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Abstract: In presence of linear diffusion and non-positive dispersion, we prove well-posedness of the nonlinear
conservation equation ut + f(u)x = εuxx − δ(u2xx)x. Then, as the right-hand perturbations vanish, we prove
convergence of the previous solutions to the entropy weak solution of the hyperbolic conservation law ut+f(u)x =
0.
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1 Introduction
We consider the initial value problem

ut + f(u)x = εuxx − δ(u2xx)x (1)
u(x, 0) = u0(x). (2)

When δ = 0 we reduce to the (generalized) Burg-
ers’ equation and the approximate solutions uε,0 con-
verge to the solution of the inviscid Burgers’ equa-
tion (this is the vanishing viscosity method, see, e.g.,
Whitham [13] or Kružkov [6])

ut + f(u)x = 0 (3)
u(x, 0) = u0(x). (4)

On the other hand, when ε = 0, if we consider the flux
function f(u) = u2 and the linear dispersion δuxxx
we obtain the Korteweg-de Vries equation. The ap-
proximate solutions u0,δ do not converge in a strong
topology, Lax-Levermore [7]). So, as parameters ε
and δ vanish, we are concerned with singular limits
and to ensure convergence it is necessary a dominant
dissipation regime.

The pioneer study of these singular limits
was given by Schonbek [11] about (generalized)
Korteweg-de Vries-Burgers equation

ut + f(u)x = ε uxx − δ uxxx.

In the case of a convex flux function f(u), she proved
the convergence under the condition that δ = o(ε2),
while the sharp condition should be, according to
Perthame-Ryzhic [10], δ = o(ε1).

See also the analogy between the singular limit
for the Korteweg-de Vries-Burgers equation and the
hydrodynamic limit of the kinetic Boltzmann equa-
tion for a rarefied gas to the continuum Euler equa-
tions of compressible gas dynamics as the Knudsen
number approaches zero in ”From Boltzmann to Eu-
ler: Hilbert?s 6th problem revisited”, Slemrod [12].

LeFloch-Natalini [8] proved the convergence in
the case of a nonlinear viscosity function β and linear
capillarity

ut + f(u)x = ε β(ux)x − δ uxxx.

Then, Correia-LeFloch [4] improved the estimates in
Schonbek [11] and LeFloch-Natalini [8] and for the
first time treated the multidimensional equation, but
still in the case of a nonlinear viscosity function and
linear capillarity. In fact, there, the dominant dissipa-
tion regime is also assured by the nonlinear viscosity.
In our case, we consider the reverse situation.

In general for ε = 0, like for the Korteweg-de
Vries equation, the divergent behaviour is expected, as
we are considering ”pure-dispersive equations”. But,
Brenier-Levy [3] considered the fully nonlinear equa-
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tion
ut + f(u)x = −δ(u2xx)x

as a nonlinear generalization of the Korteweg-de Vries
equation. Such nonlinear dispersion significantly af-
fects the dispersive behaviour of the solutions that
differs completely from the linear case. In partic-
ular, Brenier and Levy conjectured that for strictly
convex flux functions f we have convergence when
δ = o(ε1).

In this work we show first that the initial value
problem (1)-(2) is well-posed and then we prove the
convergence to the initial value problem (5)-(6). So,
our proof of convergence is not formal. To obtain the
well-posedness, a condition which links the disper-
sion and the dissipation is needed. It can be written
as, for all u0 sufficiently smooth initial data,

||u0||H4 ≤ Cε/δ.

And the vanishing dissipation-dispersion limit is ob-
tained when δ � ε.

The paper is organized as follows. In section 2,
we prove the well-posedness of the perturbed initial
value problem. Then section 3 deals with the hyper-
bolic limit as ε, δ go to zero.

2 Well-posedness
We prove here that the initial value problem (1)-(2) is
well-posed.

2.1 Regularized equation
To compute the well-posedness of the initial value
problem, we consider the fourth order regularization,
with µ > 0

ut + f(u)x + δ(u2xx)x − εuxx + µuxxxx = 0 (5)
u(x, 0) = u0(x). (6)

The solution of the linearized equation

Stu(x) :=
1

2π

∫ +∞

−∞
eiξx−εξ

2t−µξ4tdξ,

satisfies the following regularization property. For
r, s ≥ 0 and u ∈ Hs(), we have

||Stu||r+s ≤ Cr

(
1 +

(
1

2µ|t|

)r/2)1/2

||u||s.

