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2 Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 13566-560 São Carlos, SP, Brazil
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In the last decades, boundary value problems with nonlocal
and functional boundary conditions have become a rapidly
growing area of research. The study of this type of problems
not only has a theoretical interest that includes a huge variety
of differential, integrodifferential, and abstract equations,
but also is motivated by the fact that these problems can
be used as a model for several phenomena in engineering,
physics, and life sciences that standard boundary conditions
cannot describe. In this framework, fall problems with
feedback controls, such as the steady states of a thermostat,
where a controller at one of its ends adds or removes heat
depending upon the temperature registered in another point,
or phenomena with functional dependence in the equation
and/or in the boundary conditions, with delays or advances,
maximum or minimum arguments, such as beams where
the maximum (minimum) of the deflection is attained in
some interior or endpoint of the beam. Topological and
functional analysis tools, for example, degree theory, fixed
point theorems, or variational principles, have played a key
role in the developing of this subject.

This volume contains a variety of contributions within
this area of research. The articles deal with second and
higher order boundary value problems with nonlocal and
functional conditions for ordinary, impulsive, partial, and
fractional differential equations on bounded and unbounded
domains. In the contributions, existence, uniqueness, and
asymptotic behaviour of solutions are considered by using
several methods as fixed point theorems, spectral analysis,
and oscillation theory.
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We discuss the existence of solution for the fully fourth-order boundary value problem 𝑢(4) = 𝑓(𝑡, 𝑢, 𝑢, 𝑢, 𝑢), 0 ≤ 𝑡 ≤ 1, 𝑢(0) =
𝑢(1) = 𝑢


(0) = 𝑢


(1) = 0. A growth condition on 𝑓 guaranteeing the existence of solution is presented. The discussion is based on

the Fourier analysis method and Leray-Schauder fixed point theorem.

1. Introduction and Main Results

In this paper we deal with the existence of solution for the
fully fourth-order ordinary differential equation boundary
value problem (BVP)

𝑢
(4)
(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢


(𝑡) , 𝑢

(𝑡) , 𝑢

(𝑡)) , 0 ≤ 𝑡 ≤ 1,

𝑢 (0) = 𝑢 (1) = 𝑢

(0) = 𝑢


(1) = 0,

(1)

where 𝑓 : [0, 1] × R4 → R is continuous. This problem
models deformations of an elastic beam whose two ends are
simply supported in equilibrium state, and its research has
important significance in mechanics.

For the special case of BVP(1) that 𝑓 does not contain
derivative terms 𝑢 and 𝑢, namely, simply fourth-order
boundary value problem

𝑢
(4)
(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢


(𝑡)) , 0 ≤ 𝑡 ≤ 1,

𝑢 (0) = 𝑢 (1) = 𝑢

(0) = 𝑢


(1) = 0,

(2)

the existence of solution has been studied by many authors;
see [1–8]. In [1], Aftabizadeh showed the existence of a
solution to PBV(2) under the restriction that 𝑓 is a bounded
function. In [2, Theorem 1], Yang extended Aftabizadeh’s
result and showed the existence for BVP(2) under the growth
condition of the form





𝑓 (𝑡, 𝑢, V)


≤ 𝑎 |𝑢| + 𝑏 |V| + 𝑐, (3)

where 𝑎, 𝑏, and 𝑐 are positive constants such that

𝑎

𝜋
4
+

𝑏

𝜋
2
< 1. (4)

In [3], under a more general linear growth condition of
two-parameter nonresonance, del Pino and Man ́asevich also
discussed the existence of BVP(2) and the result of Yang was
further extended. For more results involving two-parameter
nonresonance condition see [4, 7]. All these works are based
on Leray-Schauder degree theory. In [5, 6], the upper and
lower solutions method is applied to discuss the existence of
BVP(2). Recently, in [8] the fixed point index theory in cones
is employed to BVP(2) and some existence results of positive
are obtained, where 𝑓may be super-linear growth.

For the more simple case of BVP(1) that 𝑓 does not con-
tain any derivative terms, the following fourth-order bound-
ary value problem

𝑢
(4)
(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 0 ≤ 𝑡 ≤ 1,

𝑢 (0) = 𝑢 (1) = 𝑢

(0) = 𝑢


(1) = 0,

(5)

has been studied by more researchers, and various theorems
and methods of nonlinear analysis have been applied; see [9–
13] and reference therein.

However, few researchers consider the fully fourth-order
boundary value problem BVP(1).The purpose of this paper is
to discuss the existence of solution of BVP(1). We will extend
the Yang’s result previously mentioned from BVP(2) to the
general BVP(1). Our results are as follows.
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Theorem 1. Assume that 𝑓 ∈ 𝐶([0, 1] ×R4,R) and it satisfies
the growth condition





𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3)






≤ 𝑐0




𝑥0




+ 𝑐1




𝑥1




+ 𝑐2




𝑥2




+ 𝑐3




𝑥3




+ 𝑀,

(6)

for all 𝑡 ∈ [0, 1] and (𝑥0, 𝑥1, 𝑥2, 𝑥3) ∈ R4, where 𝑐0, 𝑐1, 𝑐2, 𝑐3 ≥ 0
and𝑀 > 0 are constants and 𝑐0, 𝑐1, 𝑐2, 𝑐3 satisfy the restriction

𝑐0

𝜋
4
+

𝑐1

𝜋
3
+

𝑐2

𝜋
2
+

𝑐3

𝜋

< 1. (7)

Then the BVP(1) possesses at least one solution.

Theorem 1 is a directly extension of Yang’s result previ-
ously mentioned. In Theorem 1, the condition (7) is optimal.
If the condition (7) does not hold, the existence of solution
of BVP(1) cannot be guaranteed. Strengthening the condition
(6) of Theorem 1, we can obtain the following uniqueness
result.

Theorem 2. Assume that 𝑓 ∈ 𝐶([0, 1] ×R4,R) and it satisfies
the Lipschitz-type condition





𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) − 𝑓 (𝑡, 𝑦0, 𝑦1, 𝑦2, 𝑦3)





≤

3

∑

𝑖=0

𝑐𝑖




𝑥𝑖 − 𝑦𝑖





,

(8)

for any (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) and (𝑡, 𝑦0, 𝑦1, 𝑦2, 𝑦3) ∈ [0, 1] × R4,
where 𝑐0, 𝑐1, 𝑐2, 𝑐3 ≥ 0 are constants and satisfy (7). Then
BVP(1) has a unique solution.

If the partial derivatives 𝑓𝑥0 , 𝑓𝑥1 , 𝑓𝑥2 , and 𝑓𝑥3 exist, then
fromTheorem 2 and the theorem of differential mean value,
we have the following.

Corollary 3. Let 𝑓 ∈ 𝐶([0, 1]×R4,R) and the partial deriva-
tives 𝑓𝑥0 , 𝑓𝑥1 , 𝑓𝑥2 , and 𝑓𝑥3 exist. If there exist positive constants
𝑐0, 𝑐1, 𝑐2, 𝑐3 such that






𝑓𝑥𝑖
(𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3)






≤ 𝑐𝑖, 𝑖 = 0, 1, 2, 3, (9)

and the constants 𝑐0, 𝑐1, 𝑐2, 𝑐3 satisfy (7), then BVP(1) has one
unique solution.

The proofs of Theorems 1 and 2 are based on the Fourier
analysis method and Leray-Schauder fixed point theorem,
which will be given in Section 2.

2. Proof of the Main Results

Let 𝐼 = [0, 1] and 𝐻 = 𝐿2(𝐼) be the usual Hilbert space
with the interior product (𝑢, V) = ∫1

0
𝑢(𝑡)V(𝑡)𝑑𝑡 and the norm

‖𝑢‖2 = (∫
1

0
|𝑢(𝑡)|
2
𝑑𝑡)
1/2. For 𝑚 ∈ N, let𝑊𝑚,2(𝐼) be the usual

Sobolev space with the norm ‖𝑢‖𝑚,2 = √∑
𝑚

𝑖=0 ‖𝑢
(𝑖)
‖
2

2. 𝑢 ∈
𝑊
𝑚,2
(𝐼) means that 𝑢 ∈ 𝐶𝑚−1(𝐼), 𝑢(𝑚−1)(𝑡) is absolutely

continuous on 𝐼 and 𝑢(𝑚) ∈ 𝐿2(𝐼).

Given ℎ ∈ 𝐿2(𝐼), we consider the linear fourth-order
boundary value problem (LBVP)

𝑢
(4)
(𝑡) = ℎ (𝑡) , 𝑡 ∈ 𝐼,

𝑢 (0) = 𝑢 (1) = 𝑢

(0) = 𝑢


(1) = 0.

(10)

Let 𝐺(𝑡, 𝑠) be the Green’s function to the second-order linear
boundary value problem

−𝑢

= 0, 𝑢 (0) = 𝑢 (1) = 0, (11)

which is explicitly expressed by

𝐺 (𝑡, 𝑠) = {

𝑡 (1 − 𝑠) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝑠 (1 − 𝑡) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

(12)

For every given ℎ ∈ 𝐿2(𝐼), it is easy to verify that the LBVP(10)
has a unique solution 𝑢 ∈ 𝑊4,2(𝐼) in Carath ́eodory sense,
which is given by

𝑢 (𝑡) = ∬

1

0

𝐺 (𝑡, 𝜏) 𝐺 (𝜏, 𝑠) ℎ (𝑠) 𝑑𝑠 𝑑𝜏 := 𝑆ℎ (𝑡) . (13)

If ℎ ∈ 𝐶(𝐼), the solution is in 𝐶4(𝐼) and is a classical solution.
Moreover, the solution operator of LBVP(10), 𝑆 : 𝐿2(𝐼) →
𝑊
4,2
(𝐼) is a linearly bounded operator. By the compactness of

the Sobolev embedding𝑊4,2(𝐼) → 𝐶3(𝐼) and the continuity
of embedding𝐶3(𝐼) → 𝑊3,2(𝐼), we see that 𝑆maps 𝐿2(𝐼) into
𝑊
3,2
(𝐼) and 𝑆 : 𝐿2(𝐼) → 𝑊3,2(𝐼) is a completely continuous

operator.
Choose a subspace of𝑊3,2(𝐼) by

𝐷 = {𝑢 ∈ 𝑊
3,2
(𝐼) | 𝑢 (0) = 𝑢 (1) = 0, 𝑢


(0) = 𝑢


(1) = 0} .

(14)

Clearly, 𝐷 is a closed subspace, and hence 𝐷 is a Banach
space by the norm ‖𝑢‖3,2 of𝑊

3,2
(𝐼). Define another norm on

𝐷 by

‖𝑢‖𝑋 =





𝑢



2
, 𝑢 ∈ 𝐷. (15)

One easily verifies that ‖𝑢‖𝑋 is equivalent to ‖𝑢‖3,2. Hereafter,
we use 𝑋 to denote the Banach space 𝐷 endowed the norm
‖𝑢‖𝑋, namely,

𝑋 = (𝐷, ‖⋅‖𝑋) . (16)

By the boundary condition of LBVP(10), the solution oper-
ator 𝑆 maps 𝐻 into 𝐷. Hence 𝑆 : 𝐻 → 𝑋 is completely
continuous.

Lemma 4. For LBVP(10), the following two conclusions hold.

(a) The norm of the solution operator of LBVP(10) 𝑆 :
𝐻 → 𝑋 satisfies ‖𝑆‖L(𝐻,𝑋) ≤ 1/𝜋.
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(b) For every ℎ ∈ 𝐻, the unique solution of LBVP(10) 𝑢 ∈
𝑊
4,2
(𝐼) satisfies the inequalities

‖𝑢‖2 ≤
1

𝜋
3






𝑢



2
,






𝑢



2
≤

1

𝜋
2






𝑢



2
,






𝑢



2
≤

1

𝜋






𝑢



2
.

(17)

Proof. Since sine system {sin 𝑘𝜋𝑡 | 𝑘 ∈ N} is a complete
orthogonal system of 𝐿2(𝐼), every ℎ ∈ 𝐿2(𝐼) can be expressed
by the Fourier series expansion

ℎ (𝑡) =

∞

∑

𝑘=1

ℎ𝑘 sin 𝑘𝜋𝑡, (18)

where ℎ𝑘 = 2 ∫
1

0
ℎ(𝑠) sin 𝑘𝜋𝑠 𝑑𝑠, 𝑘 = 1, 2, . . ., and the Parseval

equality

‖ℎ‖
2

2 =
1

2

∞

∑

𝑘=1





ℎ𝑘





2
, (19)

holds. Let 𝑢 = 𝑆ℎ; then 𝑢 ∈ 𝑊4,2(𝐼) is the unique solution of
LBVP(10), and 𝑢, 𝑢, and 𝑢(4) can be expressed by the Fourier
series expansion of the sine system. Since 𝑢(4) = ℎ, by the
integral formula of Fourier coefficient, we obtain that

𝑢 (𝑡) =

∞

∑

𝑘=1

ℎ𝑘

𝑘
4
𝜋
4
sin 𝑘𝜋𝑡,

𝑢

(𝑡) = −

∞

∑

𝑘=1

ℎ𝑘

𝑘
2
𝜋
2
sin 𝑘𝜋𝑡.

(20)

On the other hand, since cosine system {cos 𝑘𝜋𝑡 | 𝑘 =
0, 1, 2, . . .} is another complete orthogonal system of 𝐿2(𝐼),
every V ∈ 𝐿

2
(𝐼) can be expressed by the cosine series

expansion

V (𝑡) =
𝑎0

2

+

∞

∑

𝑘=1

𝑎𝑘 cos 𝑘𝜋𝑡, (21)

where 𝑎𝑘 = 2 ∫
1

0
ℎ(𝑠) cos 𝑘𝜋𝑠 𝑑𝑠, 𝑘 = 0, 1, 2, . . .. For the above

𝑢 = 𝑆ℎ, by the integral formula of the coefficient of cosine
series, we obtain the cosine series expansions of 𝑢 and 𝑢:

𝑢

(𝑡) =

∞

∑

𝑘=1

ℎ𝑘

𝑘
3
𝜋
3
cos 𝑘𝜋𝑡, (22)

𝑢

(𝑡) = −

∞

∑

𝑘=1

ℎ𝑘

𝑘𝜋

cos 𝑘𝜋𝑡. (23)

Now from (23), (19), and Parseval equality, it follows that

‖𝑆ℎ‖
2

𝑋 =





𝑢





2

2
=

1

2

∞

∑

𝑘=1










ℎ𝑘

𝑘𝜋










2

≤

1

2𝜋
2

∞

∑

𝑘=−∞





ℎ𝑘





2
=

1

𝜋
2
‖ℎ‖
2

2.

(24)

This means that ‖𝑆‖L(𝐻,𝑋) ≤ 1/𝜋, namely, (a) holds.

By (20)–(22) and Paserval equality, we have that

‖𝑢‖
2

2 =
1

2

∞

∑

𝑘=1










ℎ𝑘

𝑘
4
𝜋
4










2

≤

1

2𝜋
6

∞

∑

𝑘=1










ℎ𝑘

𝑘𝜋










2

=

1

𝜋
6






𝑢





2

2
,

(25)






𝑢





2

2
=

1

2

∞

∑

𝑘=1










ℎ𝑘

𝑘
3
𝜋
3










2

≤

1

2𝜋
4

∞

∑

𝑘=1










ℎ𝑘

𝑘𝜋










2

=

1

𝜋
4






𝑢





2

2
,

(26)






𝑢





2

2
=

1

2

∞

∑

𝑘=1










ℎ𝑘

𝑘
2
𝜋
2










2

≤

1

2𝜋
2

∞

∑

𝑘=1










ℎ𝑘

𝑘𝜋










2

=

1

𝜋
2






𝑢





2

2
.

(27)

This shows that the conclusion (b) holds.

Proof of Theorem 1. We define a mapping 𝐹 : 𝑋 → 𝐻 by

𝐹 (𝑢) (𝑡) := 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢

(𝑡) , 𝑢

(𝑡) , 𝑢

(𝑡)) , 𝑢 ∈ 𝑋.

(28)

From the assumption (6) and the property of Carath ́eodory
mapping it follows that𝐹 : 𝑋 → 𝐻 is continuous and itmaps
every bounded set of 𝑋 into a bounded set of𝐻. Hence, the
composite mapping 𝑆∘𝐹 : 𝑋 → 𝑋 is completely continuous.
We use the Leray-Schauder fixed-point theorem to show that
𝑆 ∘ 𝐹 has at least one fixed-point. For this, we consider the
homotopic family of the operator equations:

𝑢 = 𝜆 (𝑆 ∘ 𝐹) (𝑢) , 0 < 𝜆 < 1. (29)

We need to prove that the set of the solutions of (29) is
bounded in𝑋. See [14].

Let 𝑢 ∈ 𝑋 be a solution of an equation of (29) for
𝜆 ∈ (0, 1). Set ℎ = 𝜆𝐹(𝑢); then by the definition of 𝑆, 𝑢 =
𝑆ℎ ∈ 𝑊

4,2
(𝐼) is the unique solution of LBVP(10). By (a) of

Lemma 4, we have

‖𝑢‖𝑋 = ‖𝑆ℎ‖𝑋 ≤ ‖𝑆‖L(𝑋,𝐻)‖ℎ‖2

≤

1

𝜋

‖ℎ‖2 ≤
1

𝜋

‖𝐹 (𝑢)‖2.

(30)

From (28), (6), and (b) of Lemma 4, it follows that

‖𝐹 (𝑢)‖2 ≤ 𝑐0‖𝑢‖2 + 𝑐1






𝑢



2
+ 𝑐2






𝑢



2
+ 𝑐3






𝑢



2
+𝑀

≤ (

𝑐0

𝜋
3
+

𝑐1

𝜋
2
+

𝑐2

𝜋

+ 𝑐3)





𝑢



2
+𝑀

= 𝜋(

𝑐0

𝜋
4
+

𝑐1

𝜋
3
+

𝑐2

𝜋
2
+

𝑐3

𝜋

) ‖𝑢‖𝑋 +𝑀.

(31)
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Combining this inequality with (30), we obtain that

‖𝑢‖𝑋 ≤
𝑀

1 − (𝑐0/𝜋
4
+ 𝑐1/𝜋

3
+ 𝑐2/𝜋

2
+ 𝑐3/𝜋)

:= 𝐶0. (32)

This means that the set of the solutions for (29) is bounded
in 𝑋. Therefore, by the Leray-Schauder fixed-point theorem
[14], 𝑆 ∘ 𝐹 has a fixed-point 𝑢0 ∈ 𝑋. Let ℎ0 = 𝐹(𝑢0). By the
definition of 𝑆, 𝑢0 = 𝑆ℎ0 ∈ 𝑊

4,2
(𝐼) is a solution of LBVP(10)

for ℎ = ℎ0. Since 𝑊
4,2
(𝐼) → 𝐶

3
(𝐼), from (28) it follows

that ℎ0 ∈ 𝐶(𝐼). Hence 𝑢0 ∈ 𝐶
4
(𝐼) is a classical solution of

LBVP(10), and by (28) 𝑢0 is also a solution of BVP(1).
The proof of Theorem 1 is completed.

Proof of Theorem 2. Let𝑀 = max{|𝑓(𝑡, 0, 0, 0, 0)| : 𝑡 ∈ 𝐼} + 1.
From condition (8) ofTheorem 2we easily see that Condition
(6) ofTheorem 1 holds. ByTheorem 1, the BVP(1) has at least
one solution.

Now, let 𝑢1, 𝑢2 ∈ 𝐶
4
(𝐼) be two solutions of BVP(1); then

𝑢𝑖 = 𝑆(𝐹(𝑢𝑖)), 𝑖 = 1, 2. From (8) and (28), we obtain that





𝐹 (𝑢2) (𝑡) − 𝐹 (𝑢1) (𝑡)





≤ +

3

∑

𝑖=0

𝑐𝑖






𝑢
(𝑖)

2 (𝑡) − 𝑢
(𝑖)

1 (𝑡)





, (33)

for 𝑡 ∈ 𝐼. Since 𝑢2 − 𝑢1 is the solution of LBVP(10) for ℎ =
𝐹(𝑢2) − 𝐹(𝑢1), by (33) and (b) of Lemma 4, we have





𝐹 (𝑢2) − 𝐹 (𝑢1)




2
≤

3

∑

𝑖=0

𝑐𝑖






𝑢
(𝑖)

2 − 𝑢
(𝑖)

1





2

≤ (

𝑐0

𝜋
3
+

𝑐1

𝜋
2
+

𝑐2

𝜋

+ 𝑐3)





𝑢


2 − 𝑢


1





2

= 𝜋(

𝑐0

𝜋
4
+

𝑐1

𝜋
3
+

𝑐2

𝜋
2
+

𝑐3

𝜋

)




𝑢2 − 𝑢1




𝑋
.

(34)

From this and (a) of Lemma 4, it follows that





𝑢2 − 𝑢1




𝑋
=




𝑆 (𝐹 (𝑢2) − 𝐹 (𝑢1))




𝑋

≤ ‖𝑆‖L(𝑋,𝐻)




𝐹 (𝑢2) − 𝐹 (𝑢1)




2

≤ (

𝑐0

𝜋
4
+

𝑐1

𝜋
3
+

𝑐2

𝜋
2
+

𝑐3

𝜋

)




𝑢2 − 𝑢1




𝑋
.

(35)

Since 𝑐0/𝜋
4
+ 𝑐1/𝜋

3
+ 𝑐2/𝜋

2
+ 𝑐3/𝜋 < 1, from (35) we see that

‖𝑢2 − 𝑢1‖𝑋 = 0, that is 𝑢2 = 𝑢1. Therefore, BVP(1) has only
one solution.

The proof of Theorem 2 is completed.

Example 5. Consider the following fully linear fourth-order
boundary value problem

𝑢
(4)
(𝑡) = 𝑎0 (𝑡) 𝑢 (𝑡) + 𝑎1 (𝑡) 𝑢


(𝑡) + 𝑎2 (𝑡) 𝑢


(𝑡)

+ 𝑎3 (𝑡) 𝑢

(𝑡) + ℎ (𝑡) , 𝑡 ∈ 𝐼,

𝑢 (0) = 𝑢 (1) = 𝑢

(0) = 𝑢


(1) = 0,

(36)

where the coefficient functions 𝑎0, 𝑎1, 𝑎2, 𝑎3 ∈ 𝐶(𝐼) and the
inhomogeneous term ℎ ∈ 𝐶(𝐼). All the known results of [1–
13] are not applicable to this equation. Let

𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑎0 (𝑡) 𝑥0 + 𝑎1 (𝑡) 𝑥1

+ 𝑎2 (𝑡) 𝑥2 + 𝑎3 (𝑡) 𝑥3 + ℎ (𝑡) ,

𝑐𝑖 = max
𝑡∈𝐼





𝑎𝑖 (𝑡)




, 𝑖 = 0, 1, 2, 3.

(37)

It is easy to see that the partial derivatives 𝑓𝑥0 , 𝑓𝑥1 , 𝑓𝑥2 , and
𝑓𝑥3

exist and






𝑓𝑥𝑖
(𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3)






=




𝑎𝑖 (𝑡)




≤ 𝑐𝑖, 𝑖 = 0, 1, 2, 3. (38)

Assume that the constants 𝑐0, 𝑐1, 𝑐2, 𝑐3 satisfy (7). Then by
Corollary 3, (36) has a unique solution.

Example 6. Consider the following nonlinear fourth-order
boundary value problem

𝑢
(4)
(𝑡) =

3

∑

𝑖=0

𝑏𝑖 (𝑡)





𝑢
(𝑖)
(𝑡)







𝛼𝑖
+ sin𝜋𝑡, 𝑡 ∈ 𝐼,

𝑢 (0) = 𝑢 (1) = 𝑢

(0) = 𝑢


(1) = 0,

(39)

where 𝑏𝑖 ∈ 𝐶(𝐼), 𝛼𝑖 ∈ (0, 1), 𝑖 = 0, 1, 2, 3. Let

𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3) =

3

∑

𝑖=0

𝑏𝑖 (𝑡)




𝑥𝑖





𝛼𝑖
+ sin𝜋𝑡. (40)

Then 𝑓 ∈ 𝐶([0, 1] ×R4,R) and it satisfies that

lim
|𝑥0|+|𝑥1|+|𝑥2|+|𝑥3|→∞

max
𝑡∈𝐼

𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3)





𝑥0




+




𝑥1




+




𝑥2




+




𝑥3





= 0.

(41)

From this one easily proves that there exists a positive
constant𝑀 > 0 such that




𝑓 (𝑡, 𝑥0, 𝑥1, 𝑥2, 𝑥3)





≤




𝑥0




+




𝑥1




+




𝑥2




+




𝑥3




+ 𝑀. (42)

Since (7) holds for the constants 𝑐0 = 𝑐1 = 𝑐2 = 𝑐3 = 1,
by (42) 𝑓 satisfies the conditions of Theorem 1. Hence by
Theorem 1, (39) has at least one solution. This conclusion
cannot be obtained from the results in [1–13].
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The object of this paper is to investigate the existence of a class of solutions for some boundary value problems of fractional order
with integral boundary conditions. The considered problems are very interesting and important from an application point of view.
They include two, three, multipoint, and nonlocal boundary value problems as special cases. We stress on single and multivalued
problems for which the nonlinear term is assumed only to be Pettis integrable and depends on the fractional derivative of an
unknown function. Some investigations on fractional Pettis integrability for functions and multifunctions are also presented. An
example illustrating the main result is given.

1. Introduction

The theory of boundary value problems is one of the most
important and useful branches of mathematical analysis.
Boundary value problems of various types create a significant
subject of several mathematical investigations and appear
often in many applications, especially in solving numerous
problems in physics and engineering. For example, heat
conduction, chemical engineering, underground water flow,
thermoelasticity, and plasma physics can be reduced to
nonlocal problems with integral boundary conditions. For
boundary value problems with integral boundary conditions
and comments on their importance, we refer the reader to [1–
3] and the references therein.

The class of boundary value problems with integral
boundary conditions considered below contains as special
cases numerous two, three, multipoint, and nonlocal bound-
ary value problems. Such problems are mainly investigated
when considering functions satisfying some conditions ex-
pressed in terms of the strong topology of a Banach space 𝐸.
We will investigate the case, when functions are not strongly
continuous and strongly integrable. In this situation we need
to introduce more general notion of a solution. We should

note that the considered case seems to be a natural case and
cover many particular cases considered for both the strong
and weak topologies (cf. Lemma 19). A more general notion
of solutions allows us to solve the problem under very general
assumptions, not so restrictive as before (see our last section).

In contrast to the classical approach for the theory of
boundary value problems, the theory for fractional order
BVP’s is still developing one and not satisfactorily described.
It is caused by the fact that it is very difficult to find convenient
and handy conditions ensuring the existence of solutions
of several nonlinear boundary value problems of fractional
order. In the considered case of a weak topology on 𝐸 our
results form a relatively new branch of investigations.

As a pursuit of this, some sufficient conditions for the
existence of solutions are presented for the following nonlin-
ear𝑚-point boundary value problem of fractional type:

𝐷
𝛼
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷

𝛽
𝑢 (𝑡)) = 0,

𝑡 ∈ [0, 1] , 𝛼 ∈ (1, 2] , 𝛽 ∈ (0, 1) , 𝛼 > 1 + 𝛽,

𝑢 (1) + ∫

1

0

I (𝜏) 𝑢 (𝜏) 𝑑𝜏 = 𝑙, 𝑢 (0) = 0,

(1)
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where 𝑥 takes values in a Banach space 𝐸 and 𝑙 ∈ 𝐸.
Here I ∈ 𝐿

𝑞
[0, 1] for some 𝑞 ∈ [1,∞] and 𝐷

𝛼 denotes
the pseudo fractional differential operator of order 𝛼 (to be
described later). We will assume that 𝑓 is a vector-valued
Pettis integrable function on [0, 1]. We remark the following:

(1) for real-valued functions with 𝛼, 𝛽 ∈ N := {1, 2, 3,

4, . . .}, we have problems studied in, for example, [4,
5],

(2) for real-valued functions with I ≡ 0 and 𝛼, 𝛽 ∈ N,
we have problems studied in, for example, [6–10]; see
also the references therein,

(3) for real-valued functions I ≡ 0 and when the func-
tion 𝑓 is independent of the fractional derivatives,
then we have problems studied in, for example, [1, 11–
13],

(4) in abstract spaces (for vector-valued functions) with
I ≡ 0 and 𝛼, 𝛽 ∈ N, we have problems studied in, for
example, [14–19],

(5) in abstract spaces with conditions related to the weak
topology on 𝐸 and when the vector-valued function
𝑓 is independent of the fractional derivatives, then we
have a problems studied in, for example, [20, 21].

In comparison with the existence results in the above
list, our assumptions seem to be more natural. In contrast to
earlier results, we drop the requirement that𝑓 is a real-valued
function independent of the fractional derivatives and we
consider the case of vector-valued Pettis, but not necessarily
Bochner, integrable functions. As we mentioned above, the
assumptions in the existence theorem are expressed in terms
of the weak topology. Such a result does not appear in
the earlier literature and so it seems to be new. We collect
all interesting properties for the fractional Pettis integral.
Moreover, we are able also to start some studies for multival-
ued fractional boundary value problems with Pettis-integral
boundary conditions and fractionally Pettis integrable multi-
functions.

In the paperwe stress also on comparison results for Pettis
integrals and fractional Pettis integrals. This is also done for
themultivalued integrals and seems to be interesting by itself,
independently of applicability of our results.Theproperties of
fractional integral operators on the spaces of Pettis integrable
functions as well as on some of its subspaces are also
investigated.

Finally, we remark that, in the Banach spaces, the exis-
tence of solutions of some boundary value problems of frac-
tional orders has been considered in terms of Pettis integrals,
for the first time, by Salem [20]. In this paper, for clarity of
proofs, we restrict ourselves to the case of reflexive spaces,
but it is easy to extend our results for nonreflexive spaces by
putting contraction hypothesis with respect to somemeasure
ofweaknoncompactness and by using appropriate fixed point
theorem (cf. [22]). Nevertheless, all auxiliary results in this
paper are not restricted to reflexive spaces.

The question of proving the existence of solutions to the
problem (1) reduces to proving the existence of solutions of
a Fredholm integral equation. Since the space of all Pettis

integrable functions is not complete (in general), we restrict
our attention to the case of weakly continuous solution of the
Fredholm integral equation (modeled off the problem (1));
hence we are ready to find the so-called pseudo-solutions of
the problem (1) (cf. [22, 23]).

2. Preliminaries and Auxiliary Results

For the sake of the reader’s convenience here we collect a
few facts which will be needed further on. Let 𝐼 = [0, 1].
According to the custom 𝐿

𝑝
(𝐼), 1 ≤ 𝑝 ≤ ∞ will denote the

Banach space of real-valued measurable functions 𝑥 defined
on 𝐼. Let 𝐿

∞
(𝐼) denote the Banach space of real-valued

essentially bounded and measurable functions defined on 𝐼.
Through the paper, 𝐸 is considered to be a Banach space
with norm ‖ ⋅ ‖ and with its dual space 𝐸

∗. Moreover, let
𝐸𝑤 = (𝐸, 𝑤) = (𝐸, 𝜎(𝐸, 𝐸

∗
)) denote the space 𝐸 with its

weak topology. By 𝐶[𝐼, 𝐸] we will denote the Banach space
of strongly continuous functions 𝑥 : 𝐼 → 𝐸 endowed with
a standard ‖𝑥‖0 = sup𝑡∈𝐼‖𝑥(𝑡)‖, while 𝑃[𝐼, 𝐸] denotes the
space of all𝐸-valued Pettis integrable functions in the interval
𝐼 (see [24, 25] for the definition). Let us also recall that a
function ℎ : 𝐸 → 𝐸 is said to be weakly-weakly sequentially
continuous if ℎ takes each weakly convergent sequence in 𝐸

into weakly convergent sequence in 𝐸. We point out that a
bounded weakly measurable function 𝑥 : 𝐼 → 𝐸 need not to
be Pettis integrable even if𝐸 is reflexive. However, in reflexive
Banach spaces, the weakly measurable function 𝑥 : 𝐼 → 𝐸 is
Pettis integrable if and only if 𝜑(𝑥(⋅)) is Lebesgue integrable
on 𝐼 for every 𝜑 ∈ 𝐸

∗ [26].
Let us recall some basic facts. The following Mazur’s

lemma can be found in [24, 26].

Lemma 1. A convex subset of a normed space 𝐸 is closed if and
only if it is weakly closed.

A simple consequence of the Hahn-Banach theorem is as
follows.

Proposition 2. Let 𝐸 be a normed space with 𝑥0 ̸=0. Then
there exits 𝜑 ∈ 𝐸

∗ with ‖𝜑‖ = 1 and 𝜑𝑥0 = ‖𝑥0‖.

Now, we are in a position to recall a fixed point theorem
being an extension of results from [27].

Theorem 3. Let 𝐸 be a Banach space with 𝑄 a nonempty,
closed, convex, and weakly compact subset of 𝐶[𝐼, 𝐸]. Assume
that 𝑇 : 𝑄 → 𝑄 is weakly-weakly sequentially continuous.
Then 𝑇 has a fixed point in 𝑄.

Weneed to introduce some subspaces of the space𝑃[𝐼, 𝐸]
of Pettis integrable functions on 𝐼 which are important in the
sequel.

Definition 4. For 1 ≤ 𝑝 ≤ ∞, we define the class H𝑝
(𝐸) to

be the class of all functions 𝑥 : 𝐼 → 𝐸 having 𝜑𝑥 ∈ 𝐿
𝑝
(𝐼) for

every 𝜑 ∈ 𝐸
∗. If 𝑝 = ∞, the added condition

sup
‖𝜑‖=1

(ess sup
𝑡∈𝐼





𝜑𝑥 (𝑡)





) < ∞ (2)
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must be satisfied by each 𝑥 ∈ H∞
(𝐸). The class H𝑝

0 (𝐸) is
defined by

H
𝑝

0 (𝐸) := {𝑥 ∈ 𝑃 [𝐼, 𝐸] : 𝜑𝑥 ∈ 𝐿
𝑝
(𝐼)} . (3)

Remark 5. In a reflexive Banach space 𝐸 the setH1
0(𝐸) coin-

cides with the space 𝑃[𝐼, 𝐸]. This is due to the fact that in
reflexive Banach spaces, the weakly measurable function 𝑥 :

𝐼 → 𝐸 is Pettis integrable if and only if 𝜑(𝑥(⋅)) is Lebesgue
integrable on 𝐼 for every 𝜑 ∈ 𝐸

∗ [26]. In general, this is the
space of Dunford integrable functions.

In the remaining part of this paper we let 𝑝 ∈ [1,∞] be
fixed and 𝑞 is conjugated with 𝑝; that is, 1/𝑝 + 1/𝑞 = 1. The
following results are due to Pettis (see [25, Theorem 3.4 and
Corollary 3.41]).

Proposition 6. In order that 𝑥(⋅) could be in H
𝑝

0 (𝐸), it is
necessary and sufficient that 𝑥(⋅)𝑢(⋅) be Pettis integrable for
every 𝑢(⋅) ∈ 𝐿

𝑞
(𝐼).

It is worthwhile to recall the following.

Definition 7. Let 𝑥 : 𝐼 → 𝐸.The (left-sided) fractional Pettis-
integral (shortly LS-FPI) of 𝑥 of order 𝛼 > 0 is defined by

𝐼
𝛼

+𝑥 (𝑡) := ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)

𝑥 (𝑠) 𝑑𝑠, 𝑡 > 0. (4)

In the above definition the sign “∫” denotes the Pettis inte-
gral. For further purpose, we define the right-sided fractional
Pettis-integral (shortly RS-FPI) by

𝐼
𝛼

−𝑥 (𝑡) := ∫

1

𝑡

(𝑠 − 𝑡)
𝛼−1

Γ (𝛼)

𝑥 (𝑠) 𝑑𝑠, 𝑡 < 1. (5)

We will call a function fractionally Pettis integrable pro-
vided this integral exists as an element of 𝐸 (for arbitrary
𝑡 < 1).

We need to clarify the relations between Pettis integra-
bility and fractional Pettis integrability. Similar results will
be proved for classes H𝑝

0 (𝐸). This will be important in our
consideration, but it seems to be really interesting in itself.
Here we restrict ourselves to the case of left-sided fractional
Pettis-integrals.

To make the paper more expository, we will consider
fractional Pettis integrability for both cases: 𝛼 < 1 and 𝛼 > 1.
The last case is more important in our paper, but the first one
is necessary to compare our results with some earlier theo-
rems.

Let us observe that such an integral 𝐼𝛼+𝑥(𝑡) := ∫

𝑡

0
((𝑡 −

𝑠)
𝛼−1

/Γ(𝛼))𝑥(𝑠)𝑑𝑠 is a convolution of a function ℎ(𝜏) = 𝜏
𝛼−1

/

Γ(𝛼) for 𝜏 > 0, ℎ(𝜏) = 0 for 𝜏 ≤ 0, and the function
(𝑥)(𝑡) = 𝑥(𝑡) for 𝑡 ∈ 𝐼, where (𝑥)(𝑡) = 0 outside the interval 𝐼.
Note that Pettis integrability of𝑥(𝑡) implies Pettis integrability
of 𝑥(𝑡 + ℎ) (ℎ > 0) and 𝑥(−𝑡), so the convolution of
Pettis integrable function with real-valued function ℎ can be

properly defined. We start with an obvious observation that
for 𝜑 ∈ 𝐸

∗

𝜑 (𝐼
𝛼

+𝑥) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)

𝜑𝑥 (𝑠) 𝑑𝑠. (6)

As a consequence of some properties of a convolution for
the Pettis integral [28, Proposition 9], for arbitrary 𝛼, we have
the following.

