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A class of stochastic differential equations models was applied to describe the evolution of
the weight of mertolengo cattle. We have determined the optimal mean profit obtained by
selling an animal at the cattle market, using two approaches. One consists in determining
the optimal selling age (independently of the weight) and the other consists in selling the
animal when a fixed optimal weight is achieved for the first time (independently of the age).
The profit probability distribution can be computed for such optimal age/weight. For typical
market values, we observed that the second approach achieves a higher optimal mean profit
compared with the first one, and, in most cases, even provides a lower standard deviation.
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1. Introduction

In earlier work we have studied a class of stochastic differential equation (SDE)
models for individual growth in randomly fluctuating environments and we have
applied such models using real data on the evolution of bovine weight (see, for
instance, [8–11]). The Gompertz and the Bertalanffy-Richards stochastic models,
are particular cases of this more general class of SDE models. This type of models
might be useful in cattle breeding or forestry in order to optimize the exploitation
of such resources. The work we present here is focused on a new application of
these models, namely the optimization of the mean profit obtained by raising and
selling an animal and the computation of probabilities involving the selling profit.

Consider a farmer raising an animal. On one hand, based on our models, we
can compute the mean profit obtained by selling the animal at different ages and,
in particular, we can determine the optimal age at which the farmer should sell
the animal in order to maximize the mean profit. We can also obtain the prob-
ability distribution of the selling profit and then compute probabilities involving
that profit. On the other hand, knowing which animal weight is demanded by the
market, we can study the properties of the time required for an animal to reach
such weight for the first time. We present expressions for the mean and variance
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of these times, known from first passage time theory (see, for instance, [3]), and
use these results to determine the optimal weight in order to obtain the maximum
mean profit. A comparison between these two approaches is presented.
The cattle data we work with was collected by technicians of the Mertolengo’s Cat-
tle Breeders Association (ACBM) and provided by Professor Carlos Roquete from
the Institute of Mediterranean Agricultural and Environmental Sciences of Univer-
sity of Évora (ICAAM-UE). The animals were raised in “Herdade da Aboóboda” in
the Serpa region at the left margin of the Guadiana river, together with their moth-
ers during nursing and later supplemented with silage when pasture is in shortage
(from August till January). Mertolengo cattle breed is, at the moment, considered
by many as the Portuguese cattle breed with higher progression in terms of popu-
lation increment and market potential.
The computations were performed using Software packages MAPLE and R.

2. Individual growth models

Individual growth models represent individual size changes over time. Although our
study is exclusively dedicated to individual growth, many of the models applied to
population growth are also used to model individual growth.

Several patterns are often observed in the growth rates of organisms. The so-
called exponential growth is typical in certain short periods, particularly soon after
birth. The asymptotic growth pattern applies to the length of some organisms, the
size of the skull and of the brain. It is characterized by a steady decrease in the
growth rate, thus has no inflection point. The weight and volume of the body and of
most organs follow a sigmoid or S -shaped growth. Initially, the growth rate is low
but increasing, until it reaches a maximum, corresponding to the curve inflection
point, and then decreases to zero as the animal reaches its weight at maturity. The
sigmoid curve is prevalent among animals with determined growth, and this led to
the emergence of a specific class of “sigmoid functions” to describe growth.

The most common deterministic models used to describe the individual growth
of an animal (plant or other organism) in terms of its size (weight, volume, height,
length, etc.) Xt at age (instant) t, can be written in the form of an autonomous
differential equation

dYt = β(α− Yt)dt, Yt0 = y0, (1)

where Yt can be seen as a modified size, i.e., Yt = g(Xt) where g a is strictly increas-
ing continuously differentiable function (which we assume known), and y0 = g(x0),
x0 being the size at age t0 (first observation). With A denoting the asymptotic size
or size at maturity of the animal, we put α = g(A). The parameter β, positive, is
the growth coefficient and represents the rate of approach to maturity. The choice
of g leads to some well known classic models. For instance, when g(x) = x we get
the monomolecular model; the Bertalanffy Richards model [6, 19] corresponds to
the case g(x) = xc(c > 0), the Gompertz model to the case g(x) = lnx (can be
considered the limiting case of BertalanffyRichards model when c → 0), and the
Logistic model [23] to the case g(x) = −x−1.

