for TCP/IP packets and 12 variables for UDP 
packets, representing the significant fields of a network 
packet necessary to model the intrusion signatures used in 
our experiments. For both TCP/IP and UDP packet 
representation, we only consider the ‘interesting’ fields, 
from an IDS point-of-view. 

The domain of the network packet variables, D, are the 
values actually seen on the network traffic window, which is 
a set of tuples of 19 integer values (for the TCP variables) 
and 12 integer values (for the UDP variables), each tuple 
representing a network packet actually observed on the 
traffic window and each integer value represents each field 
relevant to intrusion detection. The packets payload is 
stored separately in an array containing the payload of all 
packets seen on the traffic window. The correspondence 
between the packet and its payload is achieved by matching 
the packet number, i, which is the first variable in the tuple 
representing the packets and the ith position of the array 
containing the payloads. 

Listing 1 shows a representation of such CSP, where P 
represents the set of network packet variables, where Pn,z, is 
each of the individual integer variables of the network 
packet variable, in a total of z fields for each network of the 
n variables, with z = 19 for TCP packets and z = 12 for UDP 
packets. D is the network traffic window, where Di = (Vi,1, 
…, Vi,z) ∈ D is one of the real network packets on the 
network traffic window, which is part of the domain of the 
packet variables P. Data is the payloads of the network 
packets present in the network window, where Datai is the 
payload of the packet Pi = (Vi,1, …, Vi,z) ∈ D. 

The associated domains of the network packet variables 
is represented by ∀Pi ∈ P ⇒ Pi ∈ D, forcing all variables 
belonging to P to obtain values from the set of packets in 
the network window D. 

A solution to a network CSP, if it exists, is an 
assignment of network packet values, Di = (Vi,1, …, Vi,z) ∈ 
D, to each packet variable, Pi = (Pj,1, …, Pj,z) ∈ P, that 
models the desired situation, thus identifying the network 
packets that identify the intrusion being detected. 
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Listing 1 Representation of a network CSP 

P = {(P1,1, …, P1,z), …, (Pn,1, …, Pn,z)} 
D = {(V1,1, … ,V1,z), …, (Vx,1, …, Vx,z)} 
Data = {Data1, …, Datax} 

∀Pi ∈ P ⇒ Pi ∈ D 

2.1 A DSL to describe network signatures 

The NeMODe IDS is a declarative system that provides a 
domain specific language, following the CP methodologies, 
enabling an easy and very descriptive way to describe the 
intrusion signatures that spread across several network 
packets by allowing to state constraints over network 
entities and express relations across several packets. 

The key characteristic of this DSL is to ease the way 
how network attack signatures are described using CP, 
hiding from the user all the constraint programming aspects 
and complexity of modelling network signatures as a CSP, 
but still using the methodologies of CP to describe the 
problem at a much higher level, describing how the network 
entities should relate among each other and what properties 
they should verify. 

Maintaining the declaritivity and expressiveness of CP 
allows an easy and intuitive way of describing the network 
attack signatures by describing the properties that must or 
must not be seen on the individual network packets, as well 
as the relationships that should or should not exist between 
each of the network packets. 

The DSL is a front-end to several back-ends, one to each 
intrusion detection mechanism, including propagation-based 
systems, such as GC and CBLS, such as AS. This allows to 
generate several recognisers based on different constraint 
solver methods, from a single description. With several 
recognisers, it is possible to run each of them in parallel, 
allowing to select the first produced solution, as the 
behaviour of each solver depends on the problem being 
solved. This DSL is further described in Salgueiro et al., 
2011; Salgueiro and Abreu, 2010). 

In Section 7, we present the description of some network 
attacks using NeMODe. 

2.2 Architecture 

NeMODe is composed by a compiler, which reads a 
NeMODe programme and parses it into a semantic model. 
Then, based on that semantic model, it is generated code for 
each of the available back-ends in system. 

After all recognisers have been generated, each 
generated back-end receives as input the network traffic and 
produces a valid solution, if the intrusion described as a 
NeMODe programme exists on the network traffic that was 
given as input to each back-end detection mechanism. 

All back-ends available in the system work in parallel, 
each one producing a solution to the problem. In a final 
step, the best solution produced is selected, which is simply 
the first solution to be produced. 

Figure 1 represents the architecture of the system and 
how the data flows between each component. 

3 Modelling with propagation-based solvers 

Propagation-based systems relies on functions which reduce 
variable domains, which in turn reduces the search space, 
until no more violations to the constraints used to model the 
problem are found, and all variables are reduced to a  
single-valued domain, thus reaching a solution to the 
problem, if one exists. 

In order to model a problem in propagation-based 
solvers, we need to model the problem as a CSP, and to do 
so, three things need to be defined: 

1 the variables of the problem 

2 the domain of the variables 

3 the constraints which describe the problem. 

In the case of network intrusion detection problems, the 
same modelling will be used independently of the solver 
being used. 

3.1 Modelling in GC 

Modelling network intrusion detection problems in GC is 
basically done by asserting relations between the variables 
of the problem in order to describe the desired network 
intrusion signatures. 

Figure 1 NeMODe system architecture 
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Three main steps need to be done to model a network 
intrusion detection in GC: 

1 model the variables 

2 specify the domains of each variable 

3 specify the constraints in order to model the problem. 

3.1.1 Variable representation 

In GC, the primary type of the variables is Integer. There 
are helpers which ease the description of the problem in 
terms of variables, such as the type Integer Array, an 
array of variables of type Integer. This is a perfect data 
type to represent the network packet variables in a CSP, 
since it can easily be represented as a tuple of Integer 
variables, as provided by the Integer Array. 

3.1.2 Constraint specification 

The most important part in describing a network intrusion 
detection problem in GC is the specification of the 
constraints. Stating the constraint over the network variables 
is what models and describes a specific attack, which exists 
in the present network traffic iff the constraint problem has a 
solution. 

The constraints are stated over one or more network 
packet variables, and are responsible to specify and ensure 
which properties are verified by each packet and which 
relations should hold between multiple packets, as used to 
model the problem. 