Theorem 8. If 𝑥 : 𝐼 → 𝐸 is Pettis integrable, then

(a) 𝐼𝛼+𝑥 is defined almost a.e. on 𝐼,
(b) 𝑥 is fractionally Pettis integrable on 𝐼,
(c) if 𝑥 is Pettis integrable and strongly measurable, then

𝐼
𝛼
+𝑥 : 𝐼 → 𝐸 is bounded, weakly continuous and

sup
‖𝜑‖≤1

∫

1

0

𝜑𝐼
𝛼

+𝑥 (𝑡) 𝑑𝑡 ≤ sup
‖𝜑‖≤1

∫

1

0

𝜑𝑥 (𝑡) 𝑑𝑡 ⋅ ‖ℎ‖1. (7)

In the case 𝐸 = R, it is a well-known consequence of an
inequality of Young that the linear fractional integral oper-
ators 𝐼𝛼± , send 𝐿

𝑞
([0, 1]) continuously into 𝐿

𝑝
([0, 1]) if 𝑝 ∈

[1,∞] satisfy 𝑞 > 1/(𝛼 + (1/𝑝)) (see [29]) (a deep result from
interpolation theory implies that even 𝑞 = 1/(𝛼 + (1/𝑝)) is
allowed if 1 < 𝑝 < ∞ ). In particular, 𝐼𝛼± : 𝐿

𝑝
([0, 1]) →

𝐿
𝑝
([0, 1]) is compact for each 𝑝 ∈ [1,∞]. Moreover, for

𝑝 > max{1, (1/𝛼)}, the map 𝐼
𝛼
± : 𝐿

𝑝
([0, 1]) → 𝐶([0, 1]) is

compact (see, e.g., [20, 30]).
The following results plays a major rule in our analysis.

Lemma 9. For any 𝛼 > 0 the operator 𝐼𝛼± takes 𝐶[𝐼, 𝐸𝑤] into
𝐶[𝐼, 𝐸𝑤] and is well defined.

Proof. Only the proof in case of the LS-FPI is given since the
case of the RS-FPI is very similar.

It can be easily seen that if 𝑥 is weakly continuous, then
𝑥 ∈ H∞

0 (𝐸). Since 𝑠 → (𝑡 − 𝑠)
𝛼−1

∈ 𝐿
1, 𝑠 < 𝑡, in the view of

Proposition 6 andTheorem 8, we have that the function 𝑠 →

(𝑡 − 𝑠)
𝛼−1

𝑥(𝑠), 𝑠 < 𝑡, is Pettis integrable. Moreover, 𝐼𝛼+ is well
defined. To see this, we define 𝑦 : 𝐼 → 𝐸 by 𝑦(𝑡) := 𝐼

𝛼
+𝑥(𝑡),

𝑡 ∈ [0, 1]. From the definition of fractional Pettis integrals
andTheorem 8(c), we have for every 𝜑 ∈ 𝐸

∗ that

𝜑𝑦 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)

𝜑 (𝑥 (𝑠)) 𝑑𝑠. (8)

Since the function 𝜑𝑥 is continuous, 𝜑𝑦 is continuous. That
is, 𝑦 is weakly continuous which finishes the proof.

Lemma 10. Let 𝐸 be a reflexive Banach space. For any 𝛼 ≥ 1

and arbitrary 𝑝 ∈ [1,∞], the operator 𝐼𝛼± takes H𝑝

0 (𝐸) into
H
𝑝

0 (𝐸) and is well defined.

Proof. Only the proof in case of the LS-FPI is given since the
case of the RS-FPI is very similar.

Note first that, for 𝑥 ∈ H
𝑝

0 (𝐸), we have in the view of
Proposition 6 that the function 𝑠 → (𝑡 − 𝑠)

𝛼−1
𝑥(𝑠), 𝑠 < 𝑡, is
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Pettis integrable.That is, the operator 𝐼𝛼makes sense. Further,
𝐼
𝛼
+ is well defined. To see this, define 𝑦 : 𝐼 → 𝐸 by 𝑦(𝑡) :=
𝐼
𝛼
+𝑥(𝑡), 𝑡 ∈ [0, 1]. From the definition of fractional Pettis
integrals, we have for every 𝜑 ∈ 𝐸

∗ that

𝜑 (𝑦 (𝑡)) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)

𝜑 (𝑥 (𝑠)) 𝑑𝑠 = 𝐼
1

+𝐼
𝛼−1

+ 𝜑 (𝑥 (𝑡)) .

(9)

Since 𝑥 ∈ H
𝑝

0 (𝐸), one have 𝜑𝑥 ∈ 𝐿
𝑝
(𝐼) for every 𝜑 ∈ 𝐸

∗. One
could see, by the properties of fractional integral operators
on the Banach space 𝐿𝑝(𝐼), that 𝜑𝑦 ∈ 𝐿

𝑝
(𝐼) for every 𝜑 ∈ 𝐸

∗.
In particular, 𝑦 is weakly continuous. Since weak continuity
implies weak measurability (see [26, page 73]), 𝑦(⋅) is weakly
measurable. However, in reflexive Banach spaces, weakly
measurable functions 𝑦 : 𝐼 → 𝐸 are Pettis integrable if and
only if 𝑦 is Dunford integrable; that is, 𝜑(𝑦(⋅)) is Lebesgue
integrable on 𝐼 for every 𝜑 ∈ 𝐸

∗.Thus 𝑦(⋅) is Pettis integrable.
That is, 𝐼𝛼+𝑥 ∈ H

𝑝

0 (𝐸).

Remark 11. Let us discuss some properties of H𝑝
(𝐸) and

H
𝑝

0 (𝐸). Recall that ℎ(𝜏) = 𝜏
𝛼−1

/Γ(𝛼) for 𝜏 > 0 and 𝑧(𝜏) = 0

for 𝜏 ≤ 0.The case of 𝛼 ≥ 1 is trivial; that is, ℎ ∈ 𝐿
∞
(𝐼). When

0 < 𝛼 < 1, we see that ∫1
0
(𝑧(𝑠))

𝑞
𝑑𝑠 = ∫

1

0
(𝑠
𝛼−1

/Γ(𝛼))
𝑞
𝑑𝑠 < ∞

whenever 𝑞 < 1/(1 − 𝛼). This means that 𝑧 ∈ 𝐿
1/(1−𝛼)

(𝐼) and
by the converse for the Young inequality 𝐼𝛼 takesH𝑞1

(𝐸) into
H𝑠

(𝐸) whenever (1/𝑞1) + (1/𝑞) = 1 + (1/𝑠). In particular, the
space required for this property depends on 𝛼. Let us note
that 𝐼𝛼 need not be continuous as an operator from 𝐿

1
(𝐼) into

𝐿
1/(1−𝛼)

(𝐼) (cf. [29, Remark 4.1.1]).
This means that for 𝛼 ≥ 1 we have “uniform” estimations

for all 𝛼, but for 0 < 𝛼 < 1 the situation is more complicated
(a weakly singular case).

Our consideration as well as Theorem 4.1.1 in [29] gives
us a new property.

Lemma 12. For any 0 < 𝛼 < 1 and arbitrary 1 ≥ 𝑝 ≥ 1/𝛼 the
operator 𝐼𝛼± takesH

𝑝

0 (𝐸) intoH
𝑠
0(𝐸), where 𝑠 = 𝑝/(1−𝑝(𝛼−𝜀))

with arbitrary 𝜀 > 0.

As a consequence of Lemma 10, we are able to prove the
following.

Lemma 13. Assume that 𝛼1, 𝛼2 ≥ 1 and 𝑥 ∈ H
𝑝

0 (𝐸). Then,

𝐼
𝛼1
+ 𝐼
𝛼2
+ 𝑥 = 𝐼

𝛼2
+ 𝐼
𝛼1
+ 𝑥 = 𝐼

𝛼1+𝛼2
+ 𝑥. (10)

Proof. As in the proof of Lemma 10 it follows that 𝐼𝛼2+ 𝑥 and
𝐼
𝛼1+𝛼2
+ 𝑥 exist. By Lemma 10, 𝐼𝛼1+ 𝐼

𝛼2
+ 𝑥 also exists. Therefore, for

any 𝜑 ∈ 𝐸
∗ we have

𝜑 (𝐼
𝛼1
+ 𝐼
𝛼2
+ 𝑥 (𝑡)) = 𝐼

𝛼1
+ 𝜑 (𝐼

𝛼2
+ 𝑥 (𝑡))

= 𝐼
𝛼1
+ 𝐼
𝛼2
+ 𝜑 (𝑥 (𝑡))

= 𝐼
𝛼1+𝛼2
+ 𝜑 (𝑥 (𝑡))

= 𝜑 (𝐼
𝛼1+𝛼2
+ 𝑥 (𝑡)) ,

(11)

that is,

𝜑 (𝐼
𝛼1
+ 𝐼
𝛼2
+ 𝑥 (𝑡) − 𝐼

𝛼1+𝛼2
+ 𝑥 (𝑡)) = 0, for every 𝜑 ∈ 𝐸

∗
.

(12)

Hence 𝐼𝛼1+ 𝐼
𝛼2
+ 𝑥 = 𝐼

𝛼1+𝛼2
+ 𝑥(𝑡). Similarly, we are able to show that

𝐼
𝛼2
+ 𝐼
𝛼1
+ 𝑥 = 𝐼

𝛼1+𝛼2
+ 𝑥. This ends the proof.

Let us present the case 𝛼 ≥ 1.

Lemma 14. If 𝛼 ≥ 1, 𝜃 ∈ 𝐿
𝑞
[0, 1], and 𝑦 ∈ H

𝑝

0 (𝐸), then

∫

1

0

[𝐼
𝛼

−𝜃 (𝑠)] 𝑦 (𝑠) 𝑑𝑠 = ∫

1

0

𝜃 (𝑠) [𝐼
𝛼

+𝑦 (𝑠)] 𝑑𝑠.
(13)

Proof. Define the real-valued function ℎ by

ℎ (𝑠) :=

1

Γ (𝛼)

∫

1

𝑠

(𝜏 − 𝑠)
𝛼−1

𝜃 (𝜏) 𝑑𝜏 = 𝐼
𝛼

−𝜃 (𝑠) .
(14)

Using the properties of fractional calculus in the Banach
space 𝐿𝑞[0, 1] (see, e.g., [20, 30]), we deduce that ℎ ∈ 𝐿

𝑞
[0, 1].

Now, for 𝑦 ∈ H
𝑝

0 (𝐸) we have, in the view of Lemma 10, that
𝐼
𝛼
+𝑦 ∈ H

𝑝

0 (𝐸). Thanks to Proposition 6, the functions 𝑡 →

𝜃(𝑡)𝐼
𝛼
+𝑦(𝑡) and 𝑡 → ℎ(𝑡)𝑦(𝑡) are Pettis integrable on [0, 1].

That is, the integrals in both sides of (13) exist. Then there
exists 𝐽 ∈ 𝐸, such that

𝐽 = ∫

1

0

𝜃 (𝑠) 𝐼
𝛼

+𝑦 (𝑠) 𝑑𝑠.
(15)

By the definition of the Pettis integral, we have

𝜑𝐽 = ∫

1

0

𝜃 (𝑠) 𝜑 (𝐼
𝛼

+𝑦 (𝑠)) 𝑑𝑠 = ∫

1

0

𝜃 (𝑠) 𝐼
𝛼

+𝜑𝑦 (𝑠) 𝑑𝑠

= ∫

1

0

𝜃 (𝑠) ∫

𝑠

0

(𝑠 − 𝜏)
𝛼−1

Γ (𝛼)

𝜑𝑦 (𝜏) 𝑑𝜏 𝑑𝑠, ∀𝜑 ∈ 𝐸
∗
.

(16)

By changing the order of integration results in

𝜑𝐽 = ∫

1

0

(∫

1

𝜏

(𝑠 − 𝜏)
𝛼−1

Γ (𝛼)

𝜃 (𝑠) 𝑑𝑠)𝜑𝑦 (𝜏) 𝑑𝜏

= ∫

1

0

ℎ (𝜏) 𝜑𝑦 (𝜏) 𝑑𝜏

= 𝜑(∫

1

0

ℎ (𝑠) 𝑦 (𝑠) 𝑑𝑠) , ∀𝜑 ∈ 𝐸
∗
.

(17)

Thus

𝐽 = ∫

1

0

𝐼
𝛼

−𝜃 (𝑠) 𝑦 (𝑠) 𝑑𝑠 = ∫

1

0

𝑢 (𝑠) 𝐼
𝛼

+𝑦 (𝑠) 𝑑𝑠.
(18)

Definition 15. Let 𝑥 : 𝐼 → 𝐸. We define the fractional
pseudo-derivative of 𝑥 of arbitrary order 𝑛 + 𝛼, 𝛼 ∈ [0, 1),
where 𝑛 ∈ N0 := {0, 1, 2, . . .} by

𝐷
𝑛+𝛼

𝑥 (𝑡) := 𝐷
𝑛+1

𝐼
1−𝛼

+ 𝑥 (𝑡) , (19)

where𝐷denote the pseudo-differential operator (cf. [22, 25]).
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The following Lemma is well known in the case 𝐸 = R,
but to see that it also holds in the vector-valued case, we pro-
vide a proof.

Lemma 16. For 0 < 𝛼 ≤ 𝛽 we have for every weakly continu-
ous function 𝑥 : [0, 1] → 𝐸,𝐷0𝑥 = 𝑥, and

𝐷
𝛽
𝐼
𝛼

+𝑥 = 𝐷
𝛽−𝛼

𝑥. (20)

In particular, when 𝛼 = 𝛽, (20) means that the operator
𝐷
𝛼
𝐼
𝛼
+ is defined in 𝐶(𝐼, 𝐸𝑤) and that 𝐷𝛼 is the left-inverse of

𝐼
𝛼
+ .

Proof. The first claim, that is, 𝐷𝐼1+𝑥 = 𝑥, follows from the
fact that the integral of weakly continuous function is weakly
continuous, then pseudo-differentiable with respect to the
right endpoint of the integration interval. Let 𝛽 = 𝑛 + 𝛾 and
𝛽 − 𝛼 = 𝑚+ 𝛿 with 𝑛,𝑚 ∈ N0 and 𝛾, 𝛿 ∈ [0, 1). Then we have,
in view of𝐷𝐼1𝑥 = 𝑥 and Lemmas 9 and 10, that

𝐷
𝛽
𝐼
𝛼

+𝑥 = 𝐷
𝑛+1

𝐼
1−𝛾

+ 𝐼
𝛼

+𝑥

= 𝐷
𝑛+1

𝐼
1−𝛾+𝛼

+ 𝑥

= 𝐷
𝑛+1

𝐼
1+𝑛−𝑚−𝛿

+ 𝑥

= 𝐷
𝑚+1

𝐷
𝑛−𝑚

𝐼
𝑛−𝑚

+ 𝐼
1−𝛿

+ 𝑥

= 𝐷
𝑚+1

𝐼
1−𝛿

+ 𝑥

= 𝐷
𝛽−𝛼

𝑥.

(21)

Definition 17. A function 𝑢 : 𝐼 → 𝐸 is called pseudo-
solution of the problem (1) if 𝑢 ∈ 𝐶[𝐼, 𝐸𝑤] has fractional
pseudo-derivative of order 𝛼 ∈ (1, 2], 𝑢(0) = 0, 𝑢(1) +
∫

1

0
I(𝜏)𝑢(𝜏)𝑑𝜏 = 𝑙 and satisfies

𝐷
2
𝜑 (𝐼

2−𝛼

+ 𝑢 (𝑡)) + 𝜑 (𝑓 (𝑡, 𝑢 (𝑡) , 𝐷
𝛽
𝑢 (𝑡))) = 0

a.e. on [0, 1] , for each 𝜑 ∈ 𝐸
∗
.

(22)

The following auxiliary Lemma will be needed in our
techniques.

Lemma 18. If V ∈ 𝐶[𝐼, 𝐸𝑤] is a pseudo-solution to the problem

𝐷
𝛼−𝛽V (𝑡) + 𝑓 (𝑡, 𝐼

𝛼

+V (𝑡) , V (𝑡)) = 0,

𝑡 ∈ [0, 1] , 𝛼 ∈ (1, 2] , 𝛽 ∈ (0, 1] , 𝛼 > 1 + 𝛽,

𝐼
𝛽

+V (1) + ∫

1

0

I (𝜏) 𝐼
𝛽

+V (𝜏) 𝑑𝜏 = 𝑙, V (0) = 0,

(23)

then 𝑢 := 𝐼
𝛽
+V is a pseudo-solution for the problem (1).

Proof. Let V ∈ 𝐶[𝐼, 𝐸𝑤] be a pseudo-solution to the problem
(23) and 𝜑 ∈ 𝐸

∗. As in the proof of Lemma 9 it follows that

𝐼
𝛽
+V exists and the real function 𝜑𝑢 is continuous for every
𝜑 ∈ 𝐸

∗; moreover

lim
𝑡→0+

𝜑𝑢 (𝑡) = lim
𝑡→0+

(𝐼
𝛽

+𝜑V) (𝑡)

= lim
𝑡→0+

∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

Γ (𝛽)

𝜑V (𝑠) 𝑑𝑠 = 0.

(24)

Thus 𝜑𝑢(0) = 0 for every 𝜑 ∈ 𝐸
∗; that is, 𝑢(0) = 0. Further

𝑢 (1) + ∫

1

0

I (𝜏) 𝑢 (𝜏) 𝑑𝜏 = 𝑙. (25)

In the view of Lemma 16 we also have

𝐷
𝛼
𝑢 (𝑡) = (𝐷

𝛼
𝐼
𝛽

+V) (𝑡) = 𝐷
𝛼−𝛽V (𝑡) . (26)

If otherwise is not stated, we will assume from now that
𝛼 ∈ (1, 2] and 𝛽 ∈ (0, 1].

To obtain the Hammerstein type integral equation mod-
eled off the problem (23), we keep the boundary value prob-
lem (23) in mind and we formally put (cf. [11, Lemma 2.3])

V (𝑡) = −𝐼
𝛼−𝛽

+ 𝑓 (𝑡, 𝐼
𝛽

+V (𝑡) , V (𝑡)) + 𝑐𝑡
𝛼−𝛽−1

. (27)

In the view of Lemma 13, we obtain

𝐼
𝛽

+V (𝑡) = −𝐼
𝛼

+𝑓 (𝑡, 𝐼
𝛽

+V (𝑡) , V (𝑡)) + 𝑐 [

Γ (𝛼 − 𝛽)

Γ (𝛼)

] 𝑡
𝛼−1

. (28)

To facilitate our discussion, let 𝑞 ∈ [1,∞] be constant with
the conjugate exponents 𝑝. Suppose I ∈ 𝐿

𝑞
[0, 1] be a non-

negative real-valued function and 𝑓 : [0, 1] × 𝐸 × 𝐸 → 𝐸

satisfy the following assumptions:

(1) for each 𝑡 ∈ 𝐼 = [0, 1], 𝑓(𝑡, ⋅, ⋅) : (𝐼) × 𝐸 × 𝐸 → 𝐸 is
weakly-weakly sequentially continuous,

(2) for each 𝑥, 𝑦 ∈ 𝐶(𝐼, 𝐸𝑤), 𝑓(⋅, 𝑥(⋅), 𝑦(⋅)) ∈ H
𝑝

0 (𝐸),
(3) for any 𝑟 > 0 and 𝜑 ∈ 𝐸

∗ there exist a Pettis integrable
function ̃

𝑓 : 𝐼 → 𝐸, function Ψ ∈ 𝐿
𝑝
[𝐼,R+], and

nondecreasing continuous function Ω : [0,∞) →

(0,∞) such that |𝜑(𝑓(𝑡, 𝑥, 𝑦))| ≤ |𝜑(
̃
𝑓(𝑡))|Ω(𝑟) ≤

‖𝜑‖Ψ(𝑡)Ω(𝑟) for a.e. 𝑡 ∈ 𝐼 and all (𝑥, 𝑦) ∈ 𝐵𝑟 × 𝐵𝑟.

Let us present two remarks about the above assumptions.

(i) For the interesting discussion about the growth con-
ditions for Pettis integrable functions of the above
type see [31]. For differential equations with Caputo
fractional integrals (i.e., solutions in the space 𝐶𝑚(0,
1), R𝑑), where 𝑚 − 1 < 𝛼 < 𝑚 the problem of dom-
inants for considered functions (Assumption (3))
was considered in [32]. Nevertheless, in the paper
by Lin rather strong boundedness conditions are
investigated (dominants from 𝐿

2
(𝐼) or 𝐿4(𝐼) for 𝛼 >

1/2 or bounded functions for 𝛼 > 0) [32, Remark 2.3].
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(ii) For convenience of the readers, let us recall the fol-
lowing lemma describing particular sufficient con-
ditions for Pettis integrability of 𝑓(⋅, 𝑥(⋅), 𝑦(⋅)) [23,
Lemma 15]. It is obvious that additional growth condi-
tion for𝑓 allows us to characterize the functions from
H
𝑝

0 (𝐸).

Lemma 19. Assume that 𝑥 is absolutely continuous and 𝑓 :

𝐼 × 𝐸 × 𝐸 → 𝐸. Thus 𝑓(⋅, 𝑥(⋅), 𝑦(⋅)) is Pettis integrable if at
least one of the following cases holds:

(a) 𝑓 satisfies Carathédory conditions; that is, 𝑓(⋅, 𝑥, 𝑦) is
measurable, 𝑓(𝑡, ⋅, ⋅) is continuous in 𝐸 × 𝐸, and there
exists an integrable function ℎ : 𝐼 → R such that
‖𝑓(𝑡, 𝑥, 𝑦)‖ ≤ ℎ(𝑡) for all 𝑥, 𝑦 ∈ 𝐸 and a.e. 𝑡 ∈ 𝐼,

(b) 𝑓 is weakly-weakly continuous and 𝐸 is a weakly se-
quentially complete space,

(c) 𝑓(⋅, 𝑥, 𝑦) is weakly measurable, 𝑓(𝑡, ⋅, ⋅) is weakly-
weakly continuous in 𝐸 × 𝐸 and 𝐸 is a WCG-space
(weakly compactly generated space),

(d) 𝑓 is strongly measurable and there exists a Young func-
tion Γ such that lim𝑥→∞Γ(𝑥)/𝑥 = +∞ and 𝜑𝑓 ∈

𝐿
Γ
(𝐼),

(e) 𝑓 is strongly measurable and there exists 𝑝 > 1 such
that 𝜑𝑓 ∈ 𝐿

𝑝 for each 𝜑 ∈ 𝐸
∗ (here 𝑓(⋅, 𝑥(⋅), 𝑦(⋅)) ∈

H
𝑝

0 (𝐸)),
(f) 𝑓(⋅, 𝑥, 𝑦) is strongly measurable, 𝑓(𝑡, ⋅, ⋅) is weakly-

weakly sequentially continuous in 𝐸 × 𝐸, and 𝑓 is
bounded,

(g) 𝑓(⋅, 𝑥(⋅), 𝑦(⋅)) is strongly measurable, 𝐸 contains no
copy of 𝑐0, and 𝑓 is bounded.

Now, we would like to pay our attention to solve (27) for
𝑐 by

𝐼
𝛽

+V (1) + ∫

1

0

I (𝜏) 𝐼
𝛽

+V (𝜏) 𝑑𝜏 = 𝑙. (29)

It follows that

𝑐 [

Γ (𝛼 − 𝛽)

Γ (𝛼)

] − ∫

1

0

(1 − 𝑠)
𝛼−𝛽−1

𝑓 (𝑠, 𝐼
𝛽
+V (𝑠) , V (𝑠))

Γ (𝛼 − 𝛽)

𝑑𝑠 = 𝑙,

− ∫

1

0

I (𝜏)(𝑐 [

Γ (𝛼 − 𝛽)

Γ (𝛼)

] 𝜏
𝛼−𝛽−1

−∫

𝜏

0

(𝜏 − 𝑠)
𝛼−𝛽−1

𝑓 (𝑠, 𝐼
𝛽
+V (𝑠) , V (𝑠))

Γ (𝛼 − 𝛽)

𝑑𝑠)𝑑𝜏

= 𝑙 − 𝑐 [

Γ (𝛼 − 𝛽)

Γ (𝛼)

]∫

1

0

I (𝜏) 𝜏
𝛼−𝛽−1

𝑑𝜏

+ ∫

1

0

I (𝜏)(∫

𝜏

0

(𝜏 − 𝑠)
𝛼−𝛽−1

𝑓 (𝑠, 𝐼
𝛽
+V (𝑠) , V (𝑠))

Γ (𝛼 − 𝛽)

𝑑𝑠)𝑑𝜏.

(30)

Therefore

𝑐 [

Γ (𝛼 − 𝛽)

Γ (𝛼)

] (1 + 𝛾)

= 𝑙 + ∫

1

0

I (𝜏)(∫

𝜏

0

(𝜏 − 𝑠)
𝛼−𝛽−1

𝑓 (𝑠, 𝐼
𝛽
+V (𝑠) , V (𝑠))

Γ (𝛼 − 𝛽)

𝑑𝑠)𝑑𝜏

+ ∫

1

0

(1 − 𝑠)
𝛼−𝛽−1

𝑓 (𝑠, 𝐼
𝛽
+V (𝑠) , V (𝑠))

Γ (𝛼 − 𝛽)

𝑑𝑠,

(31)

where

𝛾 = ∫

1

0

I (𝜏) 𝜏
𝛼−𝛽−1

𝑑𝜏. (32)

Then (in account of Lemma 14), we have

𝑐 =

Γ (𝛼)

Γ (𝛼 − 𝛽) (1 + 𝛾)

×
[

[

𝑙 + ∫

1

0

(1 − 𝑠)
𝛼−𝛽−1

𝑓 (𝑠, 𝐼
𝛽
+V (𝑠) , V (𝑠))

Γ (𝛼 − 𝛽)

𝑑𝑠

+ ∫

1

0

ℎ (𝑠) 𝑓 (𝑠, 𝐼
𝛽

+V (𝑠) , V (𝑠)) 𝑑𝑠]

]

.

(33)

Here ℎ = 𝐼
𝛼−𝛽
− I. Substituting 𝑐 into (27), one has

V (𝑡) = −𝐼
𝛼−𝛽

+ 𝑓 (𝑡, 𝐼
𝛽

+V (𝑡) , V (𝑡)) +
𝑙Γ (𝛼) 𝑡

𝛼−𝛽−1

Γ (𝛼 − 𝛽) (1 + 𝛾)

+

Γ (𝛼) 𝑡
𝛼−𝛽−1

Γ (𝛼 − 𝛽) (1 + 𝛾)

× ∫

1

0

[

(1 − 𝑠)
𝛼−𝛽−1

Γ (𝛼 − 𝛽)

+ ℎ (𝑠)]𝑓 (𝑠, 𝐼
𝛽

+V (𝑠) , V (𝑠)) 𝑑𝑠

=

𝑙Γ (𝛼) 𝑡
𝛼−𝛽−1

Γ (𝛼 − 𝛽) (1 + 𝛾)

+ ∫

𝑡

0

[Γ (𝛼)

(𝑡 (1 − 𝑠))
𝛼−𝛽−1

(1 + 𝛾) (Γ (𝛼 − 𝛽))
2

−

(𝑡 − 𝑠)
𝛼−𝛽−1

Γ (𝛼 − 𝛽)

]𝑓 (𝑠, 𝐼
𝛽

+V (𝑠) , V (𝑠)) 𝑑𝑠

+ ∫

1

𝑡

Γ (𝛼)

(𝑡 (1 − 𝑠))
𝛼−𝛽−1

(1 + 𝛾) (Γ (𝛼 − 𝛽))
2

× 𝑓 (𝑠, 𝐼
𝛽

+V (𝑠) , V (𝑠)) 𝑑𝑠

+

Γ (𝛼) 𝑡
𝛼−𝛽−1

Γ (𝛼 − 𝛽) (1 + 𝛾)

∫

1

0

ℎ (𝑠) 𝑓 (𝑠, 𝐼
𝛽

+V (𝑠) , V (𝑠)) 𝑑𝑠.

(34)
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Thus

V (𝑡) = 𝑝 (𝑡) + ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝐼
𝛽

+V (𝑠) , V (𝑠)) 𝑑𝑠, 𝑡∈[0, 1] ,

(35)

where 𝑝(𝑡) = 𝑙Γ(𝛼)𝑡
𝛼−𝛽−1

/Γ(𝛼−𝛽)(1+𝛾).The Green function
𝐺 is given by 𝐺(𝑡, 𝑠) = 𝐺1(𝑡, 𝑠) + 𝐺2(𝑡, 𝑠) with

𝐺1 (𝑡, 𝑠)

:=

{
{
{
{
{
{

{
{
{
{
{
{

{

Γ (𝛼)

Γ (𝛼 − 𝛽)

[

(𝑡 (1 − 𝑠))
𝛼−𝛽−1

(1 + 𝛾) Γ (𝛼 − 𝛽)

−

(𝑡 − 𝑠)
𝛼−𝛽−1

Γ (𝛼)

] ,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

Γ (𝛼)

Γ (𝛼 − 𝛽)

[

(𝑡 (1 − 𝑠))
𝛼−𝛽−1

(1 + 𝛾) Γ (𝛼 − 𝛽)

] , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝐺2 (𝑡, 𝑠) :=
Γ (𝛼) 𝑡

𝛼−𝛽−1

Γ (𝛼 − 𝛽) (1 + 𝛾)

ℎ (𝑠) , 𝑡, 𝑠 ∈ [0, 1] .

(36)

Since 𝛼 − 𝛽 > 1, the following can be easily seen.

Lemma 20. The map 𝑡 → 𝐺(𝑡, ⋅) is continuous from [0, 1] to
𝐿
𝑞
[0, 1].

Remark 21. We point out that if 𝐸 is reflexive, it is not
necessary to assume any compactness conditions on the
nonlinearity of 𝑓. This will be due to [33, Lemma 2] and the
fact that a subset of reflexive Banach spaces is weakly compact
if and only if it is weakly closed and norm bounded.

3. Weak Solutions of the Hammerstein
Integral Equation

In this section, in the light of the Assumptions (1)–(3)
imposed on 𝑓, we proceed to obtain a result which relies on
the fixed point Theorem 3 to ensure the existence of weak
solution to the integral equation (35). For the sake of conve-
nience, we introduce the following.

Definition 22. By a solution to (35) we mean a function
V ∈ 𝐶(𝐼, 𝐸) which satisfies the integral equation (35). This
is equivalent to the finding V ∈ 𝐶(𝐼, 𝐸) with

𝜑 (V (𝑡)) = 𝜑(𝑝 (𝑡) + ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝐼
𝛽

+V (𝑠) , V (𝑠)) 𝑑𝑠) ,

𝑡 ∈ 𝐼 ∀𝜑 ∈ 𝐸
∗
.

(37)

We need to explain why we consider continuous solu-
tions. By the properties of the Pettis integral this should be
weakly continuous function. Since 𝑝 is continuous and we
impose (local) boundedness hypothesis for 𝑓, our solutions
are strongly continuous (cf. [22]). We restrict our attention
to the space 𝐶(𝐼, 𝐸) and then our integral operators will be
defined on this space. In contrast to the case of weakly-weakly
continuous functions𝑓, we need to replace the space𝐶(𝐼, 𝐸𝑤)

endowed with its topology of weak uniform convergence by
the space of (strongly) continuous functions 𝐶(𝐼, 𝐸) with its
weak topology. We will utilize in our proofs some character-
ization of its weak topology.

Now, we are in the position to state and prove the first
existence result.

Theorem 23. Assume that 𝛼 ∈ (1, 2], 𝛽 ∈ (0, 1)with 𝛼 > 1+𝛽

andI ∈ 𝐿
𝑞
([0, 1]) be a nonnegative real-valued function. If the

Assumptions (1)–(3) hold along with

( sup
𝑡∈[0,1]

∫

1

0

|𝐺 (𝑡, 𝑠)| Ψ (𝑠) 𝑑𝑠) lim sup
𝑟→∞

Ω (𝑟)

𝑟

< Γ (1 + 𝛽) ,

(38)

then the integral equation (35) has at least one solution V ∈

𝐶[𝐼, 𝐸].

Proof. First of all, observe the expression of 𝐺 and note that
the following implications:

I ∈ 𝐿
𝑞
[0, 1] ⇒ ℎ ∈ 𝐿

𝑞
[0, 1] ⇒ 𝐺 (𝑡, ⋅) ∈ 𝐿

𝑞
[0, 1] ,

𝑡 ∈ [0, 1] ,

(39)

hold. Consequently 𝐺(𝑡, ⋅)Ψ(⋅) ∈ 𝐿
1
[0, 1] for any 𝑡 ∈ [0, 1].

Let

𝜌 = ( sup
𝑡∈[0,1]

∫

1

0

|𝐺 (𝑡, 𝑠)| Ψ (𝑠) 𝑑𝑠) lim sup
𝑟→∞

Ω (𝑟)

𝑟

. (40)

Consider the set 𝑆 of real numbers 𝑟 ≥ 0 which satisfy the
inequality

𝑟Γ (1 + 𝛽) ≤




𝑝



0
+ Ω (𝑟) ( sup

𝑡∈[0,1]

∫

1

0

|𝐺 (𝑡, 𝑠)| Ψ (𝑠) 𝑑𝑠) .

(41)

Then 𝑆 is bounded above; that is, there exists a constant 𝑅0
with

𝑟 ≤ 𝑅0 ∀𝑟 ∈ 𝑆. (42)

To see this, suppose (42) is false.Then there exists a sequence
0 ̸= 𝑟𝑛 ∈ 𝑆 with 𝑟𝑛 → ∞ as 𝑛 → ∞ and

Γ (1 + 𝛽) ≤





𝑝



0

𝑟𝑛

+

Ω (𝑟𝑛)

𝑟𝑛

( sup
𝑡∈[0,1]

∫

1

0

|𝐺 (𝑡, 𝑠)| Ψ (𝑠) 𝑑𝑠) .

(43)

Since lim sup(𝑠𝑛+𝑡𝑛) ≤ lim sup 𝑠𝑛+ lim sup 𝑡𝑛 for any sequen-
ces 𝑠𝑛 ≥ 0, 𝑡𝑛 ≥ 0, we have 𝜌 ≥ Γ(1 +𝛽). This contradicts (38).
Then, for every 𝑅 > 𝑅0 the inequality





𝑝



0
+ Ω (𝑅)( sup

𝑡∈[0,1]

∫

1

0

|𝐺 (𝑡, 𝑠)| Ψ (𝑠) 𝑑𝑠) < Γ (1 + 𝛽) 𝑅

(44)

holds, which is in contradiction with 𝑅 ∈ 𝑆 and then contra-
dicts (42).
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Now, define the operator 𝑇 : 𝐶[𝐼, 𝐸] → 𝐶[𝐼, 𝐸] by

𝑇V (𝑡) := 𝑝 (𝑡)+∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝐼
𝛽

+V (𝑠) , V (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] .

(45)

We remark that for V ∈ 𝐶[𝐼, 𝐸] we have that, by Lemma 9,
𝐼
𝛽
+V is weakly continuous, and consequently,𝑓(⋅, 𝐼

𝛽
+V(⋅), V(⋅)) ∈

H
𝑝

0 (𝐸) (Assumption (2)). Since 𝑠 → 𝐺(𝑡, 𝑠) ∈ 𝐿
𝑞
(𝐼), for

all 𝑡 ∈ [0, 1], 𝐺(𝑡, ⋅)𝑓(⋅, 𝐼𝛽−V(⋅), V(⋅)) is Pettis integrable for all
𝑡 ∈ [0, 1] (thanks to Proposition 6), and thus the operator
𝑇 makes sense. Note that 𝑇 is well defined. To see this, let
𝑡1, 𝑡2 ∈ [0, 1] with 𝑡2 > 𝑡1. Since 𝛽 ∈ (0, 1), we deduce that if
‖V‖ ≤ 𝜎1, then ‖V‖ < 𝜎 and ‖𝐼𝛽+V‖ ≤ 𝜎, where 𝜎 = 𝜎1/Γ(1 + 𝛽).
Without loss of generality, assume 𝑇V(𝑡2) − 𝑇V(𝑡1) ̸= 0. Then
there exists (as a consequence of Proposition 2 ) 𝜑 ∈ 𝐸

∗ with
‖𝜑‖ = 1 and ‖𝑇V(𝑡2) − 𝑇V(𝑡1)‖ = 𝜑(𝑇V(𝑡1) − 𝑇V(𝑡1)).

Putting the Assumption (3) in mind, one can write the
following chain of inequalities:





𝑇V (𝑡2) − 𝑇V (𝑡1)






= 𝜑 (𝑇V (𝑡2) − 𝑇V (𝑡1))

≤ 𝜑 (𝑝 (𝑡2) − 𝑝 (𝑡1))

+ Ω (𝜎) ∫

1

0





𝐺 (𝑡2, 𝑠) − 𝐺 (𝑡1, 𝑠)





Ψ (𝑠) 𝑑𝑠

≤




𝑝 (𝑡2) − 𝑝 (𝑡1)






+ Ω (𝜎) (∫

1

0





𝐺(𝑡2, 𝑠) − 𝐺 (𝑡1, 𝑠)






𝑞
𝑑𝑠)

1/𝑞

× (∫

1

0

|Ψ (𝑠)|
𝑝
𝑑𝑠)

1/𝑝

≤




𝑝 (𝑡2) − 𝑝 (𝑡1)





+ Ω (𝜎)





𝐺 (𝑡2, ⋅) − 𝐺 (𝑡1, ⋅)




𝑞
‖Ψ‖𝑝

≤




𝑝 (𝑡2) − 𝑝 (𝑡1)






+ Ω (𝜎) (




𝐺1 (𝑡2, ⋅) − 𝐺1(𝑡1, ⋅)




𝑞

+




𝐺2 (𝑡2, ⋅) − 𝐺2(𝑡1, ⋅)




𝑞
) ‖Ψ‖𝑝

≤




𝑝 (𝑡2) − 𝑝 (𝑡1)






+ Ω (𝜎)(




𝐺1 (𝑡2, ⋅) − 𝐺1(𝑡1, ⋅)




𝑞

+

Γ (𝛼)








(𝑡
𝛼−𝛽−1

2 − 𝑡
𝛼−𝛽−1

1 )ℎ (⋅)






𝑞

Γ (𝛼 − 𝛽) (1 + 𝛾)

)‖Ψ‖𝑝.