Proposition 1 Let s > 5/2. Assume that |f(u)| =
O(|u|β+1) with β ≥ 1. Then there exists Tµ > 0,
depending on µ, such that

φ(u)(t) := Stu0

−
∫ t

0
St−τ (f(u)x − δ(−u2xx)x)(τ)dτ, (7)

is a contraction mapping on the closed ball

B(Tµ) = {u ∈ C([0, Tµ];Hs(IR)) :

||u(t)− u0||s ≤ c||u0||s}.

Proof: Let u, v ∈ B(Tµ). We have

φ(u)(t)− φ(v)(t) =

∫ t

0
St−τ ((f(u)x − f(v)x)

+δ((−u2xx)x − (−v2xx)x))(τ)dτ.

On one hand, we write

||St−τ (f(u)x − f(v)x)(τ)||s =

||St−τ (f(u)x − f(v)x)(τ)||(s−1)+1 ≤

C1

(
1 +

(
1

2µ(t− τ)

)1/2
)1/2

||f(u)x − f(v)x||s−1,

and, the Sobolev embedding implies with s > 1/2

||f(u)x − f(v)x||s−1 = ||f(u)− f(v)||s ≤
C||u0||β||u− v||s.

On the other hand, it gets thanks to the Sobolev em-
bedding with s > 5/2 and using u2 − v2 = (u +
v)(u− v)∣∣∣∣∣∣St−τ (u2xx)x − (v2xx)x)(τ)

∣∣∣∣∣∣
s
≤

C||u0||s

(
1 +

(
1

2µ(t− τ)

)3/2
)1/2

||u− v||s,

We deduce

sup
t∈[0,T ]

||φ(u)(t)− φ(v)(t)||s ≤

C(µ, ||u0||Hs , T ) sup
t∈[0,T ]

||u− v||s,

and we choose T > 0 so that φ is a contraction map-
ping in B(Tµ). ut

First of all, we have to prove that the time T can
be chosen independently of µ.

Theorem 2 Let s > 5/2. Assume that |f (i)(u)| =
O(|u|β+1−i), for 0 ≤ i ≤ 2 and β ≥ 1. Let
u0 ∈ H4(IR) with ||u0||4 ≤ ε/(2δ). Then there ex-
ists a time T , independent of µ, such that there exists
a unique solution u ∈ C([−T, T ];HsIR) of the initial
value problem (5)-(6).



Proof: Multiplying the equation (5) by
∑4
i=0 ∂

2i
x u

and integrating over space give

1

2

d

dt
||u(t)||24 + µ

6∑
i=2

∫ +∞

−∞
(∂ixu)2dx =

4∑
i=0

∫ +∞

−∞
(−1)i+1(∂2ix u)f(u)xdx

+
4∑
i=0

∫ +∞

−∞
δ(−1)i(∂2ix u)(−u2xx)x

+ε(−1)i(∂2ix u)uxxdx = I + II.

Using the Sobolev embedding and the Gagliardo-
Nirenberg inequality[9], we obtain

I ≤ Cs||u||β+2
s ,

and

II =

∫ +∞

−∞
u25x

(
−ε+

14δ

5
uxxx

)
dx+O(||u||34).

We deduce that, for β > 0,

d

dt
||u(t)||24 + µ

6∑
i=2

||∂ixu)||2L2 = O(||u||β+2
4 )

+

∫ +∞

−∞
u25x

(
−ε+

14δ

5
uxxx

)
dx. (8)

Thanks to ||u||∞ ≤
√

2||u||1/2L2 ||ux||1/2L2 , it gets

||u0,xxx||∞ ≤
√

2||u0||4 ≤
ε√
2δ
,

and ∫ +∞

−∞
u20,5x

(
−ε+

14δ

5
u0,xxx

)
dx ≤ 0.

Since ||u(t)||24 ≤ y(t) where y is solution of

y′(t) = 2C(t)(p+2)/2

y(0) = ||u0||24,

we can choose T > 0, (T = 1/(2p||u0||p4)) such
||u(t)||4 ≤ ε/(2δ) for all t ≤ T . ut

2.2 Regularization limit
Theorem 3 Let u0 ∈ H4(IR) with ||u0||4 ≤ ε/(2δ).
There exists T > 0, inversely proportional to
||u0||4, such that there exists a unique solution u ∈
C([−T, T ], H4(IR)) of the initial value problem (1)-
(2).
Moreover, there exists C > 0 such that the solutions
u and v, with u0 and v0 as initial datum respectively,
satisfy for |t| ≤ T,

||u(t)− v(t)||4 ≤ C||u0 − v0||4.

