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Abstract. This paper presents a new algorithm for trajectory classifi-
cation of human activities. The presented framework uses a mixture of
parametric space-variant vector fields to describe pedestrian’s trajecto-
ries. An advantage of the proposed method is that the vector fields are not
constant and depend on the pedestrian’s localization. This means that
the switching motion among vector fields may occur at any image location
and should be accurately estimated. In this paper, the model is equipped
with a novel methodology to estimate the switching probabilities among
motion regimes. More specifically, we propose an iterative optimization of
switching probabilities based on the natural gradient vector, with respect
to the Fisher information metric. This approach follows an information
geometric framework and contrasts with more traditional approaches of
constrained optimization in which euclidean gradient based methods are
used combined with probability simplex constraints. We testify the per-
formance superiority of the proposed approach in the classification of
pedestrian’s trajectories in synthetic and real data sets concerning far-
field surveillance scenarios.

Keywords: EM, natural gradient, information geometry, surveillance,
trajectories, vector fields.

1 Introduction

The plethora of related work concerning human activity recognition is signifi-
cantly large and often divided into several categories depending on the setup
used. This usually comprises, single-view, single-view-invariant and multi-view
settings which are amongst the most used systems for surveillance tasks. In this
work, a far-field single view fixed camera is adopted. This allows to obtain the
same camera viewpoint that is useful to collect the trajectories unfolded in the
scenario.
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The framework proposed herein, uses a parametric model to describe the
motion vector fields as in [1] with a new efficient optimization algorithm for the
switching among these fields inspired in [2]. Therefore, the proposed approach
is twofold. First, the vector fields are not constant, thus providing a flexible
model and expressive representation of complex motion patterns in the pedes-
trian’s trajectories. Second, the optimization algorithm relies on the use of the
natural gradient with respect to the Fisher information metric to model the
switching probabilities among the vector fields. This technique follows an infor-
mation geometric framework and has the following main properties: (i) the use
of the Fisher metric modifies the euclidean gradient direction so that probabil-
ities are constrained to the probability simplex, and (ii) the natural gradient
can, in some cases, be viewed as a quasi-Newton method, since the Fisher infor-
mation approaches asymptotically the Hessian of several common information
divergences. These two properties suggest faster convergence rates and reduced
computational effort contrasting with the gradient projection based methods.

2 Generative motion model - Multiple vector fields

We will denote the set of vector motion fields as T = {T1, . . . ,TK}, with Tkt :
R2 → R2, for kt ∈ {1, . . . ,K}. The generative motion model of the trajectory is
given as

xt = xt−1 + Tkt(xt−1) + wt, t = 2, . . . , L, (1)

where wt ∼ N (0, σ2
kt
I) is white Gaussian noise with zero mean and variance σ2

kt
(which may be different for each field), and L is the number of points in the tra-
jectory. Also, we will assume that the sequence of active fields k = {k1, . . . , kL}
is modeled as a realization of a first order Markov process with space vary-
ing transition probabilities. This model allows the switching to depend on the
object localization, thus having P (kt = j|kt−1 = i,xt−1) = Bij(xt−1), where
B : R2 → RK×K is a field of stochastic matrices. The matrix B can also be seen
as a set of K2-dimensional fields with values in [0, 1] s.t.

∑
j Bij(xt) = 1, for any

xt and any i.

The joint distribution of a trajectory x and its underlying sequence of active
fields k, under the model parameters Θ = (T ,B,Σ), is given by

p(x,k|Θ) = p(x1)P (k1)

L∏
t=2

p(xt|xt−1, kt)p(kt|kt−1,xt−1). (2)

From (2), we see that p(kt|kt−1,xt−1) is a function of B, p(xt|xt−1, kt) is a
function of T and Σ, and p(xt, kt|xt−1, kt−1) is a function of T , B, and Σ.

As in [1] both of the fields and transition matrices (T ,B) are modeled in a
parametric way. More specifically, they are defined at the nodes of a regular grid.
To obtain the velocity fields and switching probability fields, we interpolate the



vectors t
(n)
k and matrices b(n) defined at the nodes of the grid as follows

Tk(x) =

N∑
n=1

t
(n)
k φn(x), B(x) =

N∑
n=1

b(n)φn(x) (3)

where φn(x) : R2 → R, for n = 1, . . . , N is a set of scalar basis functions. Given
the image domain D = [0, 1]2, a discretization is performed using an uniform
grid with step ∆. The contribution of node n, centered at un = (u1

n, u
2
n), to the

interpolation (3) is given by

φn(x) =

{
|x1 − u1

n| · |x2 − u2
n|/∆2 if |x1 − u1

n| < ∆ and |x2 − u2
n| < ∆,

0 otherwise.