(46)

Then




𝑇V (𝑡2) − 𝑇V (𝑡1)






≤




𝑝 (𝑡2) − 𝑝 (𝑡1)






+ Ω (𝜎)(




𝐺1 (𝑡2, ⋅) − 𝐺1(𝑡1, ⋅)




𝑞

+

Γ (𝛼)








𝑡
𝛼−𝛽−1

2 − 𝑡
𝛼−𝛽−1

1







‖ℎ‖𝑞

Γ (𝛼 − 𝛽) (1 + 𝛾)

) ‖Ψ‖𝑝.

(47)
Therefore we deduce, in the view of Lemma 20, that 𝑇

maps 𝐶[𝐼, 𝐸] into itself.
Let𝑄 ∈ 𝐶[𝐼, 𝐸] be the convex, closed and equicontinuous

subset (required byTheorem 3). Define this set by

𝑄 :=

{

{

{

V ∈ 𝐶 [𝐼, 𝐸] : ‖V‖0 ≤ 𝑅0,

∀𝑡1, 𝑡2 ∈ [0, 1] we have 



V (𝑡2) − V (𝑡1)






≤




𝑝 (𝑡2) − 𝑝 (𝑡1)






+ Ω(

𝑅0

Γ (1 + 𝛽)

)

× (




𝐺1 (𝑡2, ⋅) − 𝐺1(𝑡1, ⋅)




𝑞

+

Γ (𝛼)








𝑡
𝛼−𝛽−1

2 − 𝑡
𝛼−𝛽−1

1







‖ℎ‖𝑞

Γ (𝛼 − 𝛽) (1 + 𝛾)

) ‖Ψ‖𝑝

}

}

}

.

(48)
We claim that𝑇 restricted to the set𝑄maps this set into itself
(i.e.,𝑇 : 𝑄 → 𝑄) and is weakly-weakly sequentially continu-
ous. Once the claim is established, Theorem 3 guarantees the
existence of a fixed point of 𝑇. Hence the integral equation
(35) has a solution in 𝐶[𝐼, 𝐸].

We start by showing that 𝑇 : 𝑄 → 𝑄. To see this, take
V ∈ 𝑄, 𝑡 ∈ [0, 1]. Since 𝛽 ∈ (0, 1), we deduce that ‖V‖ ≤ 𝑅0 <

𝑅0/Γ(1+𝛽), ‖𝐼
𝛽V‖ ≤ 𝑅0/Γ(1+𝛽). Themonotonicity ofΩ and

the inequality (47) imply that




𝑇V (𝑡2) − 𝑇V (𝑡1)






≤




𝑝 (𝑡2) − 𝑝 (𝑡1)






+ Ω(

𝑅0

Γ (1 + 𝛽)

)

× (




𝐺1 (𝑡2, ⋅) − 𝐺1(𝑡1, ⋅)




𝑞

+

Γ (𝛼)








𝑡
𝛼−𝛽−1

2 − 𝑡
𝛼−𝛽−1

1







‖ℎ‖𝑞

Γ (𝛼 − 𝛽) (1 + 𝛾)

) ‖Ψ‖𝑝.

(49)
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Now, without loss of generality, assume 𝑇V(𝑡) ̸= 0. Then
there exists (consequence of Proposition 2) 𝜑 ∈ 𝐸

∗ with
‖𝜑‖ = 1 and ‖𝑇𝑥(𝑡)‖ = 𝜑(𝑇V(𝑡)). By the Assumption (3), we
obtain
‖𝑇V (𝑡)‖

≤ 𝜑 (𝑝 (𝑡)) + 𝜑(∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝐼
𝛽

+V (𝑠) , V (𝑠)) 𝑑𝑠)

≤




𝑝 (𝑡)





+ sup
𝑡∈[0,1]

∫

1

0

|𝐺 (𝑡, 𝑠)| ⋅






𝜑𝑓 (𝑠, 𝐼

𝛽

+V (𝑠) , V (𝑠))





𝑑𝑠

≤




𝑝



0
+ Ω(

𝑅0

Γ (1 + 𝛽)

)( sup
𝑡∈[0,1]

∫

1

0

𝐺 (𝑡, 𝑠) Ψ (𝑠) 𝑑𝑠)

<

𝑅0

Γ (1 + 𝛽)

Γ (1 + 𝛽) = 𝑅0.

(50)

Therefore ‖𝑇V‖0 = sup𝑡∈[0,1]‖𝑇V(𝑡)‖ ≤ 𝑅0. Hence𝑇 : 𝑄 → 𝑄.
We need to prove now that 𝑇 : 𝑄 → 𝑄 is weakly-

weakly sequentially continuous. Let us recall that the weak
convergence in 𝑄 ⊂ 𝐶(𝐼, 𝐸) is exactly the weak pointwise
convergence. Let (V𝑛) be a sequence in 𝑄 weakly convergent
to V. Then V𝑛(𝑡) → V(𝑡) in 𝐸𝑤 for each 𝑡 ∈ [0, 1]. Since 𝑄 is
closed, by Lemma 1 we have V ∈ 𝑄.

Fix 𝑡 ∈ 𝐼 and note, in the view of Lebesgue dominated
convergence theorem for the Pettis integral (see [31, 34]), that
𝐼
𝛽
+V𝑛(𝑠) → 𝐼

𝛽
+V(𝑠) in 𝐸𝑤. Let us recall that the topology

on 𝐶(𝐼, 𝐸𝑤) on equicontinuous subsets coincides with the
topology of weak pointwise convergence. Since 𝑓 satis-
fies Assumption (1), we have 𝑓(𝑡, 𝐼

𝛽
−V𝑛(𝑡), V𝑛(𝑡)) converging

weakly to 𝑓(𝑡, 𝐼
𝛽
−V(𝑡), V(𝑡)); hence again the Lebesgue domi-

nated convergence theorem for Pettis integral yields 𝑇V𝑛(𝑡)
converging weakly to 𝑇V(𝑡) in 𝐸, but 𝑄 is an equicontinuous
subset of 𝐶(𝐼, 𝐸), and then 𝑇 : 𝑄 → 𝑄 is weakly-weakly
sequentially continuous. Applying now Theorem 3, we con-
clude that 𝑇 has a fixed point in 𝑄, which completes the
proof.

Let us present a multivalued problem:

𝐷
𝛼−𝛽V (𝑡) ∈ 𝐹 (𝑡, 𝐼

𝛼

+V (𝑡) , V (𝑡)) ,

𝑡 ∈ [0, 1] , 𝛼 ∈ (1, 2] , 𝛽 ∈ (0, 1] , 𝛼 > 1 + 𝛽,

𝐼
𝛽

+V (1) + ∫

1

0

I (𝜏) 𝐼
𝛽

+V (𝜏) 𝑑𝜏 = 𝑙, V (0) = 0.

(51)

Some basic results for multivalued boundary value prob-
lems with Pettis integrals are due to Maruyama [35], Azzam
et al. [36], Azzam-Laouir and Boutana [37], and Satco [38].
However these results are devoted to study the standard case
𝛼−𝛽 = 2 and three-point boundary conditions. Our result is
an essential extension for the previous ones.

By 𝑐𝑘(𝐸) and 𝑐𝑤𝑘(𝐸) we denote the family of all non-
empty convex compact and nonempty convex weakly com-
pact subsets of 𝐸, respectively. For every nonempty convex
bounded set 𝐶 ⊂ 𝐸 the support function of 𝐶 is denoted by
𝑠(⋅, 𝐶) and defined on 𝐸

∗ by 𝑠(𝜑, 𝐶) = sup𝑥∈𝐶𝜑𝑥, for each
𝜑 ∈ 𝐸

∗.

Definition 24. A multifunction 𝐹 : 𝐸 → 2
𝐸 with nonempty,

closed values is weakly sequentially upper hemicontinuous if
and only if for each 𝜑 ∈ 𝐸

∗
𝑠(𝜑, 𝐺(⋅)) : 𝐸 → R is sequentially

upper semicontinuous from (𝐸, 𝑤) into R.

In the remaining part of the paper a multifunction 𝐹 is
supposed to be Pettis integrable in the sense of Aumann.

Definition 25. TheAumann-Pettis integral of amultifunction
𝐹 : 𝐼 → 𝐸 is

𝐼𝐴 := (𝐴𝑃)∫

𝐼

𝐹 (𝑠) 𝑑𝑠 = {(𝑃) ∫

𝐼

𝑓 (𝑠) 𝑑𝑠 : 𝑓 ∈ 𝑆
𝑃𝑒

𝐹 } ,

(52)

where 𝑆𝑃𝑒𝐹 denotes the set of all Pettis integrable selections of
𝐹 provided that this set is not empty.

Let us note that the multivalued Pettis integral can be
defined by other methods. The above definition is the best
choice for our consideration. This can be deduced from the
following theorem.

Theorem 26 (see [39]). Let 𝐹 : 𝐼 → 𝑐𝑤𝑘(𝐸) [𝑐𝑘(𝐸)] be mea-
surable and scalarly integrable multifunction (i.e., the support
functions are real-valued integrable functions). Then the fol-
lowing statements are equivalent:

(a) the set {𝜑𝑓 : 𝜑 ∈ 𝐵(𝐸
∗
), 𝑓 ∈ 𝑆

𝑃𝑒
𝐹 } is uniformly inte-

grable,
(b) every measurable selection of 𝐹 is Pettis integrable,
(c) for every measurable subset 𝐴 of 𝐼 the Aumann-Pettis

integral 𝐼𝐴 belongs to 𝑐𝑤𝑘(𝐸) [𝑐𝑘(𝐸)] and, for every𝜑 ∈

𝐸
∗, one has

𝑠 (𝜑, 𝐼𝐴) = ∫

𝐴

𝑠 (𝜑, 𝐹 (𝑠)) 𝑑𝑠. (53)

Taking into account Theorem 8, we are able to add one
more condition to the above theorem, which seems to be
important in our consideration. Since 𝛼 − 𝛽 > 1, 𝐺 is
continuous, and by taking arbitrary Pettis integrable selection
we obtain Pettis integrability of 𝐺(𝑡, ⋅)𝑓(⋅).

Theorem 27. Each of the conditions fromTheorem 26 implies
the following:

(d) for every 𝑡 the multifunction 𝐹 is fractionally Aumann-
Pettis integrable; that is, 𝐼𝛼+𝐹(𝑡) := {∫

𝑡

0
((𝑡 − 𝑠)

𝛼−1
/

Γ(𝛼))𝑓(𝑠)𝑑𝑠, 𝑓 ∈ 𝑆
𝑃𝑒
𝐹 } belongs to 𝑐𝑤𝑘(𝐸) [𝑐𝑘(𝐸)].

Let us recall that we restrict ourselves to the case of the
(left-sided) fractional Pettis-integral.

Note that for multivalued mappings we will utilize Kaku-
tani’s fixed point theorem (for continuity concepts see [27]).

Theorem 28 (see [27]). If 𝐶 is a nonempty weakly compact
convex subset of 𝐸 and 𝐹 : 𝐶 → 2

𝐶 is sequentially weakly
upper semi-continuous, then there exists a fixed point of 𝐹; that
is, 𝑥 ∈ 𝐶 with 𝑥 ∈ 𝐹(𝑥).
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An immediate consequence of the above theorems as well
as our main theorems is the following result.

Theorem 29. Assume that 𝐸 is separable. Let 𝐹 : 𝐼 ×𝐸×𝐸 →

2
𝐸 with nonempty convex and weakly compact values satisfy
the following:

(a) 𝐹(𝑡, ⋅, ⋅) : 𝐸 × 𝐸 → 𝐸 is weakly sequentially upper
hemicontinuous for each 𝑡 ∈ 𝐼,

(b) 𝐹(⋅, 𝑥, 𝑦) has a weakly measurable selection for each
(𝑥, 𝑦) ∈ 𝐸 × 𝐸,

(c) 𝐹(𝑡, 𝑥, 𝑦) ⊂ 𝐻(𝑡) a.e. for some 𝑐𝑤𝑘-(𝐸-) valued Pettis
integrable multifunction 𝐺.

Then there exists at least one pseudo-solution of the Cauchy
problem (51) on 𝐼.

We will follow the idea of the proof for the single-valued
problem. Let us only sketch the main steps of the proof.

Note that the Assumption (c) implies weak compactness
of 𝑆𝑃𝑒𝐻 and separability of the space 𝐸 are sufficient to replace
reflexivity of 𝐸 (as announced in the preliminary part).

In this proof we need to define the multifunction 𝑇 :

𝐶[𝐼, 𝐸] → 2
𝐶[𝐼,𝐸] by

𝑇V (𝑡) := 𝑝 (𝑡) + ∫

1

0

𝐺 (𝑡, 𝑠) 𝐹 (𝑠, 𝐼
𝛽

+V (𝑠) , V (𝑠)) 𝑑𝑠,

𝑡 ∈ (𝐼) .

(54)

By [40, Lemma 3.2] our assumptions (a)–(c) imply that the
set 𝑆𝑃𝑒𝐹 (⋅, V(⋅)) is nonempty for arbitrary V ∈ 𝐶(𝐼, 𝐸) and
the multivalued Nemytskii operator is well defined, so by
Theorem 27 theAumann-Pettis integral of𝐹 is nonempty too.

Let 𝑊 = {𝑓 ∈ H1
0(𝐸) : 𝑓(𝑡) ∈ 𝐻(𝑡) a.e. on 𝐼} and 𝑈=

{𝑥𝑓 ∈ 𝐶(𝐼, 𝐸) : 𝑥𝑓(𝑡) = 𝑝(𝑡)+∫

𝑡

0
𝐺(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠, 𝑡 ∈ 𝐼, 𝑓 ∈ 𝑊}.

For 𝑓 ∈ 𝑊 and 𝜑 ∈ 𝐸
∗ we have 𝜑𝑓 ≤ 𝑠(𝜑,𝐻). Then,

by our assumptions, 𝑊 is Pettis uniformly integrable. Thus
for arbitrary 𝑥 ∈ 𝑈 and 𝑡, 𝜏 ∈ 𝐼 there exists an appropriate
𝑓 ∈ 𝑊 and

‖𝑥 (𝑡) − 𝑥 (𝜏)‖ = sup
‖𝜑‖≤1

𝜑 (𝑥 (𝑡) − 𝑥 (𝜏))

= sup
‖𝜑‖≤1

(∫

𝑡

0

𝜑𝑓 (𝑠) 𝑑𝑠 − ∫

𝜏

0

𝜑𝑓 (𝑠) 𝑑𝑠)

= sup
‖𝜑‖≤1

∫

𝑡

𝜏

𝜑𝑓 (𝑠) 𝑑𝑠

≤ sup
‖𝜑‖≤1

∫

𝑡

𝜏

𝑠 (𝜑,𝐻 (𝑠)) 𝑑𝑠.

(55)

By uniform Pettis integrability of 𝑊 it follows that 𝑈 is an
equicontinuous subset of 𝐶(𝐼, 𝐸). The property of the multi-
valued Pettis integral gives us the convexity of 𝑈. Then 𝑈 is
nonempty, convex, bounded, and equicontinuous in 𝐶(𝐼, 𝐸).

As 𝑆𝑃𝑒𝐻 is sequentially compact for the topology induced
by the tensor product 𝐿∞ ⊗ 𝐸

∗, the 𝑈 is closed. Since 𝑈 is
convex, by Mazur’s lemma (Lemma 1) 𝑈 is weakly closed.
Thus by a weak version of Ascoli’s theorem 𝑈 is weakly
compact in 𝐶(𝐼, 𝐸).

As the set 𝑈 is strongly equicontinuous, then for each
𝑀 > 0 there exists 𝛼 ∈ 𝐼 such that for each 𝑡 ∈ 𝐼 and 𝑓 ∈ 𝑆

𝑃𝑒
𝐹

we have ‖ ∫𝑡
0
𝑓(𝑠)𝑑𝑠‖ ≤ 𝑀.

Then 𝑇 restricted to a ball with radius 𝑅0 = 𝑀 + ‖𝑝‖

(as in the previous proof) has nonempty, closed, convex and
weakly compact values. As a domain 𝑄 for 𝑇 we put 𝑈 ∩

𝐵𝑅0
. By repeating the proof from [40, Theorem 3.3] we are

able to show that 𝑇 has weakly-weakly sequentially closed
graph. Restricted to a weakly compact set 𝑄 an operatot 𝑇
is sequentially weakly upper semi-continuous. This means,
that the Kakutani fixed point theorem (Theorem 28) gives us
a fixed point of 𝑇. The proof is complete.

4. Pseudo-Solutions to Fractional Order
Boundary Value Problem

In this section, we are looking for sufficient conditions to
ensure the existence of pseudo-solution to the boundary
value problem (1) under the Pettis integrability assumption
imposed on 𝑓. In order to obtain the existence of solutions of
the problem (1), we can make use of Theorem 23.

Theorem 30. Let the assumptions of Theorem 23 be satisfied.
Then the boundary value problem (1) has at least one pseudo-
solution 𝑢 ∈ 𝐶(𝐼, 𝐸𝑤).

Proof. Firstly, we remark that, for any V ∈ 𝐶[𝐼, 𝐸], we have
(according to Proposition 6) that V(⋅)I(⋅) ∈ 𝑃[𝐼, 𝐸] for I ∈

𝐿
𝑞
(𝐼), 𝑞 ∈ [1,∞]. Thus the integral boundary condition

makes sense.
In account of Theorem 23 it can be easily seen that the

integral equation (35) has a solution V ∈ 𝐶[𝐼, 𝐸]. Let V be a
weak solution of (35). Then

V (𝑡) =
𝑡
𝛼−𝛽−1

𝑙Γ (𝛼)

Γ (𝛼 − 𝛽) (1 + 𝛾)

+ ∫

1

0

[𝐺1 (𝑡, 𝑠) + 𝐺2 (𝑡, 𝑠)]

× 𝑓 (𝑠, 𝐼
𝛽

+V (𝑠) , V (𝑠)) 𝑑𝑠

= −∫

𝑡

0

(𝑡 − 𝑠)
𝛼−𝛽−1

Γ (𝛼 − 𝛽)

𝑓 (𝑠, 𝐼
𝛽

+V (𝑠) , V (𝑠)) 𝑑𝑠 + 𝑐𝑡
𝛼−𝛽−1

,

𝑐 =

Γ (𝛼)

Γ (𝛼 − 𝛽) (1 + 𝛾)

×
[

[

𝑙 + ∫

1

0

(1 − 𝑠)
𝛼−𝛽−1

𝑓 (𝑠, 𝐼
𝛽
+V (𝑠) , V (𝑠))

Γ (𝛼 − 𝛽)

𝑑𝑠

+∫

1

0

ℎ (𝑠) 𝑓 (𝑠, 𝐼
𝛽

+V (𝑠) , V (𝑠)) 𝑑𝑠]

]

.

(56)
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By Lemma 14 and using𝐺1(0, 𝑠) = 𝐺2(0, 𝑠) = 0, a straight-
forward estimates show that

V (0) = 0, 𝐼
𝛽

+V (1) + ∫

1

0

I (𝜏) 𝐼
𝛽

+V (𝜏) 𝑑𝜏 = 𝑙. (57)

Furthermore, we have

V (𝑡) = −𝐼
𝛼−𝛽

+ 𝑓 (𝑡, 𝐼
𝛽

+V (𝑡) , V (𝑡)) + 𝑐𝑡
𝛼−𝛽−1

. (58)

Thus for any 𝜑 ∈ 𝐸
∗ we have

𝜑V (𝑡) = −𝜑 (𝐼
𝛼−𝛽

+ 𝑓 (𝑡, 𝐼
𝛽

+V (𝑡) , V (𝑡))) + 𝜑𝑐𝑡
𝛼−𝛽−1

= −𝐼
𝛼−𝛽

+ 𝜑 (𝑓 (𝑡, 𝐼
𝛽

+V (𝑡) , V (𝑡))) + 𝜑𝑐𝑡
𝛼−𝛽−1

.

(59)

Operating by 𝐼
2−(𝛼−𝛽)
+ on both sides of (59) and using the

properties of fractional calculus in the space 𝐿1[0, 1] (see, e.g.,
[20, 30]) result in

𝐼
2−(𝛼−𝛽)

+ 𝜑V (𝑡) = −𝐼
2

+𝜑 (𝑓 (𝑡, 𝐼
𝛽

+V (𝑡) , V (𝑡)))

+ 𝜑𝑐

Γ (𝛼 − 𝛽)

Γ (2)

𝑡.

(60)

Therefore

𝜑 (𝐼
2−(𝛼−𝛽)

+ V (𝑡)) = −𝐼
2

+𝜑 (𝑓 (𝑡, 𝐼
𝛽

+V (𝑡) , V (𝑡)))

+ 𝜑𝑐

Γ (𝛼 − 𝛽)

Γ (2)

𝑡.

(61)

Thus
𝑑
2

𝑑𝑡
2
𝜑 (𝐼

2−(𝛼−𝛽)

+ V (𝑡))

= −𝜑 (𝑓 (𝑡, 𝐼
𝛽

+V (𝑡) , V (𝑡))) a.e. on [0, 1] .

(62)

That is, V has the fractional pseudo-derivative of order 𝛼−
𝛽 ∈ (1, 2) and satisfies

𝐷
𝛼−𝛽V (𝑡) = −𝑓 (𝑡, 𝐼

𝛽

+V (𝑡) , V (𝑡)) on [0, 1] . (63)

Therefore V is a pseudo-solution to the problem (23). This
together with Lemma 18 implies that the problem (1) has a
pseudo-solution 𝑢 ∈ 𝐶(𝐼, 𝐸𝑤) which completes the proof.

Now, we consider an example to illustrate our result.

Example 31. LetI ∈ 𝐿
∞
(𝐼) and assume that𝐸 := ℓ

2
(𝐼) be the

space of countably nonzero functions on 𝐼 := [0, 1] that are
square-summable, under the ℓ2-norm.This is even a reflexive
space. For each 𝑡 ∈ 𝐼 we define 𝑔(𝑡) := 𝑒𝑡 ∈ ℓ

2
(𝐼) by

𝑒𝑡 (𝑠) := {

1, if 𝑠 = 𝑡,

0, if 𝑠 ̸= 𝑡.

(64)

This function is Pettis, but not Bochner, integrable (it is not
even strongly measurable [22, 41]), and for any 𝜑 ∈ ℓ

2
(𝐼) we

have [22, 41]

𝜑𝑒𝑡 = ∑

𝜏∈[0,1]

𝜑 (𝜏) 𝑒𝑡 (𝜏) = {

0, if 𝜏 ̸= 𝑡,

𝜑 (𝜏) , if 𝜏 = 𝑡.

(65)

Since (ℓ2(𝐼))∗ = ℓ
2
(𝐼), the function 𝜑𝑒𝑡 is only countably

nonzero for each 𝜑 ∈ (ℓ
2
(𝐼))

∗. Hence 𝜑𝑔 = 0 a.e. (with
respect to the Lebesgue measure).

Now, we investigate the existence of pseudo-solutions for
the problem

𝐷
𝛼
𝑢 (𝑡) + 𝜇𝐷

𝛽
𝑢 (𝑡) + 𝛿𝑢 (𝑡) = 𝑔 (𝑡) ,

𝑡∈[0, 1] , 𝛿, 𝜇∈R, 𝛼 ∈ (1, 2] , 𝛽 ∈ (0, 1) , 𝛼 > 1 + 𝛽,

𝑢 (1) + ∫

1

0

I (𝜏) 𝑢 (𝜏) 𝑑𝜏 = 𝑙, 𝑢 (0) = 0.

(66)

Let us define the function 𝑓 : 𝐼 × 𝐸 × 𝐸 → 𝐸 by 𝑓(𝑡, 𝑥, 𝑦) =
𝜇𝑥+ 𝛿𝑦−𝑔(𝑡). Remark that for any 𝑥, 𝑦 ∈ 𝐶[𝐼, 𝐸], 𝑓 is Pettis,
but not Bochner, integrable and satisfies, by suitable choice
of 𝛿, 𝜇, all requirements of Theorem 30 with 𝜓 ≡ 1, Ω(𝑟) =
(𝛿 + 𝜇)𝑟, 𝑝 = 1, and 𝑞 = ∞.

Therefore one cannot expect the existence of weak or
strong solutions to the problem (66). In view of Theorem 30
the existence of pseudo-solutions is guaranteed. Since 𝑓

satisfies the requirements of Theorem 30 with 𝑝 = 1, 𝑞 = ∞,
the problem (66) has a pseudo-solution 𝑢 ∈ 𝐶(𝐼, 𝐸𝑤) given
by 𝑢 = 𝐼

𝛽
+V, where V denotes the weak solution to the problem

V (𝑡) =
𝑙Γ (𝛼) 𝑡

𝛼−𝛽−1

Γ (𝛼 − 𝛽) (1 + 𝛾)

+ ∫

1

0

𝐺 (𝑡, 𝑠) [𝜇V (𝑠) + 𝛿𝐼
𝛽

+V (𝑠) − 𝑔 (𝑠)] 𝑑𝑠,

𝑡 ∈ (𝐼) .

(67)

That is, V satisfies the problem

V (𝑡) =
𝑙Γ (𝛼) 𝑡

𝛼−𝛽−1

Γ (𝛼 − 𝛽) (1 + 𝛾)

+ ∫

1

0

𝐺 (𝑡, 𝑠) [𝜇V (𝑠) + 𝛿𝐼
𝛽

+V (𝑠)] 𝑑𝑠

− ∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠) 𝑑𝑠, 𝑡 ∈ (𝐼) .

(68)

Since ∫1
0
𝐺(𝑡, 𝑠)𝜑𝑔(𝑠)𝑑𝑠 = 0, for each 𝜑 ∈ ℓ

2
(𝐼), we obtain

∫

1

0
𝐺(𝑡, 𝑠)𝑔(𝑠)𝑑𝑠 = 0. Hence

V (𝑡) =
𝑙Γ (𝛼) 𝑡

𝛼−𝛽−1

Γ (𝛼 − 𝛽) (1 + 𝛾)

+ ∫

1

0

𝐺 (𝑡, 𝑠) [𝜇V (𝑠) + 𝛿𝐼
𝛽

+V (𝑠)] 𝑑𝑠

=

𝑙Γ (𝛼) 𝑡
𝛼−𝛽−1

Γ (𝛼 − 𝛽) (1 + 𝛾)

− 𝐼
𝛼−𝛽

+ [𝜇V (𝑠) + 𝛿𝐼
𝛽

+V (𝑠)] + 𝑐𝑡
𝛼−𝛽−1

,

(69)
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where

𝑐 =

Γ (𝛼)

Γ (𝛼 − 𝛽) (1 + 𝛾)

×
[

[

𝑙 + ∫

1

0

(1 − 𝑠)
𝛼−𝛽−1

[𝜇V (𝑠) + 𝛿𝐼
𝛽
+V (𝑠)]

Γ (𝛼 − 𝛽)

𝑑𝑠

+ ∫

1

0

ℎ (𝑠) [𝜇V (𝑠) + 𝛿𝐼
𝛽

+V (𝑠)] 𝑑𝑠]

]

.

(70)

Therefore

V (𝑡) + 𝜇𝐼
𝛼−𝛽

+ V (𝑡) + 𝛿𝐼
𝛼

+V (𝑡) = 𝑐
∗
𝑡
𝛼−𝛽−1

, (71)

where

𝑐
∗
= (𝑐 +

𝑙Γ (𝛼)

Γ (𝛼 − 𝛽) (1 + 𝛾)

) . (72)

Further

𝐼
𝛽

+V (𝑡) + 𝜇𝐼
𝛼−𝛽

+ 𝐼
𝛽

+V (𝑡) + 𝛿𝐼
𝛼+𝛽

+ V (𝑡) = 𝑐
∗ Γ (𝛼 − 𝛽)

Γ (𝛼)

𝑡
𝛼−1

.

(73)

Now if 𝑢 = 𝐼
𝛽
+V, we obtain

𝑢 (𝑡) + 𝜇𝐼
𝛼−𝛽

+ 𝑢 (𝑡) + 𝛿𝐼
𝛼

+𝑢 (𝑡) = 𝑐
∗ Γ (𝛼 − 𝛽)

Γ (𝛼)

𝑡
𝛼−1

. (74)

Thus for every 𝜑 ∈ (ℓ
2
(𝐼))

∗, we have

𝜑𝑢 (𝑡) + 𝜇𝐼
𝛼−𝛽

+ 𝜑𝑢 (𝑡) + 𝛿𝐼
𝛼

+𝜑𝑢 (𝑡) = 𝜑𝑐
∗ Γ (𝛼 − 𝛽)

Γ (𝛼)

𝑡
𝛼−1

.

(75)

Whence

𝐼
2−𝛼

+ 𝜑𝑢 (𝑡) + 𝜇𝐼
2−𝛽

+ 𝜑𝑢 (𝑡) + 𝛿𝐼
2

+𝜑𝑢 (𝑡) = 𝜑𝑐
∗ Γ (𝛼 − 𝛽)

Γ (2)

𝑡.

(76)

Moreover,

𝑑
2

𝑑𝑡
2
𝜑 (𝐼

2−𝛼

+ 𝑢 (𝑡)) +

𝑑
2

𝑑𝑡
2
𝜑𝐼
2−𝛽

+ 𝑢 (𝑡) + 𝛿𝜑𝑢 (𝑡) = 0. (77)

Since

𝑑
2

𝑑𝑡
2
𝜑𝐼
2−𝛽

+ 𝑢 (𝑡) =

𝑑
2

𝑑𝑡
2
𝐼
2−𝛽

+ 𝜑𝑢 (𝑡)

=

𝑑

𝑑𝑡

(

𝑑

𝑑𝑡

𝐼
1

+𝐼
1−𝛽

+ 𝜑𝑢 (𝑡))

=

𝑑

𝑑𝑡

𝐼
1−𝛽

+ 𝜑𝑢 (𝑡)

=

𝑑

𝑑𝑡

𝜑𝐼
1−𝛽

+ 𝑢 (𝑡) ,

(78)

we arrive, for every 𝜑 ∈ 𝐸
∗, at𝐷𝛼𝜑𝑢(𝑡)+𝜇𝐷𝛽𝜑𝑢(𝑡)+𝛿𝜑𝑢(𝑡) =

0 for all 𝑡 ∈ [0, 1] while 𝜑𝑔 = 0 a.e.
Finally

𝐷
𝛼
𝜑𝑢 (𝑡) + 𝜇𝐷

𝛽
𝜑𝑢 (𝑡) + 𝛿𝑢 (𝑡) = 𝜑𝑒𝑡, a.e. [0, 1] .

(79)

Then 𝑢 is a pseudo- (but not a weak or strong) solution to
the problem (66).
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We present some results on the existence of solutions for second-order impulsive differential equations with deviating argument
subject to functional initial conditions. Our results are based on Schaefer’s fixed point theorem for completely continuous operators.

1. Introduction

Differential equations with impulses arise quite often in the
study of different problems in particular are used as a model
for evolutionary processes subject to a sudden rapid change
of their state at certain moments. The theory of impulsive
differential equations has become recently a quite active area
of research. For an introduction to this theory we refer to
the books [1–4], which also contain a variety of interesting
examples and applications.

In this paper, we establish new results for the existence of
solutions for the second-order impulsive differential equation
with deviating argument subject to initial conditions:

𝑥

(𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝛼 (𝑡))) ,

𝑡 ∈ [0, +∞) \ {𝑡1, . . . , 𝑡𝑙}

𝑥 (𝑡
+

𝑘 ) − 𝑥 (𝑡
−

𝑘 ) = 𝐼𝑘 (𝑥 (𝑡𝑘)) , 𝑘 = 1, . . . , 𝑙

𝑥

(𝑡
+

𝑘 ) − 𝑥

(𝑡
−

𝑘 ) = 𝐽𝑘 (𝑥 (𝑡𝑘)) , 𝑘 = 1, . . . , 𝑙

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑟, 0] ,

𝑥

(0) = 𝜙


(0) := 𝜂,

(P)

where 𝑥(𝑡) is in the space (R𝑛, | ⋅ |) (| ⋅ | not necessarily the
Euclidean norm), Θ := {0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑙} ⊆ [0, +∞), 𝐴 is a
real 𝑛×𝑛matrix, 𝑥(𝜏−), and 𝑥(𝜏

+
) are the left and right limits

of 𝑥 in 𝑡 = 𝜏.

Such type of problem arises from a few of scientific appli-
cations as, for example, the problem of impulsive maneuver
of a spacecraft (see [5] in finite-dimentional setting and
[6] in infinite-dimentional setting). More recently, impulsive
second-order differential equations or inclusions on compact
intervals subject to nonhomogeneous conditions have been
studied by several authors (see for example [7–14] and the
references therein). The study of differential problems on
unbounded interval has been done, for example, in [14–18].

Differential equations with deviating argument are inves-
tigated, for example, in [6, 7, 9, 12, 14, 16, 17, 19, 20].

Various techniques are utilized in the above papers:
Schauder’s fixed point Theorem [6, 9, 16, 17, 19, 20], Leray-
Schauder’s nonlinear alternative [14, 18], Contractions Prin-
ciple [8, 13], fixed point index theory [12], and Sadovskii’s
fixed point Theorem [7]. Moreover, in order to prove the
compactness of involved operator, theAscoli-ArzelàTheorem
is often used (see [6, 9, 12, 14, 18]).

The methodology here is to write the problem (P) as
a perturbed integral equation, and we look for fixed points
of an operator 𝑇 in a suitable functions space. For this
purpose we want to utilize the Schaefer’s fixed point theorem
for completely continuous operators. In order to prove that
𝑇 is completely continuous, we make use of a variant of
the compactness result in the Banach space 𝐵𝐶(𝑄,R𝑛) of
continuous bounded functions from a topological space 𝑄

into R𝑛 due to De Pascale, Lewicki and G. Marino. We
have used similar techniques and tools in [16, 17, 20] to
study first-order, impulsive, or nonimpulsive, differential
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or integrodifferential equations on unbounded intervals. In
this paper we extend these ideas to second-order impulsive
equations.

Moreover we prove that our method can be easily used
also in the case of functional conditions that, to the best of
the our knowledge, are not studied for this class of problems.
In fact, we discuss in details the Problem (P) in the case of the
initial conditions

𝑥 (𝑡) = 𝜙 (𝑡) 𝑡 ∈ [−𝑟, 0] , 𝑥

(0) = 𝜙


(0) (1)

because it sheds light on the techniques used, but the same
approach may be applied to impulsive equations subject to a
more general functional initial condition that covers a large
number of cases, namely

𝐿𝑥 = 𝐻 (𝑥) , 𝑥

(0) = 𝜂, (2)

where 𝐿 is a bounded linear operator and 𝐻 is a completely
continuous operator. This is done in the last section.

2. Notations and Preliminaries

Firstly, we recall definitions, notations, and useful facts
regarding the cosine families (see [21–23] for the detailed
study of cosine and sine families).

Definition 1. A one-parameter family (𝐶(𝑡))𝑡∈R of bounded
linear mappings onR𝑛 into itself is called a strongly continu-
ous cosine family if and only if

(1) 𝐶(𝑡 + 𝑠) + 𝐶(𝑡 − 𝑠) = 2𝐶(𝑡)𝐶(𝑠), for all 𝑡, 𝑠 ∈ R,
(2) 𝐶(0) = 𝐼, where 𝐼 is the identity map,
(3) 𝐶(⋅)𝑥 ∈ 𝐶(R,R𝑛), for all 𝑥 ∈ R𝑛.

Moreover, the sine family (𝑆(𝑡))𝑡∈R is defined as

𝑆 (𝑡) := ∫

𝑡

0

𝐶 (𝑠) 𝑑𝑠. (3)

By definition one obtains that:

(u1) 𝑆(𝑡)𝑥 is continuous in 𝑡 ∈ R, 𝑆(0) = 0 and 𝑆(−𝑡) =

−𝑆(𝑡), for all 𝑡 ∈ R,
(u2) 𝐶(𝑡) = 𝐶(−𝑡), for all 𝑡 ∈ R,
(u3) 𝐶(𝑡), 𝑆(𝑡), 𝑆(𝑠), 𝐶(𝑠) commute, for all 𝑡, 𝑠 ∈ R,
(u4) 𝑆(𝑡 + 𝑠) + 𝑆(𝑡 − 𝑠) = 2𝑆(𝑡)𝐶(𝑠), for all 𝑡, 𝑠 ∈ R,
(u5) 𝑆(𝑡 + 𝑠) = 𝑆(𝑡)𝐶(𝑠) + 𝐶(𝑡)𝑆(𝑠), for all 𝑡, 𝑠 ∈ R.

