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A control Lyapunov function approach
to adaptive control of HIV-1 infection

JOAO M. LEMOS and MIGUEL S. BARAO

This paper presents an algorithm for nonlinear adaptive control of the viral load in HIV-1
infection. The infection model considered is a reduced complexity nonlinear state-space model
with two state variables, that represent the plasma concentration of uninfected and infected
CD4+ T-cells of the human immune system. The viral load is assumed to be proportional to the
concentration of infected cells. First, a change of variables that exactly linearizes the system is
obtained. For the resulting linear system the manipulated variable is obtained by state feedback.
To compensate for the uncertainty in the infection parameter of the model an estimator based
on a Control Lyapunov Function is designed.
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1. Introduction

1.1. Framework

Strategies for counteracting HIV infection designed using control methods are re-
ceiving an increased attention. Detailed studies that combine modeling analysis with
clinical results show that the initial infection phase may be represented using simple
nonlinear state models [6]. This fact boosted the production of an increasing number of
papers where therapy strategies are derived from control principles.

A straightforward approach to the design of a controller to regulate the state of a non-
linear system consists in obtaining an approximate linear model around the equilibrium
point considered using Taylor series approximations and then to design a state feedback
controller that drives the state increments with respect to the equilibrium to zero. Al-
though simple, this method has the drawback of requiring that the initial conditions are
close to the equilibrium for the approximation to be valid, being difficult to establish
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stability results. Furthermore, if the linearized system is not controllable, it may not be
possible to design adequately the state feedback. This is the case of the model of HIV-1
infection considered hereafter around the equilibrium corresponding to an healthy per-
son. If this approach is followed, the linearization must then be performed around the
equilibrium point corresponding to infection and the state feedback controller should
thus drive the state away from it, with the risk of becoming unstable due to the neglected
higher order terms of the model.

Opposite to this approach, feedback linearization [5] aims at exactly canceling the
nonlinearities using a nonlinear static feedback. This results in a transformed model that
is exactly linear in a region around the equilibrium point to which a linear regulator may
then be applied. In this region, that is usually larger than the one resulting from Taylor
approximation methods, stability of the closed loop is ensured.

This paper proposes a strategy that combines model reduction using a simple singu-
lar perturbation approximation, feedback linearization and LQ regulation based on state
feedback. Due to the wide variability of the dynamics associated to different patients
the capacity of a controller to stabilize models that are different from the nominal one
is quite important. Hence, we consider the inclusion of an estimator of the infection
parameter.

It should be remarked that the present paper, as well as the references quoted above,
forms just one step towards the application of control techniques to the design of HIV-
1 infection therapy. Indeed, in the actual clinical practice, the drugs currently used for
treatment of HIV-1 infection are neither continuously infused nor is the virus concen-
tration measured in permanence. The sampling of the controllers designed is therefore
required, a subject that deserves attention on its own from the point of view of systems
and control.

1.2. Literature review

Examples of research papers addressing the design of HIV-1 infection therapy with
control techniques include nonlinear control based on Lyapunov methods and on the use
of decomposition in strict feedback form with backstepping [4], adaptive control [3],
Optimal Control [8] and Predictive Control [10]. In [2] various methods based on time-
delay feedback control are shown, via Lyapunov function methods, to stabilize an HIV-
1 model similar to the one considered in the present paper. In [1] a HIV-1 infection
control strategy based on nonlinear geometric control (exact linearization) is described,
but without any mention to adaptive control and considering a different model.

1.3. Paper contributions and organization

The contribution of this paper consists of a therapy design procedure for HIV-1 based
on nonlinear adaptive control. The controller proposed combines exact linearization with
an adaptation mechanism that relies on a joint control Lyapunov function for the tracking
and estimation errors.
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The paper is organized as follows: After this introduction that motivates the problem,
reviews the main references and states the paper contribution and structure, the model
used for HIV-1 infection is presented in section 2. This model has two equilibrium points
that are characterized in section 3. Section 4 addresses exact linearization and section 5
describes the design of the controller for the resulting linear system. The main contri-
bution is presented in section 6, where an the adaptive controller is deduced. Finally,
section 7 draws conclusions.

2. HIV-1 infection model
The model considered is the reduced complexity second order model
X1 =s—dx; — (1 —u)bx;xp (D

X2 = (1 —u)Oxixp — uxs. 2)

In equation (1), s represents the production rate of healthy cells, the coefficient d the
natural death of the cells and 0 the infection rate coefficient. The infection rate of healthy
cells is proportional to the product of healthy cells x; and free virus x3. This process can
be influenced by drugs (Reverse Transcriptase Inhibitors — RTI) that reduce the virus
ability to infect cells. This influence is represented by the manipulated variable u, in
which u# = 0 corresponds to absence of drug and u = 1 to a drug efficiency in preventing
infection of 100%. Actually, with the available drugs, the efficiency is below 100%, and
u is constrained to the interval [0, umayx| With tpgy < 1.

Equation (2) comprises two terms that represent, respectively, the transition of
healthy cells to infected cells and the death of infected cells, with u the death coeffi-
cient.