3 Learning the model

Here, we detail how the model parameters Θ = (T ,B,Σ) are learned. More
specifically, how the motion fields T = {T1, ...,TK}, the field of the stochas-
tic matrices B and the noise variances Σ = {σ2

1 , ..., σ
2
K} are learned from a

set of S independent observed trajectories X = {x(1), ...,x(S)}, where x(s) =

(x
(s)
1 , ...,x

(s)
Ls

) is the s-th observed trajectory. Since we assume that the active

models K = {k(1), ...,k(S)} are missing, we apply the EM algorithm to find a
marginal maximum a posteriori (MMAP) estimate of Θ; formally the estimate
is given by

Θ̂ = arg max
Θ

∑
K
p(X ,K|Θ) p(Θ)

= arg max
Θ

∑
K

S∏
s=1

p(x(s),k(s)|Θ) p(Θ)

(4)

where each factor p(x(s),k(s)|Θ) has the form given in (2), the sum over K has
K(

∑
s Ls) terms and p(Θ) = p(T )p(B)p(Σ) is some prior.

The complete log-likelihood The EM algorithm aims at computing (the
E-step) the expectation of the complete log-likelihood which is given by

Q(Θ; Θ̂) ≡ E
[
log p(X ,K|Θ)|X , Θ̂

]
=

S∑
s=1

Ls∑
t=2

K∑
l=1

w̄
(s)
t,l logN (x

(s)
t |x

(s)
t−1 + Tl(x

(s)
t−1), σ2

l I)︸ ︷︷ ︸
Ā(X ,K)

+

S∑
s=1

Ls∑
t=2

K∑
l=1

K∑
g=1

w̄
(s)
t,g,l logBg,l(x

(s)
t−1)︸ ︷︷ ︸

B̄(X ,K)

, (5)



where w̄
(s)
t,l = P [w

(s)
t,l = 1|x(s), Θ̂], and w̄

(s)
t,g,l = P [w

(s)
t,g,l|x(s), Θ̂] which are ob-

tained by a modified forward-backward procedure [3].
The M-step maximizes the Q-function in (5) with respect to the model pa-

rameters Θ. The maximization with respect to the motion vector fields T and
noise variances Σ (the term Ā(X ,K) in (5)) is straightforward and it follows the
same strategy as in [1]. What is different is the way we perform the optimization
of the switching probabilities, (the term B̄(X ,K) in (5)) that we detail next.

Natural gradient Optimization of switching probabilities is usually dealt with
as a constrained optimization problem since probabilities have to lie on a prob-
ability simplex. Here, we adopt a different approach based on the information
geometric framework [8, 9]. Within this framework, switching probabilities are
considered as points on a statistical manifold and their optimization is then
performed as an unconstrained optimization problem on the manifold.

When dealing with categorical distributions, with probabilities (p1, . . . , pK),

one possible parameterization is to use onlyK−1 probabilities ξ =
[
p1 . . . pK−1

]T
as coordinates, the remaining probability pK being dependent and automatically
computed from the normalization constraint by pK = 1−

∑K−1
i=1 pi. This param-

eterization provides a global coordinate system on the manifold. Then, a metric
can be introduced by defining an inner product on the tangent space of each
point ξ. A particularly interesting metric makes use of the Fisher information
matrix G = [gij ] defined by

gij(ξ) = E

[
∂ log p

∂ξi
∂ log p

∂ξj

]
. (6)

This metric has the property that it is invariant with respect to coordinate
transformations and is central to the definition of natural gradient.

Generically, the gradient of a function f is the vector ∇f such that 〈∇f, v〉 =
df(v) holds for any vector v. In this equation, 〈·, ·〉 denotes an inner product and
df the differential of the function f (a 1-form whose components are given by
the partial derivatives of f). In the matrix convention adopted henceforth, the

differential is written as the row matrix of components df =
[
∂f
∂p1
· · · ∂f

∂pk−1

]
and the gradient vector as a column matrix. Specializing the gradient vector
computation for the statistical manifold of categorical probability distributions,
and using the Fisher information metric (6) above, yields

∇f = G−1(df)T = ξ ◦ (df)T − ξ (df · ξ), (7)

where the operator ◦ denotes the Hadamard product (element-wise product of
vectors) and · is the usual dot product. This gradient can be computed with
linear time and memory complexity, avoiding the explicit construction of the
Fisher information matrix and it can be shown [2] that ∇f vanishes on the
boundaries of the probability simplex. This latter fact alone turns probability
optimization into an unconstrained problem, since it is not possible to move out
of the simplex using an appropriately bounded, but positive, optimization step.