Proof: To obtain the limit as µ goes to zero, we show
that the solution (uµ(t))µ is a Cauchy sequence for
t ∈ [0, T ]. Let µ, ν ≥ 0, and uµ, vν be the respective
solution of (5)-(6). We have, for t ∈ [0, T ],

∂t||uµ − vν ||2 = 2 < u− v, ut − vt >
= − 2 < u− v, f(u)x − f(v)x >

+ 2δ < u− v, g(ux)xx

−g(vx)xx >

+ 2ε < u− v, uxx − vxx >
− < u− v, µuxxxx − νvxxxx >

and it comes for zi = (1 − λi)u + λiv, i = 1, 2 and
λ ∈ (0, 1)

∂t||uµ − vν ||2 = −2

∫ +∞

−∞

(u− v)2

2
f ′(z1)xdx

−2

∫ +∞

−∞
((u− v)x)2 (ε

−δz2,xxx) dx

−µ
∫ +∞

−∞
((u− v)xx)2dx

+(µ− ν)

∫ +∞

−∞
(u− v)xxvxxdx

≤
∣∣∣∣∫ +∞

−∞
(u− v)2f ′(z1)xdx

∣∣∣∣
+|µ− ν|

∣∣∣∣∫ +∞

−∞
(u− v)xxvxxdx

∣∣∣∣
≤ CM ||uµ − vν ||2 + CM |µ− ν|,

because ||uµ(t)||s and ||vν(t)||s are uniformly
bounded. We conclude using the Gronwall lemma
[2, 5]. ut

Remark 4

• The time T , proportional to 1/||u0||4, is also the
time well-posedness of the purely hyperbolic ini-
tial value problem.

• The constraint ||u0||4 ≤ ε/(2δ) is not so restric-
tive, δ being chosen very small compared to ε to
obtain the hyperbolic limit.

3 Convergence
Theorem 5 (Main theorem) Let ε > 0, δ = o(ε5/2)
and f : IR → IR be a convex flux function satisfying
f ′′(u) ≤ C(1 + |u|β), where 0 ≤ β < 1/2. Then,
setting u = uε,δ the solution of (1)-(2), the family of
solutions {uε,δ} converges to the entropy solution of
(??)-(??).



3.1 A priori Estimates
Multiply (1) by a function η′(u) and let q′ = η′f ′ be
the derivative of a new flux function:

η(u)t + q(u)x = ε (η′(u)ux)x − ε η′′(u)u2x

− δ (η′(u)u2xx)x
− δ η′′(u)ux u

2
xx . (9)

Integrate over IR × [0, t] with η(u) = |u|α+1. The
conservative terms vanish and we obtain the

Lemma 6 Let α ≥ 1. Each solution of (1) satisfies
for t ∈ [0, T ]∫

IR
|u(t)|α+1 dx+ (α+ 1)α ε

∫ t

0

∫
IR
|u|α−1

u2x dxds− (α+ 1)α δ

∫ t

0

∫
IR
|u|α−1 ux u2xx dxds

=

∫
IR
|u0|α+1 dx . (10)

Usually, taking α = 1 in (10), we deduce the a priori
L2 first energy estimates. It is not the case here, unless
the factor δux of u2xx is always negative.

We use now the multipliers (q+2)(|ux|qux)x and
(q + 2)(uq+1

x )x to obtain∫
IR
|ux(t)|q+2 dx

+ε (q + 2)(q + 1)

∫ t

0

∫
IR
|ux|q u2xx dxds

=

∫
IR
|u′0|q+2 dx− (q + 1)

∫ t

0

∫
IR
ux |ux|q+2

f ′′(u) dxds− 1

3
δ (q + 2)(q + 1) q

∫ t

0

∫
IR
ux

|ux|q−2 u4xx dxds , (11)

∫
IR
ux(t)q+2 dx

+ε (q + 2)(q + 1)

∫ t

0

∫
IR
uqx u

2
xx dxds

=

∫
IR

(u′0)
q+2 dx− (q + 1)

∫ t

0

∫
IR
uq+3
x

f ′′(u) dxds− 1

3
δ (q + 2)(q + 1) q

∫ t

0

∫
IR
uq−1x

u4xx dxds . (12)

We restrict to odd q and δ > 0, we add (12) to
(11). We abbreviate as U+ (analogously for U−) the
{(x, t) ∈ IR × [0, T ] : δ ux > 0} or their section by
t = s as Us+. We obtain:

Lemma 7 Let q be a odd number, then each solution
of (1) satisfies for t ∈ [0, T ]∫

Ut+
|ux(t)|q+2 dx

+ε (q + 2)(q + 1)

∫ t

0

∫
Us+
|ux|q u2xx dxds

+
1

3
δ (q + 2)(q + 1) q

∫ t

0

∫
Us+
|ux|q−1 u4xx dxds

+ (q + 1)

∫ t

0

∫
Us+
|ux|q+3 f ′′(u) dxds

=

∫
U0+
|u′0|q+2 dx . (13)

Actually, Lemmas 6 and 7 together will solve our
problem.