An infected cell liberates free virus. In this reduced complexity model the virus load
is assumed to be proportional to the concentration of infected cells.

Table 1 shows one possible set of model parameters, used in simulations.

Parameter Value Units
d 0.02 day !
s 10 mm 3day !

1x1073 mm’day!

u 0.24 day ™!

Table 1. Model parameters.

The reduced nonlinear model (1, 2), may also be written as

X = f(x) +glx)u (3)
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where the state vector is given by x = [x; x,]’ and with the vector functions f and g

defined as
—dx; — 6.
fZ: [ S X1 X1X2 ] (4)
Ox1x2 — uxy
1
g:=0x1x [ B ] . (5)

3. Equilibrium points
In the absence of therapy, i. e. when u = 0, model (1, 2) has as equilibrium points

the solutions of the algebraic equations
0=s—dx;— (1 —u)bx;xy (6)
0= (1—u)bxjx, — pxy 7

with respect to the state variables x; and x;. These equilibrium points are

2 ®)

X]Zd, )CQZO

corresponding to an healthy person, and
u s d
= - - - 9
T80 —uw) P e(l-u ©)

corresponding to an infected individual.
The local stability analysis of these equilibrium points is made by computing the

eigenvalues of the Jacobian matrix A = df/0x, given by

~ —d—0 —0
A= 2 2 (10)
x> Ox; —u
X=Xeq-

By using the model parameters of table 1, the results of table 2 are obtained.

4. Exact Linearization

System (1, 2) is not linearizable by performing a state transformation only. However,
by the combined use of the transformations

u=ox)+Bx)v (11)
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T
Equilibrium point: [240.0000 21.6667]

Eigenvalues: —0.0208 £0.0690
Stability:  asymptotically stable

T
Equilibrium point: [500.0000 0.0000}

Eigenvalues: —0.0200, 0.2600
Stability: unstable

Table 2. Stability of the equilibrium points of the reduced model.

7=25(x) (12)
the following linear model is obtained
:=Az+Bv (13)
with
=l o=]]] 09

The manipulated variable v in the transformed model is called “virtual” because it has
only mathematical existence, in opposition to u, that has the physical meaning of being
the drug dosage actually applied to the patient. Equation (11) allows to compute the
actual drug dose u such that between v and z there is a linear relationship to which linear
control techniques may then be applied.

Proposition 1 The transformations performing linearization are

Blx) = lexz(l,u—d) (15)
Cds - dPxt _
o) B+ xl( ; _,J;;ze ; )(:21 1)0x1x 6
S(x) = L_d‘i(lxz m] (17)
with @(x) given by
(P(x)=x1+x2’;;+g. (18)

Proof In [5] it is shown that the nonlinear system (3) with f(xo) = 0 and scalar input
u is feedback linearizable around the equilibrium x¢ if and only if the distributions D;
defined by

D; = span { g(x),adg(x), .. ,ad} g () } (19)
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verify the two following conditions:

dimD,,(xo) = n, (20)

D,,_1 is involutive around x. 2D

In relation to the model (3) with f and g given by (4) and (5), the first condition
results in

dim D, (x) = rank [g(x) adfg(x)]

= %xg rank (22)

X1 §— uxy
C

—X1 —S —|—dx1

=2, forx;,x; Z0and u # d

and hence dimD;(xg) = 2. The second condition is also verified because D; =
span{g(x)} is involutive since the Lie bracket [g,g] = 0 € D;. The model is therefore
feedback linearizable.

Since the conditions on D; are satisfied, there exists ( [5]) a function @(x) that verifies
the following three conditions:

®(xo) =0 (23)
(do,adfg)(x) =0, k=0,1,...,n—2 (24)
(dg,ad} " g)(x0) # 0. (25)

In terms of @(x), the linearizing transforms yielding (14) around the equilibrium state xg
are given by [5]:

a() = — (L) o0) Lol 26)
o) = (L o) @)
=L lo(x), i=12,...n (28)

The function 18 satisfies the three conditions, in particular
1. Computing @(x) at the equilibrium x( given by point (9) yields ¢(xo) = 0;
9
2. (dg.g) = %gm =0:

3. (do,[f,g]) = [fa gl= (d w)x1xz # 0, for x = xo.
Using ¢(x) as given by (18) and (26)-(28) yields the transformations (15-17).
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The expression (18) for @(x) is obtained by noting that Condition 2 may be written
as

00 J 1 Bk
— — — =0 29
[axl ax2H_1] ¢ 12 9
and hence implies that @(x) satisfies the partial differential equation
I _ 99
_r 30
ox;  dxp (30)
whose solution is given by any differentiable function ® of argument x| + x»:
Q(x1,x) = D(x] +x2). 3D

The simplest choice that also satisfies Condition 1 is given by (18). The expressions for
o and P follow then in a straightforward way from (28). 0

With these transformations, the system in a region of state space around the equilib-
rium (9) is transformed exactly in the linear system (14).