The maximization of a generic function f is then performed using the gradient
method

ξt+1 = ξt + η∇f, (8)

where the scalar η is a positive step size. This equation is iterated until conver-
gence is attained. To ensure that the update corresponds to a valid probability
distribution, the step size has to satisfy the bounds

0 < η <
1

ξT∇f − α
, α = min{0, (∇f)1, . . . , (∇f)K−1}. (9)

The application of the natural gradient algorithm to optimize the switching
probabilities is performed directly on the function Q. To this end, each stochastic
matrix b(n) is viewed as a collection of categorical distributions, one at each row,
and each one is optimized independently of the others.

4 Experimental Results

This section reports experimental results using the proposed approach to learn
the generative model in (1) to perform trajectory classification. Furthermore, we
also provide a a comparative evaluation with the projection simplex.

In a classification context, we assume that we have a number A of different
activity classes, i.e. a ∈ {1, . . . , A}, and that we have a subset of trajectories from
each of these activity classes, X 1, . . . ,XA. We will denote the set of the fields
and parameters corresponding to each activity class a as θa = (T a,Ba,Σa),
for a = 1, . . . , A. In some cases, one or more of these collections of parameters
may be shared among the classes; for example, if the motion fields are common
among the classes and only the switching matrices differ, we have T a = T and
Σa = Σ, for a = 1, . . . , A. We will illustrate the performance classification in
both synthetic and real scenarios.

4.1 Synthetic data

In this example, two classes (activities) of trajectories are considered (see Fig.
1). One that contains one left-right motion model to describe, say, the straight
activity. This activity has zero probability of switching, i.e. identity transition
matrices everywhere in the grid. The second activity contains three motion mod-
els, one left-right horizonal motion as in the previous class, and two (up and
down) diagonal motions to describe the disperse activity. In this case, the tra-
jectory can turn up or down, thus we set in the middle of the image region. the
diagonal of the transition matrix to 0.8 and the remaining entries to 0.2/(K−1),
with K, the number of motion fields. All the trajectories start roughly at the
image point [0, 0.5]T of the unit square as illustrated in Fig. 1(a).

In this experiment we assumed the number of motion models previously
known, thus K = 3. Nevertheless, this could be automatically be determined
using a discriminative based approach as in [4]. Also, we perform a comparison



(a) (b) (c)

Fig. 1. Two synthetic trajectory classes. Straight (green) and disperse (red) activities containing
different level of dynamic noise: (a) σ2

tst = 1σ2
trn, (b) σ2

tst = 50σ2
trn and (c) σ2

tst = 100σ2
trn

between the proposed method described in Section 3 and the gradient projection
(GP) algorithm [5]. The two main components of the GP algorithm are: (i)
the computation of the gradient of the objective function and the projection
onto the constraint set (i.e. stochastic matrices). Concerning the latter (i.e. the
projection), it consists in projecting each row of the transition matrix onto a
probability simplex, for which a recent proposed approach has been proposed
(see [6])).

To perform the comparison, 10 experiments were conducted. For each exper-
iment, we generated 100 (see (1)) training and testing trajectories. For the train-
ing trajectories we set σ2

trn = 10−4, for the testing set we used the following values
for the dynamic noise: σ2

tst = {σ2
trn, 2σ

2
trn, 5σ

2
trn, 8σ

2
trn, 10σ2

trn, 16σ2
trn, 20σ2

trn, 32σ2
trn, 50σ2

trn, 100σ2
trn}

(each experiment contains 100 test trajectories with σ2
tst set to a value in the

above interval). With this strategy it is possible to verify the robustness of the
proposed approach against trajectory mismatch. The performance is measured
in terms of classification accuracy which is accomplished by simply using the
forward E-step.

Fig. 1 shows the testing trajectories with (b) σtst = 32σtrn and (c) σtst =
100σtrn.

To perform a fair comparison, the initial conditions of the EM algorithm are
the same for both of the methodologies. The parameter values are set as follows:
we used 7 iterations for the EM, K = 3 motion fields, and 10 iterations in the
M-step to estimate the transition matrix B. We performed 8 runs of the EM
for both of the algorithms. The step size η is determined by cross validation
in the interval σ2

tst = {σ2
trn, 2σ

2
trn, 5σ

2
trn, 10σ2

trn, 20σ2
trn, 50σ2

trn, 100σ2
trn}. For both

methodologies a value of η = 10−5 was found the most suitable in the interval
values {10−3, . . . , 10−9}. Fig. 2(b) shows the performance of the natural gradient
for each value of σ2

tst, and for different values of η (see the dotted blue line in Fig.
2(b) for the best value of η). Fig. 2(a) shows the initialization of the remaining
parameters.

