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Abstract

In the last decade, forest fires have become a natural disaster in Portugal, causing great
forest devastation, leading to both economic and environmental losses and putting at risk
populations and the livelihoods of the forest itself. In this work, we present Bayesian
hierarchical models to analyze spatio-temporal fire data on the proportion of burned
area in Portugal, by municipalities and over three decades. Mixture of distributions was
employed to model jointly the proportion of area burned and the excess of no burned
area for early years. For getting estimates of the model parameters, we used Monte
Carlo Markov chain methods.
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1. Introduction
According to the National Forestry Authority (Direcção Geral dos Recursos Florestais),
Portugal has the largest number of forest fires among five Mediterranean countries (Por-
tugal, Spain, France, Italy and Greece). In order to look for spatio-temporal patterns of
fires, we can model the proportion of burned area (Y), which is a (0,1)-restricted contin-
uous variable, assuming naturally a beta distribution (Ferrari and Cribari-Neto, 2004) or
Gaussian distribution and a Skew-Normal (Azzalini and Dalla Valle, 1996) distributions
after a logit transformation, i.e. log(Y/(1−Y )). In addition, we can use Bayesian hierar-
chical models to take into account spatially correlated random effects (Silva et al., 2008)
and excess zeros in the proportion of burnt area by municipalities and years [Amaral-
Turkman et al. 2011). Our aim is to present a spatio-temporal analysis of forest fires in
278 Portuguese municipalities between 1980 and 2006, from a Bayesian perspective and
using Monte Carlo Markov chain (MCMC) methods to make inference on the parameters
of interest.

2. Spatio-temporal modeling
Let Yit the proportion of burned area in municipality i and year t, i=1, . . . ,n, t=1, . . . ,T .
Assume Yit or log(Yit/(1−Yit)) has a probability distribution with mean µit and variance
σ2. Silva et al. (2008) suggest that µit can be expressed by

µit = α +S0(t)+Si(t)+φi, (1)

where S0(t) can represent a nonlinear temporal effect, Si(t) is the temporal effect by
region i and φi a random effect of the spatial variation associated with region i. If φi =
bi + hi, component hi represents the unstructured spatial random effect with Gaussian
priori distribution, i.e.,

hi ∼ N(0,σ2
h ≡τ

−1
h ), (2)

and bi the spatially correlated random effect with priori distribution, p(bi|τb = σ
−2
b ),

chosen in terms of a conditional autoregressive model (CAR) (Besag et al., 1991), i.e.,

bi | b−i,σ
2
b ∼ N(b̄i,σ

2
b /mi), (3)
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where b̄i is the mean of the random effects related to the “neighbors” of the region i, mi

the number of adjacent regions to region i and σ2
b the variance component.

Upon the occurrence of zeros, the distribution of the proportion of area burned (Yit is
considered a mixture of distributions with probability function f (yit), denoting f1(yit) =
f (yit |yit 6= 0), i=1, . . . ,n, t=1, . . . ,T . Define Vit as a Bernoulli random variable such that,
Vit = 0, with probability pit0 , and 1, with probability pit1 ≡ 1−pit0 , where pit0 represents
the probability of non-burned area in the region i in the year t. Vit indicates the existence
of the burnt area in the region i in the year t. Thus,

f (yit) = f1(yit)
Vit (1− pit0)

Vit p1−Vit
it0 . (4)

The probability of no burned area in the region i at time t is modeled as,

log
(

pit0

1− pit0

)
= β0 +β1t +ψi, (5)

where ψi is also a CAR model. We use assigned highly dispersed but proper priors. In
fact, one typically assumes independent normal prior for the regression coefficients. For
the variance component hyperparameters, one usually assigns an inverse gamma prior,
e.g., σ2 ∼ IG(r1,s1), σ2

b ∼ (r2,s2), σ2
h ∼ IG(r3,s3) and σ2

ψ ∼ IG(r4,s4) with kernel
density given for

x−(r+1)exp(−s/x), x > 0.

Consequently, we can construct the related joint posteriori distribution and use MCMC
methods because the corresponding marginal posteriors are not easy to get explicitly.
Notice that these methods are implemented e.g. in WinBUGS (Lunn et al., 2000).

3. Forest fires data analysis
Based on the models in section 2, we analyze the proportion Yit of burnt area due to
forest fires in 278 municipalities (mainland Portugal) and over 27 years (1980-2006).
Data were collected by Portuguese National Forestry Authority. Three scenarios were
considered for the data modeling:

A) Gaussian probability model: logit(Y )∼ N(µ,σ2);

B) Skew-normal model: logit(Y )∼ SN(µ,σ2,λ ), where λ is a shape parameter;

C) Beta model: Y ∼ Beta(a,b), with E[Y ]=µ , Var(Y )= µ(1−µ)
γ+1 and γ = a+b.

By using MCMC methods via WinBUGS, we used 15,000 iterations for all fitted models,
taking every 10th iteration of the simulated sequence, after 5000 iterations of burn-in.
The model comparison can be based on the Deviance Information Criterion (DIC), which
handles hierarchical Bayesian models of any degree of complexity, and is computed
as the sum of two components: the expected posterior deviance (D) and the effective
number of parameters (pD), measuring the goodness of fit and complexity of the model,
respectively (Spiegelhalter et al., 2002). It is often expressed as

DIC = 2D(θ)−D(θ), (6)

where D(θ) and θ denote the posterior mean of the deviance and the model parameter
vector θ , respectively. Though we rely principally on this measure for assessing models
in our application, the other measures are also computed for comparison. In table 1, one
can be observed some fitted models and, based on (6), the selected model is model M4.
Note that S0(t) = ηt , in model M4, represents a second order random walk.



Model pD DIC (×106)
M1(A) µit = β0+β1 t+φi t+bi+hi 521 150.150

logit(pit) = δ0+δ1 t+ai

M2(B) µit = β0+βi t+φi t+bi+hi 509 150.150
logit(pit) = δ0 +δ1 t +ai

M3(C) logit(µit) = β0+β1 t+φi t+bi+hi 581 149.996
logit(pit) = δ0+δ1 t+ai

M4(C) logit(µit) = β0+ηt+bi 411 149.995
logit(pit) = δ0+δ1 t+ai

Table 1: Model selection based on DIC.

For selected model (M4), the posteriori mean, standard deviation (SD) and 95% highest
posterior density (HPD) credible intervals (CI) of some parameters of interest are in
table 2. Based on model M4, the spatio-temporal risks of burned area, defined here by
exp(ηt+bi) for municipality i, were used to produce maps in 1985, 1994 and 2001 in
figure 1.

Parameter Mean SD 95% HPD CI
δ1 -0.169 0.007 (-0.183, -0.156)
γ 24.82 0.449 (24.02, 25.69)

σ2
b 0.334 0.051 (0.237, 0.437)

σ2
η 3.357 0.508 (2.424, 4.379)

σ2
a 0.194 0.060 (0.098, 0.313)

pit0 0.143 0.003 (0.137, 0.150)

Table 2: Estimates of the model parameters (M4).

4. Concluding remarks
The spatio-temporal analysis of the burned area proportion in 278 municipalities of
mainland Portugal between 1980 and 2006 reveals an increasing trend in the propor-
tion of burned area, whereas the number of municipalities without burned area trend
to decrease. The space-time models studied here have smoothed estimates used in the
production of maps that are useful in the interpretation of spatio-temporal data. This
analysis of the Portuguese forest fires may isolate trends in small areas of administra-
tive knowledge for promoting an appropriate policy interventions to reduce that national
catastrophe.
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