Definition 2. The infinitesimal generator of a strongly contin-
uous cosine family is the operator 𝐴 : R𝑛 → R𝑛 defined by

𝐴 :=

𝑑
2

𝑑𝑡
2
𝐶 (𝑡)









𝑡=0

(4)

and Dom(𝐴) :={𝑥 ∈ R𝑛 :𝐶(𝑡)𝑥 is continuously differentiable
in 𝑡 = 0}.

One obtains that, for 𝑥 ∈ R𝑛 and 𝑡 ∈ R,

𝑑
2

𝑑𝑡
2
𝐶 (𝑡) 𝑥 = 𝐴𝐶 (𝑡) 𝑥 = 𝐶 (𝑡) 𝐴𝑥 (5)

and then

𝑑

𝑑𝑡

𝐶 (𝑡) 𝑥 = ∫

𝑡

0

𝐴𝐶 (𝑠) 𝑥𝑑𝑠 = 𝐴∫

𝑡

0

𝐶 (𝑠) 𝑥𝑑𝑠 = 𝐴𝑆 (𝑡) 𝑥. (6)

So, by (u5) one has

(u6) 𝐶(𝑡 + 𝑠) = 𝐶(𝑡)𝐶(𝑠) + 𝐴𝑆(𝑡)𝑆(𝑠), for all 𝑡, 𝑠 ∈ R.

Definition 3. A cosine family (𝐶(𝑡))𝑡∈R (resp., a sine family
(𝑆(𝑡))𝑡∈R) is uniformly bounded if there exists𝑀𝐶 > 0 (resp.,
𝑀𝑆 > 0) such that

|𝐶 (𝑡)| ≤ 𝑀𝐶 (resp. |𝑆 (𝑡)| ≤ 𝑀𝑆) ∀𝑡 ∈ R, (7)

where | ⋅ | denotes the norm in the space of the 𝑛×𝑛matrices.

Example 4. In R𝑛, let (𝐶(𝑡))𝑡∈R be the family of bounded
linear operators

𝐶 (𝑡) = (

cos (𝑎1𝑡) 0

0 cos (𝑎2𝑡)
...

...
0 0

⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ 0

...
...

⋅ ⋅ ⋅ cos (𝑎𝑛𝑡)

) . (8)

Let us observe that (𝐶(𝑡))𝑡∈R is a uniformly bounded cosine
family and its infinitesimal generator is

𝐴 =

𝑑
2

𝑑𝑡
2
𝐶 (𝑡)









𝑡=0

(

−𝑎
2
1 0

0 −𝑎
2
2

...
...

0 0

. . . 0

. . . 0

...
...

. . . −𝑎
2
𝑛

). (9)

We will utilize the Schaefer’s fixed point theorem for
completely continuous operators.

Theorem 5 (see [24]). Let 𝐸 be a normed linear space. Let 𝑆 :

𝐸 → 𝐸 be a completely continuous operator. Let

𝜁 (𝑆) := {𝑥 ∈ 𝐸 : 𝑥 = 𝜆𝑆𝑥 for some 0 < 𝜆 < 1} . (10)

Then either 𝜁(𝑆) in unbounded or 𝑆 has a fixed point.

We use the condition for compactness in the Banach
space 𝐵𝐶(𝑄,R𝑛) of continuous bounded functions 𝑦 from
a topological space 𝑄 into R𝑛, endowed with the norm ‖

𝑦‖∞ := sup{|𝑦(𝑡)|, 𝑡 ∈ 𝑄}, due to De Pascale, Lewicki and
G. Marino.

Theorem 6 (see [25]). Let 𝑇 : 𝐵𝐶(𝑄,R𝑛) → 𝐵𝐶(𝑄,R𝑛) be
a continuous operator. Suppose that, for any bounded set 𝐹 ⊂

𝐵𝐶(𝑄,R𝑛), 𝑇(𝐹) is a bounded set and there exist ] bounded
functions 𝜑𝑗 : 𝑄 → R𝑛, 𝑗 = 1, 2, . . . , ], such that, for all
𝑡, 𝑠 ∈ 𝑄 and for all 𝑦 ∈ 𝐹,





(𝑇𝑦) (𝑡) − (𝑇𝑦) (𝑠)





≤

]

∑

𝑗=1






𝜑𝑗 (𝑡) − 𝜑𝑗 (𝑠)






. (11)

Then 𝑇 is a compact operator.
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3. The Integral Problem

From now on, we assume that the functions 𝑓, 𝜙, 𝛼, 𝐼𝑘, 𝐽𝑘 and
the matrix 𝐴 have the following properties.

(ℎ0) The matrix 𝐴 is the infinitesimal generator of a
strongly continuous cosine family (𝐶(𝑡))𝑡∈R, uni-
formly bounded by 𝑀𝐶 > 0. Suppose moreover that
the corresponding sine family (𝑆(𝑡))𝑡∈R is uniformly
bounded by a constant𝑀𝑆 > 0.

(ℎ1) 𝑓 : [0, +∞) × R𝑛 × R𝑛 → R𝑛 is a continuous
function such that there exist a continuous integrable
function 𝑝 : [0, +∞) → [0, +∞) and a continuous
nondecreasing function Ψ : [0, +∞) → [1, +∞) for
which




𝑓 (𝑡, 𝑥, 𝑦)





≤ 𝑝 (𝑡) Ψ (|𝑥| +





𝑦




) , 𝑡 ≥ 0, 𝑥, 𝑦 ∈ R

𝑛
,

(12)

∫

∞

0

𝑑𝑠

Ψ (𝑠)

= +∞. (13)

(ℎ2) 𝛼 : [0, +∞) → [−𝑟, +∞) is a continuous increasing
function such that 𝛼(𝑡) ≤ 𝑡, for all 𝑡 ∈ [0, +∞).
The function 𝜙 belongs to 𝐶

1
([−𝑟, 0],R𝑛).

(ℎ3) 𝐼𝑘 : R
𝑛

→ R𝑛 and 𝐽𝑘 : R
𝑛

→ R𝑛, 𝑘 = 1, . . . , 𝑙 are
continuous functions such that there are 𝐷𝐼, 𝐷𝐽 > 0

for which




𝐼𝑘 (V)





≤ 𝐷𝐼,





𝐽𝑘 (V)





≤ 𝐷𝐽, ∀V ∈ R

𝑛
. (14)

We will work in the Banach space

𝐵𝑃𝐶Θ [−𝑟, +∞)

:= {𝑦 : [−𝑟, +∞) → R
𝑛
| 𝑦 is bounded

and continuous in 𝑡 ∉ Θ,

there exist 𝑦 (𝑡
−

𝑘 ) = 𝑦 (𝑡𝑘)

and 𝑦 (𝑡
+

𝑘 ) < ∞, 𝑡𝑘 ∈ Θ} ,

(15)

endowed with the supremum norm ‖𝑦‖∞ = sup{|𝑦(𝑡)| : 𝑡 ∈
[−𝑟, +∞)}.

We define for 𝑥 ∈ 𝐵𝑃𝐶Θ[−𝑟, +∞):

𝑤𝑥 (𝑡) :=

{

{

{

∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝛼 (𝑠))) 𝑑𝑠, 𝑡 ≥ 0,

0, −𝑟 ≤ 𝑡 ≤ 0

(𝐼𝑥) (𝑡) :=

{

{

{

∑

0<𝑡𝑘<𝑡

𝐶 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡𝑘)) , 𝑡 > 𝑡1,

0, −𝑟 ≤ 𝑡 ≤ 𝑡1

(𝐽𝑥) (𝑡) :=

{

{

{

∑

0<𝑡𝑘<𝑡

𝑆 (𝑡 − 𝑡𝑘) 𝐽𝑘 (𝑥 (𝑡𝑘)) , 𝑡 > 𝑡1,

0, −𝑟 ≤ 𝑡 ≤ 𝑡1.

(16)

For any 𝑥 ∈ 𝐵𝑃𝐶Θ[−𝑟, +∞) let 𝑇𝑥 be the function defined on
[−𝑟, +∞) by

(𝑇𝑥) (𝑡) :=

{
{

{
{

{

𝐶 (𝑡) 𝜙 (0) + 𝑆 (𝑡) 𝜂 + 𝑤𝑥 (𝑡)

+ (𝐼𝑥) (𝑡) + (𝐽𝑥) (𝑡) , 𝑡 ≥ 0

𝜙 (𝑡) , −𝑟 ≤ 𝑡 ≤ 0.

(17)

In the next propositions we show the properties of the
operator 𝑇 useful for us.

Proposition 7. The operator 𝑇 maps 𝐵𝑃𝐶Θ[−𝑟, +∞) into
𝐵𝑃𝐶Θ[−𝑟, +∞) and (𝑇𝑥)(𝑡+𝑘 )−(𝑇𝑥)(𝑡

−
𝑘 ) = 𝐼𝑘(𝑥(𝑡𝑘)). Moreover

Tx has derivative in 𝑡 ∈ [−𝑟, +∞) \ Θ, (𝑇𝑥)(𝑡−𝑘 ) = (𝑇𝑥)

(𝑡𝑘),

(𝑇𝑥)

(𝑡
+
𝑘 ) < ∞ and (𝑇𝑥)


(𝑡
+
𝑘 ) − (𝑇𝑥)


(𝑡
−
𝑘 ) = 𝐽𝑘(𝑥(𝑡𝑘)).

Proof. The continuity of 𝑓, 𝑆, and 𝐶 guarantees that 𝑇𝑥 is
continuous in 𝑡 ∈ [−𝑟, +∞) \ Θ, and there exists (𝑇𝑥)


(𝑡)

for 𝑡 ∈ [−𝑟, +∞) \ Θ. Moreover, since 𝑝 is integrable, for
𝑡 ∈ [−𝑟, +∞) \ Θ, one has

|(𝑇𝑥) (𝑡)| ≤ 𝑀𝐶




𝜙 (0)





+ 𝑀𝑆





𝜂




+ 𝑀𝑆Ψ (2‖𝑥‖∞)

× ∫

∞

0

𝑝 (𝑠) 𝑑𝑠 + 𝑙𝑀𝐶𝐷𝐼 + 𝑙𝑀𝑆𝐷𝐽,

(18)

so ‖𝑇𝑥‖∞ < ∞. We need to show that, for 𝑘 = 1, . . . , 𝑙, there
exist (𝑇𝑥)(𝑡+𝑘 ) and (𝑇𝑥)(𝑡

−
𝑘 ) = (𝑇𝑥)(𝑡𝑘). Note that

(i) lim𝑡→ 𝑡𝑘𝑤𝑥(𝑡) = 𝑤𝑥(𝑡𝑘). Indeed, using (u5), for 𝑡 →

𝑡𝑘





𝑤𝑥 (𝑡) − 𝑤𝑥 (𝑡𝑘)






≤ ∫

𝑡

0





𝑆 (𝑡 − 𝑠) − 𝑆 (𝑡𝑘 − 𝑠)






⋅




𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝛼 (𝑠)))





𝑑𝑠

+ ∫

𝑡𝑘

𝑡





𝑆 (𝑡𝑘 − 𝑠)





⋅




𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝛼 (𝑠)))





𝑑𝑠

(by (ℎ1))

≤ ∫

𝑡

0





𝑆 (𝑡 − 𝑠) − 𝑆 (𝑡𝑘 − 𝑠)





Ψ (2‖𝑥‖∞) 𝑝 (𝑠) 𝑑𝑠

+𝑀𝑆Ψ (2‖𝑥‖∞) ∫

𝑡𝑘

𝑡

𝑝 (𝑠) 𝑑𝑠

≤ (




𝑆 (𝑡) − 𝑆 (𝑡𝑘)





+




𝐶 (𝑡) − 𝐶 (𝑡𝑘)





)

×max {𝑀𝑆,𝑀𝐶} Ψ (2‖𝑥‖∞) ∫

𝑡

0

𝑝 (𝑠) 𝑑𝑠

+𝑀𝑆Ψ (2‖𝑥‖∞) ∫

𝑡𝑘

𝑡

𝑝 (𝑠) 𝑑𝑠 → 0.

(19)
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(ii) It results that (𝐼𝑥)(𝑡−𝑘 ) = (𝐼𝑥)(𝑡𝑘) = ∑
𝑘−1

𝑗=1 𝐶(𝑡𝑘 − 𝑡𝑗)

𝐼𝑗(𝑥(𝑡𝑗)). Indeed let 𝑡𝑘−1 < 𝑡 < 𝑡𝑘. Then





(𝐼𝑥) (𝑡) − (𝐼𝑥) (𝑡𝑘)






=













∑

0<𝑡𝑗<𝑡

𝐶 (𝑡 − 𝑡𝑗) 𝐼𝑗 (𝑥 (𝑡𝑗))

− ∑

0<𝑡𝑗<𝑡𝑘

𝐶 (𝑡𝑘 − 𝑡𝑗) 𝐼𝑗 (𝑥 (𝑡𝑗))













,

(by (ℎ3))

≤ 𝐷𝐼

𝑘−1

∑

𝑗=1






𝐶 (𝑡 − 𝑡𝑗) − 𝐶 (𝑡𝑘 − 𝑡𝑗)






→ 0.

(20)

Analogously one can see that

(𝐼𝑥) (𝑡
+

𝑘 ) =

𝑘

∑

𝑗=1

𝐶 (𝑡𝑘 − 𝑡𝑗) 𝐼𝑗 (𝑥 (𝑡𝑗)) , (21)

in such a way that (𝐼𝑥)(𝑡+𝑘 ) − (𝐼𝑥)(𝑡
−
𝑘 ) = 𝐼𝑘(𝑥(𝑡𝑘)).

Since, by (u1), 𝑆(𝑡𝑘 − 𝑡𝑘) = 0, a similar proof permits
to verify that

(𝐽𝑥) (𝑡
+

𝑘 ) − (𝐽𝑥) (𝑡
−

𝑘 ) =

𝑘

∑

𝑗=1

𝑆 (𝑡𝑘 − 𝑡𝑗) 𝐽𝑗 (𝑥 (𝑡𝑗))

+

𝑘−1

∑

𝑗=1

𝑆 (𝑡𝑘 − 𝑡𝑗) 𝐽𝑗 (𝑥 (𝑡𝑗)) = 0.

(22)

By the above steps, it follows that (𝑇𝑥)(𝑡
+
𝑘 ) − (𝑇𝑥)(𝑡

−
𝑘 ) =

𝐼𝑘(𝑥(𝑡𝑘)).
Since there exists (𝑇𝑥)(𝑡) if 𝑡 ∈ [0, +∞) \ Θ, to conclude

our proof we show that there exists (𝑇𝑥)(𝑡−𝑘 ) = (𝑇𝑥)

(𝑡𝑘),

(𝑇𝑥)

(𝑡
+
𝑘 ) is finite, and (𝑇𝑥)


(𝑡
+
𝑘 ) − (𝑇𝑥)


(𝑡
−
𝑘 ) = 𝐽𝑘(𝑥(𝑡𝑘)). We

also observe that, for 𝑡 ≥ 0 and 𝑡 ∉ Θ, by (u6),

(𝑇𝑥)

(𝑡) = 𝐴𝑆 (𝑡) 𝜙 (0) + 𝐶 (𝑡) 𝜂

+ ∫

𝑡

0

𝐶 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝛼 (𝑠))) 𝑑𝑠

+ ∑

0<𝑡𝑘<𝑡

𝐴𝑆 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡𝑘))

+ ∑

0<𝑡𝑘<𝑡

𝐶 (𝑡 − 𝑡𝑘) 𝐽𝑘 (𝑥 (𝑡𝑘)) .

(23)

Thus, following the same idea, when 𝑡 → 𝑡𝑘, we have









∫

𝑡

0

𝐶 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝛼 (𝑠))) 𝑑𝑠

−∫

𝑡𝑘

0

𝐶 (𝑡𝑘 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝛼 (𝑠))) 𝑑𝑠










≤ ∫

𝑡

0





𝐶 (𝑡 − 𝑠) − 𝐶 (𝑡𝑘 − 𝑠)





𝑝 (𝑠) Ψ (2‖𝑥‖∞) 𝑑𝑠

+𝑀𝐶Ψ (2‖𝑥‖∞) ∫

𝑡𝑘

𝑡

𝑝 (𝑠) 𝑑𝑠 → 0.

(24)

Moreover, for 𝑡 → 𝑡
−
𝑘













∑

0<𝑡𝑗<𝑡

𝐴𝑆 (𝑡 − 𝑡𝑗) 𝐼𝑗 (𝑥 (𝑡𝑗))

−

𝑘−1

∑

𝑗=1

𝐴𝑆 (𝑡𝑘 − 𝑡𝑗) 𝐼𝑗 (𝑥 (𝑡𝑗))













≤ 𝐷𝐼 |𝐴|

𝑘−1

∑

𝑗=1






𝑆 (𝑡 − 𝑡𝑗) − 𝑆 (𝑡𝑘 − 𝑡𝑗)






→ 0,

lim
𝑡→ 𝑡+
𝑘

( ∑

0<𝑡𝑘<𝑡

𝐴𝑆 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡𝑘)))

=

𝑘−1

∑

𝑗=1

𝐴𝑆 (𝑡 − 𝑡𝑘) 𝐼𝑗 (𝑥 (𝑡𝑗)) .

(25)

Finally, for 𝑡 → 𝑡
−
𝑘













∑

0<𝑡𝑘<𝑡

𝐶 (𝑡 − 𝑡𝑘) 𝐽𝑘 (𝑥 (𝑡𝑘))

−

𝑘−1

∑

𝑗=1

𝐶 (𝑡𝑘 − 𝑡𝑗) 𝐽𝑗 (𝑥 (𝑡𝑗))













≤ 𝐷𝐽

𝑘−1

∑

𝑗=1






𝑆 (𝑡 − 𝑡𝑗) − 𝑆 (𝑡𝑘 − 𝑡𝑗)






→ 0,

(26)

while

lim
𝑡→ 𝑡+
𝑘

( ∑

0<𝑡𝑘<𝑡

𝐶 (𝑡 − 𝑡𝑘) 𝐽𝑘 (𝑥 (𝑡𝑘)))

=

𝑘

∑

𝑗=1

𝐶 (𝑡 − 𝑡𝑘) 𝐽𝑗 (𝑥 (𝑡𝑗)) ,

(27)

and these permit to obtain that there exist (𝑇𝑥)

(𝑡
+
𝑘 )

and (𝑇𝑥)

(𝑡
−
𝑘 ) and that one has (𝑇𝑥)


(𝑡
+
𝑘 ) − (𝑇𝑥)


(𝑡
−
𝑘 ) =

𝐽𝑘(𝑥(𝑡𝑘)).

Proposition 8. The fixed points of 𝑇 are solutions of the
problem (P).
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Proof. In fact, 𝑇𝑥|[−𝑟,0] = 𝜙 and (𝑇𝑥)

(0) = 𝜂. Moreover, by

the hypotheses on 𝑓 and on the sine and cosine families, one
obtains that (𝑇𝑥) is derivable in 𝑡 ∈ [−𝑟, +∞) \ Θ, and it
results in the following:

(𝑇𝑥)

(𝑡) = 𝐴𝐶 (𝑡) 𝜙 (0) + 𝐴𝑆 (𝑡) 𝜂

+ ∫

𝑡

0

𝐴𝑆 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝛼 (𝑠))) 𝑑𝑠

+ 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝛼 (𝑡)))

+ ∑

0<𝑡𝑘<𝑡

𝐴𝐶 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡𝑘))

+ ∑

0<𝑡𝑘<𝑡

𝐴𝑆 (𝑡 − 𝑡𝑘) 𝐽𝑘 (𝑥 (𝑡𝑘)) .

(28)

So one can conclude that

(𝑇𝑥)

(𝑡) = 𝐴𝑇𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝛼 (𝑡))) , (29)

that is, 𝑇𝑥 satisfies the differential equation in problem (P).
This combined with the results in Proposition 7 yields the
thesis.

In order to prove that 𝑇 is a completely continuous
operator, wemake use of the following compactness criterion
in 𝐵𝑃𝐶Θ[−𝑟, +∞).

Proposition 9 (see [16]). Let 𝑇 : 𝐵𝑃𝐶Θ[−𝑟, +∞) →

𝐵𝑃𝐶Θ[−𝑟, +∞) be a continuous operator. Suppose that, for
any bounded set 𝐹 ⊂ 𝐵𝑃𝐶Θ[−𝑟, +∞), 𝑇(𝐹) is a bounded set,
and there exist ] bounded functions 𝜑𝑗 : [−𝑟, +∞) → R𝑛,
𝑗 = 1, 2, . . . , ], such that, for all 𝑡, 𝑠 ∈ [−𝑟, +∞) and, for all
𝑦 ∈ 𝐹





(𝑇𝑦) (𝑡) − (𝑇𝑦) (𝑠)





≤

]

∑

𝑗=1






𝜑𝑗 (𝑡) − 𝜑𝑗 (𝑠)






. (30)

Then 𝑇 is a compact operator.

Proof. The Banach space 𝐵𝑃𝐶Θ[−𝑟, +∞) is isometric to the
Banach space:

Ω̃ = {𝑦 ∈ 𝐵𝐶 (𝑄,R
𝑛
) : there exist 𝑦 (𝑡

+

𝑘 )

and 𝑦 (𝑡
−

𝑘 ) , for 𝑘 = 1, . . . , 𝑙} ,

(31)

where𝑄 = [−𝑟, +∞)\Θ. Of course, Ω̃ is closed in 𝐵𝐶(𝑄,R𝑛).
So the thesis follows fromTheorem 6.

Proposition 10. 𝑇 is a completely continuous operator.

Proof. First we prove that 𝑇 is a continuous operator. Let
(𝑦𝑚)𝑚∈N a sequence in 𝐵𝑃𝐶Θ[−𝑟, +∞) such that 𝑦𝑚 → 𝑦 in
𝐵𝑃𝐶Θ[−𝑟, +∞). We prove that 𝑇𝑦𝑚 → 𝑇𝑦. By the continuity
of 𝑓 it results that, for fixed 𝑠 ∈ [0, +∞),

𝜎𝑚 (𝑠) := 𝑓 (𝑠, 𝑦𝑚 (𝑠) , 𝑦𝑚 (𝛼 (𝑠)))

− 𝑓 (𝑠, 𝑦 (𝑠) , 𝑦 (𝛼 (𝑠))) → 0.

(32)

Moreover, by the monotonicity of Ψ, we have




𝜎𝑚 (𝑠)





≤





𝑓 (𝑠, 𝑦𝑚 (𝑠) , 𝑦𝑚 (𝛼 (𝑠)))






+




𝑓 (𝑠, 𝑦 (𝑠) , 𝑦 (𝛼 (𝑠)))






≤ 𝑝 (𝑠) [Ψ (2




𝑦𝑚




∞

) + Ψ (2




𝑦



∞

)]

≤ 2𝑝 (𝑠) Ψ (2Λ) ,

(33)

where Λ = max{sup𝑚∈N‖𝑦𝑚‖∞, ‖𝑦‖∞. Therefore |𝜎𝑚(𝑠)| is
dominated by an integrable function that does not depend
on 𝑚 ∈ N. Then, from the uniform boundedness of the sine
family and by the dominated convergence theorem, we have






𝑤𝑦𝑚

− 𝑤𝑦





∞

= sup
0≤𝑡<+∞






𝑤𝑦𝑚

(𝑡) − 𝑤𝑦 (𝑡)






= sup
0≤𝑡<+∞










∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝜎𝑚 (𝑠) 𝑑𝑠










≤ 𝑀𝑆 ∫

∞

0





𝜎𝑚 (𝑠)





𝑑𝑠 → 0.

(34)

The uniform boundedness of the cosine family and the
continuity of 𝐼𝑘 and 𝐽𝑘 imply that, as𝑚 → ∞,




𝐼𝑦𝑚 − 𝐼𝑦




∞

≤ sup
𝑡∈[𝑡1,+∞)

( ∑

0<𝑡𝑘<𝑡





𝐶 (𝑡 − 𝑡𝑘)










𝐼𝑘 (𝑦𝑚 (𝑡𝑘)) − 𝐼𝑘 (𝑦 (𝑡𝑘))





)

≤ 𝑀𝐶

𝑙

∑

𝑘=1





𝐼𝑘 (𝑦𝑚 (𝑡𝑘)) − 𝐼𝑘 (𝑦 (𝑡𝑘))





→ 0,





𝐽𝑦𝑚 − 𝐽𝑦




∞

→ 0.

(35)

Thus




𝑇𝑦𝑚 − 𝑇𝑦




∞

≤






𝑤𝑦𝑚

− 𝑤𝑦





∞

+




𝐽𝑦𝑚 − 𝐽𝑦




∞

+




𝐼𝑦𝑚 − 𝐼𝑦




∞

→ 0.

(36)

Now, let

𝐵𝜌 := {𝑢 ∈ 𝐵𝑃𝐶Θ [−𝑟, +∞) : ‖𝑢‖∞ ≤ 𝜌} . (37)

Thanks to Proposition 9, it is enough to show that 𝑇(𝐵𝜌) is a
bounded set and that it is possible to control the oscillations
of each function in 𝑇(𝐵𝜌) by means of a finite number of
bounded functions.The boundedness of𝑇(𝐵𝜌) follows by the
inequalities:





𝑤𝑥




∞

≤ 𝑀𝑆Ψ (2𝜌)∫

∞

0

𝑝 (𝑠) 𝑑𝑠,

‖𝐼𝑥‖∞ ≤ 𝑀𝐶

𝑙

∑

𝑘=1





𝐼𝑘 (𝑥 (𝑡𝑘))





≤ 𝑙𝑀𝐶𝐷𝐼,

‖𝐽𝑥‖∞ ≤ 𝑀𝑆

𝑙

∑

𝑘=1





𝐽𝑘 (𝑥 (𝑡𝑘))





≤ 𝑙𝑀𝑆𝐷𝐽.

(38)
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To control the oscillations of 𝑇(𝐵𝜌) we should need to
distinguish three cases: 0 ≤ 𝜏1 < 𝜏2, 𝜏1 < 0 < 𝜏2, and
𝜏1 < 𝜏2 ≤ 0.

Here we study the case 0 ≤ 𝜏1 < 𝜏2 only because the
proofs of the other cases are similar.

Let 0 ≤ 𝜏1 < 𝜏2 and 𝑥 ∈ 𝐵𝜌. Then




(𝑇𝑥) (𝜏1) − (𝑇𝑥) (𝜏2)






≤




𝐶 (𝜏1) − 𝐶 (𝜏2)










𝜙 (0)





+




𝑆 (𝜏1) − 𝑆 (𝜏2)










𝜂





+










∫

𝜏1

0

[𝑆 (𝜏1 − 𝑠) − 𝑆 (𝜏2 − 𝑠)] 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝛼 (𝑠)))










𝑑𝑠

+











∫

𝜏2

𝜏1

𝑆 (𝜏2 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝛼 (𝑠))) 𝑑𝑠











+




(𝐼𝑥) (𝜏1) − (𝐼𝑥) (𝜏2)





+




(𝐽𝑥) (𝜏1) − (𝐽𝑥) (𝜏2)





.

(39)

Now, by property (u5), one obtains that

𝑆 (𝜏2 − 𝑠) − 𝑆 (𝜏1 − 𝑠)

= [𝑆 (𝜏2) − 𝑆 (𝜏1)] 𝐶 (𝑠) − [𝐶 (𝜏2) − 𝐶 (𝜏1)] 𝑆 (𝑠) ,

(40)

so we have









∫

𝜏1

0

[𝑆 (𝜏1 − 𝑠) − 𝑆 (𝜏2 − 𝑠)] 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝛼 (𝑠))) 𝑑𝑠










≤




𝑆 (𝜏2) − 𝑆 (𝜏1)






× ∫

𝜏1

0

|𝐶 (𝑠)|




𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝛼 (𝑠)))





𝑑𝑠

+




𝐶 (𝜏2) − 𝐶 (𝜏1)






× ∫

𝜏1

0

|𝑆 (𝑠)|




𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝛼 (𝑠)))





𝑑𝑠

≤




𝑆 (𝜏2) − 𝑆 (𝜏1)





𝑀𝐶Ψ (2𝜌)∫

∞

0

𝑝 (𝑠) 𝑑𝑠

+




𝐶 (𝜏2) − 𝐶 (𝜏1)





𝑀𝑆Ψ (2𝜌)∫

∞

0

𝑝 (𝑠) 𝑑𝑠.

(41)

Using (ℎ3) we obtain also that










∫

𝜏2

𝜏1

𝑆 (𝜏2 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝛼 (𝑠))) 𝑑𝑠











≤ 𝑀𝑆Ψ (2𝜌) [∫

𝜏2

0

𝑝 (𝑠) 𝑑𝑠 − ∫

𝜏1

0

𝑝 (𝑠) 𝑑𝑠] .

(42)

To control the oscillations of the operators 𝐼 and 𝐽, first we
note that if 𝜏1 < 𝑡1, and 𝜏2 < 𝑡1 we have nothing to prove
because (𝐼𝑥)(𝜏1) = (𝐼𝑥)(𝜏2) = (𝐽𝑥)(𝜏1) = (𝐽𝑥)(𝜏2) = 0. The
boundedness of 𝐼 and 𝐽 solves also the case 𝜏1 < 𝑡1 < 𝜏2 since
we have





(𝐼𝑥) (𝜏2) − (𝐼𝑥) (𝜏1)





=




(𝐼𝑥) (𝜏2)





≤ 𝐷𝐼 ∑

0<𝑡𝑘<𝜏2

𝑀𝐶,





(𝐽𝑥) (𝜏2) − (𝐽𝑥) (𝜏1)





=




(𝐽𝑥) (𝜏2)





≤ 𝐷𝐽 ∑

0<𝑡𝑘<𝜏2

𝑀𝑆.

(43)

Thus it remains to prove only the case 𝑡1 < 𝜏1 < 𝜏2. We have
that





(𝐼𝑥) (𝜏1) − (𝐼𝑥) (𝜏2)






=













∑

0<𝑡𝑘<𝜏1

𝐶 (𝜏1 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡𝑘))

− ∑

0<𝑡𝑘<𝜏2

𝐶 (𝜏2 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡𝑘))













≤













∑

0<𝑡𝑘<𝜏1

[𝐶 (𝜏1 − 𝑡𝑘) − 𝐶 (𝜏2 − 𝑡𝑘)] 𝐼𝑘 (𝑥 (𝑡𝑘))













+ ∑

𝜏1≤𝑡𝑘<𝜏2





𝐶 (𝜏2 − 𝑡𝑘)










𝐼𝑘 (𝑥 (𝑡𝑘))






≤ 𝐷𝐼

𝑙

∑

𝑘=1





𝐶 (𝜏1 − 𝑡𝑘) − 𝐶 (𝜏2 − 𝑡𝑘)






+ 𝐷𝐼 [ ∑

0<𝑡𝑘<𝜏2

𝑀𝐶 − ∑

0<𝑡𝑘<𝜏1

𝑀𝐶] .

(44)

In a similar way we can show that




(𝐽𝑥) (𝜏1) − (𝐽𝑥) (𝜏2)






≤ 𝐷𝐽

𝑙

∑

𝑘=1





𝑆 (𝜏1 − 𝑡𝑘) − 𝑆 (𝜏2 − 𝑡𝑘)






+ 𝐷𝐽 [ ∑

0<𝑡𝑘<𝜏2

𝑀𝑆 − ∑

0<𝑡𝑘<𝜏1

𝑀𝑆] .

(45)

So, defining
𝜓1 (𝑡) = 𝐶 (𝑡) 𝜙 (0) , 𝜓2 (𝑡) = 𝑆 (𝑡) 𝜂,

𝜓3 (𝑡) = 𝑀𝐶𝐾𝑆 (𝑡) , 𝜓4 (𝑡) = 𝑀𝑆𝐾𝐶 (𝑡) ,

𝜓5 (𝑡) = 𝑀𝑆Ψ (2𝜌)∫

𝑡

0

𝑝 (𝑠) 𝑑𝑠,

𝜓6 (𝑡) = 𝐷𝐼𝐶 (𝑡 − 𝑡1) ,

𝜓7 (𝑡) = 𝐷𝐼𝐶 (𝑡 − 𝑡2) , . . . , 𝜓𝑙+5 (𝑡) = 𝐷𝐼𝐶 (𝑡 − 𝑡𝑙) ,

𝜓𝑙+6 (𝑡) = 𝐷𝐼𝑀𝐶 ∑

0<𝑡𝑘<𝑡

1,

𝜓𝑙+7 (𝑡) = 𝐷𝐽𝑆 (𝑡 − 𝑡1) ,

𝜓𝑙+8 (𝑡) = 𝐷𝐽𝑆 (𝑡 − 𝑡2) , . . . , 𝜓2𝑙+6 (𝑡) = 𝐷𝐽𝑆 (𝑡 − 𝑡𝑙) ,

𝜓2𝑙+7 (𝑡) = 𝐷𝐽𝑀𝑆 ∑

0<𝑡𝑘<𝑡

1,

(46)

where𝐾 = Ψ(2𝜌) ∫

∞

0
𝑝(𝑠)𝑑𝑠, andwe obtain that for all𝑥 ∈ 𝐵𝜌





(𝑇𝑥) (𝜏1) − (𝑇𝑥) (𝜏2)





≤

2𝑙+7

∑

𝑘=1





𝜓𝑘 (𝜏1) − 𝜓𝑘 (𝜏2)





. (47)
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4. Main Result

Theorem 11. Assume that the hypotheses (ℎ0)–(ℎ3) hold.Then
the problem (P) has at least one solution.

Proof. Our problem (P) can be reduced, by Propositions 7
and 8, to find a fixed point for the operator 𝑇. Proposition 10
assures that 𝑇 is a completely continuous operator.

To apply the Schaefer’s fixed point theorem, it remains to
prove that the set

𝜁 (𝑇) := {𝑥 ∈ R
𝑛
: 𝑥 = 𝜆𝑇𝑥, for some 0 < 𝜆 < 1} (48)

is bounded. The proof is based on an idea in [19].
Let 𝑥 = 𝜆(𝑇𝑥) with 𝜆 ∈ (0, 1). First of all, since {𝑇𝑥|[−𝑟,0] :

𝑥 ∈ 𝐵𝑃𝐶Θ[−𝑟, +∞)} = {𝜙}, for 𝑡 ∈ [−𝑟, 0] we have

|𝑥 (𝑡)| = 𝜆 |(𝑇𝑥) (𝑡)| < |(𝑇𝑥) (𝑡)| =




𝜙 (𝑡)





≤




𝜙



∞

. (49)

We consider now that 𝑡 ≥ 0. Thus we have

|𝑥 (𝑡)| = 𝜆 |(𝑇𝑥) (𝑡)| < 𝑀𝐶




𝜙



∞

+𝑀𝑆




𝜂





+ 𝑀𝑆 ∫

𝑡

0

𝑝 (𝑠) Ψ (|𝑥 (𝑠)| + |𝑥 (𝛼 (𝑠))|) 𝑑𝑠

+ 𝑙𝑀𝐶𝐷𝐼 + 𝑙𝑀𝑆𝐷𝐽.

(50)

Consider the function 𝜇𝑥 : [0, +∞) → [0, +∞) defined by

𝜇𝑥 (𝑡) := sup {

𝑥 (𝜉)





: 0 ≤ 𝜉 ≤ 𝑡} . (51)

Observe that 𝜇𝑥 is not necessarily continuous inΘ but 𝜇𝑥(𝑡
+
𝑘 )

and 𝜇𝑥(𝑡
−
𝑘 ) = 𝜇𝑥(𝑡𝑘) exist, for all 𝑡𝑘 ∈ Θ.

For 𝜉 ∈ [0, 𝑡], we have





𝑥 (𝜉)





≤ 𝑀𝐶





𝜙



∞

+𝑀𝑆




𝜂





+ 𝑀𝑆 ∫

𝑡

0

𝑝 (𝑠) Ψ (|𝑥 (𝑠)| + |𝑥 (𝛼 (𝑠))|) 𝑑𝑠

+ 𝑙𝑀𝑆𝐷𝐼 + 𝑙𝑀𝐶𝐷𝐽.

(52)

Moreover, being 𝛼 increasing and 𝛼(𝑡) ≤ 𝑡 for 𝑡 ≥ 0, one has

sup
0≤𝑠≤𝑡

|𝑥 (𝛼 (𝑠))| = sup
𝛼(0)≤𝑠≤𝛼(𝑡)

|𝑥 (𝑠)|

≤ sup
0≤𝑠≤𝑡

|𝑥 (𝑠)| = 𝜇𝑥 (𝑡)

(53)

so, taking the supremum over [0, 𝑡] in the inequality (52), we
obtain that

𝜇𝑥 (𝑡) ≤ 𝑀𝐶




𝜙



∞

+𝑀𝑆




𝜂





+ 𝑀𝑆 ∫

𝑡

0

𝑝 (𝑠)Ψ (2𝜇𝑥 (𝑡)) 𝑑𝑠

+ 𝑙𝑀𝑆𝐷𝐼 + l𝑀𝐶𝐷𝐽.