In the determinist individual growth models, random variations in data have
been treated by classical regression models. The traditional assumption of regres-
sion models that observed deviations from the regression curve are independent
at different times would be realistic if the deviations were due to measurement
errors. It is totally unrealistic when the deviations are due to random changes on
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growth rates induced by environmental random fluctuations. For instance, in such
regression models, a delay in growth at a certain age has no repercussions on future
sizes. Stochastic differential equation models do not have such shortcomings, since
they are built precisely to incorporate the dynamics of the growth process and the
effect environmental random fluctuations have on such dynamics. Thus, we have
considered that individual growth in a random environment can be described by
stochastic differential equations of the form

dYt = β(α− Yt)dt+ σdWt, Yt0 = y0, (2)

where σ is an environmental noise intensity parameter and Wt is the standard
Wiener process. This model is a variant of the Ornstein Uhlenbeck model, usually
called the Vasicek model, and was introduced to study interest rate dynamics [22].
We can see applications of this type of models, for instance, in [13, 17] for tree
growth and in [16] for fish growth.

The solution of (2), Yt, is a homogeneous diffusion process with drift coefficient
a(y) = β (α− y) and diffusion coefficient b(y) = σ2. The drift coefficient is the
mean speed of growth described by Yt and the diffusion coefficient gives a measure
of the local magnitude of the fluctuations. It can be seen, for instance in [4], that
the explicit solution of (2) is given by

Yt = α− (α− y0) exp (−β(t− t0)) + σ exp (−βt)
∫ t

t0

exp (βu)dWu, (3)

and follows a Gaussian distribution with mean α − (α − y0) exp (−β(t− t0)) and

variance σ2

2β (1− exp (−2β(t− t0))).
We have used maximum likelihood estimation theory to estimate the parameter

vector p = (α, β, σ). We describe details on this procedure, for instance, in [9, 11]
and [10]. In [11], we have seen that the best models for our data (using an AIC
criterion), were the stochastic Bertalanffy-Richards model with c = 1/3, (SBRM)
and the stochastic Gompertz model (SGM).

3. Profit optimization and related probability distribution

The SDE models presented can be useful in financial context. In our application,
by having more information on the growth of animals, growers can, for instance,
optimize the average profit obtained from selling an animal. Applying these models
to the weight of mertolengo cattle, we compute the mean and standard deviation of
the profit obtained from selling an animal to the meat market at different ages and,
in particular, determine which is the optimal selling age. In this case, the profit is
defined as a function of age. Another approach is also presented, defining the profit
as a function of the animals weight. Using first passage time theory, we can char-
acterize the time taken for an animal to achieve a certain weight of market interest
for the first time. In particular, expressions for the mean and standard deviation of
these times are presented and applied to our data. These last results can be used
to determine the optimal selling weight in terms of mean profit. Probability dis-
tributions of the selling profit can be obtained, allowing to compute probabilities
involving this profit.

The profit obtained from selling an animal can be defined as L = V − C, where
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V represents the selling price and C the acquisition (if it is the case) and animal
raising costs.

3.1. Profit as a function of age

Let x0 be the weight of the animal at age t0 (the age, assumed known, when it is
bought) and t > t0 the selling age. The profit at age t is given by Lt = Vt − Ct,
with Vt = PRXt (R being the dressing proportion and P the selling price per unit
weight) and Ct = C1−c2(t−t0) (C1 being the fixed costs and c2 the variable raising
costs per unit time). Since Xt = g−1(Yt), we can write the profit as a function of
Yt. For the SGM and the SBRM, we obtain

Lt = lt(Yt) =

PReYt − C1 − c2(t− t0), for SGM

PRY 3
t − C1 − c2(t− t0), for SBRM.

(4)

Considering the Gaussian probability distribution of Yt, we can determine the

probability density function of Lt using fLt(u) = fYt(l
−1
t (u))

∣∣∣dl−1
t (u)
du

∣∣∣, where

fYt(y) =
1√

2π σ
2

2β (1− e−2β(t−t0))
exp

(
−
(
y − α− (y0 − α) e−β(t−t0)

)2
2σ

2

2β (1− e−2β(t−t0))

)
,

and

l−1
t (u) =


ln
(
u+C1+c2(t−t0)

PR

)
, for SGM

(
u+C1+c2(t−t0)

PR

)1/3
, for SBRM

(5)

dl−1
t (u)

du
=


(u+ C1 + c2(t− t0))−1 , for SGM

(u+C1+c2(t−t0))−2/3

3(PR)1/3 , for SBRM.