Proposition 8 Let ε > 0 and f : IR→ IR be a convex
flux function. Then, setting u = uε,δ the solution of
(1), the family of solutions {uε,δ} satisfy the estimate∫

IR
|u(t)|α+1 dx+ ε

∫ t

0

∫
IR
|u|α−1 u2x dxds

+δ

∫ t

0

∫
IR
|u|α−1 |ux|u2xx dxds ≤ C0, (14)

for all 7
5 ≤ α < 3.

When δ ≤ k ε, then the family of solutions {uε,δ}
satisfy the estimate (14) for α = 1, i.e.,∫

IR
u(t)2 dx+ ε

∫ t

0

∫
IR
u2x dxds

+δ

∫ t

0

∫
IR
|ux|u2xx dxds ≤ C0. (15)

If in addition f ′′(u) ≤ C(1 + |u|β), where 0 ≤ β <
1/2, and δ ≤ k ε, then {uε,δ} satisfy∫

IR
ux(t)2 dx+ ε

∫ t

0

∫
IR
u2xx dxds

≤ C0 + C0 δ
−1/2ε−1/4 (16)

Proposition 9 Let ε > 0, δ = o(ε5/2) and f : IR →
IR be a convex flux function satisfying f ′′(u) ≤ C(1+
|u|β), where 0 ≤ β < 1/2. Then, setting u = uε,δ the
solution of (1), the family solutions {uε,δ} satisfy

(a): {ε u2x} is bounded in L1(Ω).
(b): {ε ux} → 0 when ε→ 0, in L2(Ω).
(c): {δ u−x u2xx}, where u−x = max(0,−ux), is

bounded in L1(Ω).
(d): {δ u+x u2xx} → 0, where u+x = max(0, ux)

when ε→ 0 in L1(Ω).
(e): {δ u2xx} → 0 when ε→ 0, in L1(Ω).



Proof: The statements (a), (b) and (c) are obtained
thanks to (15). Now, (d) is obtained from (13) with
q = 1 since

δ

∫ t

0

∫
Us+

ux u
2
xx dxds (17)

≤ δ

ε

(
ε

∫ t

0

∫
Us+

ux u
2
xx dxds

)
≤ C0

δ

ε
.

Finally, (e) is obtained thanks to (9) since,

δ

∫ t

0

∫
IR
u2xx dxds (18)

≤ δ
1
2 ε−5/4(δ

1
2 ε5/4

∫ t

0

∫
IR
u2xx dxds)

≤ C0

√
δε−5/2.

ut

3.2 Convergence proof
Definition 10 Assume that u0 ∈ L1(IR)∩Lq(IR) and
f ∈ C(IR) satisfies the growth condition, for some
m ∈ [0, q)

|f(u)| ≤ O(|u|m) as |u| → ∞. (19)

A Young measure ν is called an entropy measure-
valued (e.m.-v.) solution to (1)-(2) if for all k ∈ IR

〈ν, |u− k|〉t + 〈ν, sgn(u− k)(f(u)− f(k))〉x ≤ 0
(20)

in the sense of distributions on IR× (0, T ) and for all
compact set K ⊆ IR

lim
t→0+

1

t

∫ t

0

∫
K
〈ν(x,s), |u− u0(x)| 〉 dxds = 0. (21)

Lemma 11 Let {un}n∈IN be a bounded sequence in
L∞((0, T );Lq(IR)). Then there exists a subsequence
denoted by {ũn}n∈IN and a weakly-? measurable
mapping ν : IR×(0, T )→ Prob(IR) such that, for all
functions g ∈ C(IR) satisfying (19), 〈ν(x,t), g〉 belongs

to L∞((0, T );L
q/m
loc (IR)) and the following limit rep-

resentation holds:∫ ∫
IR×(0,T )

〈ν(x,t), g〉 φ(x, t) dxdt (22)

= lim
n→∞

∫ ∫
IR×(0,T )

g(ũn(x, t))φ(x, t) dxdt

for all φ ∈ L1(IR× (0, T )) ∩ L∞(IR× (0, T )).
Conversely, given ν, there exists a sequence {un}

satisfying the same conditions as above and such that
(22) holds for any g satisfying (19).

For details on the setting of e.m.-v. solutions see,
e.g., Correia and LeFloch [4] and references therein.