(54)

Denoting by V𝑥(𝑡) the right-hand side of the last inequality,
we have that the function V𝑥 is continuous:

𝑐 := V𝑥 (0) = (1 +𝑀𝐶)




𝜙



∞

+𝑀𝑆




𝜂




+ 𝑙𝑀𝑆𝐷𝐼 + 𝑙𝑀𝐶𝐷𝐽

(55)

and 𝜇𝑥(𝑡) ≤ V𝑥(𝑡) for 𝑡 ≥ 0.
Moreover, since Ψ is nondecreasing, for 𝑡 ∉ Θ,

V𝑥 (𝑡) ≤ 𝑀𝑆𝑝 (𝑡) Ψ (2V𝑥 (𝑡)) . (56)

This implies that

V𝑥 (𝑡)

Ψ (2V𝑥 (𝑡))
≤ 𝑀𝑆𝑝 (𝑡) , 𝑡 ∉ Θ (57)

and so, for any 𝑏 > 0,

∫

𝑏

0

V𝑥 (𝑡)

Ψ (2V𝑥 (𝑡))
𝑑𝑡 ≤ 𝑀𝑆 ∫

𝑏

0

𝑝 (𝑡) := Γ𝑏 < ∞. (58)

Since V𝑥 is a continuous function for all 𝑡 ∉ Θ, we have

∫

2V𝑥(𝑏)

2𝑐

𝑑𝑠

2Ψ (𝑠)

≤ Γ𝑏. (59)

This, together with condition (13), permits us to conclude that
V𝑥 is bounded by a constant Δ depending on the functions Ψ
and 𝑝 only.

Summarizing, 𝑥 ∈ 𝜁(𝑇) implies that ‖𝑥‖∞ ≤ max{‖𝜙‖∞,
Δ}.

5. Functional Initial Conditions

Let us consider the problem

𝑥

(𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝛼 (𝑡))) ,

𝑡 ∈ [0, +∞) \ {𝑡1, . . . , 𝑡𝑙}

𝑥 (𝑡
+

𝑘 ) − 𝑥 (𝑡
−

𝑘 ) = 𝐼𝑘 (𝑥 (𝑡𝑘)) , 𝑘 = 1, . . . , 𝑙

𝑥

(𝑡
+

𝑘 ) − 𝑥

(𝑡
−

𝑘 ) = 𝐽𝑘 (𝑥 (𝑡𝑘)) , 𝑘 = 1, . . . , 𝑙

𝐿𝑥 = 𝐻 (𝑥) , 𝑥

(0) = 𝜂.

(PF)

The modularity of the operator 𝑇 used in the proof of our
Theorem 11 permits to prove a result on the existence of
solutions for Problem (PF)modifying few parts of the above
proof.

For 𝑢 ∈ 𝐵𝑃𝐶Θ[−𝑟, +∞), we define the function 𝐶𝑢 :

[−𝑟, +∞) → R𝑛 as

(𝐶𝑢) (𝑡) := {

𝑢 (𝑡) , −𝑟 ≤ 𝑡 ≤ 0

𝐶 (𝑡) 𝑢 (0) , 𝑡 ≥ 0.

(60)

We suppose that

(ℎ4) 𝐿 : 𝐵𝑃𝐶Θ[−𝑟, +∞) → 𝐶([−𝑟, 0],R𝑛) is a bounded
linear operator for which if 𝑢, V ∈ 𝐵𝑃𝐶Θ[−𝑟, +∞) are
such that 𝑢|[−𝑟,0] = V|[−𝑟,0], then 𝐿𝑢 = 𝐿V.
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𝐻 : 𝐵𝑃𝐶Θ[−𝑟, +∞) → 𝐶([−𝑟, 0];R𝑛) is a completely
continuous operator such that ‖𝐻(𝑢)‖∞ ≤ 𝑀1 for a
certain constant𝑀1.

(ℎ5) For 𝑢 ∈ 𝐵𝑃𝐶Θ[−𝑟, +∞),𝐻(𝑢) = (𝐿𝐶𝐻)(𝑢).

Theorem 12. Assume that the hypotheses (ℎ0)–(ℎ5) hold.Then
the problem (𝑃𝐹) has at least one solution.

Proof. Let us consider the operator 𝑊 defined on
𝐵𝑃𝐶Θ[−𝑟, +∞) as

(𝑊𝑥) (𝑡) := (𝐶𝐻 (𝑥)) (𝑡) + 𝑆 (𝑡) 𝜂

+ 𝑤𝑥 (𝑡) + (𝐼𝑥) (𝑡) + (𝐽𝑥) (𝑡) .

(61)

Following the proof of Theorem 11, it is necessary to study
only the part of the operator arising from the functional initial
condition. First, for 𝑡 ≥ 0, one has






(𝐶𝐻 (𝑥)) (𝑡)






≤ 𝑀𝐶 |(𝐻 (𝑢)) (𝑡)| ≤ 𝑀𝐶𝑀1

⇒






𝐶𝐻 (𝑥)





∞

≤ 𝑀𝐶𝑀1

(62)

and, by the continuity of 𝐶(𝑡), as 𝑡 → 𝑡𝑘






(𝐶𝐻 (𝑥)) (𝑡) − (𝐶𝐻 (𝑥)) (𝑡𝑘)







≤ 𝑀1




𝐶 (𝑡) − 𝐶 (𝑡𝑘)





→ 0.

(63)

These, following Proposition 7, are enough to prove that𝑊𝑥 ∈

𝐵𝑃𝐶Θ[−𝑟, +∞) and (𝑊𝑥)(𝑡
+
𝑘 ) − (𝑊𝑥)(𝑡

−
𝑘 ) = 𝐼𝑘(𝑥(𝑡𝑘)).

Moreover, it is not difficult to verify that (𝐶𝐻(𝑥))


(𝑡) =

𝐴𝑆(𝑡)(𝐻(𝑢)(𝑡)) for 𝑡 ≥ 0, and this is enought to prove that
(𝐶𝐻(𝑥))


(𝑡
+
𝑘 ) = (𝐶𝐻(𝑥))


(𝑡
−
𝑘 ) so that one has

(𝑊𝑥)

(𝑡
+

𝑘 ) − (𝑊𝑥)

(𝑡
−

𝑘 ) = 𝐽𝑘 (𝑥 (𝑡𝑘)) . (64)

From the hypotheses on 𝐿 one has

𝐿𝑆 (𝑡) 𝜂 = 𝐿𝑤𝑥 (𝑡) = 𝐿 (𝐼𝑥) (𝑡) = 𝐿 (𝐽𝑥) (𝑡) = 0, (65)

so, it follows from (ℎ5) that

𝐿 (𝑊𝑥) (𝑡) = 𝐿 (𝐶𝐻 (𝑥)) (𝑡) + 𝐿𝑆 (𝑡) 𝜂

+ 𝐿𝑤𝑥 (𝑡) + 𝐿 (𝐼𝑥) (𝑡) + 𝐿 (𝐽𝑥) (𝑡)

= 𝐿 (𝐶𝐻 (𝑥)) (𝑡) = (𝐻 (𝑥)) (𝑡) .

(66)

Moreover, (𝐶𝐻(𝑥))


(𝑡) = 𝐴(𝐶𝐻(𝑥))(𝑡) and so, using

Proposition 8, the fixed points of 𝑊 are solutions of (PF). It
remains to prove that we can control the oscillations of𝑊𝑥 by
a finite number of bounded functions.

We need to control only the oscillations of 𝐶𝐻(𝑥). If 0 <

𝜏1 < 𝜏2 (the other case are similar), we have





(𝐶𝐻 (𝑥)) (𝜏1) − (𝐶𝐻 (𝑥)) (𝜏2)







≤




𝐶 (𝜏1) − 𝐶 (𝜏2)





𝑀1.

(67)

So, by defining 𝛾(𝑡) := 𝑀1𝐶(𝑡) we have





(𝐶𝐻 (𝑥)) (𝜏1) − (𝐶𝐻 (𝑥)) (𝜏2)







≤ 𝛾 (𝜏1) − 𝛾 (𝜏2) .

(68)

Hence𝑊 is a completely continuous operator. Following
the same proof of Theorem 11 one can see that the set

𝜁 (𝑊) := {𝑥 ∈ R
𝑛
: 𝑥 = 𝜆𝑊𝑥, for some 0 < 𝜆 < 1} (69)

is bounded, so 𝑊 has fixed points that are solutions of (PF).
This complete the proof.

Remark 13. The reader is referred to [5, 9, 13, 19] for some
examples and applications.
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[24] H. Schaefer, “Über die Methode der a priori-Schranken,”
Mathematische Annalen, vol. 129, pp. 415–416, 1955.

[25] E. De Pascale, G. Lewicki, and G. Marino, “Some conditions for
compactness in 𝐵𝐶(𝑄) and their application to boundary value
problems,” Analysis, vol. 22, no. 1, pp. 21–32, 2002.



Hindawi Publishing Corporation
Journal of Function Spaces and Applications
Volume 2013, Article ID 932145, 10 pages
http://dx.doi.org/10.1155/2013/932145

Research Article
On Linear and Nonlinear Fourth-Order Eigenvalue Problems
with Nonlocal Boundary Condition

Dongming Yan

School of Mathematics and Statistics, Zhejiang University of Finance & Economics, Hangzhou 310018, China

Correspondence should be addressed to Dongming Yan; yandong ming@126.com

Received 18 December 2012; Revised 13 February 2013; Accepted 15 February 2013

Academic Editor: Feliz Minhós

Copyright © 2013 Dongming Yan. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We determine the principal eigenvalue of the linear problem 𝑢
(4)
(𝑡) + 𝛽𝑢


(𝑡) = 𝜇[𝑢(𝑡) − 𝑢


(𝑡)], 𝑡 ∈ (0, 1), 𝑢(0) = 𝑢(1) =

∫

1

0
𝑝(𝑠)𝑢(𝑠)d𝑠, 𝑢(0) = 𝑢(1) = ∫1

0
𝑞(𝑠)𝑢

(𝑠)d𝑠, where 0 < 𝛽 < 𝜋2 and 𝑝, 𝑞 ∈ 𝐿[0, 1]. Moreover, we investigate the existence

of positive solutions for the corresponding nonlinear problem. The proofs of our main results are based upon the Krein-Rutman
theorem and fixed point index theory.

1. Introduction

The deformations of an elastic beam can be described by
the boundary value problems of the fourth-order ordinary
differential equations. For example, an elastic beam in an
equilibrium state whose both ends are simply supported can
be described by the fourth-order boundary value problem of
the form

𝑢
(4)
(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢


(𝑡)) , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢

(0) = 𝑢


(1) = 0,

(1)

see Gupta [1, 2]. Owing to its significance in physics, it has
been studied by many authors using nonlinear alternatives of
Leray-Schauder, the fixed point index theory, and themethod
of lower and upper solutions; see, for example, [3–16].

Recently, Bai [3] investigated the existence of positive
solutions for more general fourth-order nonlocal boundary
value problem

𝑢
(4)
(𝑡) + 𝛽𝑢


(𝑡) = 𝜆𝑓 (𝑡, 𝑢 (𝑡) , 𝑢


(𝑡)) , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = ∫

1

0

𝑝 (𝑠) 𝑢 (𝑠) d𝑠,

𝑢

(0) = 𝑢


(1) = ∫

1

0

𝑞 (𝑠) 𝑢

(𝑠) d𝑠.

(2)

By using the Krasnoselskii fixed point theorem, the sufficient
conditions for the existence of positive solutions of (2) are
obtained. We can find that, however, those conditions do not
involve the eigenvalues with respect to the relevant linear
operator, and those sufficient conditions are not optimal.

The likely reason is that the spectrum structure of the
linear eigenvalue problem

𝑢
(4)
(𝑡) + 𝛽𝑢


(𝑡) = 𝜇 [𝑢 (𝑡) − 𝑢


(𝑡)] , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = ∫

1

0

𝑝 (𝑠) 𝑢 (𝑠) d𝑠,

𝑢

(0) = 𝑢


(1) = ∫

1

0

𝑞 (𝑠) 𝑢

(𝑠) d𝑠

(3)

is not clear.
It is the purpose of this paper to investigate the first

eigenvalue of (3) by using the Krein-Rutman theorem [17, 18],
and thenwe use this spectrum result to establish the existence
of positive solutions of nonlinear nonlocal problem (2). The
existence of positive solution is obtained by means of fixed
point index theory under some conditions concerning the
first eigenvalue with respect to the relevant linear operator.
The obtained sufficient conditions in this paper are optimal.
For the concepts and properties of fixed point index theory,
we refer the reader to [19].
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The rest of the paper is arranged as follows: in Section 2,
we study the spectrum of (3). Finally, in Section 3, we give an
application of our main result.

2. Spectrum of (3)
Let us assume that

(A1) 0 < 𝛽 < 𝜋
2, 𝑝, 𝑞 ∈ 𝐿[0, 1], 𝑝(𝑡) ≥ 0, 𝑞(𝑡) ≥ 0,

𝑡 ∈ [0, 1], ∫1
0
𝑝(𝑠)d𝑠 < 1, ∫1

0
𝑞(𝑠) sin√𝛽𝑠 d𝑠 + ∫1

0
𝑞(𝑠)

sin√𝛽(1 − 𝑠)d𝑠 < sin√𝛽.

(A2) 𝑓 ∈ 𝐶([0, 1] × [0,∞) × (−∞, 0], [0,∞)).

Definition 1. We say 𝜇 is an eigenvalue of linear problem (see
(3)), if (3) has nontrivial solutions.

To study the spectrum of (3), we need several preliminary
results.

Let

𝐺1 (𝑡, 𝑠) =

{

{

{

𝑡 (1 − 𝑠) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1;

𝑠 (1 − 𝑡) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1;

𝐺2 (𝑡, 𝑠) =

{
{
{
{
{

{
{
{
{
{

{

sin√𝛽𝑡 sin√𝛽 (1 − 𝑠)
√𝛽 sin√𝛽

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1;

sin√𝛽𝑠 sin√𝛽 (1 − 𝑡)
√𝛽 sin√𝛽

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

(4)

Lemma 2 (see [7]). Assume (A1) holds. Then one has

(i) 𝐺𝑖(𝑡, 𝑠) ≥ 0, for 𝑡, 𝑠 ∈ [0, 1]; 𝐺𝑖(𝑡, 𝑠) > 0, for 𝑡, 𝑠 ∈
(0, 1);

(ii) 𝑏𝑖𝐺𝑖(𝑡, 𝑡)𝐺𝑖(𝑠, 𝑠) ≤ 𝐺𝑖(𝑡, 𝑠) ≤ 𝐶𝑖𝐺𝑖(𝑡, 𝑡), for 𝑡, 𝑠 ∈ [0, 1],

where 𝐶1 = 1, 𝑏1 = 1; 𝐶2 = 1/ sin√𝛽, 𝑏2 = √𝛽 sin√𝛽.

Lemma 3 (see [3]). Assume (A1) holds. Then for any 𝑔 ∈

𝐶[0, 1], 𝑢 solves the problem

𝑢
(4)
(𝑡) + 𝛽𝑢


(𝑡) = 𝑔 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = ∫

1

0

𝑝 (𝑠) 𝑢 (𝑠) d𝑠,

𝑢

(0) = 𝑢


(1) = ∫

1

0

𝑞 (𝑠) 𝑢

(𝑠) d𝑠,

(5)

if and only if

𝑢 (𝑡) = ∫

1

0

∫

1

0

𝐾1 (𝑡, 𝑠) 𝐾2 (𝑠, 𝜏) 𝑔 (𝜏) d𝜏 d𝑠, (6)

where

𝐾1 (𝑡, 𝑠) = 𝐺1 (𝑡, 𝑠) +
1

1 − ∫

1

0
𝑝 (𝑥) d𝑥

∫

1

0

𝐺1 (𝑠, 𝑥) 𝑝 (𝑥) d𝑥,

𝐾2 (𝑠, 𝜏) = 𝐺2 (𝑠, 𝜏) + 𝜌 (𝑠) ∫

1

0

𝐺2 (𝜏, 𝑥) 𝑞 (𝑥) d𝑥,

𝜌 (𝑠)

=

sin√𝛽𝑠 + sin√𝛽 (1 − 𝑠)

sin√𝛽 − ∫1
0
𝑞 (𝑥) sin√𝛽𝑥 d𝑥 − ∫1

0
𝑞 (𝑥) sin√𝛽 (1 − 𝑥) d𝑥

.

(7)

Let

𝑒 (𝑡) := −𝑡
2
+ 𝑡 +

∫

1

0
𝑝 (𝑠) (𝑠 − 𝑠

2
) d𝑠

1 − ∫

1

0
𝑝 (𝑠) d𝑠

, 𝑡 ∈ [0, 1] . (8)

Then, there exist 𝑐, �̃� > 0 such that

∫

1

0

𝐾1 (𝑡, 𝑠) 𝑒 (𝑠) d𝑠 ≤ 𝑐𝑒 (𝑡) , 𝑡 ∈ [0, 1] , (9)

∫

1

0

𝐾2 (𝑡, 𝑠) 𝑒 (𝑠) d𝑠 ≤ �̃�𝑒 (𝑡) , 𝑡 ∈ [0, 1] , (10)

respectively.
In fact, from (ii) of Lemma 2, we can obtain

∫

1

0

𝐾1 (𝑡, 𝑠) 𝑒 (𝑠) d𝑠

= ∫

1

0

[

[

𝐺1 (𝑡, 𝑠) +
1

1 − ∫

1

0
𝑝 (𝑥) d𝑥

×∫

1

0

𝐺1 (𝑠, 𝑥) 𝑝 (𝑥) d𝑥]

]

𝑒 (𝑠) d𝑠
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≤ ∫

1

0

[

[

𝐺1 (𝑡, 𝑡) +
1

1 − ∫

1

0
𝑝 (𝑥) d𝑥

× ∫

1

0

𝐺1 (𝑠, 𝑠) 𝑝 (𝑥) d𝑥]

]

𝑒 (𝑠) d𝑠

= 𝐺1 (𝑡, 𝑡) ∫

1

0

𝑒 (𝑠) d𝑠 +
∫

1

0
𝑝 (𝑥) d𝑥

1 − ∫

1

0
𝑝 (𝑥) d𝑥

× ∫

1

0

𝐺1 (𝑠, 𝑠) 𝑒 (𝑠) d𝑠

= (−𝑡
2
+ 𝑡)∫

1

0

𝑒 (𝑠) d𝑠 +
∫

1

0
𝑝 (𝑥) d𝑥

1 − ∫

1

0
𝑝 (𝑥) d𝑥

× ∫

1

0

(𝑠 − 𝑠
2
) 𝑒 (𝑠) d𝑠

≤ 𝑐𝑒 (𝑡) , 𝑡 ∈ [0, 1] ,

(11)
where we can take

𝑐 = max
{

{

{

∫

1

0

𝑒 (𝑠) d𝑠,
∫

1

0
𝑝 (𝑠) d𝑠

∫

1

0
(𝑠 − 𝑠
2
) 𝑝 (𝑠) d𝑠

×∫

1

0

(𝑠 − 𝑠
2
) 𝑒 (𝑠) d𝑠

}

}

}

,

(12)

and also we obtain

∫

1

0

𝐾2 (𝑡, 𝑠) 𝑒 (𝑠) d𝑠

= ∫

1

0

[𝐺2 (𝑡, 𝑠) + 𝜌 (𝑡) ∫

1

0

𝐺2 (𝑠, 𝑥) 𝑞 (𝑥) d𝑥] 𝑒 (𝑠) d𝑠

≤

1

sin√𝛽
∫

1

0

[𝐺2 (𝑡, 𝑡) + 𝜌 (𝑡) ∫

1

0

𝐺2 (𝑥, 𝑥) 𝑞 (𝑥) d𝑥]

× 𝑒 (𝑠) d𝑠

≤ 𝑐1 sin√𝛽𝑡 sin√𝛽 (1 − 𝑡) + 𝑐2

≤ �̃�𝑒 (𝑡) ,

(13)
where

𝑐1 =
1

√𝛽sin2√𝛽
∫

1

0

𝑒 (𝑠) d𝑠,

𝑐2 =
1

sin√𝛽
∫

1

0

𝑒 (𝑠) d𝑠 ∫
1

0

𝐺2 (𝑠, 𝑠) 𝑞 (𝑠) d𝑠max
0≤𝑡≤1

𝜌 (𝑡) ,

�̃� =

1 − ∫

1

0
𝑝 (𝑠) d𝑠

∫

1

0
(𝑠 − 𝑠
2
) 𝑝 (𝑠) d𝑠

(𝑐1 + 𝑐2) .

(14)

Let

𝑋 =

{
{
{
{
{

{
{
{
{
{

{

𝑢 ∈ 𝐶
2
[0, 1] : 𝑢 (0) = 𝑢 (1) = ∫

1

0

𝑝 (𝑠) 𝑢 (𝑠) d𝑠

𝑢

(0) = 𝑢


(1) = ∫

1

0

𝑞 (𝑠) 𝑢

(𝑠) d𝑠

−𝜀𝑒 (𝑡) ≤ −𝑢

(𝑡) ≤ 𝜀𝑒 (𝑡)

}
}
}
}
}

}
}
}
}
}

}

,

(15)

for a certain 𝜀 > 0, and let 𝑌 be the Banach space 𝐶[0, 1] with
the norm ‖𝑢‖∞ = max0≤𝑡≤1|𝑢(𝑡)|. For 𝑢 ∈ 𝑋, we have

𝑢 (𝑡) = ∫

1

0

𝐾1 (𝑡, 𝑠) (−𝑢

(𝑠)) d𝑠. (16)

Combining (16) and (9) with the fact that −𝜀𝑒(𝑠) ≤ −𝑢(𝑠) ≤
𝜀𝑒(𝑠), we conclude that

−𝑐𝜀𝑒 (𝑡) ≤ 𝑢 (𝑡) ≤ 𝑐𝜀𝑒 (𝑡) , 𝑡 ∈ [0, 1] . (17)

So, we may define the norm of 𝑢 ∈ 𝑋 by

‖𝑢‖𝑋 := inf {𝜀 | 𝜀 > 0, −𝜀𝑒 (𝑡) ≤ −𝑢 (𝑡) ≤ 𝜀𝑒 (𝑡) , 𝑡 ∈ [0, 1]} .
(18)

This norm is so called 𝑢0-norm.
It is easy to get the following lemmas.

Lemma 4. (𝑋, || ⋅ ||𝑋) is a Banach space.

Proof. Let {𝑢𝑛} be Cauchy sequence of (𝑋, || ⋅ ||𝑋). Then, we
have





𝑢𝑛 − 𝑢𝑚




𝑋
→ 0, (𝑛,𝑚 → ∞) . (19)

From (18) and (19), for all 𝜀 > 0, there exists𝑁 > 0 such that

−𝜀𝑒 (𝑡) ≤ − (𝑢


𝑛 (𝑡) − 𝑢


𝑚 (𝑡)) ≤ 𝜀𝑒 (𝑡) ,

𝑡 ∈ [0, 1] , ∀𝑛,𝑚 > 𝑁.

(20)

Hence,





𝑢


𝑛 − 𝑢


𝑚





∞
≤ 𝜀‖𝑒‖∞ → 0, (𝑛,𝑚 → ∞) , (21)

which implies that {𝑢

𝑛 } is a Cauchy sequence of

(𝐶[0, 1], || ⋅ ||∞). According to the completeness of (𝐶[0, 1],
|| ⋅ ||∞), there exists 𝑢0 ∈ 𝐶

2
[0, 1] such that






𝑢


𝑛 − 𝑢


0





∞
→ 0, (𝑛 → ∞) . (22)

Let𝑚 → ∞ in (20). Then, we have

−𝜀𝑒 (𝑡) ≤ − (𝑢


𝑛 (𝑡) − 𝑢


0 (𝑡)) ≤ 𝜀𝑒 (𝑡) ,

𝑡 ∈ [0, 1] , (𝑛 > 𝑁) ,

(23)

which implies that




𝑢𝑛 − 𝑢0




𝑋
≤ 𝜀, (𝑛 > 𝑁) . (24)

Hence, for Cauchy sequence {𝑢𝑛} ⊂ (𝑋, || ⋅ ||𝑋), there exists
𝑢0 ∈ 𝑋 satisfying





𝑢𝑛 − 𝑢0




𝑋
→ 0, (𝑛 → ∞) . (25)

Therefore, (𝑋, || ⋅ ||𝑋) is a Banach space.
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Lemma 5. 𝑋 ∩ 𝐶4[0, 1] is compactly embedded in 𝑋.

Proof. Let {𝑢𝑛} ⊂ 𝑋 ∩ 𝐶4[0, 1] be bounded. Then, according
to the fact that 𝐶4[0, 1] is compactly embedded in 𝐶2[0, 1],
there exist {𝑢𝑛𝑗} ⊂ {𝑢𝑛} and 𝑢0 ∈ 𝐶

2
[0, 1] such that








𝑢


𝑛𝑗
− 𝑢


0






∞
→ 0, 𝑗 → ∞. (26)

From (26), for all 𝜀 > 0, there exists𝑁 > 0 such that

−𝜀 ≤ − (𝑢


𝑛𝑗
(𝑡) − 𝑢



0 (𝑡)) ≤ 𝜀, 𝑡 ∈ [0, 1] , 𝑛𝑗 > 𝑁. (27)

Since

𝑒 (𝑡) ≥

∫

1

0
(𝑠 − 𝑠
2
) 𝑝 (𝑠) d𝑠

1 − ∫

1

0
𝑝 (𝑠) d𝑠

, 𝑡 ∈ [0, 1] , (28)

combining this fact with (27) we have

−

1 − ∫

1

0
𝑝 (𝑠) d𝑠

∫

1

0
(𝑠 − 𝑠
2
) 𝑝 (𝑠) d𝑠

𝜀𝑒 (𝑡)

≤ − (𝑢


𝑛𝑗
(𝑡) − 𝑢



0 (𝑡))

≤

1 − ∫

1

0
𝑝 (𝑠) d𝑠

∫

1

0
(𝑠 − 𝑠
2
) 𝑝 (𝑠) d𝑠

𝜀𝑒 (𝑡) , 𝑡 ∈ [0, 1] , 𝑛𝑗 > 𝑁,

(29)

which implies








𝑢𝑛𝑗
− 𝑢0






𝑋
≤

1 − ∫

1

0
𝑝 (𝑠) d𝑠

∫

1

0
(𝑠 − 𝑠
2
) 𝑝 (𝑠) d𝑠

𝜀 → 0, 𝑛𝑗 → ∞.

(30)

Therefore,𝑋 ∩ 𝐶4[0, 1] is compactly embedded in𝑋.

Let

𝑃 := {𝑢 ∈ 𝑋 | 𝑢 (𝑡) ≥ 0, 𝑢

(𝑡) ≤ 0, 𝑡 ∈ [0, 1]} . (31)

Then, the cone 𝑃 is normal and has nonempty interior int𝑃.
In the rest of this section, we will prove the existence of

the first eigenvalue of (3). To wit, we get the following.

Theorem 6. Assume (A1) holds. Then (3) has an algebraically
simple eigenvalue 𝜇1, with an eigenfunction 𝜑1 ∈ int𝑃, and
there is no other eigenvalue with a positive eigenfunction.

Remark 7. If 𝑝 = 𝑞 ≡ 0, then 𝜇1 can be explicitly given by

𝜇1 =
𝜋
4
− 𝛽𝜋
2

1 + 𝜋
2

(32)

and the corresponding eigenfunction 𝜑1(𝑡) = sin𝜋𝑡, 𝑡 ∈
[0, 1].

Proof of Theorem 6. For 𝑢 ∈ 𝑋, define a linear operator 𝑇 :
𝑋 → 𝑌 by

(𝑇𝑢) (𝑡) := ∬

1

0

𝐾1 (𝑡, 𝑠) 𝐾2 (𝑠, 𝜏) [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏 d𝑠. (33)

Then, by the definition of𝐾1, we have

(𝑇𝑢) (𝑡)

= ∫

1

0

{

{

{

[

[

𝐺1 (𝑡, 𝑠) +
1

1 − ∫

1

0
𝑝 (𝑥) d𝑥

∫

1

0

𝐺1 (𝑠, 𝑥) 𝑝 (𝑥) d𝑥]

]

×∫

1

0

𝐾2 (𝑠, 𝜏) [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏

}

}

}

d𝑠

= ∫

𝑡

0

{

{

{

[

[

𝑠 (1 − 𝑡) +

1

1 − ∫

1

0
𝑝 (𝑥) d𝑥

∫

1

0

𝐺1 (𝑠, 𝑥) 𝑝 (𝑥) d𝑥]

]

×∫

1

0

𝐾2 (𝑠, 𝜏) [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏

}

}

}

d𝑠

+ ∫

1

𝑡

{

{

{

[

[

𝑡 (1 − 𝑠) +

1

1 − ∫

1

0
𝑝 (𝑥) d𝑥

∫

1

0

𝐺1 (𝑠, 𝑥) 𝑝 (𝑥) d𝑥]

]

×∫

1

0

𝐾2 (𝑠, 𝜏) [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏

}

}

}

d𝑠.

(34)

Therefore, we can obtain

(𝑇𝑢)

(𝑡) = ∫

𝑡

0

{−𝑠∫

1

0

𝐾2 (𝑠, 𝜏) [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏} d𝑠

+ ∫

1

𝑡

{(1 − 𝑠) ∫

1

0

𝐾2 (𝑠, 𝜏) [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏} d𝑠,

(35)

(𝑇𝑢)

(𝑡) = −𝑡 ∫

1

0

𝐾2 (𝑡, 𝜏) [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏

+ (𝑡 − 1) ∫

1

0

𝐾2 (𝑡, 𝜏) [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏

= −∫

1

0

𝐾2 (𝑡, 𝜏) [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏.

(36)

We claim that𝑇 : 𝑃 → 𝑃. In fact, for𝑢 ∈ 𝑋, let ||𝑢||𝑋 = 𝛼.
Then, from (18) and (17) we have, for 𝑡 ∈ [0, 1],

−𝛼𝑒 (𝑡) ≤ −𝑢

(𝑡) ≤ 𝛼𝑒 (𝑡) ,

−𝑐𝛼𝑒 (𝑡) ≤ 𝑢 (𝑡) ≤ 𝑐𝛼𝑒 (𝑡) .

(37)
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On the one hand, from (36)-(37) and (10) we have

−(𝑇𝑢)

(𝑡) = ∫

1

0

𝐾2 (𝑡, 𝑠) [𝑢 (𝑠) − 𝑢

(𝑠)] d𝑠

≤ ∫

1

0

𝐾2 (𝑡, 𝑠) [𝑐𝛼 + 𝛼] 𝑒 (𝑠) d𝑠

≤ �̃� (𝑐𝛼 + 𝛼) 𝑒 (𝑡) .

(38)

On the other hand, from (36)-(37) and (10) we have

−(𝑇𝑢)

(𝑡) = ∫

1

0

𝐾2 (𝑡, 𝑠) [𝑢 (𝑠) − 𝑢

(𝑠)] d𝑠

≥ −∫

1

0

𝐾2 (𝑡, 𝑠) [𝑐𝛼 + 𝛼] 𝑒 (𝑠) d𝑠

≥ −�̃� (𝑐𝛼 + 𝛼) 𝑒 (𝑡) .

(39)

Therefore, 𝑇(𝑋) ⊆ 𝑋. If 𝑢 ∈ 𝑃, then 𝑢(𝑠) ≥ 0, 𝑢(𝑠) ≤ 0 on
[0, 1]. According to (36) and the fact that

𝐾2 (𝑡, 𝑠) ≥ 0, 0 ≤ 𝑡, 𝑠 ≤ 1, (40)

we have

(𝑇𝑢)

(𝑡) = −∫

1

0

𝐾2 (𝑡, 𝑠) [𝑢 (𝑠) − 𝑢

(𝑠)] d𝑠 ≤ 0. (41)

Furthermore, according to (41), the definition of 𝑇, and the
fact that

𝐾1 (𝑡, 𝑠) ≥ 0, 0 ≤ 𝑡, 𝑠 ≤ 1, (42)

we have

(𝑇𝑢) (𝑡) = ∫

1

0

{𝐾1 (𝑡, 𝑠) ∫

1

0

𝐾2 (𝑠, 𝜏) [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏} d𝑠

= ∫

1

0

𝐾1 (𝑡, 𝑠) [−(𝑇𝑢)

(𝑠)] d𝑠 ≥ 0.

(43)

Then 𝑢 ∈ 𝑃, and accordingly, 𝑇(𝑃) ⊆ 𝑃.
Now, since 𝑇(𝑋) ⊂ 𝑋 ∩ 𝐶

4
[0, 1] and 𝑋 ∩ 𝐶

4
[0, 1] is

compactly embedded in 𝑋, we have that 𝑇 : 𝑋 → 𝑋 is
compact.

Next, we show that 𝑇 : 𝑃 → 𝑃 is strongly positive.
For 𝑢 ∈ 𝑃\{𝜃}, it is easy to check that there exist 𝜌1𝑢, 𝜌2𝑢 >

0, such that for 𝑡 ∈ [0, 1]

(𝑇𝑢) (𝑡) ≥ 𝜌1𝑢𝑒 (𝑡) ,

−(𝑇𝑢)

(𝑡) ≥ 𝜌2𝑢𝑒 (𝑡) .

(44)

In fact, for every 𝑢 ∈ 𝑃 \ {𝜃}, it follows from Lemma 2 that

(𝑇𝑢) (𝑡)

=∬

1

0

[

[

𝐺1 (𝑡, 𝑠) +
1

1 − ∫

1

0
𝑝 (𝑥) d𝑥

∫

1

0

𝐺1 (𝑠, 𝑥) 𝑝 (𝑥) d𝑥]

]

× [𝐺2 (𝑠, 𝜏) + 𝜌 (𝑠) ∫

1

0

𝐺2 (𝜏, 𝑥) 𝑞 (𝑥) d𝑥]

× [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏 d𝑠

≥ ∬

1

0

[

[

𝐺1 (𝑡, 𝑡) 𝐺1 (𝑠, 𝑠)

+

𝐺1 (𝑠, 𝑠)

1 − ∫

1

0
𝑝 (𝑥) d𝑥

∫

1

0

𝐺1 (𝑥, 𝑥) 𝑝 (𝑥) d𝑥]

]

× [𝐺2 (𝑠, 𝜏) + 𝜌 (𝑠) ∫

1

0

𝐺2 (𝜏, 𝑥) 𝑞 (𝑥) d𝑥]

× [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏 d𝑠

= 𝜌1𝑢𝑒 (𝑡) ,

(45)

where

𝜌1𝑢 = ∬

1

0

𝐺1 (𝑠, 𝑠)

× [𝐺2 (𝑠, 𝜏) + 𝜌 (𝑠) ∫

1

0

𝐺2 (𝜏, 𝑥) 𝑞 (𝑥) d𝑥]

× [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏 d𝑠 > 0,

(46)

− (𝑇𝑢)

(𝑡)

= ∫

1

0

[𝐺2 (𝑡, 𝑠) + 𝜌 (𝑡) ∫

1

0

𝐺2 (𝑠, 𝑥) 𝑞 (𝑥) d𝑥]

× [𝑢 (𝑠) − 𝑢

(𝑠)] d𝑠

≥ √𝛽 sin√𝛽∫
1

0

[𝐺2 (𝑡, 𝑡) 𝐺2 (𝑠, 𝑠)

+𝜌 (𝑡) 𝐺2 (𝑠, 𝑠) ∫

1

0

𝐺2 (𝑥, 𝑥) 𝑞 (𝑥) d𝑥]

× [𝑢 (𝑠) − 𝑢

(𝑠)] d𝑠

= √𝛽 sin√𝛽[𝐺2 (𝑡, 𝑡) + 𝜌 (𝑡) ∫
1

0

𝐺2 (𝑥, 𝑥) 𝑞 (𝑥) d𝑥]

× [∫

1

0

𝐺2 (𝑠, 𝑠) [𝑢 (𝑠) − 𝑢

(𝑠)] d𝑠]
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≥ 𝜌 (𝑡) [∫

1

0

sin√𝛽𝑥 sin√𝛽 (1 − 𝑥) 𝑞 (𝑥) d𝑥]

× [∫

1

0

𝐺2 (𝑠, 𝑠) [𝑢 (𝑠) − 𝑢

(𝑠)] d𝑠]

≥ 𝜌2𝑢𝑒 (𝑡) ,

(47)

where

𝜌2𝑢 = min
𝑡∈[0,1]

𝜌 (𝑡) [∫

1

0

sin√𝛽𝑥 sin√𝛽 (1 − 𝑥) 𝑞 (𝑥) d𝑥

×∫

1

0

𝐺2 (𝑠, 𝑠) [𝑢 (𝑠) − 𝑢

(𝑠)] d𝑠]

× (

1

4

+

∫

1

0
𝑝 (𝑠) (𝑠 − 𝑠

2
) d𝑠

1 − ∫

1

0
𝑝 (𝑠) d𝑠

)

−1

> 0.

(48)

Therefore, it follows from (44) that 𝑇𝑢 ∈ int𝑃.
Now, on the one hand, by theKrein-Rutman theorem ([17,

Theorem 7.C] and [18, Theorem 19.3]), 𝑇 has an algebraically
simple eigenvalue 𝑟(𝑇) > 0 with an eigenfunction 𝜑1 ∈ int𝑃.
Moreover, there is no other eigenvalue with a positive eigen-
function. On the other hand, we have from the definition of
𝑇 and Lemma 3 that (3) is equivalent to the integral equation

𝑢 (𝑡) = 𝜇 (𝑇𝑢) (𝑡) . (49)

Therefore, 𝜇1 = (𝑟(𝑇))
−1 with a positive eigenfunction 𝜑1 is a

simple eigenvalue of (3). Moreover, for (3), there is no other
eigenvalue with a positive eigenfunction.