(6)

The expressions for the mean and variance of Lt are, respectively, given by

E [Lt] = PRE [Xt]− C1 − c2(t− t0) (7)

and

Var [Lt] = P 2R2Var [Xt] , (8)

where the expressions for E [Xt] and Var [Xt] are determined, according to the
model used, as follows. In the SGM case, Xt follows a log-normal distribution, and
consequently

E [Xt] = exp

(
α+ e−β(t−t0)(lnx0 − α) +

σ2

4β
(1− e−2β(t−t0))

)
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and

Var [Xt] = exp

(
2α+ 2e−β(t−t0)(lnx0 − α) +

σ2

β
(1− e−2β(t−t0))

)
+

− exp

(
2α+ 2e−β(t−t0)(lnx0 − α) +

σ2

2β
(1− e−2β(t−t0))

)
.

For the SBRM case, using Stein’s Lemma, we get

E [Xt] =
3σ2

2β

(
α+ e−β(t−t0)(x

1/3
0 − α)

)
(1− e−2β(t−t0))

+
(
α+ e−β(t−t0)(x

1/3
0 − α)

)3

and

Var [Xt] =
9σ4

β2

(
α+ e−β(t−t0)(x

1/3
0 − α)

)2
(1− e−2β(t−t0))2 +

+
9σ2

2β

(
α+ e−β(t−t0)(x

1/3
0 − α)

)4
(1− e−2β(t−t0))+

15σ6

8β3
(1− e−2β(t−t0))3.

For both models, SGM and SBRM, by maximizing expression (7) with respect
to age t, we can obtain the optimal age for selling an animal in order to reach a
maximum mean profit.

The computation of probabilities involving the selling profit can be obtained.
For instance, we can determine the probability of achieving a profit higher than a
certain value v by selling the animal at a certain age t (and, in particular, at the
optimal selling age). This probability can be obtained based on the following

P [Lt > v] = P

[
Xt >

v + C1 + C2(t)

PR

]
=


P
[
Yt > ln

(
v+C1+C2(t)

PR

)]
, for SGM

P

[
Yt >

(
v+C1+C2(t)

PR

)1/3
]
, for SBRM

=


1− Φ

(
ln( v+C1+C2(t)

PR )−α−(lnx0−α)e−β(t−t0)√
σ2

2β
(1−e−2β(t−t0))

)
, for SGM

1− Φ

(
( v+C1+C2(t)

PR )
1/3−α−(x

1/3
0 −α)e−β(t−t0)√

σ2

2β
(1−e−2β(t−t0))

)
, for SBRM

. (9)

3.2. Profit as a function of weight

For the case in which we want to compute the profit obtained from selling the
animal when a certain weight Q∗ is achieved for the first time, we can use the
expression LQ∗ = PRQ∗ − C1 − c2TQ, where TQ = inf {t > 0 : Yt = Q} represents
the time required for an animal to reach a specific size Q∗ = g−1(Q) for the first
time.

5



Optimization OPTpaper˙Final

The expressions for the mean and variance of the profit are now given by

E[LQ∗ ] = PRQ∗ − C1 − c2E[TQ|Y (0) = y0] (10)

and

Var[LQ∗ ] = c2
2Var[TQ|Y (0) = y0], (11)

where E[TQ|Y (0) = y0] and Var[TQ|Y (0) = y0] represent the mean and variance
of the first passage time by Q = g(Q∗). In [3, 5] we have determined explicit
expressions (in the form of simple integrals that can be numerically computed) for
the mean and variance of the time required for an animal to reach a given size for
the first time. For our model (2), we obtain the following expressions

E[TQ|Y (0) = y0] =
1

β

∫ √2β(Q−α)/σ

√
2β(y0−α)/σ

Φ(y)

φ(y)
dy (12)

and

Var[TQ|Y (0) = y0] =
2

β2

∫ √2β(Q−α)/σ

√
2β(y0−α)/σ

∫ z

−∞

Φ2(y)

φ(y)φ(z)
dydz, (13)

where Φ and φ are the distribution function and the probability density function
of a standard normal random variable. To obtain the mean and variance of TQ,
one needs to numerically integrate in (12) and (13).