3.1.3 Modelling a problem 

The problem modelling is achieved through the use of the 
functions which implements the constraints. First, the 
functions which encode and define the variables are applied, 
followed by the functions which implement the constraints 
and actually model the problem. 

4 Modelling with CBLS 

When using CBLS to perform intrusion detection, two 
major things need to be defined: 

1 the number of network packets that needs to be found 
in order to identify the network situation being sought 

2 the constraints that define the problem. 

In CBLS, the constraints are built in order to drive an 
heuristic search, by providing the number of violations of 
each variable used by the constraint. This is a critical aspect 
on CBLS since these values will act as heuristics which 
guide the search algorithm to reach a solution to the 
problem, so, a critical step in modelling intrusion detection 
with CBLS is to find good heuristics with which to solve the 
problem. 

In order to solve a problem, CBLS starts by creating a 
first tentative solution by assign values, usually randomly 

chosen, to the variables of the problem. It then performs 
small changes to that solution in order to converge on a final 
solution, using heuristics to decide which changes will be 
made. This step is repeated until an objective function is 
reached, reaching a valid solution. 

The initial tentative solution is very important in the 
way the solution is reached, so, choosing an initial solution 
that best suits intrusion detection problems is also very 
important. 

4.1 Modelling with AS 

AS requires problems that can be stated as a permutation. 
Because of this, when modelling a problem with N 
variables, the domain of each variable will be D = I, …, I + 
N – 1, where I is the lower value that each variable can take. 
A solution to such problem will be a permutation of D. This 
characteristic of AS poses some limitations in the way that a 
network intrusion can be modelled. 

Modelling a network intrusion as a CSP relies on 
defining a set of network packets variables, P, which 
describes the network situation itself, and the network 
traffic window, D, which contains all the network packets 
seen on a network traffic window. 

P is the network packet set being looked for in D, which 
is much larger than P. This situation is incompatible with 
AS, as the domain set is larger than the variable set, and, a 
solution to such a CSP will be a subset of all network 
packets available on a network traffic window. 

To work around this problem, the network situation is 
modelled using as many variables as the number of network 
packets in the network traffic window, but, most of the 
variables are ignored, so that only the number of variables 
that are being used to model the problem are used during the 
solving process of AS. So, if the network situation being 
modelled is composed by a set of N network packet 
variables and the network traffic window is composed of M 
network packets, the problem will be modelled using M 
network variables, still, only the first N variables will be 
used to reach a solution, ignoring the last M – N variables. 

In order to model a network signature in AS, we decided 
to index all network packets in the network traffic window, 
so that the variables of the problem are indexes to the 
network packets instead of the network packets with all its 
individual values. This way, the variables of the problem 
will be a set of integer variables, each one representing a 
network packet. 

Listing 2 represents a network CSP modelled in AS, 
where D represents the network traffic window, P the set of 
variables used to represent the network signature, where 
{P1, …, Pm} are the network packet variables used to model 
the problem, and {Pm+1, …, Pn} the variables which are 
ignored. C is the set of the constraints used to model the 
network situation, and fi the function that calculates the 
error of the constraint i, which takes as arguments the 
network traffic window, D, and the set of packets to which 
the constraint is applied, {Pj, …, Pk}. 
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Listing 2 Representation of a network CSP modelled in AS 

D = {(V(1,1), …, V(1,19)), …, (V(n,1), …, V(n,19))} 
P = {P1, …, Pm, …, Pn} 
C = {Ci, …, Cl}; 

∀Ci ∈ C ⇒ Ci = fi(D, Pj, …, Pk) 

In order to use only the N variables that describe the 
network situation, some of the variables in P have to be 
ignored. Several approaches have been used to do so: first, 
all the constraints used to describe the network situation will 
only be applied to the first N variables, the variables really 
necessary to model the problem. The second approach is to 
give a null error value to all variables that are not used to 
model the problem, the variables {Pn+1, …, Pm}. Assigning 
a null error value to these variables will prevent AS from 
choosing them as the candidate for a value swap. 

Modelling the problem using such a set of (indexing) 
variables and domains automatically solves the problem of 
restricting the domain of each packet to the network packet 
window. This way, maintaining the domain of each variable 
is facilitated, but in the other hand, the implementation of 
the constraints and its associated errors get more complex. 

4.1.1 Modelling the constraints 

The constraints used to model the problem need to access 
two types of data: 

1 the set of variables used to model the CSP 

2 the network traffic data. 

The constraints are applied to the variables of the CSP, 
although, their associated costs are computed by checking 
the individual values of the real network packets which 
exists on the network traffic window. Each constraint 
applied to a set of network packet variables specifies a set of 
rules which must be verified in order for the constraint to be 
satisfied. These rules are checked by accessing the 
individual fields of the corresponding network variable 
packet. 

The computation of the error of a single network packet 
variable is done by inspecting the individual values of the 
network packet which was assigned to such variable, and 
then, checking whether they violate the rules that compose 
the constraints which are applied to the network packet 
variable being analysed. 

The cost of a candidate solution is the sum of the 
associated error of all variables that compose the problem, 
where the error of each variable is the sum of all constraint 
errors that are associated to that specific variable. 

5 Modelling as a SAT problem 

When encoding a network signature as a SAT problem, the 
first thing to be done is to create the SAT variables which 
compose the problem as well as the variables that represent 
the assignment of each possible value to a SAT variable. 

To solve a SAT problem, MiniSat goes through two 
major steps: 

1 read and parse the problem description represented in 
the CNF in order to build the internal representation of 
the problem in MiniSat 

2 run the solve algorithms. 

The problems are usually represented in a CNF clause file. 
Reading and parsing this file is very time consuming and 
has a great impact on the final performance of the  
MiniSat-based back-end. 

We made some changes to MiniSat in order to eliminate 
the time spent in reading and parsing the description of the 
problem by adapting MiniSat so the CNF rules are 
generated inside MiniSat, thus avoiding this initial step. 

5.1 Variables 

Modelling a problem in SAT is quite different from doing 
so in other CP approaches. In SAT, the problems are 
encoded using only Boolean variables, i.e., variables that 
only can take values True or False. Because of this, we 
consider two types of variables: 

1 the SAT variables which model the problem 

2 the variables that represent the assignment of each 
possible value to a SAT variable. 