3. An Application of Theorem 6

For convenience, we introduce the following notations:

𝑓

∞
= lim sup
|𝑢|+|V|→+∞

max
𝑡∈[0,1]

𝑓 (𝑡, 𝑢, V)

|𝑢| + |V|
,

𝑓
0
= lim inf
|𝑢|+|V|→ 0+

min
𝑡∈[0,1]

𝑓 (𝑡, 𝑢, V)

|𝑢| + |V|
,

𝑓

0
= lim sup
|𝑢|+|V|→ 0+

max
𝑡∈[0,1]

𝑓 (𝑡, 𝑢, V)

|𝑢| + |V|
,

𝑓
∞
= lim inf
|𝑢|+|V|→+∞

min
𝑡∈[0,1]

𝑓 (𝑡, 𝑢, V)

|𝑢| + |V|
,

𝐵𝑟 = {𝑢 ∈ 𝑋 | ‖𝑢‖𝑋 < 𝑟} ,

𝜕𝐵𝑟 = {𝑢 ∈ 𝑋 | ‖𝑢‖𝑋 = 𝑟} (𝑟 > 0) .

(50)

Theorem 8. Assume that (A1) and (A2) hold, and 0 ≤ 𝑓
∞
<

𝑓
0
≤ +∞. Then, for each 𝜆 satisfying

𝜇1

𝑓
0

< 𝜆 <

𝜇1

𝑓

∞ , (51)

there exists at least one positive solution of (2).

Theorem 9. Assume that (A1) and (A2) hold, and 0 ≤ 𝑓
0
<

𝑓
∞
≤ +∞. Then, for each 𝜆 satisfying

𝜇1

𝑓
∞

< 𝜆 <

𝜇1

𝑓

0
, (52)

there exists at least one positive solution of (2).

Remark 10. Bai [3] proved existence of positive solutions via
Guo-Krasnoselskii fixed point theorem under some condi-
tions which do not involve the eigenvalue of (3). While our
Theorems 8 and 9 are established under (51) or (52) which are
related to the eigenvalue of (3). Our Theorems 8 and 9 cover
an undefined case in [3]. Consider the following boundary
value problem:

𝑢
(4)
(𝑡) +

𝜋
2

4

𝑢

(𝑡)

=

3𝜋
4
+ 1

4 (1 + 𝜋
2
)

[𝑢 (𝑡) − 𝑢

(𝑡)]

−

2

4 (1 + 𝜋
2
)

sin [𝑢 (𝑡) − 𝑢 (𝑡)] , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢

(0) = 𝑢


(1) = 0.

(53)

In this case, 𝜇1 = 3𝜋
4
/4(1 + 𝜋

2
), 𝑓(𝑡, 𝑢, V) = ((3𝜋4 + 1)/4(1 +

𝜋
2
))(𝑢 − V) − (2/4(1 + 𝜋2)) sin(𝑢 − V), 𝜆 = 1, and

𝜇1

𝑓
∞

=

3𝜋
4

3𝜋
4
+ 1

< 1 = 𝜆 <

3𝜋
4

3𝜋
4
− 1

=

𝜇1

𝑓

0
. (54)

According to Theorem 9, the above boundary value problem
has at least one positive solution. For the above boundary
value problem, however, we cannot obtain the above conclu-
sion by [3, Theorem 3.1] since

𝑓
∞
=

3𝜋
4
+ 1

4 (1 + 𝜋
2
)

< 20 < 36 <

𝜋
3
(√4 + 2√2 + 2)

2√2

=

𝜂1

𝜆

.

(55)

Moreover, (51) and (52) are optimal. In order to illustrate this
point, consider the problem

𝑢
(4)
(𝑡) + 𝛽𝑢


(𝑡) =

𝜋
4
− 𝛽𝜋
2

1 + 𝜋
2
[𝑢 (𝑡) − 𝑢


(𝑡)]

+ 𝜌 (𝑢 (𝑡) , 𝑢

(𝑡)) , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢

(0) = 𝑢


(1) = 0,

(56)
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where

𝜌 (𝑥, 𝑦) =

{

{

{

(𝑥 − 𝑦)
2
, 0 ≤ 𝑥 − 𝑦 ≤ 1,

√𝑥 − 𝑦, 1 ≤ 𝑥 − 𝑦 < ∞.

(57)

In this case, 𝜇1 = (𝜋
4
− 𝛽𝜋
2
)/(1 + 𝜋

2
), 𝑓(𝑡, 𝑢, V) = ((𝜋4 −

𝛽𝜋
2
)/(1 + 𝜋

2
))[𝑢 − V] + 𝜌(𝑢, V), 𝜆 = 1, and

𝜇1

𝑓
0

= 𝜆 =

𝜇1

𝑓

∞ ,
𝜇1

𝑓
∞

= 𝜆 =

𝜇1

𝑓

0
. (58)

However, (56) has no positive solution. In fact, suppose on
the contrary that (56) has a positive solution 𝑢. Multiplying
the first equation of (56) with sin𝜋𝑡 and integrating from 0
to 1, we get

0 = ∫

1

0

𝜌 (𝑢 (𝑡) , 𝑢

(𝑡)) sin𝜋𝑡 d𝑡 > 0, (59)

which is a contradiction.

To prove Theorems 8 and 9, we need the following
preliminary results.

Lemma 11. For every 𝑢 ∈ 𝑋, there exist 𝐿0, 𝐿1 > 0 such that

𝐿0‖𝑢‖∞ ≤





𝑢



∞
≤






𝑢



∞
≤ 𝐿1‖𝑢‖𝑋. (60)

Proof. (1) By 𝑢(0) = ∫1
0
𝑝(𝑠)𝑢(𝑠)d𝑠, there is 𝑢(𝑡) = ∫𝑡

0
𝑢

(𝑠)d𝑠+

∫

1

0
𝑝(𝑠)𝑢(𝑠)d𝑠, so

|𝑢 (𝑡)| ≤ ∫

1

0






𝑢

(𝑠)






d𝑠 + ∫

1

0

𝑝 (𝑠) |𝑢 (𝑠)| d𝑠

≤






𝑢



∞
+ ‖𝑢‖∞ ∫

1

0

𝑝 (𝑠) d𝑠.
(61)

Hence

𝐿0‖𝑢‖∞ ≤





𝑢



∞
, (62)

where 𝐿0 = 1 − ∫
1

0
𝑝(𝑠)d𝑠.

(2) By 𝑢(0) = 𝑢(1), there is a 𝜉 ∈ (0, 1) such that 𝑢(𝜉) = 0,
and so, for 𝑡 ∈ [0, 1]

−𝑢

(𝑡) = ∫

𝜉

𝑡

𝑢

(𝑠) d𝑠. (63)

Hence |𝑢(𝑡)| ≤ | ∫𝜉
𝑡
|𝑢

(𝑠)|d𝑠| ≤ ∫1

0
|𝑢

(𝑠)|d𝑠 ≤ ||𝑢||∞, and

accordingly,





𝑢



∞
≤






𝑢



∞
. (64)

(3) We have from (18) that |𝑢(𝑡)| ≤ ||𝑢||𝑋𝑒(𝑡), which
implies that






𝑢

(𝑡)






≤ (

1

4

+

∫

1

0
𝑝 (𝑠) (𝑠 − 𝑠

2
) d𝑠

1 − ∫

1

0
𝑝 (𝑠) d𝑠

) ‖𝑢‖𝑋, (65)

and consequently





𝑢



∞
≤ 𝐿1‖𝑢‖𝑋, (66)

where 𝐿1 = (1/4) + (∫
1

0
𝑝(𝑠)(𝑠 − 𝑠

2
)d𝑠/(1 − ∫1

0
𝑝(𝑠)d𝑠)).

Let

(𝐴𝑢) (𝑡)

:= 𝜆∬

1

0

𝐾1 (𝑡, 𝑠) 𝐾2 (𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏) , 𝑢

(𝜏)) d𝜏d𝑠,

𝑡 ∈ [0, 1] , 𝜆 > 0.

(67)

It is easy to show that 𝐴 : 𝑃 → 𝑃 is a completely continuous
operator. In addition, we can verify that the nonzero fixed
points of the operator𝐴 are positive solutions of the problem
(2).

Lemma 12 (see [19]). Let 𝐸 be Banach space, 𝑃 a cone in 𝐸,
and Ω(𝑃) a bounded open set in 𝑃. Suppose that 𝐴 : Ω(𝑃) →
𝑃 is a completely continuous operator. If there exists 𝑢0 ∈ 𝑃\{𝜃}
such that

𝑢 − 𝐴𝑢 ̸=𝜇𝑢0, ∀𝑢 ∈ 𝜕Ω (𝑃) , 𝜇 ≥ 0, (68)

then the fixed point index 𝑖(𝐴,Ω(𝑃), 𝑃) = 0.

Lemma 13 (see [19]). Let 𝐸 be Banach space, 𝑃 a cone in 𝐸,
and Ω(𝑃) a bounded open set in 𝑃 with 𝜃 ∈ Ω(𝑃). Suppose
that 𝐴 : Ω(𝑃) → 𝑃 is a completely continuous operator. If

𝐴𝑢 ̸=𝜇𝑢, ∀𝑢 ∈ 𝜕Ω (𝑃) , 𝜇 ≥ 1, (69)

then the fixed point index 𝑖(𝐴,Ω(𝑃), 𝑃) = 1.

Proof of Theorem 8. It follows from the first inequality of (51)
that there exists 𝑟0 > 0, such that

𝜆𝑓 (𝑡, 𝑢, V) ≥ 𝜇1 (|𝑢| + |V|) , ∀𝑡 ∈ [0, 1] , 0 ≤ |𝑢| + |V| ≤ 𝑟0.
(70)

Let 𝜑1 be the positive eigenfunction of 𝑇 (see (33)) corre-
sponding to 𝜇1. Thus 𝜑1 = 𝜇1𝑇𝜑1.

Let 𝑟1 = 𝐿0𝑟0/(1 + 𝐿0)𝐿1. Then for every 𝑢 ∈ 𝜕𝐵𝑟1 ∩𝑃, we
have from Lemma 11 that

0 ≤ 𝑢 (𝑡) − 𝑢

(𝑡) ≤ ‖𝑢‖∞ +






𝑢



∞

≤

(1 + 𝐿0)

𝐿0

‖𝑢‖𝑋 ≤ 𝑟0.

(71)

It follows from (70) that

(𝐴𝑢) (𝑡) ≥ 𝜇1∬

1

0

𝐾1 (𝑡, 𝑠) 𝐾2 (𝑠, 𝜏) [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏d𝑠

= 𝜇1 (𝑇𝑢) (𝑡) , 𝑡 ∈ [0, 1] .

(72)
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We may suppose that 𝐴 has no fixed points on 𝜕𝐵𝑟1 ∩ 𝑃
(otherwise, the proof is finished). Now we show that

𝑢 − 𝐴𝑢 ̸=𝜇𝜑1, ∀𝑢 ∈ 𝜕𝐵𝑟1
∩ 𝑃, 𝜇 ≥ 0. (73)

Suppose the contrary, that there exists 𝑢1 ∈ 𝜕𝐵𝑟1 ∩ 𝑃 and
𝜏1 ≥ 0 such that 𝑢1 − 𝐴𝑢1 = 𝜏1𝜑1. Hence 𝜏1 > 0 and

𝑢1 = 𝐴𝑢1 + 𝜏1𝜑1 ≥ 𝜏1𝜑1. (74)

Put

𝜏
∗
:= sup {𝜏 | 𝑢1 ≥ 𝜏𝜑1} . (75)

It is easy to see that 𝜏∗ ≥ 𝜏1 > 0 and 𝑢1 ≥ 𝜏
∗
𝜑1. We find from

𝑇(𝑃) ⊂ 𝑃 that

𝜇1𝑇𝑢1 ≥ 𝜏
∗
𝜇1𝑇𝜑1 = 𝜏

∗
𝜑1. (76)

Therefore, by (72), we have

𝑢1 = 𝐴𝑢1 + 𝜏1𝜑1 ≥ 𝜇1𝑇𝑢1 + 𝜏1𝜑1 ≥ 𝜏
∗
𝜑1 + 𝜏1𝜑1, (77)

which contradicts the definition of 𝜏∗. Hence (73) is true, and
we have from Lemma 12 that

𝑖 (𝐴, 𝐵𝑟1
∩ 𝑃, 𝑃) = 0. (78)

It follows from the second inequality of (51) that there
exists 0 < 𝜎 < 1 and 𝑟2 > 𝑟1 such that

𝜆𝑓 (𝑡, 𝑢, V) ≤ 𝜎𝜇1 (|𝑢| + |V|) , ∀𝑡 ∈ [0, 1] , |𝑢| + |V| ≥ 𝑟2.
(79)

Let 𝑇1𝑢 = 𝜎𝜇1𝑇𝑢, 𝑢 ∈ 𝑋. Then 𝑇1 : 𝑋 → 𝑋 is a bounded
linear operator and 𝑇1(𝑃) ⊂ 𝑃.

Let

𝑀 = [ max
0≤𝑡,𝑠,𝜏≤1

𝐾1 (𝑡, 𝑠) 𝐾2 (𝑠, 𝜏)]

×
[

[

sup
𝑢∈𝐵𝑟3∩𝑃

𝜆∫

1

0

𝑓 (𝜏, 𝑢 (𝜏) , 𝑢

(𝜏)) d𝜏]

]

,

(80)

where 𝑟3 = 𝐿0𝑟2/(1 + 𝐿0)𝐿1. It is clear that𝑀 < +∞.
Let

𝑊 = {𝑢 ∈ 𝑃 | 𝑢 = 𝜇𝐴𝑢, 0 ≤ 𝜇 ≤ 1} . (81)

In the following, we prove that𝑊 is bounded.

For any 𝑢 ∈ 𝑊, set 𝐸(𝜏) = {𝜏 ∈ [0, 1] | 𝑢(𝜏) − 𝑢(𝜏) ≥ 𝑟2}.
Then,
𝑢 (𝑡) = 𝜇 (𝐴𝑢) (𝑡)

≤ 𝜆∬

1

0

𝐾1 (𝑡, 𝑠) 𝐾2 (𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏) , 𝑢

(𝜏)) d𝜏 d𝑠

= 𝜆∫

1

0

∫

𝐸(𝜏)

𝐾1 (𝑡, 𝑠) 𝐾2 (𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏) , 𝑢

(𝜏)) d𝜏 d𝑠

+ 𝜆∫

1

0

∫

[0,1]\𝐸(𝜏)

𝐾1 (𝑡, 𝑠) 𝐾2 (𝑠, 𝜏) 𝑓

× (𝜏, 𝑢 (𝜏) , 𝑢

(𝜏)) d𝜏 d𝑠

≤ 𝜎𝜇1∬

1

0

𝐾1 (𝑡, 𝑠) 𝐾2 (𝑠, 𝜏) [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏 d𝑠

+ 𝜆∫

1

0

∫

[0,1]\𝐸(𝜏)

𝐾1 (𝑡, 𝑠) 𝐾2 (𝑠, 𝜏) 𝑓

× (𝜏, 𝑢 (𝜏) , 𝑢

(𝜏)) d𝜏 d𝑠

≤ (𝑇1𝑢) (𝑡) + 𝑀, 𝑡 ∈ [0, 1] .

(82)
Thus, ((𝐼 − 𝑇1)𝑢)(𝑡) ≤ 𝑀, for every 𝑡 ∈ [0, 1]. Since 𝜇1 is the
first eigenvalue of 𝑇 and 0 < 𝜎 < 1, the first eigenvalue of 𝑇1,
(𝑟(𝑇1))

−1
> 1. Therefore, the inverse operator (𝐼−𝑇1)

−1 exists
and

(𝐼 − 𝑇1)
−1
= 𝐼 + 𝑇1 + 𝑇

2

1 + ⋅ ⋅ ⋅ + 𝑇
𝑛

1 + ⋅ ⋅ ⋅ .
(83)

It follows from 𝑇1(𝑃) ⊂ 𝑃 that (𝐼 − 𝑇1)
−1
(𝑃) ⊂ 𝑃. So, we have

𝑢(𝑡) ≤ (𝐼 − 𝑇1)
−1
𝑀, 𝑡 ∈ [0, 1], and we conclude that 𝑊 is

bounded.
Select 𝑟4 > max{𝑟1, sup𝑊}. Then, from the invariance

property of the fixed point index, we have

𝑖 (𝐴, 𝐵𝑟4
∩ 𝑃, 𝑃) = 𝑖 (𝜃, 𝐵𝑟4

∩ 𝑃, 𝑃) = 1. (84)

By (78) and (84), we have that

𝑖 (𝐴, (𝐵𝑟4
∩ 𝑃) \ (𝐵𝑟1

∩ 𝑃) , 𝑃)

= 𝑖 (𝐴, 𝐵𝑟4
∩ 𝑃, 𝑃) − 𝑖 (𝐴, 𝐵𝑟1

∩ 𝑃, 𝑃) = 1.

(85)

Then 𝐴 has at least one fixed point on (𝐵𝑟4 ∩ 𝑃) \ (𝐵𝑟1 ∩ 𝑃).
This means that the boundary value problem (2) has at least
one positive solution.

Proof of Theorem 9. It follows from the second inequality of
(52) that there exists 𝑟0 > 0, such that
𝜆𝑓 (𝑡, 𝑢, V) ≤ 𝜇1 (|𝑢| + |V|) , ∀𝑡 ∈ [0, 1] , 0 ≤ |𝑢| + |V| ≤ 𝑟0.

(86)
Let 𝑟1 = 𝐿0𝑟0/(1 + 𝐿0)𝐿1. Then, for every 𝑢 ∈ 𝜕𝐵𝑟1 ∩ 𝑃, we
have from Lemma 11 that

0 ≤ 𝑢 (𝑡) − 𝑢

(𝑡) ≤ ‖𝑢‖∞ +






𝑢



∞

≤

(1 + 𝐿0) 𝐿1

𝐿0

‖𝑢‖𝑋 ≤ 𝑟0.

(87)
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It follows from (86) that

(𝐴𝑢) (𝑡) ≤ 𝜇1∬

1

0

𝐾1 (𝑡, 𝑠) 𝐾2 (𝑠, 𝜏) [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏 d𝑠

= 𝜇1 (𝑇𝑢) (𝑡) , 𝑡 ∈ [0, 1] .

(88)

Suppose there exists 𝑢2 ∈ 𝜕𝐵𝑟1 ∩𝑃 and 𝜏2 ≥ 1 satisfying𝐴𝑢2 =
𝜏2𝑢2. We may suppose that 𝐴 has no fixed points on 𝜕𝐵𝑟1 ∩ 𝑃
(otherwise, the proof is finished). So 𝜏2 > 1. By (88), we have
𝜏2𝑢2 = 𝐴𝑢2 ≤ 𝜇1𝑇𝑢2. By induction, we have 𝜏

𝑛
2𝑢2 ≤ 𝜇

𝑛
1𝑇
𝑛
𝑢2,

for all 𝑛 ∈ 𝑁. Thus





𝑇
𝑛



≥





𝑇
𝑛
𝑢2



𝑋





𝑢2



𝑋

≥

𝜏
𝑛
2





𝑢2



𝑋

𝜇
𝑛
1





𝑢2



𝑋

=

𝜏
𝑛
2

𝜇
𝑛
1

. (89)

By Gelfand’s formula, we have

𝑟 (𝑇) = lim
𝑛→∞

𝑛
√‖𝑇
𝑛
‖ ≥

𝜏2

𝜇1

>

1

𝜇1

, (90)

which is a contradiction with 𝑟(𝑇) = 1/𝜇1. Hence

𝐴𝑢 ̸=𝜏𝑢, ∀𝑢 ∈ 𝜕𝐵𝑟1
∩ 𝑃, 𝜏 ≥ 1, (91)

and we have from Lemma 13 that

𝑖 (𝐴, 𝐵𝑟1
∩ 𝑃, 𝑃) = 1. (92)

It follows from the first inequality of (52) that there exist
𝜀 > 0 and 𝑅0 > 0 such that

𝜆𝑓 (𝑡, 𝑢, V) ≥ (𝜇1 + 𝜀) (|𝑢| + |V|) , |𝑢| + |V| ≥ 𝑅0. (93)

From (A2), we know that there exists 𝑑 ≥ 0 such that

𝜆𝑓 (𝑡, 𝑢, V) ≥ (𝜇1 + 𝜀) (|𝑢| + |V|) − 𝑑,

𝑡 ∈ [0, 1] , 0 ≤ |𝑢| + |V| < +∞.
(94)

We can take 𝑅 > 𝑟1 large enough, such that

𝜌1𝑢 ≥

𝑑∬

1

0
𝐾1 (𝑠, 𝑠) 𝐾2 (𝑠, 𝜏) d𝜏 d𝑠

𝜀 (∫

1

0
(𝑠 − 𝑠
2
) 𝑝 (𝑠) d𝑠/ (1 − ∫1

0
𝑝 (𝑠) d𝑠))

, (95)

where 𝜌1𝑢 is defined as in (46). Then by (94) and (33), for all
𝑢 ∈ 𝑃, ‖𝑢‖𝑋 ≥ 𝑅, 𝑡 ∈ [0, 1], we have

(𝐴𝑢) (𝑡) = 𝜆∬

1

0

𝐾1 (𝑡, 𝑠) 𝐾2 (𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏) , 𝑢

(𝜏)) d𝜏 d𝑠

≥ (𝜇1 + 𝜀)∬

1

0

𝐾1 (𝑡, 𝑠) 𝐾2 (𝑠, 𝜏)

× [𝑢 (𝜏) − 𝑢

(𝜏)] d𝜏 d𝑠

− 𝑑∬

1

0

𝐾1 (𝑡, 𝑠) 𝐾2 (𝑠, 𝜏) d𝜏 d𝑠

≥ 𝜇1 (𝑇𝑢) (𝑡) + 𝜀𝜌1𝑢𝑒 (𝑡)

− 𝑑∬

1

0

𝐾1 (𝑠, 𝑠) 𝐾2 (𝑠, 𝜏) d𝜏 d𝑠

≥ 𝜇1 (𝑇𝑢) (𝑡) + 𝜀𝜌1𝑢

∫

1

0
(𝑠 − 𝑠
2
) 𝑝 (𝑠) d𝑠

1 − ∫

1

0
𝑝 (𝑠) d𝑠

− 𝑑∬

1

0

𝐾1 (𝑠, 𝑠) 𝐾2 (𝑠, 𝜏) d𝜏 d𝑠

≥ 𝜇1 (𝑇𝑢) (𝑡) .

(96)

Hence, for every 𝑢 ∈ 𝑃, ‖𝑢‖𝑋 ≥ 𝑅, we have

(𝐴𝑢) (𝑡) ≥ 𝜇1 (𝑇𝑢) (𝑡) , 𝑡 ∈ [0, 1] . (97)

Let 𝜑1 be the positive eigenfunction of𝑇 corresponding to 𝜇1.
Thus 𝜑1 = 𝜇1𝑇𝜑1.

We may suppose that 𝐴 has no fixed points on 𝜕𝐵𝑅 ∩ 𝑃
(otherwise, the proof is finished). Now, we show that

𝑢 − 𝐴𝑢 ̸=𝜏𝜑1, ∀𝑢 ∈ 𝜕𝐵𝑅 ∩ 𝑃, 𝜏 ≥ 0. (98)

Suppose the contrary, that there exists 𝑢3 ∈ 𝜕𝐵𝑅 ∩ 𝑃 and
𝜏3 ≥ 0 such that

𝑢3 − 𝐴𝑢3 = 𝜏3𝜑1. (99)

Hence 𝜏3 > 0 and

𝑢3 = 𝐴𝑢3 + 𝜏3𝜑1 ≥ 𝜏3𝜑1. (100)

Put

𝜏
∗
:= sup {𝜏 | 𝑢3 ≥ 𝜏𝜑1} . (101)

It is easy to see that 𝜏∗ ≥ 𝜏3 > 0 and 𝑢3 ≥ 𝜏
∗
𝜑1. We find from

𝑇(𝑃) ⊂ 𝑃 that

𝜇1𝑇𝑢3 ≥ 𝜏
∗
𝜇1𝑇𝜑1 = 𝜏

∗
𝜑1. (102)

Therefore by (97), we have

𝑢3 = 𝐴𝑢3 + 𝜏3𝜑1 ≥ 𝜇1𝑇𝑢3 + 𝜏3𝜑1 ≥ 𝜏
∗
𝜑1 + 𝜏3𝜑1, (103)
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which contradicts the definition of 𝜏∗. Hence (98) is true, and
we have from Lemma 12 that

𝑖 (𝐴, 𝐵𝑅 ∩ 𝑃, 𝑃) = 0. (104)

By (92) and (104), we have that

𝑖 (𝐴, (𝐵𝑅 ∩ 𝑃) \ (𝐵𝑟1
∩ 𝑃) , 𝑃)

= 𝑖 (𝐴, 𝐵𝑅 ∩ 𝑃, 𝑃) − 𝑖 (𝐴, 𝐵𝑟1
∩ 𝑃, 𝑃) = −1.

(105)

Then, 𝐴 has at least one fixed point on (𝐵𝑅 ∩ 𝑃) \ (𝐵𝑟1 ∩ 𝑃).
This means that the boundary value problem (2) has at least
one positive solution.
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We study the initial boundary value problem of the general three-component Camassa-Holm shallow water system on an interval
subject to inhomogeneous boundary conditions. First we prove a local in time existence theorem and present a weak-strong
uniqueness result. Then, we establish a asymptotic stabilization of this system by a boundary feedback. Finally, we obtain a result
of blow-up solution with certain initial data and boundary profiles.

1. Introduction

It is well known that the Camassa-Holm equation has
attracted much attention in the past decade. It is a nonlinear
dispersive wave equation that models the propagation of
unidirectional irrotational shallow water waves over a flat
bed, as well as water waves moving over an underlying
shear flow. It was first introduced by Fokas and Fuchssteiner
as a bi-Hamiltonian model. Cauchy problem and initial
boundary value problem for Camassa-Holm equation have
been studied extensively in a number of papers (see [1–15] and
the references within).

Fu and Qu in [16] proposed a coupled Camassa-Holm
equation,

𝑚𝑡 = 2𝑚𝑢𝑥 + 𝑚𝑥𝑢 + (𝑚𝑣)𝑥 + 𝑛𝑣𝑥,

𝑛𝑡 = 2𝑛𝑣𝑥 + 𝑛𝑥𝑣 + (𝑛𝑢)𝑥 + 𝑚𝑢𝑥;

(1)

with 𝑚 = 𝑢 − 𝑢𝑥𝑥, 𝑛 = 𝑣 − 𝑣𝑥𝑥, which has peakon
solitons in the form of a superposition of multipeakons and
may as well be integrable. They investigated the local well-
posedness and blow-up solutions of system (1) by means of
Kato’s semigroup approach to nonlinear hyperbolic evolution
equation and obtained a criterion and condition on the
initial data guaranteeing the development of singularities
in finite time for strong solutions of system (1) by energy

estimates. Recently the initial boundary value problem for the
system (1) has been established in [17]; moreover, the local
well-posedness and blow-up phenomena for the coupled
Camassa-Holm equation were also established in [16, 18–32].
In [33], Tian and Xu obtained the compact and bounded
absorbing set and the existence of the global attractor for
viscous system (1) with the periodic boundary condition in
by uniform prior estimate.

Recently, Fu and Qu in [34] introduced a general three-
component Camassa-Holm equation as follows:

𝑚𝑡 = 2𝑚𝑢𝑥 + 𝑚𝑥𝑢 + (𝑚𝑣 + 𝑚𝑤)𝑥 + 𝑛𝑣𝑥 + 𝑙𝑤𝑥,

𝑛𝑡 = 2𝑛𝑣𝑥 + 𝑛𝑥𝑣 + (𝑛𝑢 + 𝑛𝑤)𝑥 + 𝑚𝑢𝑥 + 𝑙𝑤𝑥,

𝑙𝑡 = 2𝑙𝑤𝑥 + 𝑙𝑥𝑤 + (𝑙𝑢 + 𝑙𝑣)𝑥 + 𝑚𝑢𝑥 + 𝑛𝑣𝑥,

(2)

where 𝑚 = 𝑢 − 𝑢𝑥𝑥, 𝑛 = 𝑣 − 𝑣𝑥𝑥, and 𝑙 = 𝑤 − 𝑤𝑥𝑥. Equation
(2) also has peakon solitons in the form of a superposition
of multipeakons. Such system also conserves the 𝐻1-norm
conservation law. Moreover, the well-posedness and blow-
up phenomena for system (2) with peakons have been
established in [35]. To our knowledge, the initial boundary
value problem of (2) has not been studied yet. The first aim
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of this paper is to consider an initial boundary value problem
of the following

𝑚𝑡 = 2𝑚𝑢𝑥 + 𝑚𝑥𝑢 + (𝑚𝑣 + 𝑚𝑤)𝑥 + 𝑛𝑣𝑥 + 𝑙𝑤𝑥,

𝑛𝑡 = 2𝑛𝑣𝑥 + 𝑛𝑥𝑣 + (𝑛𝑢 + 𝑛𝑤)𝑥 + 𝑚𝑢𝑥 + 𝑙𝑤𝑥,

𝑙𝑡 = 2𝑙𝑤𝑥 + 𝑙𝑥𝑤 + (𝑙𝑢 + 𝑙𝑣)𝑥 + 𝑚𝑢𝑥 + 𝑛𝑣𝑥,

𝑚 (0, ⋅) = 𝑚0, 𝑛 (0, ⋅) = 𝑛0, 𝑙 (0, ⋅) = 𝑙0,

𝑚(⋅, 0)|Γ𝑙
= 𝑚𝑙, 𝑛(⋅, 0)|Γ𝑙

= 𝑛𝑙, 𝑙(⋅, 0)|Γ𝑙
= 𝑙𝑙,

𝑚(⋅, 1)|Γ𝑟
= 𝑚𝑟, 𝑛(⋅, 1)|Γ𝑟

= 𝑛𝑟, 𝑙(⋅, 1)|Γ𝑟
= 𝑙𝑟,

(3)

where Γ𝑙 = {𝑡 ∈ [0, 𝑇] | (𝑢 + 𝑣 + 𝑤)(𝑡, 𝑥) < 0}, Γ𝑟 = {𝑡 ∈

[0, 𝑇] | (𝑢 + 𝑣 + 𝑤)(𝑡, 𝑥) > 0}.
Then, we will consider the asymptotic stabilization of

(3) by means of a stationary feedback law acting on the
inhomogeneous boundary condition. Following the step in
[11], we convert the initial boundary value problem of (3)
on the interval into an ODE system and two PDE systems.
Then, we can consider the system (3) easily. Consequently,
we obtain a local in time existence theorem, a weak-strong
uniqueness result, asymptotic stabilization result on the
interval, and a result of blow-up solution, respectively.

Our paper is organized as follows. In Section 2, we
will consider an initial boundary value problem and the
uniqueness of the solution to (3). By using the feedback law
enjoyed by (3), the asymptotic stabilization on an interval is
considered in Section 3. Finally, in Section 4, a result of blow-
up solution with certain initial data and boundary profiles
will be established.

First, we begin with a general remark that will be used
many times later.

Remark 1. Let 𝑇 be a positive number and Ω𝑇 = [0, 𝑇] ×

[0, 1]. Changing 𝑢(𝑡, 𝑥) in −𝑢(𝑡, 1 − 𝑥), 𝑣(𝑡, 𝑥) in −𝑣(𝑡, 1 −

𝑥), 𝑤(𝑡, 𝑥) in −𝑤(𝑡, 1 − 𝑥), and 𝑡 in 𝑇 − 𝑡, and it will be
more convenient for us to analysis the system, if we define
the following sets

𝑃𝑙 = {𝑡 ∈ [0, 𝑇] | (𝑢 + 𝑣 + 𝑤) (𝑡, 0) = 0} ,

𝑃𝑟 = {𝑡 ∈ [0, 𝑇] | (𝑢 + 𝑣 + 𝑤) (𝑡, 1) = 0} .

(4)

Let Λ = (1 − 𝜕
2
𝑥)
1/2, then the operator Λ−2 can be ex-

pressed as

Λ
−2
𝑓 (𝑥) = 𝐺 ∗ 𝑓 (𝑥) =

1

2

∫

1

0

𝑒
−|𝑥−𝑦|

𝑓 (𝑦) 𝑑𝑦, (5)

where𝐺 = (1/2)𝑒
−|𝑥|. Now, let𝐴 𝑖 = Λ

−2
𝐵𝑖 = 𝐺∗𝐵𝑖, 𝑖 = 1, 2, 3,

where 𝐵𝑖 is an auxiliary function which lifts the boundary
values𝑚𝑙,𝑚𝑟, 𝑛𝑙, 𝑛𝑟, and 𝑙𝑙 defined by

𝐵𝑖 (𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ [0, 𝑇] × [0, 1] ,

𝐺 ∗ 𝐵𝑖 (𝑡, 0) = 𝑣𝑙𝑖
(𝑡) , 𝐺 ∗ 𝐵𝑖 (𝑡, 1) = 𝑣𝑟𝑖

(𝑡) , ∀𝑡 ∈ [0, 𝑇] ,

(6)

where 𝑖 = 1, 2, 3.

Setting 𝑢 = 𝑝+𝐺∗𝐵1, 𝑣 = 𝑞+𝐺∗𝐵2, and𝑤 = 𝑟+𝐺∗𝐵3,
we can further rewrite the system (3) as

𝑝 = 𝐺 ∗ 𝑚, 𝑞 = 𝐺 ∗ 𝑛, 𝑟 = 𝐺 ∗ 𝑙,

𝑝 (𝑡, 0) = 𝑝 (𝑡, 1) = 0, 𝑞 (𝑡, 0) = 𝑞 (𝑡, 1) = 0,

𝑟 (𝑡, 0) = 𝑟 (𝑡, 1) = 0,

(7)

𝑚𝑡 = (𝑝 + 𝐺 ∗ 𝐵1 + 𝑣 + 𝑤)𝑚𝑥

+ [2(𝑝 + 𝐺 ∗ 𝐵1)𝑥
+ 𝑣𝑥 + 𝑤𝑥]𝑚 + 𝑛𝑣𝑥 + 𝑙𝑤𝑥,

𝑛𝑡 = (𝑞 + 𝐺 ∗ 𝐵2 + 𝑢 + 𝑤) 𝑛𝑥

+ [2(𝑞 + 𝐺 ∗ 𝐵2)𝑥
+ 𝑢𝑥 + 𝑤𝑥] 𝑛 + 𝑚𝑢𝑥 + 𝑙𝑤𝑥,

𝑙𝑡 = (𝑟 + 𝐺 ∗ 𝐵3 + 𝑢 + 𝑣) 𝑙𝑥

+ [2(𝑟 + 𝐺 ∗ 𝐵3)𝑥
+ 𝑢𝑥 + 𝑣𝑥] 𝑙 + 𝑚𝑢𝑥 + 𝑛𝑣𝑥,

𝑚 (0, ⋅) = 𝑚0, 𝑚(⋅, 0)|Γ𝑙
= 𝑚𝑙, 𝑚(⋅, 1)|Γ𝑟

= 𝑚𝑟,

𝑛 (0, ⋅) = 𝑛0, 𝑛(⋅, 0)|Γ𝑙
= 𝑛𝑙, 𝑛(⋅, 1)|Γ𝑟

= 𝑛𝑟,

𝑙 (0, ⋅) = 𝑙0, 𝑙(⋅, 0)|Γ𝑙
= 𝑙𝑙, 𝑙(⋅, 1)|Γ𝑟

= 𝑙𝑟,

(8)

where functions𝑚𝑙, 𝑚𝑟, 𝑛𝑙, 𝑛𝑟, 𝑙𝑙, and 𝑙𝑟 in 𝐶
0
([0, 1], 𝑅) are the

boundary values and 𝑚0, 𝑛0, and 𝑙0 in 𝐿
∞
(0, 1) are the initial

datum.

Lemma 2. We have 𝐴 𝑖 = 𝐺 ∗ 𝐵𝑖 ∈ 𝐶
0
([0, 𝑇]; 𝐶

∞
[0, 1]) ∈

𝐶
0
([0, 𝑇]; 𝐶

∞
[0, 1]) and 𝑝, 𝑞, 𝑟 ∈ 𝐿

∞
((0, 𝑇), 𝐶

1,1
([0, 1])) ∩

Lip((0, 𝑇),𝐻1
0 (0, 1)), 𝑖 = 1, 2, 3, 𝑚, 𝑛, 𝑙 ∈ 𝐿

∞
(Ω𝑇) ∩

Lip((0, 𝑇),𝐻−1
(0, 1)). Moreover, we also have the bounds





𝐴 𝑖



𝐿∞((0,𝑇); 𝐶1,1[0,1])

≤

cosh (1)
sinh (1)

(






𝑣𝑟𝑖





𝐿∞(0,𝑇)

+






𝑣𝑙𝑖





𝐿∞(0,𝑇)

) ,

(𝑖 = 1, 2, 3) ,

(9)





𝑝



𝐿∞((0,𝑇); 𝐶1,1[0,1])

≤ 2 (1 + cosh (1)) ‖𝑚‖𝐿∞(Ω𝑇),





𝜕𝑡𝑝




𝐿∞((0,𝑇); 𝐻1

0
[0,1])

≤




𝜕𝑡𝑚




𝐿∞((0,𝑇); 𝐻−1[0,1])

,





𝑞



𝐿∞((0,𝑇); 𝐶1,1[0,1])

≤ 2 (1 + cosh (1)) ‖𝑛‖𝐿∞(Ω𝑇),





𝜕𝑡𝑞




𝐿∞((0,𝑇); 𝐻1

0
[0,1])

≤




𝜕𝑡𝑛




𝐿∞((0,𝑇); 𝐻−1[0,1])

,

‖𝑟‖𝐿∞((0,𝑇); 𝐶1,1[0,1]) ≤ 2 (1 + cosh (1)) ‖𝑙‖𝐿∞(Ω𝑇),





𝜕𝑡𝑟



𝐿∞((0,𝑇); 𝐻1

0
[0,1])

≤




𝜕𝑡𝑙



𝐿∞((0,𝑇); 𝐻−1[0,1])

.