5. Control with known parameters

The problem of designing a control law for the linearized system is addressed here-
after. The aim is to design a state feedback control law that generates the virtual manip-
ulated variable v as a function of the transformed state z. More specifically, we want to
design the vector of feedback gains K = [k k2], the equilibrium value of v (denoted )
and the equilibrium zZ = [Z; Z,]7 of z corresponding to the a specified equilibrium of x, in
the control law:

v=v—Kz (32)

where
7:=z—1Z7 (33)

The equilibrium value of the control variable of the linear system verifies
AZ+Bv=0. (34)

5.1. Equilibrium values

Assume that the concentration of infected cells x» is to be driven to a reference value
r and kept there. At the equilibrium defined by x, = r one has, by equating the derivatives
to zero in (1, 2)

(35)
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and o ur
X = d’“‘ . (36)

In terms of the linearized system (that operates with transformed variables) this results
in the equilibrium point 7 = S(%), i. e.:

HE

It is then possible to design a LQ controller, using the linearized dynamics, that keeps
the system at the desired reference value r.

The transformation 7'(r) allows to compute the equilibrium point in terms of the
variables (z1,z2). The controller is then designed by minimizing the quadratic cost

S () s
d +r+%( W=l — 7). (37)

5.2. LQ controller design

+o0

J= / L Q.z+pyvidt (38)
0

where Q. and p adjust the contribution of the variables z(¢) and v(¢). Since these variables
are virtual (corresponding to transformed states) it is difficult to develop heuristic choices
of their values. Thus, it was decided to adjust the weights Q. for the state variables x and
then compute the corresponding Q,. Using a linear approximation, it is concluded that

as—\"  /as!
0, = <az> Ox <az) . (39)

These weights are tuning knobs” that allow the designer to adjust the relative impor-
tance of the state variables and the drug usage.

6. Adaptive Control

In practice model parameters are not perfectly known. A possible approach to es-
timate them is described hereafter and relies on a joint control Lyapunov function for
both the control and estimation errors [7]. In the work reported only the adaptation of
the infection parameter 0 is considered.

6.1. Error equation

Let 0" be the (unknown) true value of parameter 0, assumed to be constant, and 0 its
estimate. The estimation error 0 verifies

A ~

0=0"+0. (40)
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Differentiating (12) with respect to time and using the change of variable (11) yields

= 25 {1(00) (. 0°) [ ) + B O]

(41)

For the adaptive technique to be applied the equation error that relates the tracking error
with the estimation error should be linear in 0. For this sake, we do a first order expansion

of both o and B and neglect higher order terms:

A

o(x,0%) ~ ax,0) — a(x,0)0

~ ~

B(X, e*) ~ B(X,é) - B(x7 6)6

where A oo ds—d*x; —u*xy
o, 6) = 26 - (d —,u))qxzé2
and
By =P— !

00 d—prx
With this approximation, and using the fact that

O (") + (1,07 [0, 6) + Bx. 0} = A+ By

equation (41) becomes

z=Az+Bv+Y¥(x,1,0)0
where

—a—ig(x, é) ox, é) + E()@ é)v )

From this equation and using (32) and (34) the error equation is written as

Y(x,v,0):=

=Mz +¥(x,v,0)8.

Since

0S _ 1 1
ox —d —u
it follows that
A 0 ds — d*x* — 12
W(x,,0) = [ : v+ds éxl ,llxz‘

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(S
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6.2. Adaptation law

In order to design an adaptation mechanism to adjust 6, consider the candidate Con-
trol Lyapunov Function

= g~ 1=
V(z,0) =7 P7+ §92 (52)
where P = P7 is a positive definite matrix and y > 0 is a scalar design parameter. Differ-
entiating V with respect to time and using (49) it follows that
. L~ A 2%
V=2 (ATP4+PA)Z+6 (2‘PT(x,v, 0)PZ+ YG) (53)
where
Ay :=A—BK. (54)

For K such that Ay, is hurwitz (as it happens, for instance, if K is designed by solving the
LQ problem in section 5.1), there is Q = Q' positive definite such that

AfP+PA = —Q. (55)
Using (55) and selecting 6 such that

f— —W(x,v,0)’7 (56)

equation (53) becomes
V=-2"07<0 VZ#£0. (57)

Using a standard argument based on La Salle’s Invariant Set Theorem it is then con-
cluded that 7 — 0. Equation (56) implies the use of an adaptation law given by

t
6(r) = —6(0)+ / YT (x,v,0)PZdt (58)
0
or
A~ A t dle—l—yzxz—ds—v - ~
0(r) =6(0) +'Y/ 5 (P1221 + p2z2)dt. (59)
0

Figure 1 shows a result obtained using adaptive controller.

7. Conclusions

It was shown that a reduced complexity nonlinear model for the HIV-1 infection can
be controlled using adaptive nonlinear control methods. The approach followed com-
bines exact linearization, LQ control and a joint control Lyapunov function for for the
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Figure 1. Results with adaptive control.

tracking and estimation errors, to design the estimation law. Since this requires a linear
dependence of the error equation on the estimation error, some approximations related
to the linearizing transforms have to be performed.

The adaptation law considers only the tuning of the infection parameter. The same
procedure may be extended to estimate the other parameters at the cost of a more cum-
bersome algebra.
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