In a network intrusion detection problem, each SAT 
variable represents a network packet. For each SAT 
variable, there is a variable for each network packet that can 
be assigned to each SAT variable. We decided that a SAT 
variable represents a network packet by indexing all packets 
on the network traffic instead of having a SAT variable to 
each network packet field, reducing significantly the 
complexity of the model. 

When encoding a network signature as a SAT problem, 
the first thing to be done is to create the SAT variables 
which compose the problem as well as the variables that 
represent the assignment of each possible value to a SAT 
variable. For each network packet required to build the 
desired network signature, we create a SAT variable, and, 
for each SAT variable, it is created a variable for each 
possible value that can be assigned to it. 

Listing 3 represent the variables used to model a 
network intrusion detection problem as a SAT problem, 
where D represents the set of network packets found on the 
network traffic, x the total amount of network packets found 
in the network traffic; DFj the fields of packet j; F(j, i) the 
field i of packet j; SV the set of all SAT variables, 
representing the network packet variables used to describe 
the desired network signature; n the number of SAT 
variables; and V the set of variables which represent the 
assignment of all possible values to each SAT variable SV 
and 1 ,{ , ..., }i i xi SV D SV DV V=  the variables that represent all 
possible assignments that SAT variable SVi can take, i.e., 

1 1,P DV  means that value D1 was assigned to the SAT 
variable P1. 
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Listing 3 SAT variables 

{ }1 2, , ..., xD D D D=  (1)

{ }( ,1) ( ,2) ( , ), , ..., ,j j j xj j F F FD D DF∀ ∈ ∃ =  (2)

{ }1 2, , ..., nSV SV SV SV=  (3)

{
}

1 1 1 2 1 2

1

, , , ,

, ,

, ..., , , ..., , ...,

, ...,
x x

n n x

SV D SV D SV D SV D

SV D SV D

V V V V V

V V

=
 (4)

5.2 Variable domain 

In a SAT problem, there is no concept of variable domain as 
in other constraint solving approaches. Since the variables 
used to model the problem are Boolean variables, their 
domain are the values True and False. 

When representing network intrusion detection as a SAT 
problem, the constraints used to model the problem are also 
the ones responsible for ensuring that a valid solution makes 
sense on a given piece of network traffic, and also that the 
variables can only take values from the actual network 
traffic. 

5.3 Constraints 

Constraints are used to guide the encoding the problem as 
SAT, in a CNF form. The purpose of this encoding is to 
model the valid values according to the rules that should be 
verified by the constraint. 

Encoding a problem as a SAT problem in a CNF form is 
quite complex and its size can grow very rapidly, due to the 
number of variables involved in a SAT problem. So, we 
created functions to model the necessary constraints, which 
according to some parameters create the necessary CNF 
clauses. 

Two major types of encoding are necessary to model a 
problem in SAT: 

1 encoding the set of variables which ensures the 
integrity of the solution 

2 the ones that model the problem, encoding the 
constraints and modelling the desired intrusion 
signature. 

The first step of the encoding is almost independent of both 
network traffic and the specific intrusion detection pattern 
which is to be modelled, depending only on the number of 
network packets in the network traffic window, and the 
number of network packets used to model the desired 
signature. This almost static step can be reused if those 
parameters are shared among several problems, allowing to 
obtaining major performance gains. 

5.4 Variable encoding 

Variable encoding is a very important step. Although we 
decided to use a set of indexing variables to represent the 
network packets, the variable encoding derives the domain 
of the variables by specifying a set of rules which states that 

each variable has to take at least one value, which is an 
index to a network packet; and each variable should take at 
most one index to a network packet, thus, stating the domain 
of each variable. 

Encoding the set of variables is made in two steps: 

1 ensuring that at least one value is assigned to each SAT 
variable by using the at_least_one clauses 

2 ensuring that at most one value is assigned to each SAT 
variable through the use of at_most_one clauses. 

The at_least_one clauses are a set of clauses represented in 
the CNF stating that each SAT variable should take at least 
one value from any network packet on the network traffic 
log. Listing 4 represents a formal representation of such 
clauses, where x represents the number of network packets 
in the network traffic and n the number of network packets 
used to model the intrusion signature. 

Listing 4 at_least_one clauses – formal description 
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The at_most_one clauses ensures that only one value is 
assigned to a SAT variable, which is accomplished by 
creating conflict causes between all combinations of possible 
values that can be assigned to a single variable, e.g., 

1 1 1 2( , ) ( , ) ,SV D SV DV V¬ ∨  means that if the value D1 is assigned 
to variable SV1, the network packet represented by D2 
cannot be assigned to the same variable SV1. Listing 5 
presents a formal representation of the at_most_one clauses, 
where x represents the number of network packets in the 
network traffic and n the number of network packets used to 
model intrusion signature. 

Listing 5 at_most_one clauses – formal description 
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5.5 Constraint encoding 

The second major part of encoding a network signature as a 
SAT problem is the encoding of the problem itself, 
encoding the constraints that compose the network signature 
and which actually model the problem. The encoding of the 
constraints follows the same approach used to encode the 
variables, relying on conflict causes and support clauses to 
describe each constraint. 

Due to the high complexity and size of the CNF rules, 
each constraint is modelled as a function, which in turn 
creates the necessary CNF rules required to encode the 
constraint. Using such functions, we can encode the desired 
network intrusion detection problem as a SAT problem, but 
hiding the complexity of writing CNF rules. 



 Modelling distributed network attacks with constraints 217 

The constraints are encoded by analysing the network 
traffic, and based on that network traffic and the desired 
constraints, CNF rules are created by stating which network 
packets are compatible with each other, according to the 
constraint being encoded. 

5.5.1 Modelling a problem 

The modelling of the problem is achieved through the use of 
the functions which implements the constraints. First, the 
functions which encode and define the variables are applied; 
followed by the functions which implement the constraints 
and actually model the problem. 

6 Sliding network traffic window 

The GC, AS and MiniSat back-end detection mechanisms of 
NeMODe use a static network traffic log, which may be 
obtained with tcpdump (Jacobson et al., 1989), a network 
packet sniffer, while a computer is under an actual attack. 