(10)
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Proof. 𝐴 𝑖, 𝑝, 𝑞, 𝑟, (𝑖 = 1, 2, 3) can be expressed, respectively,
as

𝐴 𝑖 (𝑡, 𝑥) = 𝐺 ∗ 𝐵𝑖 (𝑡, 𝑥)

=

1

sinh (1)
(sinh (𝑥) 𝑣𝑟𝑖 (𝑡) + sinh (1 − 𝑥) 𝑣𝑙𝑖 (𝑡)) ,

(𝑖 = 1, 2, 3) ,

𝑝 (𝑡, 𝑥) = −∫

𝑥

0

sinh (𝑥 − 𝑥)𝑚 (𝑡, 𝑥) 𝑑𝑥

+

sinh (𝑥)
sinh (1)

∫

1

0

sinh (1 − 𝑥)𝑚 (𝑡, 𝑥) 𝑑𝑥,

𝑞 (𝑡, 𝑥) = −∫

𝑥

0

sinh (𝑥 − 𝑥) 𝑛 (𝑡, 𝑥) 𝑑𝑥

+

sinh (𝑥)
sinh (1)

∫

1

0

sinh (1 − 𝑥) 𝑛 (𝑡, 𝑥) 𝑑𝑥,

𝑟 (𝑡, 𝑥) = −∫

𝑥

0

sinh (𝑥 − 𝑥) 𝑙 (𝑡, 𝑥) 𝑑𝑥

+

sinh (𝑥)
sinh (1)

∫

1

0

sinh (1 − 𝑥) 𝑙 (𝑡, 𝑥) 𝑑𝑥.

(11)

Estimates (9) and (10) can be easily obtained from the above
expressions.

2. Initial Boundary Value Problem

First, we define what we mean by a weak solution to (8). Our
test functions will be in the space:

Adm (Ω𝑇) = {𝜑 ∈ 𝐶
1
(Ω𝑇) | 𝜑 (𝑡, 𝑥) = 0 on [0, 𝑇] \ Γ𝑙

× {0} ∪ [0, 𝑇] \ Γ𝑟 × {0} ∪ {𝑇} × [0, 1]} .

(12)

Definition 3. When (𝑝, 𝑞, 𝑟) ∈ 𝐿
∞
((0, 𝑇); Lip[0, 1]) ×

𝐿
∞
((0, 𝑇); Lip[0, 1]) × 𝐿

∞
((0, 𝑇); Lip[0, 1]), the function

(𝑚, 𝑛, 𝑙) ∈ 𝐿
∞
(Ω𝑇) × 𝐿

∞
(Ω𝑇) × 𝐿

∞
(Ω𝑇) is the weak solution

to (8) if for all 𝜑 ∈ Adm(Ω𝑇):

∬

Ω𝑇

𝑚(𝜑𝑡 − (𝑢 + 𝑣 + 𝑤) 𝜑𝑥 + (𝑝𝑥 + 𝜕𝑥𝐺 ∗ 𝐵1) 𝜑) 𝑑𝑡 𝑑𝑥

= −∬

Ω𝑇

(𝑛𝑣𝑥 + 𝑙𝑤𝑥) 𝜑 (𝑡, 𝑥) 𝑑𝑡 𝑑𝑥 − ∫

1

0

𝑚0 (𝑥) 𝜑 (0, 𝑥) 𝑑𝑡

+ ∫

𝑇

0

((𝑢 + 𝑣 + 𝑤) (𝑡, 0) 𝜑 (𝑡, 0)𝑚 (𝑡, 0)

− (𝑢 + 𝑣 + 𝑤) (𝑡, 1) 𝜑 (𝑡, 1)𝑚 (𝑡, 1)) 𝑑𝑡,

∬

Ω𝑇

𝑛 (𝜑𝑡 − (𝑢 + 𝑣 + 𝑤) 𝜑𝑥 + (𝑞𝑥 + 𝜕𝑥𝐺 ∗ 𝐵2) 𝜑) 𝑑𝑡 𝑑𝑥

= −∬

Ω𝑇

(𝑚𝑢𝑥 + 𝑙𝑤𝑥) 𝜑 (𝑡, 𝑥) 𝑑𝑡 𝑑𝑥 − ∫

1

0

𝑛0 (𝑥) 𝜑 (0, 𝑥) 𝑑𝑥

+ ∫

𝑇

0

((𝑢 + 𝑣 + 𝑤) (𝑡, 0) 𝜑 (𝑡, 0) 𝑛 (𝑡, 0)

− (𝑢 + 𝑣 + 𝑤) (𝑡, 1) 𝜑 (𝑡, 1) 𝑛 (𝑡, 1)) 𝑑𝑡,

∬

Ω𝑇

𝑙 (𝜑𝑡 − (𝑢 + 𝑣 + 𝑤) 𝜑𝑥 + (𝑟𝑥 + 𝜕𝑥𝐺 ∗ 𝐵3) 𝜑) 𝑑𝑡 𝑑𝑥

= −∬

Ω𝑇

(𝑚𝑢𝑥 + 𝑛𝑣𝑥) 𝜑 (𝑡, 𝑥) 𝑑𝑡 𝑑𝑥 − ∫

1

0

𝑙0 (𝑥) 𝜑 (0, 𝑥) 𝑑𝑥

+ ∫

𝑇

0

((𝑢 + 𝑣 + 𝑤) (𝑡, 0) 𝜑 (𝑡, 0) 𝑙 (𝑡, 0)

− (𝑢 + 𝑣 + 𝑤) (𝑡, 1) 𝜑 (𝑡, 1) 𝑙 (𝑡, 1)) 𝑑𝑡.

(13)

It is obvious that 𝐶10(Ω𝑇) ⊂ Adm(Ω𝑇); therefore, a
weak solution to system (8) is also a solution to (8) in the
distribution sense. And it is clear that a regular weak solution
is a classical solution.

Definition 4. For (𝑡, 𝑥) ∈ Ω𝑇, we consider 𝜔(⋅, 𝑡, 𝑥) the
maximal solution satisfying

𝜔𝑡 = − (𝑢 + 𝑣 + 𝑤) (𝑡, 𝜔 (𝑡, 𝑥)) ,

𝜔 (0, 𝑥) = 𝑥.

(14)

We consider that 𝜔 is the flow of (𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥), 𝑤(𝑡, 𝑥)).
For (𝑡, 𝑥) ∈ Ω𝑇, 𝜔(⋅, 𝑡, 𝑥) is defined on a set [𝑒(𝑡, 𝑥), ℎ(𝑡, 𝑥)].
Here 𝑒(𝑡, 𝑥) is basically the entrance time in Ω𝑇 of the
characteristic curve going through (𝑡, 𝑥).

Remark 5. Obviously 𝑒(𝑡, 𝑥) > 0 implies that 𝜔(𝑒(𝑡, 𝑥), 𝑡, 𝑥) ∈
{0, 1}.

In the following, we consider a partition of Ω𝑇, which
allows us to distinguish the different influence zones inΩ𝑇.

Definition 6. Let 𝑃 = {(𝑡, 𝑥) ∈ Ω𝑇|∃𝑠 ∈ [𝑒(𝑡, 𝑥), ℎ(𝑡, 𝑥)]

such that 𝜔 ∈ {0, 1} and (𝑢 + 𝑣 + 𝑤)(𝑠, 𝜔(𝑠, 𝑡, 𝑥)) = 0} ∪

{(𝑠, 𝜔(𝑠, 0, 0)) | for all 𝑠 ∈ [0, 𝑇]} ∪ {(𝑠, 𝜔(𝑠, 0, 1)) | for all 𝑠 ∈
[0, 𝑇]},

𝐼 = {(𝑡, 𝑥) ∈ Ω𝑇 \ 𝑝 | 𝑒 (𝑡, 𝑥) = 0} ,

𝐿 = {(𝑡, 𝑥) ∈ Ω𝑇 \ 𝑝 | 𝜔 (𝑒 (𝑡, 𝑥) , 𝑡, 𝑥) = 0} ,

𝑅 = {(𝑡, 𝑥) ∈ Ω𝑇 \ 𝑝 | 𝜔 (𝑒 (𝑡, 𝑥) , 𝑡, 𝑥) = 1} .

(15)

Those points of the set 𝑃 are tangent to the boundary,
which are precisely the singular points of 𝑒 and ℎ. It’s
obviously that the sets 𝑃, 𝐼, 𝐿, and 𝑅 constitute a partition
of Ω𝑇. Furthermore, if (𝑡, 𝑥) ∈ 𝐿, then 𝑒(𝑡, 𝑥) ∈ Γ𝑙, and if
(𝑡, 𝑥) ∈ 𝑅, then 𝑒(𝑡, 𝑥) ∈ Γ𝑟.

Definition 7. Here, we consider the case of data
(𝑢, 𝑣, 𝑤) ∈ 𝐿

∞
([0, 𝑇]; 𝐶

1
([0, 1])) × 𝐿

∞
([0, 𝑇]; 𝐶

1
([0, 1])) ×
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𝐿
∞
([0, 𝑇]; 𝐶

1
([0, 1])), (𝑚𝑙, 𝑛𝑙, 𝑙𝑙) ∈ 𝐶

1
𝑐 (Γ𝑙) × 𝐶

1
𝑐 (Γ𝑙) × 𝐶

1
𝑐 (Γ𝑙);

(𝑚𝑟, 𝑛𝑟, 𝑙𝑟) ∈ 𝐶
1
𝑐 (Γ𝑟) × 𝐶

1
𝑐 (Γ𝑟) × 𝐶

1
𝑐 (Γ𝑟), (𝑚0, 𝑛0, 𝑙0) ∈

𝐶
1
𝑐 (0, 1) × 𝐶

1
𝑐 (0, 1) × 𝐶

1
𝑐 (0, 1). We define the functions 𝑚, 𝑛,

and 𝑙 in the following way.
When (𝑡, 𝑥) ∈ 𝑃, 𝑚(𝑡, 𝑥) = 0, 𝑛(𝑡, 𝑥) = 0, and 𝑙(𝑡, 𝑥) = 0,

when (𝑡, 𝑥) ∈ 𝐼,

𝑚(𝑡, 𝑥) = 𝑚0 (𝜔 (0, 𝑡, 𝑥))

× exp(∫
𝑡

0

[2 (𝑝𝑥 + 𝜕𝑥𝐺 ∗ 𝐵1) + 𝑣𝑥 + 𝑤𝑥]

× (𝑠, 𝜔 (𝑠, 𝑡, 𝑥)) 𝑑𝑠)

+ ∫

𝑡

0

(𝑛𝑣𝑥 + 𝑙𝑤𝑥) (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp(∫
𝑡

𝑠

[2 (𝑝𝑥 + 𝜕𝑥𝐺 ∗ 𝐵1) + 𝑣𝑥 + 𝑤𝑥]

× (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑠,

𝑛 (𝑡, 𝑥) = 𝑛0 (𝜔 (0, 𝑡, 𝑥))

× exp(∫
𝑡

0

[2 (𝑞𝑥 + 𝜕𝑥𝐺 ∗ 𝐵2) + 𝑢𝑥 + 𝑤𝑥]

× (𝑠, 𝜔 (𝑠, 𝑡, 𝑥)) 𝑑𝑠)

+ ∫

𝑡

0

(𝑚𝑢𝑥 + 𝑙𝑤𝑥) (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp ( [2 (𝑞𝑥 + 𝜕𝑥𝐺 ∗ 𝐵2) + 𝑢𝑥 + 𝑤𝑥]

× (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


) 𝑑𝑠,

𝑙 (𝑡, 𝑥) = 𝑙0 (𝜔 (0, 𝑡, 𝑥))

× exp(∫
𝑡

0

[2 (𝑟𝑥 + 𝜕𝑥𝐺 ∗ 𝐵3) + 𝑢𝑥 + 𝑣𝑥]

× (𝑠, 𝜔 (𝑠, 𝑡, 𝑥)) 𝑑𝑠)

+ ∫

𝑡

0

(𝑚𝑢𝑥 + 𝑛𝑣𝑥) (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp(∫
𝑡

s
[2 (𝑟𝑥 + 𝜕𝑥𝐺 ∗ 𝐵3) + 𝑢𝑥 + 𝑣𝑥]

× (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑠,

(16)

when (𝑡, 𝑥) ∈ 𝐿,

𝑚(𝑡, 𝑥) = 𝑚𝑙 (𝑒 (𝑡, 𝑥))

× exp(∫
𝑡

𝑒(𝑡,𝑥)

[2 (𝑝𝑥 + 𝜕𝑥𝐺 ∗ 𝐵1) + 𝑣𝑥 + 𝑤𝑥]

× (𝑠, 𝜔 (𝑠, 𝑡, 𝑥)) 𝑑𝑠)

+ ∫

𝑡

𝑒(𝑡,𝑥)

(𝑛𝑣𝑥 + 𝑙𝑤𝑥) (𝑟, 𝜔 (𝑟, 𝑡, 𝑥))

× exp(∫
𝑡

s
[2 (𝑝𝑥 + 𝜕𝑥𝐺 ∗ 𝐵1) + 𝑣𝑥 + 𝑤𝑥]

× (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑟,

𝑛 (𝑡, 𝑥) = 𝑛𝑙 (𝑒 (𝑡, 𝑥))

× exp(∫
𝑡

𝑒(𝑡,𝑥)

[2 (𝑞𝑥 + 𝜕𝑥𝐺 ∗ 𝐵2) + 𝑢𝑥 + 𝑤𝑥]

× (𝑠, 𝜔 (𝑠, 𝑡, 𝑥)) 𝑑𝑠)

+ ∫

𝑡

𝑒(𝑡,𝑥)

(𝑚𝑢𝑥 + 𝑙𝑤𝑥) (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp(∫
𝑡

s
[2 (𝑞𝑥 + 𝜕𝑥𝐺 ∗ 𝐵2) + 𝑢𝑥 + 𝑤𝑥]

× (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑠,

𝑙 (𝑡, 𝑥) = 𝑙𝑙 (𝑒 (𝑡, 𝑥))

× exp(∫
𝑡

𝑒(𝑡,𝑥)

[2 (𝑟𝑥 + 𝜕𝑥𝐺 ∗ 𝐵3) + 𝑢𝑥 + 𝑣𝑥]

× (𝑠, 𝜔 (𝑠, 𝑡, 𝑥)) 𝑑𝑠)

+ ∫

𝑡

𝑒(𝑡,𝑥)

(𝑚𝑢𝑥 + 𝑛𝑣𝑥) (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp(∫
𝑡

s
[2 (𝑟𝑥 + 𝜕𝑥𝐺 ∗ 𝐵3) + 𝑢𝑥 + 𝑣𝑥]

× (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑠,

(17)

when (𝑡, 𝑥) ∈ 𝑅,

𝑚(𝑡, 𝑥) = 𝑚𝑙 (𝑒 (𝑡, 𝑥))

× exp(∫
𝑡

𝑒(𝑡,𝑥)

[2 (𝑝𝑥 + 𝜕𝑥𝐺 ∗ 𝐵1) + 𝑣𝑥 + 𝑤𝑥]

× (𝑠, 𝜔 (𝑠, 𝑡, 𝑥)) 𝑑𝑠)

+ ∫

𝑡

𝑒(𝑡,𝑥)

(𝑛𝑣𝑥 + 𝑙𝑤𝑥) (𝑟, 𝜔 (𝑟, 𝑡, 𝑥))

× exp(∫
𝑡

s
[2 (𝑝𝑥 + 𝜕𝑥𝐺 ∗ 𝐵1) + 𝑣𝑥 + 𝑤𝑥]

× (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑟,
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𝑛 (𝑡, 𝑥) = 𝑛𝑙 (𝑒 (𝑡, 𝑥))

× exp(∫
𝑡

𝑒(𝑡,𝑥)

[2 (𝑞𝑥 + 𝜕𝑥𝐺 ∗ 𝐵2) + 𝑢𝑥 + 𝑤𝑥]

× (𝑠, 𝜔 (𝑠, 𝑡, 𝑥)) 𝑑𝑠)

+ ∫

𝑡

𝑒(𝑡,𝑥)

(𝑚𝑢𝑥 + 𝑙𝑤𝑥) (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp(∫
𝑡

s
[2 (𝑞𝑥 + 𝜕𝑥𝐺 ∗ 𝐵2) + 𝑢𝑥 + 𝑤𝑥]

× (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑠,

𝑙 (𝑡, 𝑥) = 𝑙𝑙 (𝑒 (𝑡, 𝑥))

× exp(∫
𝑡

𝑒(𝑡,𝑥)

[2 (𝑟𝑥 + 𝜕𝑥𝐺 ∗ 𝐵3) + 𝑢𝑥 + 𝑣𝑥]

× (𝑠, 𝜔 (𝑠, 𝑡, 𝑥)) 𝑑𝑠)

+ ∫

𝑡

𝑒(𝑡,𝑥)

(𝑚𝑢𝑥 + 𝑛𝑣𝑥) (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp(∫
𝑡

s
[2 (𝑟𝑥 + 𝜕𝑥𝐺 ∗ 𝐵3) + 𝑢𝑥 + 𝑣𝑥]

× (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑠.

(18)

Lemma 8. Since (𝑚, 𝑛, 𝑙) ∈ 𝐿
∞
(Ω𝑇) × 𝐿

∞
(Ω𝑇) × 𝐿

∞
(Ω𝑇)

and satisfies (8), we immediately get that (𝑚, 𝑛, 𝑙) is the
weak solution of (8) and (𝑚, 𝑛, 𝑙) ∈ 𝑊

1,∞
(0, 𝑇,𝐻

−1
(0, 1)) ×

𝑊
1,∞

(0, 𝑇,𝐻
−1
(0, 1)) × 𝑊

1,∞
(0, 𝑇,𝐻

−1
(0, 1)). However, the

functions𝑚, 𝑛, and 𝑙 satisfy the following estimates:

‖𝑚‖𝐶0(Ω𝑇)

≤ [max (

𝑚0



𝐿∞

,




𝑚𝑙



𝐿∞

,




𝑚𝑟



𝐿∞

) +




𝑛𝑣𝑥 + 𝑙𝑤𝑥




𝐿∞(0,1)

𝑇]

× 𝑒
𝑇‖2(𝑝+𝐺∗𝐵1)𝑥+𝑣𝑥+𝑤𝑥‖𝐶0(Ω𝑇) ,

‖𝑛‖𝐶0(Ω𝑇)

≤ [max (

𝑛0



𝐿∞

,




𝑛𝑙



𝐿∞

,




𝑛𝑟



𝐿∞

) +




𝑚𝑢𝑥 + 𝑙𝑤𝑥




𝐿∞(0,1)

𝑇]

× 𝑒
𝑇‖2(𝑞+𝐺∗𝐵2)𝑥+𝑢𝑥+𝑤𝑥‖𝐶0(Ω𝑇) ,

‖𝑙‖𝐶0(Ω𝑇)

≤ [max (

𝑚0



𝐿∞

,




𝑚𝑙



𝐿∞

,




𝑚𝑟



L∞)+





𝑚𝑢𝑥 + 𝑛𝑣𝑥




𝐿∞(0,1)

𝑇]

× 𝑒
𝑇‖2(𝑟+𝐺∗𝐵3)𝑥+𝑢𝑥+𝑣𝑥‖𝐶0(Ω𝑇) ,





𝜕𝑡𝑚




𝐶0(Ω𝑇)

≤ {2max (

𝑚0



𝐿∞

,




𝑚𝑙



𝐿∞

,




𝑚𝑟



𝐿∞

)

× (




𝑝 + 𝐺 ∗ 𝐵1




𝐿∞((0,𝑇);Lip[0,1])

+ ‖𝑣‖𝐿∞((0,𝑇);Lip[0,1]) + ‖𝑤‖𝐿∞((0,𝑇);Lip[0,1]))

+ [(‖𝑢‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑢




𝐿∞(Ω𝑇)

)

2

+ (‖𝑣‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑣




𝐿∞(Ω𝑇)

)

2

+ (‖𝑤‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑤




𝐿∞(Ω𝑇)

)

2

]

× (1 + 2 (




𝑝 + 𝐺 ∗ 𝐵1




𝐿∞((0,𝑇);Lip[0,1])

+ ‖𝑣‖𝐿∞((0,𝑇);Lip[0,1]) + ‖𝑤‖𝐿∞((0,𝑇);Lip[0,1]))) 𝑇}

× exp (2𝑇 (

(𝑝 + 𝐺 ∗ 𝐵1)𝑥




𝐿∞(Ω𝑇)

+




𝑣𝑥



𝐿∞(Ω𝑇)

+




𝑤𝑥



𝐿∞(Ω𝑇)

)) ,





𝜕𝑡𝑛




𝐶0(Ω𝑇)

≤ {2max (

𝑛0



𝐿∞

,




𝑛𝑙



𝐿∞

,




𝑛𝑟



𝐿∞

)

× (




𝑞 + 𝐺 ∗ 𝐵2




𝐿∞((0,𝑇);Lip[0,1])

+ ‖𝑢‖𝐿∞((0,𝑇);Lip[0,1]) + ‖𝑤‖𝐿∞((0,𝑇);Lip[0,1]))

+ [(‖𝑢‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑢




𝐿∞(Ω𝑇)

)

2

+ (‖𝑣‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑣




𝐿∞(Ω𝑇)

)

2

+(‖𝑤‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑤




𝐿∞(Ω𝑇)

)

2

]

× (1 + 2 (




𝑞 + 𝐺 ∗ 𝐵2




𝐿∞((0,𝑇);Lip[0,1])

+ ‖𝑢‖𝐿∞((0,𝑇);Lip[0,1])

+ ‖𝑤‖𝐿∞((0,𝑇);Lip[0,1]))) 𝑇}

× exp (2𝑇 (

(𝑞 + 𝐺 ∗ 𝐵2)𝑥




𝐿∞(Ω𝑇)

+




𝑝𝑥



𝐿∞(Ω𝑇)

+




𝑤𝑥



𝐿∞(Ω𝑇)

)) ,





𝜕𝑡𝑙



𝐶0(Ω𝑇)

≤ {2max (

𝑙0



𝐿∞

,




𝑙𝑙



𝐿∞

,




𝑙𝑟



𝐿∞

)

× (




𝑟 + 𝐺 ∗ 𝐵3




𝐿∞((0,𝑇);Lip[0,1])

+ ‖𝑢‖𝐿∞((0,𝑇);Lip[0,1]) + ‖𝑣‖𝐿∞((0,𝑇);Lip[0,1]))

+ [(‖𝑢‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑢




𝐿∞(Ω𝑇)

)

2



6 Journal of Function Spaces and Applications

+ (‖𝑣‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑣




𝐿∞(Ω𝑇)

)

2

+ (‖𝑤‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑤




𝐿∞(Ω𝑇)

)

2

]

× (1 + 2 (




𝑟 + 𝐺 ∗ 𝐵3




𝐿∞((0,𝑇);Lip[0,1])

+




𝑝



𝐿∞((0,𝑇);Lip[0,1])

+




𝑞



𝐿∞((0,T);Lip[0,1]))) 𝑇}

× exp (2𝑇 (

(𝑟 + 𝐺 ∗ 𝐵3)𝑥




𝐿∞(Ω𝑇)

+




𝑢𝑥



𝐿∞(Ω𝑇)

+




𝑣𝑥



𝐿∞(Ω𝑇)

)) .

(19)

Definition 9. We can define operator 𝐸 and a domain for
the system (8) by: for all 𝑝, 𝑞, 𝑟 ∈ 𝐿

∞
((0, 𝑇); 𝐶

1,1
([0, 1])) ∩

Lip([0, 𝑇];𝐻1
0 (0, 1)),

𝐸 (𝑝) = 𝑝 ∈ 𝐿
∞
((0, 𝑇) ; 𝐶

1,1
([0, 1]))

∩ Lip ([0, 𝑇] ;𝐻1

0 (0, 1)) ,

𝐸 (𝑞) = 𝑞 ∈ 𝐿
∞
((0, 𝑇) ; 𝐶

1,1
([0, 1]))

∩ Lip ([0, 𝑇] ;𝐻1

0 (0, 1)) ,

𝐸 (𝑟) = 𝑟 ∈ 𝐿
∞
((0, 𝑇) ; 𝐶

1,1
([0, 1]))

∩ Lip ([0, 𝑇] ;𝐻1

0 (0, 1)) ,

𝐶𝑀0 ,𝑀1,𝑇

= {𝑝, 𝑞, 𝑟 ∈ 𝐿
∞
((0, 𝑇) ; 𝐶

1,1
([0, 1]))

∩ Lip ([0, 𝑇] ;𝐻1

0 (0, 1)) | ‖𝑑‖𝐿∞((0,𝑇);𝐶1,1[0,1])

≤ 𝑀0, ‖𝑑‖Lip((0,𝑇);𝐻1
0
(0,1)) ≤ 𝑀1} ,

(20)

where

𝑑 (𝑡, 𝑥) = max (𝑝 (𝑡, 𝑥) , 𝑞 (𝑡, 𝑥) , 𝑟 (𝑡, 𝑥)) ,

(𝑡, 𝑥) ∈ [0, 𝑇] × [0, 1] .

(21)

Obviously 𝐶𝑀0 ,𝑀1 ,𝑇 is convex and 𝐶𝑀0 ,𝑀1,𝑇
is compact

with respect to the norm ‖ ⋅ ‖𝐿∞((0,𝑇);Lip([0,1])). We will endow
𝐶𝑀0 ,𝑀1,𝑇

with the norm ‖ ⋅ ‖𝐿∞((0,𝑇);Lip([0,1])). There exist posi-
tive numbers𝑀0,𝑀1, and 𝑇 such that 𝐸 maps 𝐶𝑀0 ,𝑀1 ,𝑇 into
itself.

Theorem 10. There exists 𝑇 > 0, and (𝑚, 𝑛, 𝑙) is a weak
solution of (8) with 𝑝, 𝑞, 𝑟 ∈ 𝐿

∞
((0, 𝑇); 𝐶

1,1
([0, 1])) ∩

Lip([0, 𝑇];𝐻1
0 (0, 1)) and 𝑚, 𝑛, 𝑙 ∈ 𝐿

∞
(Ω𝑇). Moreover, any

such solution (𝑝, 𝑞, 𝑟) is in fact in 𝐶
0
([0, 𝑇];𝑊

2,𝑃
(0, 1)) ∩

𝐶
1
([0, 𝑇];𝑊

1,𝑝

0 (0, 1)), for all 𝑝 < +∞. Furthermore, the
existence time of a maximal solution 𝑇 ≥ min(𝑇∗, ̃𝑇), with

𝑇
∗
= max
𝛼>0, 𝛽>0

(

1

6𝛼

ln(




𝛼 − 𝐶1






4 (1 + cosh (1)) 𝛼
)) ,

̃
𝑇 = max

𝛼>0, 𝛽>0
(

1

6𝛼

ln(




𝛽





12𝛼
2
)) ,

𝐶1 = max [cosh (1)
sinh (1)

(






𝑣𝑟𝑖





𝐿∞(0,𝑇)

+






𝑣𝑙𝑖





𝐿∞(0,𝑇)

)] ,

𝑖 = 1, 2, 3.

(22)

Proof. For ̃
𝑇 > 0, we consider 𝑚𝑙, 𝑚𝑟, 𝑛𝑙, 𝑛𝑟, 𝑙𝑙, and 𝑙𝑟 in

𝐶
0
([0,

̃
𝑇]) such that the sets 𝑃𝑙 and 𝑃𝑟 have only a finite

number of connected components.
Let 𝐶0 = max(‖𝑚𝑖‖𝐿∞(0,1), ‖𝑛𝑖‖𝐿∞(Γ𝑙)

, ‖𝑙𝑖‖𝐿∞(Γ𝑟)
), where 𝑖 =

0, 𝑟, 𝑙 and

𝐶1 = max [cosh (1)
sinh (1)

(






𝑣𝑟𝑖





𝐿∞(0,𝑇)

+






𝑣𝑙𝑖





𝐿∞(0,𝑇)

)] ,

𝑖 = 1, 2, 3.

(23)

Now, if 𝑢, 𝑣, 𝑤 ∈ 𝐶𝑀0 ,𝑀1,𝑇
(see (21)), we have





2(𝑝 + 𝐺 ∗ 𝐵1)𝑥

+ 𝑣𝑥 + 𝑤𝑥



𝐶∞(Ω𝑇)

≤ 2 (




𝜕𝑥𝑢




𝐶∞(Ω𝑇)

+




𝜕𝑥𝑣




𝐶∞(Ω𝑇)

+




𝜕𝑥𝑤




𝐶∞(Ω𝑇)

) ,





2(𝑞 + 𝐺 ∗ 𝐵2)𝑥

+ 𝑢𝑥 + 𝑤𝑥



𝐶∞(Ω𝑇)

≤ 2 (




𝜕𝑥𝑢




𝐶∞(Ω𝑇)

+




𝜕𝑥𝑣




𝐶∞(Ω𝑇)

+




𝜕𝑥𝑤




𝐶∞(Ω𝑇)

) ,





2(𝑟 + 𝐺 ∗ 𝐵3)𝑥

+ 𝑢𝑥 + 𝑣𝑥



𝐶∞(Ω𝑇)

≤ 2 (




𝜕𝑥𝑢




𝐶∞(Ω𝑇)

+




𝜕𝑥𝑣




𝐶∞(Ω𝑇)

+




𝜕𝑥𝑤




𝐶∞(Ω𝑇)

) .

(24)

For all 𝑢, 𝑣, 𝑤 ∈ 𝐿
∞
((0, 𝑇);𝑊

2,∞
(0, 1)), we have





𝜕𝑥𝑢




𝐿∞(Ω𝑇)

≤ 2√‖𝑢‖𝐿∞(Ω𝑇)




𝜕
2
𝑥𝑥𝑢




𝐿∞(Ω𝑇)

≤ (‖𝑢‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑢




𝐿∞(Ω𝑇)

) ,





𝜕𝑥𝑣




𝐿∞(Ω𝑇)

≤ 2√‖𝑣‖𝐿∞(Ω𝑇)




𝜕
2
𝑥𝑥𝑣




𝐿∞(Ω𝑇)

≤ (‖𝑣‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑣




𝐿∞(Ω𝑇)

) ,
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𝜕𝑥𝑤




𝐿∞(Ω𝑇)

≤ 2√‖𝑤‖𝐿∞(Ω𝑇)




𝜕
2
𝑥𝑥𝑤




𝐿∞(Ω𝑇)

≤ (‖𝑤‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑤




𝐿∞(Ω𝑇)

) ,





𝑛𝑣𝑥 + 𝑙𝑤𝑥




𝐿∞(0,1)

≤ [(‖𝑢‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑢




𝐿∞(Ω𝑇)

)

2

+ (‖𝑣‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑣




𝐿∞(Ω𝑇)

)

2

+ (‖𝑤‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑤




𝐿∞(Ω𝑇)

)

2

] ,





𝑚𝑢𝑥 + 𝑙𝑤𝑥




𝐿∞(0,1)

≤ [(‖𝑢‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑢




𝐿∞(Ω𝑇)

)

2

+ (‖𝑣‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑣




𝐿∞(Ω𝑇)

)

2

+ (‖𝑤‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑤




𝐿∞(Ω𝑇)

)

2

] ,





𝑚𝑢𝑥 + 𝑛𝑣𝑥




𝐿∞(0,1)

≤ [(‖𝑢‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑢




𝐿∞(Ω𝑇)

)

2

+ (‖𝑣‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑣




𝐿∞(Ω𝑇)

)

2

+ (‖𝑤‖𝐿∞(Ω𝑇)
+






𝜕
2

𝑥𝑥𝑤




𝐿∞(Ω𝑇)

)

2

] .

(25)

We also define that ̃
𝑑(𝑡, 𝑥) = max(𝑝(𝑡, 𝑥), 𝑞(𝑡, 𝑥), 𝑟(𝑡, 𝑥)),

(𝑡, 𝑥) ∈ Ω𝑇. If 𝑝, 𝑞, 𝑟 ∈ 𝐶𝑀0 ,𝑀1,𝑇
, then from Lemmas 2 and

8, we derive that







̃
𝑑





𝐿∞((0,𝑇);𝐶1,1[0,1])

≤ 2 (1 + cosh (1)) (𝐶0 + 12𝑇
∗
(𝑀0 + 𝐶1)

2
)

× exp (6𝑇∗ (𝑀0 + 𝐶1)) ,






𝜕𝑡
̃
𝑑





𝐶0(Ω𝑇)

≤ [6𝐶0 (𝑀0 + 𝐶1) + 12(𝑀0 + 2𝐶1)
2

× (1 + 6 (𝑀0 + 𝐶1)
̃
𝑇)] exp (6̃𝑇 (𝑀0 + 𝐶1)) .

(26)

Finally, to obtain𝑝, 𝑞, 𝑟 ∈ 𝐶𝑀0 ,𝑀1,𝑇, it is sufficient to show that

2 (1 + cosh (1)) (𝐶0 + 12𝑇
∗
(𝑀0 + 𝐶1)

2
)

× exp (6𝑇∗ (𝑀0 + 𝐶1)) ≤ 𝑀0,

𝑀0 + [6𝐶0 (𝑀0 + 𝐶1) + 12(𝑀0 + 𝐶1)
2

× (1 + 6
̃
𝑇 (𝑀0 + 𝐶1))] × exp (6̃𝑇 (𝑀0 + 𝐶1))

≤ 𝑀1, (27)

if we have chosen 𝑇 and𝑀0; it is easy to choose𝑀1 to satisfy
the second inequality. For the above two inequalities, we just
choose 𝑀0 and 𝑀1 sufficiently large and then 𝑇 close to 0.
More precisely:

𝑀0 > 2 (1 + cosh (1)) 𝐶0,

𝑇
∗
≤

1

6 (𝑀0 + 𝐶1)
ln(

𝑀0

4 (1 + cosh (1)) (𝑀0 + 𝐶1)
) ,

̃
𝑇 ≤

1

6 (𝑀0 + 𝐶1)
ln(

𝑀1 −𝑀0

12(𝑀0 + 𝐶1)
2
) .

(28)

Maximizing the bound of 𝑇, we can get minimum existence.
Then, we get the result announced, where 𝛼 = 𝑀0 + 𝐶1, 𝛽 =

𝑀1 −𝑀0.

Lemma 11. The operator 𝐸 : 𝐶𝑀0 ,𝑀1,𝑇
→ 𝐶𝑀0 ,𝑀1,𝑇

is
continuous with respect to ‖ ⋅ ‖𝐿∞((0,𝑇);Lip[0,1]).

Proof. The proof is omitted here; one can see a similar proof
in [8, Proposition 2.4].

Now, we can apply Shauder’s fixed point theorem to the
operator 𝐸, and we get the result that there exist fixed points
𝑝, 𝑞, 𝑟 such that𝐸(𝑝) = 𝑝,𝐸(𝑞) = 𝑞, and𝐸(𝑟) = 𝑟, so we know
that there exists a wake solution of (9).

𝑝, 𝑞, 𝑟 ∈ 𝐿
∞
((0, 𝑇) ; 𝐶

1,1
([0, 1])) ∩ Lip ([0, 𝑇] ;𝐻1

0 (0, 1)) .

(29)

2.1. Uniqueness. Wewill prove theweak-strong uniqueness of
weak solution of (8) in the following.

Theorem 12. Let (𝑝,𝑚), (𝑞, 𝑛), (𝑟, 𝑙) ∈ 𝐿∞((0, 𝑇);𝐶1,1([0, 1]))
∩ Lip([0, 𝑇];𝐻1

0 (0, 1) × 𝐿
∞
((0, 𝑇); Lip([0, 1])) be the weak

solution of (7)-(8), then it is unique in𝐿∞((0, 𝑇); 𝐶1,1([0, 1]))×
𝐿
∞
(Ω𝑇).

Proof. Define Φ = 𝑚 − �̃�, Ψ = 𝑛 − 𝑛, Υ = 𝑙 −
̃
𝑙 and 𝑃 =

𝑝 − 𝑝, 𝑄 = 𝑞 − 𝑞, 𝐻 = 𝑟 − 𝑟, then we have

𝑃 (𝑡, ⋅) = 𝐺 ∗ Φ (𝑡, ⋅) ,

𝑄 (𝑡, ⋅) = 𝐺 ∗ Ψ (𝑡, ⋅) ,

H (𝑡, ⋅) = 𝐺 ∗ Υ (𝑡, ⋅) ,

(30)
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where 𝑃,𝑄,𝐻 ∈ Lip([0, 𝑇];𝐻1
0 (0, 1)), and (Φ,Ψ, Υ) ∈

𝐿
∞
(Ω𝑇) × 𝐿

∞
(Ω𝑇) × 𝐿

∞
(Ω𝑇) is the unique weak solution of

Φ𝑡 = (𝑝 + 𝐺 ∗ 𝐵 + 𝑣 + 𝑤)Φ𝑥

+ [2(𝑝 + 𝐺 ∗ 𝐵1)𝑥
+ 𝑣𝑥 + 𝑤𝑥]Φ

+ (𝑃 + 𝑄 + 𝐻) �̃�𝑥 + (2𝑃𝑥 + 𝑄𝑥 + 𝐻𝑥) �̃�

+ Ψ𝑣𝑥 + 𝑛𝑄𝑥 + Υ𝑤𝑥 +
̃
𝑙𝐻𝑥,

Ψ𝑡 = (𝑞 + 𝐺 ∗ 𝐵 + 𝑢 + 𝑤)Ψ𝑥

+ [2(𝑞 + 𝐺 ∗ 𝐵2)𝑥
+ 𝑢𝑥 + 𝑤𝑥] Ψ

+ (𝑃 + 𝑄 + 𝐻) 𝑛𝑥 + (𝑃𝑥 + 2𝑄𝑥 + 𝐻𝑥) 𝑛

+ Φ𝑢𝑥 + �̃�Φ𝑥 + Υ𝑤𝑥 +
̃
𝑙𝐻𝑥,

Υ𝑡 = (𝑟 + 𝐺 ∗ 𝐵 + 𝑢 + 𝑣) Υ𝑥

+ [2(𝑟 + 𝐺 ∗ 𝐵3)𝑥
+ 𝑢𝑥 + 𝑣𝑥] Υ

+ (𝑃 + 𝑄 + 𝐻)
̃
𝑙𝑥 + (𝑃𝑥 + 𝑄𝑥 + 2𝐻𝑥)

̃
𝑙

+ Φ𝑢𝑥 + �̃�Φ𝑥 + Ψ𝑣𝑥 + 𝑛𝑄𝑥.