We now present some results related to the probability density function of TQ.
More details on the study of the first passage time density function can be found,
for instance, in [1, 7, 18, 20, 24]. For our model (2), in [14] the probability density
function of the first passage time by Q = g(Q∗) is described as

fTQ(t) =

∞∑
n=1

cnλn exp(−λnt), t > 0, (14)

where 0 < λ1 < λ2 < . . . < λn → ∞ when n → ∞. For all t0 > 0, this series
converges uniformly in [t0,∞). Considering the notation

Ql =

√
2β

σ
(α− y0), QL =

√
2β

σ
(α−Q), νn =

λn
β
,

where 0 < ν1 < ν2 < . . . < νn (→ ∞ when n → ∞) are the positive roots of the
equation

Hν

(
QL√

2

)
= 0

and

cn = −
Hνn

(
Ql√

2

)
νn

∂Hν(QL√2 )
∂ν

∣∣∣∣
ν=νn

,
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where Hν(.) is the Hermite function. The distribution function of TQ is given by

FTQ(t) =

∞∑
n=1

cn(1− exp(−λnt)). (15)

In [14], an application to interest rates in Japan is shown and asymptotic expres-
sions for λn and cn are also presented. This method is applied in [16] to evaluate
probability density functions for hitting times in the context of fish growth and
mortality.

For model (2), an expression for the probability density function of the first
passage time by the asymptotic value α can be found, for instance, in [14] and [18]:

fTα(t) =
|y0 − α|
σ
√

2π

(
β

sinh(βt)

)3/2

exp

(
βt

2
− β(y0 − α)2e−βt

2σ2 sinh(βt)

)
. (16)

More recently, in [24], considering the Ornstein-Uhlenbeck model, an interesting
result relates the probability of the process being above the asymptotic value α
with the distribution of the first passage time by α. For model (2), for a future
instant T > 0,

FTα(T ) = P [Tα ≤ T ] = 2P [YT ≥ α].

Since Yt follows a gaussian distribution with mean and variance as described above,
we obtain

FTα(T ) = 2

(
1− Φ

(
−(y0 − α)e−βT

σ
√

1− e−2βT

))
= 2Φ

(
− |y0 − α|e−βT

σ
√

1− e−2βT

)
, (17)

where Φ denotes the distribution function of a standard normal random variable.
Expressions (16) and (17) are easy to apply, but they can only be used when
considering the first passage time by the asymptotic value, i.e., when Q = α. To
apply, as we did, to cattle data, we need the distribution of the first passage time
through other values and so we need to use expression (15), although it requires
more extensive computational work.
These methods were applied to our cattle data, allowing to obtain the distribution
curves of the time required for an animal to reach a specific weight for the first
time.

The probability distribution function for the profit, LQ∗ , obtained from selling
the animal when a certain weight Q∗ is achieved for the first time, can be written
as

FLQ∗ (v) = P [LQ∗ < v] = P [PRQ∗ − C1 − c2TQ ≤ v] (18)

= P

[
TQ >

PRQ∗ − C1 − v
c2

]
= 1− FTQ

(
PRQ∗ − C1 − v

c2

)
.

4. Application to cattle data

The data set we worked with contains information on the weight, in kilograms, of 97
females of Mertolengo cattle, with several observations per animal corresponding
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to ages varying from birth until a maximum age between 0.6 and 18 years, making
a total of 2129 observations.

Table 1 shows the maximum likelihood estimates, for both the SGM and the
SBRM. We have also obtained the asymptotic confidence bands based on the results
of the empirical Fisher information matrix.

Let us now give an example and consider a typical cattle market situation,
where a mertolengo cow with 160 kg, previously raised with the mother up to 7
months (0.58 years) of age (approximate weaning age), is bought by a producer for
200 euros to be raised for market sale up to age 16 months (1.33 years). We must
consider, in the case of mertolengo cattle breed, that the dressing proportion is 50%
of live weight (R = 0.5); the usual raising costs (in euros) for an animal from the
age of 7 months to age t are: 18.85 for commercialization and transportation, 26.68
for feeding/month, 7.25 for sanitation costs and 1.55 for other costs. We can then
establish the fixed costs as C1 = 200 + 18.85 + 7.25 + 1.55 = 227.45 and the cost of
animal raising per unit time as c2 = 26.68/month×12months/year = 320.16/year.
We consider typical selling prices P (euros/kg) of the animal to be 3.00, 3.25, 3.50
or 3.75. Subsidies for slaughter or RPU (unit income) were not considered.