Fig. 3 shows the box plot graphs concerning the accuracy of the project
simplex (a) vs. the proposed natural gradient (b), for the best 4 initializations
of the EM. Here, we discarded the cases where the EM has deficient convergence



Parameter Initial conditions

Σ = {σ2
(1), .., σ

2
(N)} → 1× 10−3

T = {t(1), .., t(N)} → random in [−0.01 0.01]

B = {b(1), ..,b(N)} →
[
0.9 0.1
0.1 0.9

]
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Fig. 2. Parameters initialization for the EM (a), selection of the η parameter for the natural gradient
method (b).

due to the poor initializations. We see that the natural gradient provides better
performance, exhibiting higher mean values and smaller error deviation. The PG
algorithm has more instability through the interval values of σ2

tst.

Robustness to initialization In the previous experiment we avoided the worst
EM estimates, taking only the best initializations. Here, we provide an additional
experiment to illustrate how robust are the frameworks to initialization. For that
purpose, we provide the statistics performance for each trial that ranging from
4 up to 8 runs of the EM. Fig. 4 show the performance of the methodologies
increasing the number of the EM runs. Although, both methods decrease the
performance as the dynamic noise increases, the natural gradient provides better
results in terms of the first (higher values) and second (smaller values) order
statistics.

4.2 Real data

We now consider the application of the proposed algorithm in a real scenario:
the campus of the Universitat Politcnica de Catalunya (UPC) Barcelona. In
this scenario the images were obtained from a remote and fixed network camera
located at the UPC campus. The camera was continuously streaming during
5 hours. Several classes of trajectories were observed and thus considered for
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Fig. 3. Classification accuracy using (a) the projection simplex and (b) natural gradient.

classification. The trajectories were obtained by tracking the pedestrians using
the LOTS algorithm [7]. Fig. 5 (a) depicts some of the trajectories after a ho-
mography transformation belonging to each activity (in a different color). The
obtained trajectories are divided into the following activities (see Fig. 5 (a)): (a1)
walking and stepping down the stairs (from up-left to bottom right direction);
(a2) walking along (up motion); (a3) crossing and stepping up the stairs; (a4)
pass diagonally down; (a5) turning he Campus.

In the synthetic example we assumed the number of fields to be known.
In the real case, we have to automatically discover the most appropriate num-
ber of models. To accomplish this, we assume that all the activities share the

same vector fields, i.e the class specific models are Θ
(a)
K = (T ,B(a),Σ), for

a ∈ {1, . . . , A}, where only the switching matrices differ among the classes, and
K is the number of (shared) vector fields. To determine the model order, we
consider, in addition to the training set, a validation or selection set D. The
model selection is then performed by assessing the classification accuracy with
each model order in D. In our experiments, we varied the the number of models
in the interval K = {1, ..., 8}. Using the set D we concluded that K = 6 pro-
vided the best classification accuracy. Fig. 5(b) shows the performance of the
algorithm for different values of K. We see that the validation set generalizes
well for the test set. Fig. 5(c) discriminates the accuracy in terms of trajectory
classification among the considered classes for the best value of K.

5 Conclusions

This paper presented an innovative approach to the estimation of switching
probabilities in the context of human activity recognition. Compared to other
methods applied before to the same problem, the proposed algorithm has the
advantage that the optimization in performed in the unconstrained realm, reduc-
ing the computational complexity of previous constrained optimization methods.
The proposed approach was tested and validated both on synthetic data and real
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Fig. 4. Performance of the Projection simplex (top) and natural gradient (bottom), for 6 (left) 7
(middle) and 8 (right) runs of the EM.

data obtained from surveillance videos. It is shown empirically that the natural
gradient method converges faster and attained better accuracy generically.
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a1(%) a2(%) a3(%) a4(%) a5(%)

a1 99.2 0 0 0.8 0
a2 0 91.9 8.1 0 0
a3 0 0 83.3 0 16.7
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(c)

Fig. 5. (a) Homography of the trajectories: a1 → walking and stepping down the stairs (pink -
from up-left to bottom right direction); a2 → walking along (up motion in yellow); a3 → crossing
and stepping up the stairs (green); a4 → pass diagonally down (red); a5 → turning he Campus
(cyan); (b) performance accuracy in the validation (red) and test (blue) for K = {1, ..., 8}, (c)
Classification results of the five activities for the best values K = 6.