By using a static traffic sample, we are limiting the 
capabilities of the detection mechanism. This is necessary 
because watching live network traffic would be difficult to 
handle, performance-wise, and also because we need to 
establish benchmark results which require a fixed dataset. 

Introducing a network traffic window that changes over 
time, which slides across a larger set gives the solver new 
capabilities, allowing it to analyse a much larger dataset 
than was previously possible. Besides, if we get the network 
traffic window to slide across live network traffic, it allows 
us to analyse live network traffic in real-time by updating 
the network traffic window with incoming network packets 
captured from the wire. 

If, instead of simply slide the network window over a 
larger set, or updating it with fresh network packets, we 
keep in the network window past packets which seem 
interesting for the network situation that we are trying to 
detect, we get the capability of detecting attacks that spread 
across a window larger than that previously used, thereby 
including a range of packets that span a considerably larger 
time interval than was previously attainable. 

6.1 Sliding network traffic window in AS 

AS was chosen as the solver to implement the sliding 
network traffic window since, from the solvers we have 
experimented with, it is the one which is most easily 
modified and is less sensitive to changes, such as the 
changes on the network traffic window, due to the 
customisability of the AS algorithm. 

AS relies on heuristics, reflected in the error functions 
in order to reach a solution to a combinatorial problem. In a 
network intrusion detection problem, these heuristics 
directly pertain to the network traffic window, since the 
error functions are calculated by analysing the packets 
actually found in the traffic window. 

Due to this direct influence of the network traffic 
window over AS heuristics, any changes made to the 

network traffic window will have an immediate effect in the 
heuristic functions used by AS, changing the way it seeks 
for a solution and, most importantly, automatically adapting 
to any change made on the network traffic window. 

AS reaches a solution to a problem by starting with an 
initial state, and then iteratively performing minor changes 
to it, until an objective function is satisfied. At each step, 
every variable of each ‘tentative’ solution is already 
assigned with a value, which is a reference to an actual 
network packet that belongs to some instance of the network 
packet window. So, when a network packet is removed from 
the packet window to make room for another packet, the 
‘tentative’ solution is no longer valid. Due to the high 
performance and insensitiveness to previous context of the 
AS algorithm, it adapts very quickly to the new ‘instance’ of 
the network packet window, without requiring any changes 
to the code. 

6.2 Updating the sliding window 

In order to update the sliding window with new packets, we 
decided to use a first in first out access discipline, where the 
oldest packet in the network traffic window is replaced by 
the newest packet arriving in the network. Two versions of 
this approach were implemented, and, depending on the 
network case being analysed, the most suited version is 
used: 

1 remove oldest packet, insert new packet 

2 remove oldest not relevant packet, insert new packet. 

6.2.1 Remove oldest packet, insert new packet 

In a first version, when a new packet arrives, we simply 
remove the oldest network packet from the network traffic 
window and insert the new one in its position. At some 
point, while inserting new packets replacing the old ones, 
the packets in the network traffic window are no more 
ordered as in the original network traffic source, since we 
do not shift the packets when inserting a new one. This does 
not poses a problem to AS, since it uses each packet time 
stamp when there is the need impose temporal order 
between network packets. 

6.2.2 Remove oldest not relevant packet, insert new 
packet 

The second version of the sliding window was implemented 
in order to keep specific packets in the network packet 
window: the ones which are understood to be important for 
the desired network situation, even if they are among the 
oldest packets and would otherwise be replaced by new 
ones. This approach allows us to detect intrusions in a wider 
range than the network traffic window being used, since the 
relevant packets to such situation are being ‘buffered’ in the 
sliding network traffic window, allowing them to be related 
to newer packets which appear later in the network traffic. 
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6.2.3 Deciding if a packet is relevant 

The decision of checking if a packet is relevant to the 
desired network situation is critical in keeping the 
interesting network packets in the traffic window, so as to 
relate them with packets that may appear in the future, 
beyond the limits of the network packet window size. 

Deciding if a packet is relevant is directly related to the 
intrusion being described as well as its signature, since that 
decision is achieved through the use of subset of the 
heuristics that have been used in the description of the 
network attack as an AS problem. These heuristics are 
applied to the network packets being checked for relevance, 
and, depending on the result, the packet is considered 
relevant or not. These heuristics are usually very simple, 
checking specific packet fields such as ports, flags, 
addresses or time-stamp of a network packet. 

6.3 Simulating live network traffic 

The sliding network traffic window is implemented to use a 
tcpdump log file as network traffic source, but is designed 
to simulate live network traffic, up to a certain level, by 
simulating the network packet arrival at a given rate. This is 
accomplished by controlling when and which packet is 
considered a newly arrived packet, so it can be processed in 
order to be inserted in the network traffic window. 

To simulate live network traffic using a tcpdump log 
file, we introduce a sleep time between the update of the 
network traffic window with new packets, thus, simulating 
the arrival of new network packets at a given network 
bandwidth. 

This approach to simulate real live network traffic 
allows the fine tuning of the packet arrival rate, thus 
simulating different network traffic speeds, allowing to test 
NeMODe in situations similar to real network traffic, at 
different network bandwidths. 

7 Examples 

So far, we have worked with several network intrusion 
signatures, including: 

1 SSH password brute-force 

2 a distributed DNS spoof 

3 a DHCP spoofing attack 

4 a ARP poisoning attack. 

All these intrusion patterns were described using NeMODe 
and the generated code was successful in finding the desired 
situations in the network traffic logs, using both static and 
sliding network traffic window. 

7.1 Distributed SSH password brute-force 

An SSH password brute-force attack happens when the 
attacker tries to access the SSH service of a given host by 
brute-forcing SSH username/password combinations, i.e., 

trying a large amount of username/password combinations, 
based on a dictionary or some other approach, to gain access 
to the SSH server. 

7.1.1 Modelling the attack 

This type of attack is characterised by a large number of 
SSH connection attempts. To detect this attack, we can 
monitor the number of SSH connections that are initiated 
and terminated in a small amount of time, which means the 
connection was not successful. If there are a few 
connections like these, it means that the host is probably 
under a SSH password brute-force attack. 

