Intra-crustal recycling and crustal-mantle interactions in North Gondwana revealed by oxygen isotopic composition of Neoproterozoic to Ordovician zircons from SW Iberia rocks

M. Chichorro¹, A.R. Solá², M.F. Pereira³, T. Sánchez-García⁴, A. Ferreira⁵, J.B. Silva⁶ and R. Armstrong⁷

In situ O-isotope compositions of detrital, inherited and melt-precipitated zircons with Neoproterozoic to Ordovician ages are presented to assess the crustal evolution of the North Gondwana margin. Different groups of pre-Mesozoic rocks from SW Iberia were targeted: i) Ediacaran paragneisses and meta-greywakes of the Ossa-Morena Zone – the Serie Negra Group deposited at ~ 560 Ma in a Cadomian magmatic arc setting (Pereira et al., 2008); ii) Early to Middle Cambrian orthogneisses and volcaniclastic rocks of the Ossa-Morena Zone – Evora Massif igneous complexes related to ensialic rifting at ~ 530–500 Ma (Pereira et al., 2008, Chichorro et al., 2008); iii) Late Cambrian to Early Ordovician volcaniclastic rocks and granites of the Ossa-Morena–Central Iberian transition zone – the Urra Formation and Portalegre granite formed at ~ 495–488 Ma in a extensional setting (Solá et al., 2008); iv) Carboniferous granitoids (Nisa and Arraiolos granites) containing inherited zircons with Cambrian to Ordovician ages (Solá, this volume).

A compilation the results for the period ~ 3.4 Ga to ~ 450 Ma reveals that: **a)** Archean zircons show little variation in δ^{18} O, with most values lying between 4.7 and 7.5%, (average 6.2%) comparable with usual δ^{18} O of zircons from Archean elsewhere (e.g., Valley et al., 2005); **b**) the range of δ^{18} O in Paleoproterozoic grains increases between 2.1 and 1.8 Ga with δ^{18} O >7.5\%, indicating increasing supracrustal recycling, but at ~ 1.8 Ga the δ^{18} O has mantle-like values (<5.1%), documenting a crustal growth episode at this time; c) rare Mesoproterozoic grains have mildly evolved δ^{18} O values in the range 5.6–7.1‰); **d)** Tonian grains have low δ^{18} O values (4.2–5.6%) typical of mantle-derived juvenile magmas but also higher values of 9.9% suggesting intra-crustal recycling; e) Cryogenian-Ordovician zircons show more variable and higher δ^{18} O values (~4 to >10%), indicating great diversity and mixing of sources through intra-crustal recycling and crust-mantle interactions; \mathbf{f}) some δ^{18} O values near to or below mantle composition (5.3 \pm 0.3%) were recorded at \sim 590 Ma (Ediacaran) suggesting input of mantle material into the crust; **g**) a decrease in variance of δ^{18} O occurs from 575 Ma to the Ediacaran/Cambrian boundary, suggesting a relative decrease in the magmatic contribution of surface-derived material; **h**) in Cambrian times, the average δ^{18} O is higher in the 536–520Ma interval (7.0%) than in the 520-488 interval (6.2%), which can be taken as a signal of gradual opening of the system to mantle-derived, mafic, rift-related igneous complexes; i) higher values of $\delta^{18}O$ (>7.5 %) recorded at ~ 623–574 Ma and 490–470Ma mark periods of pronounced increase in crustal recycling.

Chichorro, M. et al., 2008. Tectonophysics 461, 91-113. Pereira, M.F. et al., 2008. Geological Society, London, Special Publications 297, 385-404. Solá, A.R. et al., 2008. Tectonophysics 461, 114–129.

¹CiCEGe, Departamento de Ciências da Terra, Universidade Nova de Lisboa, Portugal; ma.chichorro@fct.unl.pt

²LNEG, Unidade de Geologia, Hidrogeologia e Geologia Costeira, Portugal

³ IDL, Departamento de Geociências, ECT, Universidade de Évora, Portugal

⁴ IGME, c/Ríos Rosas, 23, 28003-Madrid, Spain

⁵ Environmental Science Centre. British Geological Survey. UK

⁶IDL, Departamento de Geologia, Faculdade Ciências, Universidade Lisboa, Portugal

⁷Research School of Earth Sciences, The Australian National University, Australia