What is the expected profit of this producer when the animal is marketed at
age t? Considering the maximum likelihood estimates of the model parameters
given in Table 1 and the typical market values described above we can obtain the
expected profit curve according to age. This is shown in Figure 1.(a), for both
SGM and SBRM, for a selling price of 3.25 euros/kg. Maximizing expression (7)
with respect to age t, we have obtained the optimal age for selling the animal
in order to reach a maximum mean profit. Table 2 presents, for both SGM and
SBRM, the optimal age t (Aopt) and correspondent expected weight (E[XAopt ]),
maximum mean profit (E[LAopt ]) and standard deviation of the profit (sd[LAopt ]).

For the approach in which we consider the profit as a function of the animals
weight, we have started by using expression (12) to compute the expected times
to achieve weights from 200 to 400 kg. These results were then used in (10) and,
trough the maximization with respect to Q∗, we have obtained the maximum
mean profit (E[LQ∗opt ]), and corresponding optimal selling weight (Q∗opt). Figure
1.(b) illustrates the case for which P = 3.25 euros/kg and Table 2 shows these
results for both models (SGM and SBRM), as well as the standard deviation of
the profit (sd[LQ∗opt ]) and expected age of the animal when the optimal weight is
achieved (E[Aopt]). Since the animal was bought at 7 months of age (0.583 years),
the expected age when Q∗opt is achieved for the first time can be computed as
E[Aopt] = 0.583 + E[TQopt ].

Considering a selling price of P = 3.25 euros/kg, figure 2 shows the selling
profit standard deviation for both approaches, obtained by using the square root
of expressions (8) and (11).

By the analysis of the results on Table 2, we can conclude that the approach
based on the profit as a function of the animal weight lead us to higher values
of the optimal mean profit than the first approach of optimization by the animal
age. The optimal mean profit values are higher in the case of SGM than in the
SBRM case. In terms of the profit standard deviation, we observe that the second
approach provides considerably lower values than the first approach in the case of
SGM and slightly higher values than the first approach in the case of SBRM.
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We have seen that it is possible to obtain probabilities involving the selling profit.
In particular, based on (9) and (18) when v = 0 we can compute the probability of
having a positive profit by selling the animal at a certain age or a certain weight. For
instance, for a selling price of 3.25 euros/kg, considering the SGM, the probability
of having a positive profit by selling the animal at the optimal age (1.05 years) is
0.715, while the probability of a positive profit is only 0.632 if one sells the animal
at the usual (non optimal) age of 1.33 years.

Looking at the second approach, the probability of having a positive profit when
the animal is sold after reaching the optimal weight (292 kg) is 0.807. As one can
see in this case, the second approach provides a higher probability of having a
positive profit then the first approach. This is also true for the other values of P
we have considered.

Considering P = 3.25 euros/kg, figure 3 illustrates the probability of having a
selling profit higher than a certain value v, varying from 0 to 100 euros, when the
animal is sold at the optimal age (Figure 3.(a)), and when the animal is sold at
the usual age of 16 months (Figure 3.(b)). We can see that these probabilities are
higher in the case of SGM, with the only exception of low values of v when the
animal is sold at the optimal age.

Based on the probability density function and distribution function of TQ, the
first time an animal achieves a certain weight Q∗ = g−1(Q), the plots for the
probability of having a selling profit higher than a certain value v can be shown.
As an example we show the probability density function (Figure 4.(a)) and the
distribution function (Figure 4.(b)) of the first time an animal reaches Q∗ = 300
kg. Figure 5, illustrates the probability that the selling profit exceeds a certain
value v, varying from 0 to 100 euros, when the animal is sold at P = 3.25 euros/kg
after reaching 300 kg. Higher values of these probabilities are obtained in the case
of the SGM.