We now present the modelling of a distributed SSH 
password brute-force in both NeMODe and Snort. 

7.1.2 Modelling in NeMODe 

Listing 6 shows how an SSH password brute-force attack 
can be described in NeMODe, we start by naming the 
network situation in line 1, and then specify the network 
traffic source, the file ‘ssh.pcap’, and the target solvers to 
which we will generate code. 

Listing 6 An SSH password brute-force attack using NeMODe 

1 ssh_brute_force { 
2  RES = solve(‘ssh.tcpdump’, [as,gecode,minisat]) { 
3   P = { 
4    tcp_packet(A), 
5    dst_port(A)==22, 
6    syn(A), nak(A) 
7   }, 
8  

9   C := clone(10,P), 
10  

11   same_dst(C:A), 
12   max_duration(C) < secs(60) 
13  } 
14 } => { 
15  alert(‘SSH password brute attack’) 
16 }; 

The network signature is actually described in lines 3 to 13. 
Line 15, alerts the network administrator for an eventual 
SSH password brute-force attack using the statement alert 
(‘SSH password brute attack’), if the specific attack is 
found. 

Lines 3 to 7 describe a TCP packet A which initiates an 
SSH connection. These statements are assigned to variable 
P, which later, in line 9 we clone 10 times, meaning that we 
are looking for 10 packets, representing 10 SSH connection 
attempts. 

In line 11, we state that packet A of each instance of 
clone C should all have the same destination address. 
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Then, in line 12, we state that the overall time of all 
clones should be less than 60 seconds, the value we found 
reasonable to consider it an attack, using the statement 
max_duration. 

Finally, in line 15, we alert the network administrator 
for an eventual SSH password brute-force attack using the 
statement alert (‘SSH password brute attack’). 

7.1.3 Modelling in Snort 

It is possible to use Snort to describe and detect SSH 
password brute-force attacks by monitoring a large amount 
of SSH connections from the same source in a short period 
of time: this is achieved in a very limited way, resorting to 
built-in filters which impose a limit of network packets in 
given amount of time. 

Listing 13 represents the rule which we used to detect 
this attack in Snort. It looks for packets going to port 22, 
where the SSH service is running, with the message ‘SSH-’ 
in it is payload. If there are five of these network connection 
from the same source in the interval of 60 seconds or less, 
then we could be under an SSH password bruteforce. 

Listing 7 SSH password bruteforce Snort rule 

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 \ 
(msg:"Possible SSH brute force attempt"; \ 
flow:to_server,established; \ 
threshold:type threshold, count 10, seconds 60; \ 
content:"SSH-"; offset: 0; depth: 18;) 

7.2 Distributed DNS spoof 

A DNS spoof is a man in the middle (MITM) attack, where 
the attacker tries to provide a false answer to a DNS query 
posted by the victim host. If the attack succeeds the victim 
could be accessing a host controlled by the attacker instead 
of the legitimate host. This allows the attacker to extract 
information from the victim. 

We now present the modelling of a distributed DNS 
spoof in both NeMODe and Snort. 

7.2.1 Modelling the attack 

In order to perform this type of attacks, the attacker tries to 
respond with a false DNS answer faster than the legitimate 
DNS server, providing a false IP address for the name to 
which the victim was querying. 

To detect this type of attacks, we want to look for 
several replies to the same DNS query, indicating the host 
might be under a DNS spoof attempt. 

7.2.2 Modelling in NeMODe 

Listing 8 shows how this attack can be modelled in 
NeMODe. We start by naming the intrusion in line 1, 
followed by the network traffic source in line 2. The actual 
description of the desired network situation is done in  
lines 2 to 14. Line 16 states what actions to take if the 

situation is found, in this situation the network 
administrators are alerted for an eventual DNS spoof attack. 

Listing 8 A DNS spoof attack programmed in NeMODe 

1 dns_spoofing { 
2 RES = solve(‘dns.pcap’, [as,gecode,minisat]) { 
3 udp_packet(A), dst_port(A) == 53 
4  
5 udp_packet(B), src_port(B) == 53, 
6 dst(B) == src(A), dst_port(B) == src_port(A), 
7  
8 udp_packet(C), src_port(C) == 53, 
9 dst(C) == src(A), dst_port(C) == src_port(A), 
10  
11 B != C, 
12 data(B,0,2) == data(A,0,2), 
13 data(C,0,2) == data(A,0,2) 
14 } 
15 } => { 
16 alert(‘DNS Spoofing attempt’) 
17 }; 

Line 3 describes the packet that makes the DNS request. 
Lines 5 to 6, models a first reply to the DNS request and 
lines 8 to 9 describes the second reply. 

From line 11 to line 13, we state that the network 
packets B and C should be different and that the DNS id in 
replies should be the equal to the DNS id of the DNS 
request. The DNS id is represented in the first two bytes of 
the packet data. 

7.2.3 Modelling in Snort 

Snort provides some built-in rules which allows the 
detection of some DNS spoofing attacks, but they do so by 
analysing only specific properties in the headers and 
payload of the network packets, not being able to relate 
several packets to model the problem. More specifically, 
Snort ID 253 rule and Snort ID 254 rule, which checks for 
DNS replies with a TTL of 1 minute and no authority 
(Mathew et al., 2005), usual characteristics of a DNS 
spoofing attempt. 

Listing 9 presents both Snort ID 253 and Snort ID 254 
rules we used to detect the DNS spoof attack. 

7.3 DHCP spoofing 

A DHCP spoofing is another MITM attack, where the 
attacker tries to reply to a DHCP request faster than the 
legitimate DHCP server for the local network, allowing the 
attacker to provide false network configurations to the 
victim host, e.g., a fake default gateway, which forces all 
traffic from and to the victim host to pass through an 
attacker controlled host, allowing it to capture or modify 
sensitive data. 