Proof of Theorem 5 [Main theorem]: We begin
proving (20). We use the Lq bound given by (14) of
Proposition 8 and we apply the Young measure repre-
sentation theorem in this Lq space (i.e., formula (22)
of Lemma 11) to show that ν satisfies (20): by a stan-
dard regularization of sgn(u − k)(f(u) − f(k)) and
|u− k| (k ∈ IR), which satisfies the growth condition
(19), we see it is sufficient to show that there exists a
bounded measure µ ≤ 0 such that

η(u)t + q(u)x −→ µ in D′(IR× (0, T ))

for an arbitrary convex function η (we assume
η′, η′′, η′′′ to be bounded functions on IR).

η(u)t + q(u)x = ε (η′(u)ux)x − ε η′′(u)u2x

− δ (η′(u)u2xx)x
+ δ η′′(u)ux u

2
xx . (23)

We rewrite the last formula in the form

η(u)t + q(u)x = µ1 + µ2 + µ3 + µ4

where,

µ1 : = ε (η′(u)ux)x;

µ2 : = − ε η′′(u)u2x;

µ3 : = −δ (η′(u)u2xx)x;

µ4 : = δ η′′(u)ux u
2
xx.

| < µ1, θ > | ≤ ε

∫ T

0

∫
IR
|θx η′(u)ux| dxds

≤ ε

∫ T

0

∫
IR
|θx ux| dxds

≤ C||θx||L2 ||ε ux||L2 .

| < µ2, θ > | ≤ ε

∫ T

0

∫
IR
|θ η′′(u)u2x| dxds

≤ C||θ||L∞ ||ε u2x||L1 .

Since η is convexe, for a non negative function θ we
have

< µ2, θ > = −ε
∫ T

0

∫
IR
θ η′′(u)u2x dxds ≤ 0.

| < µ3, θ > | ≤ δ

∫ T

0

∫
IR
|θx η′(u)u2xx| dxds

≤ C δ

∫ T

0

∫
IR
|θx u2xx| dxds

≤ C||θx||L2 ||δ u2xx||L2 .



Now, we can decompose µ4 in the form

µ4 = µ41 + µ42,

where,

µ41 : = δ η′′(u)u+x u
2
xx;

µ42 : = −δ η′′(u)u−x u
2
xx.

Then we have

| < µ41, θ > | ≤ δ

∫ T

0

∫
IR
|θ η′′(u)u+x u

2
xx| dxds

≤ C δ

∫ T

0

∫
IR
|θ u+x u2xx| dxds

≤ C||θ||L∞ ||δ u+x u2xx||L1 .

Thus, thanks to (d) of Proposition 9, when ε → 0
< µ41, θ >→ 0 . Also, thanks to (c) of Proposition 9
we get

| < µ42, θ > | ≤ δ

∫ T

0

∫
IR
|θ η′′(u)u−x u

2
xx| dxds

≤ C δ

∫ T

0

∫
IR
|θ u−x u2xx| dxds

≤ C||θ||L∞ ||δ u−x u2xx||L1 ,

≤ C

and

< µ42, θ > = −δ
∫ T

0

∫
IR
θ η′′(u)u−x u

2
xx dxds ≤ 0

In order to prove (21) we can follow the argument
as in Correia-LeFloch [4]. ut

Acknowledgements: The research of J. M.
C. Correia was partially supported by the Grant
Agency FCT of Portugal under program PEst-
OE/MAT/UI0117/2014 and the LAMFA, CNRS
UMR 7352, University of Picardie Jules Verne,
Amiens, France, as invited professor, March 2014.

References:

[1] J. Bourgain, Fourier transform restriction phe-
nomena for certain lattice subsets and applica-
tions to nonlinear evolution equations. II. The
KdV-equation, Geom. Funct. Anal. 3, 1993,
pp. 209–262.

[2] J. L. Bona and R. Smith, The initial-value prob-
lem for the Korteweg-de Vries equation, Philos.
Trans. Roy. Soc. London Ser. A278 1287, 1975,
pp. 555–601.

[3] Y. Brenier and D. Levy, Dissipative behavior
of some fully non-linear KdV-type equations,
Physica D 137, 2000, pp. 277-294.

[4] J. M. C. Correia and P. G. LeFloch, Nonlinear
diffusive-dispersive limits for multidimensional
conservation laws, Advances in Partial Differ-
ential Equations and Related Areas (Beijing,
1997), World Sci. Publ., River Edge, NJ, 1998,
pp. 103–123 (or http://arxiv.org/abs/0810.1880).
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