5. Conclusions

Based on SDE individual growth models applied to the evolution of the weight of
Mertolengo cattle, we have studied two different approaches for the optimization
of the mean profit obtained by raising and selling an animal in the cattle market.
The first approach consists in selling the animal at a fixed age, independently of
the animal’s weight. We have determined the most adequate age to sell the animal
in order to obtain a maximum mean profit. The other approach consists in selling
the animal when a fixed weight is achieved for the first time, independently of the
animal’s age. The cattle market demands may be, for example, the search for an
animal with a certain specific weight. In this case, it is important to be able to
determine the average time required for the animal to achieve the desired weight.
To this end, the theory of first passage times was applied.

We have observed that, for typical market values, the second methodology
achieves a higher optimal mean profit compared with the first methodology, and
even provides a lower standard deviation for this optimal profit in the SGM case,
showing a higher, but only slightly, standard deviation for the SBRM case.

Probability distribution functions for the selling profit were developed for both
approaches. Probabilities of obtaining a profit higher than a certain value were
computed. The second methodology revealed higher probabilities of exceeding a
certain value of the profit when compared with the first one.
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Optimization problems concerning the average profit of the sale of a single animal
were studied. In practice, a producer usually sells several animals at once, possibly
with different weights and ages, so they do not reach a certain age or a certain
weight all at the same time. We can put up the question of what is the optimal
time to sell a heterogenous group of animals in order to optimize profit concerning
some shared costs, such as transport of animals. This would be a situation that
leads to a more complex optimization problem which would be interesting to study
in future work.

In our case, animals feed freely in the field and we have no records of food
intake. However, there are cases in which we can control food intake and it would
be interesting to determine the optimal control (for stochastic optimal control see,
for instance, [12, 15, 25]). Other interesting developments would be to consider
jump diffusion models (see, for instance, [15]), in which environmental fluctuations
may have jumps, or even stochastic hybrid systems (see [2, 21]), in which there are
different growth regimes with random switching among them.
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Table 1. Maximum likelihood estimates and approximate half-width of the 95% confidence bands

SGM SBRM
A (kg) 411.2± 8.1 425.7± 9.5
β (year−1) 1.676± 0.057 1.181± 0.057

σ (year−1/2) 0.302± 0.009 0.597± 0.019
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Table 2. Mean profit optimization results.

Optimization by age Optimization by weight
P (e/kg) Aopt E[XAopt ] E[LAopt ] sd[LAopt ] E[Aopt] Q∗

opt E[LQ∗opt
] sd[LQ∗opt

]

S
G

M
3.00 0.97 253 29.41 91.11 1.04 271 33.14 57.03
3.25 1.05 271 62.19 109.60 1.14 292 68.38 68.79
3.50 1.13 285 96.94 127.00 1.23 309 105.95 79.85
3.75 1.19 296 133.26 143.72 1.31 324 145.43 91.13

S
B

R
M

3.00 0.71 189 14.14 29.53 0.77 200 14.71 34.37
3.25 0.86 219 39.73 47.70 0.92 232 41.74 51.22
3.50 0.97 240 68.49 61.21 1.05 256 72.29 64.62
3.75 1.07 257 99.63 72.99 1.16 275 105.50 76.37
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Figure 1. Expected profit, for SGM (solid line) and SBRM (dashed line), considering
P = 3.25 euros/kg. Maximum expected profit is signaled “o”. (a) for profit
as a function of age (expected profit from selling the animal at the usual age
of 16 months is signaled with “∗”); (b) for profit as a function of weight.

Figure 2. Profit standard deviation, for SGM (solid line) and SBRM (dashed line),
considering P = 3.25 euros/kg. Profit standard deviation corresponding to
the optimal weight is signaled “o”. (a) for profit as a function of age; (b) for
profit as a function of weight.

Figure 3. P [Lt > v] for P = 3.25 euros/kg at optimal age (a) and usual age (b), for
SGM (solid line) and SBRM (dashed line).

Figure 4. Probability density function (a) and distribution function (b) of the time
required for an animal to reach for the first time 300kg, for SGM (solid line)
and SBRM (dashed line).

Figure 5. P [LQ∗ > v] for P = 3.25 euros/kg when the animal reaches 300kg, for SGM
(solid line) and SBRM (dashed line).
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Figure 3.
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Figure 4.
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Figure 5.
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