220 P. Salgueiro and S. Abreu  

Listing 9 DNS spoof Snort rule 

alert udp $EXTERNAL_NET 53 -> $HOME_NET any (msg:"DNS 
SPOOF \ 
query response PTR with TTL of 1 min. and no authority";\ 
content:"|85 80 00 01 00 01 00 00 00 00|"; \ 
content:"|C0 0C 00 0C 00 01 00 00 00|<|00 0F|"; \ 
classtype:bad-unknown; sid:253; rev:4;) 
 

alert udp $EXTERNAL_NET 53 -> $HOME_NET any (msg:"DNS 
SPOOF \ 
query response with TTL of 1 min. and no authority"; \ 
content:"|81 80 00 01 00 01 00 00 00 00|"; \ 
content:"|C0 0C 00 01 00 01 00 00 00|<|00 04|"; \ 
classtype:bad-unknown; sid:254; rev:4;) 

7.3.1 Modelling the attack 

This kind of intrusion can be detected by looking for several 
answers to a single DHCP request, originating in different 
hosts. If the attacker spoofs its IP addresses, this detection 
method needs to be tuned (e.g., use MAC addresses). 

7.3.2 Modelling in NeMODe 

A NeMODe programme which models a DHCP spoof 
situation is presented in Listing 10. The signature is 
described in lines 2 to 8. Line 10 states which actions 
should be taken if the specific network situation is found. 

Line 3 describes the packet that initiates a DHCP 
request, line 4 describes a first reply to such request and  
line 5 describes a second reply the DHCP request. 

Finally, in line 7, states that packets B and C, the first 
and second replies, should have different source addresses. 

Listing 10 A DHCP Spoofing attack programmed in NeMODe 

1 Dhcp_spoofing { 
2  RES = solve(‘dhcp.tcpdump’, [as,gecode,minisat]) { 
3   udp_packet(A), dst_port(A)==67, 
4   udp_packet(B), dst_port(B)==68, 
5   udp_packet(C), dst_port(C)==68, 
6    

7   src(B) != src(C) 
8  } 
9 } => { 
10  alert(‘DHCP Spoofing attempt’) 
11 }; 

7.3.3 Modelling in Snort 

For the DHCP spoofing attacks, Snort does not provide a 
ready to use preprocessor or rule. One of the only ways to 
detect a DHCP spoofing in Snort is to monitor for DHCP 

replies from hosts which are not a legitimate DHCP server 
(Noonan, 2004). This can actually detect some DHCP 
spoofing attacks, but can be easily evaded if the attacker 
also spoofs its IP address. 

Listing 11 presents the rules necessary to detect this 
attack. First, we specify that we should accept all DHCP 
replies from the legitimate DHCP server with IP address 
192.168.1.254. Then we specify that any DHCP reply 
from other host will be considered a DHCP spoofing 
attempt. 

To use this specific rule, Snort had to be run with the  
‘–o’ option, which reverses the order how the rules are read, 
considering ‘pass’ statements before ‘alert’ statements. 

Listing 11 DHCP spoof Snort rule 

pass udp 192.168.1.254 67 -> any 68 

alert udp any 67 -> any 68 (msg: "Rogue DHCP server..."; sid:1) 

This set of rules is effective to detect DHCP spoofing 
attempts, but they can fail if a new DHCP server is added to 
the network and the rule is not updated, leading to a large 
amount of false positives. 

However, if an attacker decides to spoof its IP address, 
it can easily evade the detection. 

7.4 ARP poisoning 

An ARP poisoning attack happens when someone tries to 
poison the ARP tables of a router or specific host with fake 
data, making an IP address point to a MAC address 
corresponding to some other host which is not the legitimate 
owner of the given IP address. 

This kind of attacks allows the attacker to gain 
unauthorised access to information, destined to someone 
else. 

7.4.1 Modelling the attack 

This type of attack is achieved by sending a series of ARP 
packets with fake information in order to poison the ARP 
tables of the desired hosts. 

One way to detect ARP poisoning attacks is to monitor 
ARP packets, looking to see if there are different IP 
addresses assigned to the same MAC address in a short 
time. If this happens, the host is most likely under an ARP 
poisoning attack. 

7.4.2 Modelling in NeMODe 

Listing 12 presents a possible description of an ARP 
poisoning attack in NeMODe. It starts by naming the 
specific network situation in line 1, then stating what is 
network traffic source, and then specifying which solvers 
are going to be used. 

The description of network signature is actually done in 
lines 2 to 21. In line 23, we alert the administrator if the 
specific attack is found. 
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Listing 12 An ARP poisoning attack programmed in NeMODe 

1 arp_poisoning { 
2  RES = solve(‘arp.tcpdump’, [as,gecode,minisat]) { 
3   arp_packet(A), arp_reply(A), 
4   arp_packet(B), arp_reply(B), 
5   arp_packet(C), arp_reply(C), 
6   arp_packet(D), arp_reply(D), 
7  
8   time(A) < time(B), 
9   time(B) < time(C), 
10   time(C) < time(D), 
11  
12   src(A) == src(B), 
13   src(A) == src(C), 
14   src(A) == src(D), 
15  
16   src_mac(A) != src_mac(B), 
17   src_mac(A) != src_mac(C), 
18   src_mac(A) != src_mac(D), 
19  
20   time(D) – time(A) < secs(5) 
21  } 
22 } => { 
23  alert(‘ARP poisoning attempt’) 
24 }; 

Lines 3 to 6 describe four packets which should be ARP 
replies, representing the ARP replies that we are looking 
for. Lines 8 to 10 state that these packets should be in that 
specific temporal order, so later we can specify a global 
time interval between the first and the last ARP reply, in 
line 20. 

In lines 12 to 14, we state that packets A, B, C and D 
should all have the same sender protocol address (SPA), 
also known as IP Address, and in lines 16 to 18, we state 
that the source hardware address (SHA) of packet A, also 
known as MAC Address, must be different from the SHA of 
packets B, C and D. This means that we have packets A, B, C 
and D with the same IP address, but the MAC address of 
packet A is different from the MAC address of packets B, C 
and D, indicating that we are probably under an ARP 
poisoning attack. 

To make this signature stronger, in line 20 we state that 
the time interval between network packets B and D should 
be less than 5 seconds, since an ARP poisoning attack tends 
to produces several ARP replies in a short time interval. 

7.4.3 Modelling in Snort 

Snort is also capable of detecting ARP poisoning attacks, 
but only if using the arpsoof preprocessor (Beale, 2004), 
which monitor for ARP packets against a user supplied ARP 
table containing valid (MAC address, IP address) pairs in 

the given network, which is hard to maintain when there are 
changes in the network. 

Listing 13 presents the rules which were used to detect 
an ARP poisoning in Snort where it can be seen some 
known IP/MAC addresses combinations in the given 
network. If a different combination of the same IP/MAC 
addresses is found then we could be under an ARP 
poisoning attack. In this example, we present only 3 
IP/MAC address combinations to simplify the example. 

This Snort preprocessor is effective for detecting ARP 
spoofings, achieving a 100% detection rate (on our test 
runs). Still, it requires a large amount of maintenance if 
there are many hosts in the network to monitor, becoming 
unusable on large networks. 

Listing 13 ARP poison Snort rule 

preprocessor arpspoof 
preprocessor arpspoof_detect_host: 192.168.1.70 \ 
 48:5d:60:72:d4:75 
preprocessor arpspoof_detect_host: 192.168.1.90 \ 
 08:00:27:94:2c:46 
preprocessor arpspoof_detect_host: 192.168.1.254 \ 
 00:24:17:70:26:EC 

8 Experimental results 

We have experimented with several network situations, 
including the ones described in Section 7: a SSH password 
brute-force, a DNS spoof, DHCP spoof, and an ARP 
poisoning attack. All these intrusions were successfully 
described using NeMODe. Based on this description, it was 
produced valid code for GC, AS and MiniSat, which was 
then executed in order to validate the code and ensure that it 
could indeed find the desired network intrusions. We used 
both static and sliding network traffic window in all 
network situations. 

The code was run on a dedicated computer, an  
HP Proliant DL380 G4 with two Intel(R) Xeon(TM) CPU 
3.40 GHz with 4 GB of memory, running Debian 
GNU/Linux 4.0 with Linux kernel version 2.6.18-5. 

For the SSH password brute-force, we created two log 
files, composed of 400 and 182 TCP network packets while 
a computer was being under an actual attack. These log files 
were then used as the network traffic source to detect the 
attack. As for the DNS spoof, the DHCP spoof and the ARP 
poisoning, we created two log files of 400 and 100 TCP 
network packets while a computer was under a these 
specific attacks. These files were then used as the traffic 
source. 

8.1 Static network traffic window 

Table 1 presents the time (user time in milliseconds) 
required to find the desired network situations for the 
attacks presented in this work, using GC and AS). 
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Table 1 Average time (in ms) necessary to detect the intrusions using GC and adaptive search 

Intrusion Log size Case size GC (ms) AS (ms) Detection rate (%) 

400 10 18.75 4.37 100 SSH 
password 182 10 12.6 1.49 100 

400 3 6.94 5.78 100 DNS  
spoof 100 3 4.37 2.26 100 

400 3 8.26 1.09 100 DHCP 
spoof 100 3 3.98 0.46 100 

400 4 23.125 18.04 100 ARP  
spoof 100 4 5.46 2.34 100 

Table 2 Average time (in ms) necessary to detect the intrusions using MiniSat 

Intrusion Log size Case size Setup (ms)1 Solve (ms)2 Total (ms)3 Detection rate (%) 

400 10 332.5 243.12 575.62 100 SSH 
password 182 10 51.25 23.12 74.37 100 

400 3 106.32 28.07 134.39 100 NS  
spoof 100 3 6.95 0.70 7.65 100 

400 3 105.93 11.17 117.10 100 DHCP 
spoof 100 3 6.79 0.48 7.27 100 

400 4 195.93 34.53 230.46 100 ARP  
spoof 100 4 11.71 2.89 14.60 100 

Notes: 1MiniSat setup time; 2MiniSat solve time; 3SAT total time (Setup + Solve) 
 

Table 2 presents the same results while using MiniSat, 
where Setup is the time required to encode the problem as a 
SAT problem, solve is the time spent to solve the problem, 
and Total is the total time used by MiniSat. 

In both tables, Log size is the size of the network 
traffic log, and the Case size is the number of network 
packets described by the specific signature, which is also 
the number of packets of a solution for the problem. The 
times presented are the average of 128 runs. 

8.2 Sliding network traffic window 

The sliding network traffic window was only implemented 
in the ×86 version of adaptive search. All results presented 
in this section are related to the use of adaptive search with 
a sliding network traffic window. 

The results of using a sliding network traffic window in 
NeMODe are presented in terms of detection rate, instead of 
the time necessary to detect the first occurrence of the 
desired network situation. 

For a better understanding of the results, we present 
them as charts rather than in tables. 

8.2.1 DNS spoof 

Figure 2 presents the detection rate of a DNS spoofing 
attack, while simulating several network speeds, measured 
in Mbit/s. The chart presents the results using a sliding 
window of 10, 20, 30, and 60 network packets, over a 

network traffic log of 400 network packets. The results 
presented are the average of a 100 runs. 

Figure 2 DNS spoof – detection rate (see online version  
for colours) 

 

8.2.2 SSH password brute-force 

Figure 3 represents the detection rate of the SSH password 
brute-force attack, while simulating several network speeds, 
measured in Mbit/s. 

We present the results of using a sliding window of 10, 
20, 30, 100 and 300 network packets, over a network traffic 
log of 3,000 network packets. The results presented are the 
average detection rate of 100 runs. 



 Modelling distributed network attacks with constraints 223 

Figure 3 SSH password brute-force – detection rate (see online 
version for colours) 

 

8.2.3 DHCP spoof 

Figure 4 represents the detection rate of a DHCP spoofing 
attack, while simulating several network speeds, measured 
in Mbit/s. We present the results for a sliding window of  
10, 20, and 60 network packets, over a network traffic log 
of 400 network packets. The results presented are the 
average detection rate of a total of 100 runs. 

Figure 4 DHCP spoof – detection rate (see online version  
for colours) 

 

8.2.4 ARP poisoning 

Figure 5 represents the detection rate of the ARP poisoning 
attack, while simulating several network speeds, measured 
in Mbit/s. We present the average results using a sliding 
window of 10, 20 and 50 network packets, over a network 
traffic window of 500 network packets. The results 
presented are the average of 100 runs. 

Figure 5 ARP poisoning – detection rate (see online version  
for colours) 

 

8.3 Using Snort 

To evaluate these network situations in Snort, we used Snort 
in replay mode, enabling the use of tcpdump or pcap files, 
allowing the use of the same network traffic log files used in 
NeMODe. 

Table 3 presents the results obtained by Snort in 
microseconds. We present the time spent by the specific 
rule, by the pre-processors and the total time needed to 
process the network traffic log and detect the specific 
attack. We also present the detection rate of Snort. We 
present the results for each network situation with log files 
of different sizes, the same used to evaluate NeMODe. 

In all experiments with Snort, we removed all 
unnecessary rules and preprocessors which were not 
relevant for the specific attack being detected. 

Table 3 Snort results (in μs) 

Signature Log size Specific rule (μs) Pre-processor (μs) Total time (μs) Detection rate (%) 

400 24 1425 1449 100 SSH 
password 182 13 619 632 100 

400 n.a. 1042 1042 0 DNS  
spoof 100 n.a. 329 329 0 

400 34 1020 1054 100 DHCP 
spoof 100 24 354 378 100 

400 2 1018 1020 100 ARP  
spoof 100 1 353 354 100 
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9 Evaluation 

The experimental results described in Section 8 shows that 
the performance varies in a great scale depending on the 
problem and on the recogniser, showing that each detection 
mechanism is very sensitive to the size of the network 
traffic log, size of the problem, and on the problem itself. 

Tables 1 and 2 shows that the approach based on AS 
performs better than GC and MiniSat, which is explained by 
the finely tuned heuristics used to model each situation in 
AS. 

The recogniser based on MiniSat is the one which is 
more affected by number of packets in the variable domain, 
mostly due to the exponential increase in the number of 
rules used to model the problem when this number rises. It 
is also possible to conclude that most of the time consumed 
by MiniSat is used to setup the problem. Although this is an 
essential part to reach a solution, it can be minimised by 
pre-calculating some setup clauses which are almost 
independent of the problem. These clauses depend only on 
the size of the network traffic window and on the number of 
variables needed to model the problem. 

As for the sliding network traffic window, it presents 
very promising results for all case studies. We manage to 
reach a detection rate of 100% with network speeds of  
5 MBit/s for the SSH brute-force password attack and  
18 MBit/s for the other attacks, which are very good results 
for a preliminary prototype, with the single purpose of 
proving the concept. Although in a very early stage, these 
results give us a high confidence to start working with  
real-time networks, instead of using network logs or 
simulated network traffic. 

9.1 NeMODe vs. Snort 

The attacks presented in this work can be detected by tools 
which use different approaches to network intrusion 
detection. These tools usually present limited ways to 
describe the desired network situation, if possible to 
describe them at all. 

Also, they usually cannot describe or detect attacks that 
spread across several network packets, and when they do, 
the description of such attacks is very limited, resorting to 
preprocessors built with the single purpose of detecting a 
specific network situation. 

Although the cases we have experimented in this work 
can be detected by systems such as Snort, they cannot be 
modelled in a descriptive way as in NeMODe. This 
difference in modelling methodologies makes a direct 
comparison difficult, nevertheless, we decided to 
experiment on the same network situations in Snort using 
the same network traffic logs in order to obtain some 
experimental results. 

Looking to the results obtained by Snort in Table 3, one 
can easily conclude that Snort performs better than 
NeMODe in terms of time required to process the network 
traffic and detect the specific intrusion. Still, if we compare 
the description of the same attacks in the two systems, 
which can be found in Section 7, we can easily conclude 

that NeMODe is much more expressive, allowing to easily 
state relations between several network packets. 

Although the rule presented in Listing 13 for the SSH 
password brute-force is effective in some cases, it does not 
make use of real relations between several network packets, 
making the description counter-intuitive and hard to 
express. In our experiments, we obtained a detection rate of 
100%, mostly because the rule was specifically tailored to 
match the attacks in the network traffic logs being analysed. 
If the attack is done in a slightly different way, the signature 
can fail to detect the attack. 

The Snort rules set presented previously in Listing 9 for 
the DNS spoof were used ‘as is’ in the Snort rule data-base, 
having the specific purpose of detecting DNS spoof 
attempts. In fact, these rules can detect some DNS spoofing 
attempts, but in many cases, depending on the tools used to 
perform the attack, they will fail. In particular, this set of 
rules were not able to detect any of our DNS spoofing 
attempts made with the help of ettercap. 

In the DHCP spoof attack, the way to describe the 
network situation in Snort is very effective, but it requires 
on specifying the legitimate DHCP servers. This forces to 
rewrite the rule if the DHCP servers change their addresses. 

As for the ARP spoofing, Snort provides very efficient 
preprocessors, but they require a lot of maintenance, 
becoming unusable in large scale networks. 

10 Conclusions and future work 

In this work, we introduce a system for network intrusion 
detection based on CP, allowing an intuitive and expressive 
way to describe such situation due to the possibility of the 
specification of relations between several network packets 
in an easy way. 

We demonstrate how to easily describe network 
situations in NeMODe, including network attacks which 
span across several network packets, using a declarative 
approach. From that single description, it generates several 
network situation recognisers based on CP, using different 
CP paradigms, which are then used to detect the specific 
intrusions. 

This work also shows that NeMODe can easily be 
adapted to perform intrusion detection on live networks, by 
using a sliding network traffic window, which is constantly 
updated with freshly arrived network packets. 

Although Snort is able to describe and detect the 
network situations analysed in this work, they are much 
harder to describe and have to resort to built-in filters, 
making such description much more complex. 

The results obtained in this work are very promising, 
providing a platform to start performing network intrusion 
detection on a live network traffic link in a near future, a 
very important future step. 

We still need to model more network situations as a 
CSP to better evaluate the performance of the system. Also, 
we have plans to implement new back-end detection 
mechanisms using different CP paradigms. 
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