(31)

Let

𝑏1 = 2(𝑝 + 𝐺 ∗ 𝐵1)𝑥
+ 𝑣𝑥 + 𝑤𝑥,

𝑏2 = 2(𝑞 + 𝐺 ∗ 𝐵2)𝑥
+ 𝑢𝑥 + 𝑤𝑥,

𝑏3 = 2(𝑟 + 𝐺 ∗ 𝐵3)𝑥
+ 𝑢𝑥 + 𝑣𝑥,

𝑓1 = (𝑃 + 𝑄 + 𝐻) �̃�𝑥 + (2𝑃𝑥 + 𝑄𝑥 + 𝐻𝑥) �̃�

+ Ψ𝑣𝑥 + 𝑛𝑄𝑥 + Υ𝑤𝑥 +
̃
𝑙𝐻𝑥,

𝑓2 = (𝑃 + 𝑄 + 𝐻) 𝑛𝑥 + (𝑃𝑥 + 2𝑄𝑥 + 𝐻𝑥) 𝑛

+ Φ𝑢𝑥 + �̃�Φ𝑥 + Υ𝑤𝑥 +
̃
𝑙𝐻𝑥,

𝑓3 = (𝑃 + 𝑄 + 𝐻)
̃
𝑙𝑥 + (𝑃𝑥 + 𝑄𝑥 + 2𝐻𝑥)

̃
𝑙

+ Φ𝑢𝑥 + �̃�Φ𝑥 + Ψ𝑣𝑥 + 𝑛𝑄𝑥,

(32)

with 𝑖0 = 0, 𝑖𝑙 = 0, and 𝑖𝑟 = 0, where 𝑖 = Φ,Ψ, Υ.
For (𝑡, 𝑥) ∈ 𝑃, we have Φ(𝑡, 𝑥) = 0, Ψ(𝑡, 𝑥) = 0, and

Υ(𝑡, 𝑥) = 0.
Then, we get the uniqueness result.
For (𝑡, 𝑥) ∈ 𝐼, we have

Φ (𝑡, 𝑥) = ∫

𝑡

0

𝑓1 (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp(∫
𝑡

𝑟

𝑏1 (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑠,

Ψ (𝑡, 𝑥) = ∫

𝑡

0

𝑓2 (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp(∫
𝑡

𝑟

𝑏2 (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑠,

Υ (𝑡, 𝑥) = ∫

𝑡

0

𝑓3 (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp(∫
𝑡

𝑟

𝑏3 (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑠. (33)

For (𝑡, 𝑥) ∈ 𝐿, we have

Φ (𝑡, 𝑥) = ∫

𝑡

𝑒(𝑡,𝑥)

𝑓1 (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp(∫
𝑡

𝑟

𝑏1 (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑠,

Ψ (𝑡, 𝑥) = ∫

𝑡

𝑒(𝑡,𝑥)

𝑓2 (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp(∫
𝑡

𝑟

𝑏2 (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑠,

Υ (𝑡, 𝑥) = ∫

𝑡

𝑒(𝑡,𝑥)

𝑓3 (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp(∫
𝑡

𝑟

𝑏3 (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑠.

(34)

For (𝑡, 𝑥) ∈ 𝑅, we have

Φ (𝑡, 𝑥) = ∫

𝑡

𝑒(𝑡,𝑥)

𝑓1 (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp(∫
𝑡

𝑟

𝑏1 (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑠,

Ψ (𝑡, 𝑥) = ∫

𝑡

𝑒(𝑡,𝑥)

𝑓2 (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp(∫
𝑡

𝑟

𝑏2 (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑠,

Υ (𝑡, 𝑥) = ∫

𝑡

𝑒(𝑡,𝑥)

𝑓3 (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))

× exp(∫
𝑡

𝑟

𝑏3 (𝑠

, 𝜔 (𝑠


, 𝑡, 𝑥)) 𝑑𝑠


)𝑑𝑠.

(35)
Now since ‖𝑃(𝑡, ⋅)‖𝐿∞(0,1) ≤ 5‖Φ(𝑡, ⋅)‖𝐿∞(0,1), ‖𝑄(𝑡, ⋅)‖𝐿∞(0,1) ≤
5‖Ψ(𝑡, ⋅)‖𝐿∞(0,1), ‖H(𝑡, ⋅)‖𝐿∞(0,1) ≤ 5‖Υ(𝑡, ⋅)‖𝐿∞(0,1) and
�̃�, 𝜕𝑥�̃�, 𝑛, 𝜕𝑥𝑛,

̃
𝑙, 𝜕𝑥

̃
𝑙 bounded, we see that for some 𝜆1 > 0,

𝜆2 > 0, 𝜆3 > 0,




𝑓1 (𝑡, ⋅)




𝐿∞(0,1)

≤ 𝜆1 (‖Φ (𝑡, ⋅)‖𝐿∞(0,1) + ‖Ψ (𝑡, ⋅)‖𝐿∞(0,1) + ‖Υ (𝑡, ⋅)‖𝐿∞(0,1)) ,





𝑓2 (𝑡, ⋅)




𝐿∞(0,1)

≤ 𝜆2 (‖Φ (𝑡, ⋅)‖𝐿∞(0,1) + ‖Ψ (𝑡, ⋅)‖𝐿∞(0,1) + ‖Υ (𝑡, ⋅)‖𝐿∞(0,1)) ,





𝑓3 (𝑡, ⋅)




𝐿∞(0,1)

≤ 𝜆3 (‖Φ (𝑡, ⋅)‖𝐿∞(0,1) + ‖Ψ (𝑡, ⋅)‖𝐿∞(0,1)+‖Υ(𝑡,⋅)‖
𝐿
∞
(0,1)

) ,

(36)
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since 𝑝, 𝑞, 𝑟, and 𝐵𝑖, (𝑖 = 1, 2, 3) are bounded, we get that for
some 𝜆1 > 0, 𝜆


2 > 0, 𝜆


3 > 0,

‖Φ (𝑡, ⋅)‖𝐿∞(0,1)

≤ 𝜆


1 ∫

𝑡

0

(‖Φ (𝑠, ⋅)‖𝐿∞(0,1) + ‖Ψ (𝑠, ⋅)‖𝐿∞(0,1)

+‖Υ (𝑠, ⋅)‖𝐿∞(0,1)) 𝑑𝑠,

‖Ψ (𝑡, ⋅)‖𝐿∞(0,1)

≤ 𝜆


2 ∫

𝑡

0

(‖Φ (𝑠, ⋅)‖𝐿∞(0,1) + ‖Ψ (𝑠, ⋅)‖𝐿∞(0,1)

+‖Υ (𝑠, ⋅)‖𝐿∞(0,1)) 𝑑𝑠,

‖Υ (𝑡, ⋅)‖𝐿∞(0,1)

≤ 𝜆


3 ∫

𝑡

0

(‖Φ (𝑠, ⋅)‖𝐿∞(0,1) + ‖Ψ (𝑠, ⋅)‖𝐿∞(0,1)

+‖Υ (𝑠, ⋅)‖𝐿∞(0,1)) 𝑑𝑠.

(37)

We can obtain that

‖Φ(𝑡, ⋅)‖𝐿∞(0,1) + ‖Ψ(𝑡, ⋅)‖𝐿∞(0,1) + ‖Υ(𝑡, ⋅)‖𝐿∞(0,1)

≤ (𝜆

1 + 𝜆


2 + 𝜆


3)

×∫

𝑡

0

(‖Φ (𝑠, ⋅)‖𝐿∞(0,1) + ‖Ψ (𝑠, ⋅)‖𝐿∞(0,1)

+ ‖Υ (𝑠, ⋅)‖𝐿∞(0,1)) 𝑑𝑠.

(38)

As a result, we get the result of the uniqueness by
Gronwall’s inequality when (𝑡, 𝑥) ∈ 𝐼, (𝑡, 𝑥) ∈ 𝐿, (𝑡, 𝑥) ∈ 𝑅.
Then, we complete the proof of the uniqueness results.

3. Asymptotic Stabilization

3.1. Preliminary Results. The equilibrium state that we want
to stabilize is 𝑚 = 𝑛 = 𝑙 = 0, 𝑝 = 𝑞 = 𝑟 = 𝐺 ∗

𝐵𝑖 = 0, and 𝑖 = 1, 2, 3. A natural idea is using Lyapunov
indirection method to investigate whether the linearized
system around the equilibrium state is stabilizable or not.
Its stabilization would provide a local stabilization result on
the nonlinear system. However, there is a difficulty in the
stabilization problem. We have to prescribe 𝑦𝑙, and we just
need to make a continuous transition at (𝑡, 𝑥) = (0, 0), and
that 𝑦𝑙 asymptotically converge in time. For convenience, the
system (6)–(8) can rewrite in the following

𝜕𝑡𝑦 − ̆𝑎(𝑡, 𝑥) 𝜕𝑥𝑦 =
̆
𝑏(𝑡, 𝑥) 𝑦 +

̆
𝑓(𝑡, 𝑥) ,

𝑦 (0, ⋅) = 𝑦0, 𝑦 (⋅, 0) = 𝑦𝑙, 𝑦 (1, ⋅) = 𝑦𝑟,

̆𝑔 (𝑡, 𝑥) = 𝐺 ∗ 𝑦 (𝑡, 𝑥) , ̆𝑔 (𝑡, 0) = ̆𝑔(𝑡, 1) = 0,

̆𝐵(𝑡, 𝑥) = 0, 𝐺 ∗ ̆𝐵(𝑡, 0) = 𝑣𝑙 (𝑡) ,

𝐺 ∗ ̆𝐵(𝑡, 1) = 𝑣𝑟 (𝑡) ,

(39)

where

̆
𝑏(𝑡, 𝑥) = (

2(𝑝 + 𝐺 ∗ ̆𝐵)
𝑥
+ 𝑣𝑥 + 𝑤𝑥

0

0

0 0

2(𝑞 + 𝐺 ∗ ̆𝐵)
𝑥
+ 𝑢𝑥 + 𝑤𝑥 0

0 2(𝑟 + 𝐺 ∗ ̆𝐵)
𝑥
+ 𝑢𝑥 + 𝑣𝑥

),

̆𝑎(𝑡, 𝑥) = (

(𝑝 + 𝐺 ∗ ̆𝐵 + 𝑣 + 𝑤)

0

0

0 0

(𝑢 + 𝑞 + 𝐺 ∗ ̆𝐵 + 𝑤) 0

0 (𝑢 + 𝑣 + 𝑟 + 𝐺 ∗ ̆𝐵)

) ,

𝑦 = (

𝑚

𝑛

𝑙

) , 𝑦0 = (

𝑚0

𝑛0

𝑙0

) ,

̆
𝑓(𝑡, 𝑥) = (

𝑛𝑣𝑥 + 𝑙𝑤𝑥

𝑚𝑢𝑥 + 𝑙𝑤𝑥

𝑚𝑢𝑥 + 𝑛𝑣𝑥

) = (

0 𝑛 𝑙

𝑚 0 𝑙

𝑚 𝑛 0

)(

𝑢𝑥

𝑣𝑥

𝑤𝑥

) ,

̆𝑔(𝑡, 𝑥) = (

𝑝

𝑞

𝑟

) , 𝑦𝑙 = (

𝑚𝑙

𝑛𝑙

𝑙𝑙

) , 𝑦𝑟 = (

𝑚𝑟

𝑛𝑟

𝑙𝑟

) .

(40)

Our feedback law for (3) reads

𝑦 ∈ 𝐶
0
([0, 1])→

{
{

{
{

{

𝑣𝑙 (𝑦) = 𝐴 𝑙




𝑦



𝐶0([0,1])

,

𝑣𝑟 (𝑦) = 𝐴𝑟




𝑦



𝐶0([0,1])

,

𝜕𝑡𝑦𝑙 = 𝑀𝑦𝑙,

(41)

where 𝐴 𝑙 > 2 sinh(1), 𝐴𝑟 > 𝐴 𝑙 cosh(1) + sinh(2), 𝑀 > 0,

𝑇 > 0, and𝑀 = (

𝜇 0 0

0 𝜇 0

0 0 𝜇
), 𝜇 < 0, a symmetric matrix, is the

unique matrix solution to the matrix function:

𝑃𝑀 +𝑀
𝑇
𝑃 = −𝑍, (42)

for some symmetric positive-definite matrices 𝑃 and 𝑍.
Indeed, let 𝑉(𝑡, 𝑦𝑙) = 𝑦

𝑇
𝑙 𝑃𝑦𝑙 be the Lyapunov candidate, and

that 𝑦𝑙 asymptotically converges in time is equivalent to that
the time derivative of the 𝑉,𝑉(𝑡, 𝑦𝑙) = −𝑦

𝑇
𝑙 𝑍𝑦𝑙 is strictly

negative. A fixed-point strategy will be used again to prove
the existence of a solution to the closed-loop system, we begin
by defining the domain of the operator.

Definition 13. Let 𝑋 be the space of (𝑔,𝑁) ∈ 𝐶
0
([0, 𝑇] ×

[0, 1]) × 𝐶
0
([0, 1]) satisfying

(1) for all (𝑡, 𝑥) ∈ [0, 𝑇]×[0, 1], 𝑔(0, 𝑥) = 𝑦0(𝑥), 𝑔(𝑡, 0) =
𝑦0(0)𝑒

𝑀𝑡,
(2) for all 𝑡 ∈ [0, 𝑇], ‖𝑔(𝑡, ⋅)‖𝐶0([0,1]) ≤ 𝑁(𝑡),
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(3) 𝑁 is nonincreasing, and 𝑁(0) ≤

‖𝑦0‖𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1]).

Lemma 14. Thedomain𝑋 is nonempty, convex, bounded, and
closed with respect to the uniform topology.

The proof is elementary and one notices that
(𝑦0(𝑥)𝑒

𝑀𝑡
, ‖𝑦0‖𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])𝑒

𝑀𝑡
) ∈ 𝑋, so 𝑋 is

nonempty.
Now for (𝑦,𝑁) ∈ 𝑋, we define

∨
𝑔 and𝐺∗

∨

𝐵 as the solutions
of

∀ (𝑡, 𝑥) ∈ Ω𝑇,

∨
𝑔 (𝑡, 𝑥) = 𝐺 ∗ 𝑦 (𝑡, 𝑥) ,

∨
𝑔 (𝑡, 0) =

∨
𝑔 (𝑡, 1) = 0,

∨

𝐵 (𝑡, 𝑥) = 0,

𝐺∗

∨

𝐵 (𝑡, 0) = 𝐴 𝑙𝑁(𝑡) , 𝐺∗

∨

𝐵 (𝑡, 1) = 𝐴𝑟𝑁(𝑡) .

(43)

One has the following exact formulas:

∀ (𝑡, 𝑥) ∈ Ω𝑇,

∨
𝑔 (𝑡, 𝑥) = −∫

𝑥

0

sinh (𝑥 − ̆𝑥)𝑦 (𝑡, ̆𝑥) 𝑑 ̆𝑥

−

sinh (𝑥)
sinh (1)

∫

1

0

sinh ( ̆𝑥 − 1) 𝑦 (𝑡, ̆𝑥) 𝑑 ̆𝑥,

𝐺∗

∨

𝐵 (𝑡, 𝑥) =

𝑁 (𝑡)

sinh (1)
(𝐴𝑟 sinh (𝑥) + 𝐴 𝑙 sinh (1 − 𝑥)) .

(44)

Therefore, we have the following inequalities:

∀ (𝑡, 𝑥) ∈ [0, 𝑇] × [0, 1] ,









∨
𝑔 (𝑡, 𝑥)









≤ 2 (1 + cosh (1)) 

𝑦 (𝑡, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

,









𝜕𝑥

∨
𝑔 (𝑡, 𝑥)









≤ 2 cosh (1) 

𝑦 (𝑡, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

,









𝜕
2

𝑥𝑥

∨
𝑔 (𝑡, 𝑥)









≤ [2 (cosh (1) + 1) + 1]

×




𝑦 (𝑡, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

,









𝜕𝑥 (𝐺∗

∨

𝐵) (𝑡, 𝑥)









≥

𝐴𝑟 − 2 cosh (1) 𝐴 𝑙

sinh (1)
𝑁 (𝑡) ,









𝐺∗

∨

𝐵 (𝑡, 𝑥)









≥ 𝐴 𝑙𝑁(𝑡) .

(45)

Let
∨
𝑐 (𝑡, 𝑥) = 𝐺∗

∨

𝐵 (𝑡, 𝑥) +

∨
𝑔 (𝑡, 𝑥), where

∨
𝑐 (𝑡, 𝑥) =

(

𝑢
𝑣
𝑤
) (𝑡, 𝑥), and in turn those provide

∨
𝑐 (𝑡, 𝑥) ≤ [2 (1 + cosh (1)) + cosh (1)

sinh (1)
(𝐴𝑟 + 𝐴 𝑙)]

×




𝑦 (𝑡, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

,

𝜕𝑥

∨
𝑐 (𝑡, 𝑥) ≤

sinh (2) + 2𝐴 𝑙 cosh (1) − 𝐴𝑟

sinh (1)

×




𝑦 (𝑡, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

,

𝜕
2

𝑥𝑥

∨
𝑐 (𝑡, 𝑥) ≤ [2 (1 + cosh (1)) + 1 + cosh (1)

sinh (1)
(𝐴𝑟 + 𝐴 𝑙)]

×




𝑦 (𝑡, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

.

(46)

Now, if 𝜔 is the flow of
∨
𝑐, 𝜔 is 𝐶1, and since

∨
𝑐 ≥ 0, 𝜔(⋅, 𝑡, 𝑥) is

nondecreasing. This allows us to define the entrance time and
then the operator 𝑆 as follows. Let 𝑒(𝑡, 𝑥) = min{𝑠 ∈ [0, 𝑡] |

𝜔(𝑠, 𝑡, 𝑥) = 0}.
Now, for for all (𝑡, 𝑥) ∈ [0, 𝑇] × [0, 1], 𝑆(𝑦,𝑁) = (𝑦, �̃�)

with the following:

(1) if 𝑥 ≥ 𝜔(𝑡, 0, 0),

𝑦 (𝑡, 𝑥)

= 𝑦0 (𝜔 (0, 𝑡, 𝑥)) exp(∫
𝑡

0

∨

𝑏 (𝑟, 𝜔 (𝑟, 𝑡, 𝑥)) 𝑑𝑟)

+ ∫

𝑡

0

∨

𝑓 (𝑟, 𝜔 (𝑟, 𝑡, 𝑥))

× exp(∫
𝑡

r

∨

𝑏 (𝑟

, 𝜔 (𝑟


, 𝑡, 𝑥)) 𝑑𝑟


)𝑑𝑟,

(47)

(2) if 𝑥 ≤ 𝜔(𝑡, 0, 0),

𝑦 (𝑡, 𝑥)

= 𝑦0 (0) 𝑒
𝑀𝑒(𝑡,𝑥) exp(∫

𝑡

0

∨

𝑏 (𝑟, 𝜔 (𝑟, 𝑡, 𝑥)) 𝑑𝑟)

+ ∫

𝑡

𝑒(𝑡,𝑥)

∨

𝑓 (𝑟, 𝜔 (𝑟, 𝑡, 𝑥))

× exp(∫
𝑡

𝑟

∨

𝑏 (𝑟

, 𝜔 (𝑟


, 𝑡, 𝑥)) 𝑑𝑟


)𝑑𝑟,

(48)

(3) 𝑁(𝑡) = ‖𝑦(𝑡, ⋅)‖𝐶0([0,1]).

Lemma 15. (1) The operator 𝑆maps𝑋 to𝑋.
(2) The family 𝑆(𝑋) is uniformly bounded and equicontin-

uous.
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(3) 𝑆 is continuous w.r.t. the uniform topology.
The proof is very similar to [10], except for the state 𝑦 here

is a three-component vector and the proof is omitted.
Now, we can apply Schauder’s fixed point theorem to 𝑆 and

get (𝑦,𝑁) fixed point of 𝑆.

3.2. Stabilization and Global Existence

Theorem 16. For any 𝑦0 ∈ 𝐶0([0, 1]) ×𝐶0([0, 1]) ×𝐶0([0, 1]),
there exists𝑦 ∈ 𝐶0(Ω𝑇)×𝐶

0
([0, 𝑇], 𝐶

2
([0, 1])) aweak solution

of (39) satisfying

∀𝑥 ∈ [0, 1] 𝑦 (0, 𝑥) = 𝑦0 (𝑥) . (49)

Furthermore, any maximal solution of (39) and (41) is global,
and if we let

𝑘 = max(2 (1 + cosh (1)) + 1 + cosh (1)
sinh (1)

(A𝑟 + A𝑙) ,

sinh (2) + 2𝐴 𝑙 cosh (1) − 𝐴𝑟

sinh (1)
) ,

𝜏 =

1

‖𝑀‖3

ln(
‖𝑀‖

2
3

8𝑘
3


𝑦0





2

𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

) ,

(50)

then we have

∀𝑡 ≥ 𝜏




𝑦 (𝑡, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

≤

‖𝑀‖3

2𝑘

(1 + 2𝑘‖𝑀‖3) 𝑒
‖𝑀‖3(𝑡−𝑥)

.

(51)

To finish the proof ofTheorem (39), we have to prove the
global existence of a maximal solution and the estimate (51).

Proof . First, we rewrite (46) as the following:

∀ (𝑡, 𝑥) ∈ Ω𝑇

∨
𝑐 (𝑡, 𝑥) ≤ 𝑘





𝑦 (𝑡, ⋅)




𝐶0([0,1])

,

𝜕𝑥

∨
𝑐 (𝑡, 𝑥) ≤ 𝑘





𝑦 (𝑡, ⋅)




𝐶0([0,1])

,

𝜕𝑥𝑥

∨
𝑐 (𝑡, 𝑥) ≤ 𝑘





𝑦 (𝑡, ⋅)




𝐶0([0,1])

,

(52)

where 𝑘 = max(2(1 + cosh(1)) + 1 + (cosh(1)/ sinh(1))(A𝑟 +
A𝑙), (sinh(2) + 2𝐴 𝑙 cosh(1) − 𝐴𝑟)/ sinh(1)).

For 𝑦 is the solution of the transport (39) and it satisfies

𝑦 (𝑡, 𝑥) = 𝑦 (𝑠, 𝜔 (𝑠, 𝑡, 𝑥)) exp(∫
𝑡

0

∨

𝑏 (𝑟, 𝜔 (𝑟, 𝑡, 𝑥)) 𝑑𝑟)

+ ∫

𝑡

0

∨

𝑓 (𝑟, 𝜔 (𝑟, 𝑡, 𝑥))

× exp(∫
𝑡

𝑟

∨

𝑏 (𝑟

, 𝜔 (𝑟


, 𝑡, 𝑥)) 𝑑𝑟


)𝑑𝑟.

(53)

Combining those facts, we get for 𝑡 ≥ 𝑠 the following:




𝑦 (𝑡, 𝑥)






≤




𝑦 (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))





(1 + 4𝑘

2 



𝑦 (𝑠, 𝜔 (𝑠, 𝑡, 𝑥))





𝑡)

× exp(2∫
𝑡

𝑠

𝑘




𝑦 (𝑟, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

𝑑𝑟) .

(54)

We have also imposed 𝑦(𝑡, 0) = 𝑦(𝑠, 0)𝑒
𝑀(𝑡−𝑠) and thanks to

the existence theorem that a maximal solution of the closed
loop system is global. To get a more precise statement, we
consider all the between time 𝑡 and 𝑠, and we obtain.

For 0 ≤ 𝑠 ≤ 𝑡,




𝑦 (𝑡, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

≤




𝑦 (𝑠, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

×max [𝑒‖𝑀‖3(𝑟−𝑥) (1 + 4𝑘2

𝑦 (𝑠, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

𝑟)]

× exp(2𝑘∫
𝑡

𝑟





𝑦 (𝛼, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

𝑑𝛼) .

(55)

We define

𝑔 (𝑟) = [𝑒
‖𝑀‖3(𝑟−𝑠)

(1 + 4𝑘
2



𝑦 (𝑟, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

𝑟)]

× exp(2𝑘∫
𝑡

𝑠





𝑦 (𝛼, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

𝑑𝛼) ,

(56)

and we set 𝑔(𝑟) = 𝑔1(𝑟) + 𝑔2(𝑟), where

𝑔1 (𝑟) = 𝑒
‖𝑀‖3(𝑟−𝑠)

× exp(2𝑘∫
𝑡

𝑟





𝑦 (𝛼, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

) ,

𝑔2 (𝑟) = 𝑒
‖𝑀‖3(𝑟−𝑠)

4𝑘
2



𝑦 (𝑟, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

𝑟

× exp(2𝑘∫
𝑡

𝑟





𝑦 (𝛼, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

) .

(57)

Then, we have

𝑔

(𝑟)

= (‖𝑀‖3 − 2𝑘




𝑦(𝑟, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

) 𝑔1 (𝑟)

+ (

1

𝑟

+ ‖𝑀‖3 − 2𝑘




𝑦(𝑟, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

)

× 𝑔2 (𝑟) ,

(58)

as long as the quantity ‖𝑦(𝑟, ⋅)‖𝐶0([0,1]) is not equal to
zero, it strictly decreases, so if ‖𝑦0‖𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1]) >
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‖𝑀‖3/2𝑘, for 𝑡 small enough ‖𝑦(𝑡, ⋅)‖𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1]) ≥
‖𝑀‖3/2𝑘, and we have the following.




𝑦 (𝑡, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

≤




𝑦0



𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

× (1 + 4𝑘
2



𝑦0



𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

𝑡) e‖𝑀‖3𝑡.

(59)

If we define 𝜏 = (1/‖𝑀‖3) ln(‖𝑀‖
2
3/

8𝑘
3
‖𝑦0‖

2
𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])), we get that





𝑦(𝜏, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

≤

‖𝑀‖3

2𝑘

. (60)

This provides 𝜏 ≤ 𝑠 ≤ 𝑡, the inequality (which was clear
when ‖𝑦0‖𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1]) ≤ ‖𝑀‖3/2𝑘)





𝑦(𝑡, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

≤




𝑦(𝜏, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

× (1 + 4𝑘
2



𝑦(𝜏, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

𝑡)

× exp(2𝑘∫
𝑡

𝑥





𝑦(𝑟, ⋅)




𝐶0([0,1])×𝐶0([0,1])×𝐶0([0,1])

𝑑𝑟)

≤

‖𝑀‖3

2𝑘

(1 + 2𝑘‖𝑀‖3) 𝑒
‖𝑀‖3(𝑡−x)

.

(61)

4. Blow-Up Phenomena

In this section, we present a result with the initial data
and boundary profiles under a special condition that ensure
strong solutions to following system blow-up in finite time as
follows:

𝜕𝑡𝑚 − (𝑢 + 𝑣 + 𝑤) (𝑡, 𝑥) 𝜕𝑥𝑚

= (2 (𝑝 + 𝐺 ∗ 𝐵) + 𝑣𝑥 + 𝑤𝑥) (𝑡, 𝑥)𝑚

+ (𝑛𝑣𝑥 + 𝑙𝑤𝑥) (𝑡, 𝑥) ,

𝜕𝑡𝑛 − (𝑢 + 𝑣 + 𝑤) (𝑡, 𝑥) 𝜕𝑥𝑛

= (2 (𝑞 + 𝐺 ∗ 𝐵) + 𝑢𝑥 + 𝑤𝑥) (𝑡, 𝑥) 𝑛

+ (𝑚𝑢𝑥 + 𝑙𝑤𝑥) (𝑡, 𝑥) ,

𝜕𝑡𝑙 − (𝑢 + 𝑣 + 𝑤) (𝑡, 𝑥) 𝜕𝑥𝑙

= (2 (𝑟 + 𝐺 ∗ 𝐵) + 𝑢𝑥 + 𝑣𝑥) (𝑡, 𝑥) 𝑙

+ (𝑚𝑢𝑥 + 𝑛𝑣𝑥) (𝑡, 𝑥) ,

𝑚 (0, ⋅) = 𝑚0, 𝑛 (0, ⋅) = 𝑛0, 𝑙 (0, ⋅) = 𝑙0, 𝑥 ∈ [0, 1] ,

𝑚 (𝑡, 0) = 𝑚𝑙 = 𝑚 (𝑡, 1) = 𝑚𝑟, 𝑡 ∈ [0, 𝑇] ,

𝑛 (𝑡, 0) = 𝑛𝑙 = 𝑛 (𝑡, 1) = 𝑛𝑟, 𝑡 ∈ [0, 𝑇] ,

𝑙 (𝑡, 0) = 𝑙𝑙 = 𝑙 (𝑡, 1) = 𝑙𝑟, 𝑡 ∈ [0, 𝑇] ,

(62)

where𝑚 = 𝑢 − 𝑢𝑥𝑥, 𝑛 = 𝑣 − 𝑣𝑥𝑥, 𝑙 = 𝑤 − 𝑤𝑥𝑥. This imply that

𝑢 (𝑡, 0) = 𝑢 (𝑡, 1) ,

𝑣 (𝑡, 0) = 𝑣 (𝑡, 1) ,

𝑤 (𝑡, 0) = 𝑤 (𝑡, 1) .

(63)

From Definition 3, we can also define

𝜔𝑡 = − (𝑢 + 𝑣 + 𝑤) (𝑡, 𝜔 (𝑡, 𝑦)) ,

(𝑡, 𝑥) ∈ [0, 𝑇] × [0, 1] ,

𝜔 (0, 𝑥) 1 = 𝑥, 𝑥 ∈ [0, 1] ;

(64)

where 𝑢, 𝑣, and 𝑤 denote the solution to (62). Applying clas-
sical results in the theory of ordinary differential equations,
one can obtain a result on which is crucial in studying blow-
up phenomena.

From (62), we obtain that

𝑚𝑡 − 𝜕𝑥 (𝑚𝑢 + 𝑚𝑣 + 𝑚𝑤) = 𝑚𝑢𝑥 + 𝑛𝑣𝑥 + 𝑙𝑤𝑥,

𝑛𝑡 − 𝜕𝑥 (𝑚𝑢 + 𝑛𝑣 + 𝑚𝑤) = 𝑚𝑢𝑥 + 𝑛𝑣𝑥 + 𝑙𝑤𝑥,

𝑙𝑡 − 𝜕𝑥 (𝑙𝑢 + 𝑙𝑣 + 𝑙𝑤) = 𝑚𝑢𝑥 + 𝑛𝑣𝑥 + 𝑙𝑤𝑥.

(65)

Lemma 17. Let 𝑢, 𝑣, 𝑤 ∈ 𝐶([0, 𝑇);𝐻
𝑠
)∩𝐶

1
([0, 𝑇);𝐻

𝑠−1
), (𝑠 ≥

2), then (64) has a unique solution 𝜔 ∈ 𝐶([0, 𝑇) × [0, 1]).
Moreover, the map 𝜔(𝑡, ⋅) is an increasing diffeomorphism with

𝜔𝑥 (𝑡, 𝑥) = exp{−∫
𝑡

0

(𝑢𝑥 (𝑠, 𝜔 (𝑠, 𝑥))

+ 𝑣𝑥 (𝑠, 𝜔 (𝑠, 𝑥)) + 𝑤𝑥 (𝑠, 𝜔 (𝑠, 𝑥)) 𝑑𝑠) }

> 0,

𝜔𝑥 (0, 𝑥) = 1, ∀𝑥 ∈ [0, 1] .

(66)

Proof. The proof is omitted here, one can see a similar proof
in [12].

Now, we have the following lemma that the potential𝑚−

𝑛, 𝑛 − 𝑙, 𝑚 − 𝑙 with compactly supported initial datum 𝑚0 −

𝑛0, 𝑛0 − 𝑙0, 𝑚0 − 𝑙0 also has compact 𝑥 support as long as it
exists.

Lemma 18. Assume that 𝑢0(𝑡, 𝑥), 𝑣0(𝑡, 𝑥), 𝑤0(𝑡, 𝑥) ∈ 𝐻𝑠
× 𝐻

𝑠

with 𝑠 > (3/2), (𝑢, 𝑣, 𝑤) is the corresponding solution, if 𝑚0 −

𝑛0, 𝑛0 − 𝑙0, 𝑚0 − 𝑙0 has compact support, then𝑚−𝑛, 𝑛 − 𝑙, 𝑚− 𝑙

also has compact support, moreover, we can obtain that

‖𝑚 (𝑡, ⋅) − 𝑛 (𝑡, ⋅)‖ ≤ 𝑒
3𝐾𝑇 




𝑚0 (⋅) − 𝑛0 (⋅)





,

‖𝑚 (𝑡, ⋅) − 𝑙 (𝑡, ⋅)‖ ≤ 𝑒
3𝐾𝑇 




𝑚0 (⋅) − 𝑙0 (⋅)





,

‖𝑛 (𝑡, ⋅) − 𝑙 (𝑡, ⋅)‖ ≤ 𝑒
3𝐾𝑇 




𝑛0 (⋅) − 𝑙0 (⋅)





.

(67)
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Proof. Since
𝑑

𝑑𝑡

(𝑚 (𝑡, 𝜔 (𝑡, 𝑥)) 𝜔𝑥)

= (𝑚𝑡 + 𝑚𝑥𝜔𝑡) 𝜔𝑥 + 𝑚𝜔𝑥𝑡

= [𝑚𝑡 − 𝜕𝑥 (𝑚𝑢 + 𝑚𝑣 + 𝑚𝑤)] 𝜔𝑥

= (𝑚𝑢𝑥 + 𝑛𝑣𝑥 + 𝑙𝑤𝑥) 𝜔𝑥.

(68)

Similarly,

𝑑

𝑑t
(𝑛 (𝑡, 𝜔 (𝑡, 𝑥)) 𝜔𝑥) = (𝑚𝑢𝑥 + 𝑛𝑣𝑥 + 𝑙𝑤𝑥) 𝜔𝑥,

𝑑

𝑑𝑡

(𝑙 (𝑡, 𝜔 (𝑡, 𝑥)) 𝜔𝑥) = (𝑚𝑢𝑥 + 𝑛𝑣𝑥 + 𝑙𝑤𝑥) 𝜔𝑥.

(69)

So it follows that
𝑑

𝑑𝑡

((𝑚 (𝑡, 𝜔 (𝑡, 𝑥)) − 𝑛 (𝑡, 𝜔 (𝑡, 𝑥))) 𝜔𝑥) = 0,

𝑑

𝑑𝑡

((𝑚 (𝑡, 𝜔 (𝑡, 𝑥)) − 𝑙 (𝑡, 𝜔 (𝑡, 𝑥))) 𝜔𝑥) = 0,

𝑑

𝑑𝑡

((𝑛 (𝑡, 𝜔 (𝑡, 𝑥)) − 𝑙 (𝑡, 𝜔 (𝑡, 𝑥))) 𝜔𝑥) = 0.

(70)

We obtain
[𝑚 (𝑡, 𝜔 (𝑡, 𝑥)) − 𝑛 (𝑡, 𝜔 (𝑡, 𝑥))] 𝜔𝑥 = 𝑚0 (𝑥) − 𝑛0 (𝑥) ,

[𝑚 (𝑡, 𝜔 (𝑡, 𝑥)) − 𝑙 (𝑡, 𝜔 (𝑡, 𝑥))] 𝜔𝑥 = 𝑚0 (𝑥) − 𝑙0 (𝑥) ,

[𝑛 (𝑡, 𝜔 (𝑡, 𝑥)) − 𝑙 (𝑡, 𝜔 (𝑡, 𝑥))] 𝜔𝑥 = 𝑛0 (𝑥) − 𝑙0 (𝑥) .

(71)

From Lemma 17, we have

𝜔𝑥 = exp(−∫
𝑡

0

𝑢𝑥 (𝑠, 𝜔 (𝑠, 𝑥))

+ 𝑣𝑥 (𝑠, 𝜔 (𝑠, 𝑥)) + 𝑤𝑥 (𝑠, 𝜔 (𝑠, 𝑥)) 𝑑𝑠) .

(72)

If there exist four constants 𝐾,𝐾1, 𝐾2, and 𝐾3 such that 𝑢𝑥 ≤
𝐾1, 𝑣𝑥 ≤ 𝐾2, 𝑤𝑥 ≤ 𝐾3, and 𝐾 = max(𝐾1, 𝐾2, 𝐾3), we can get
that
‖𝑚 (𝑡, ⋅) − 𝑛 (𝑡, ⋅)‖𝐿∞

= ‖𝑚 (𝑡, 𝜔 (𝑡, ⋅)) − 𝑛 (𝑡, 𝜔 (𝑡, ⋅))‖𝐿∞

=










exp(∫
𝑡

0

𝑢𝑥 (𝑠, 𝜔 (𝑠, 𝑥)) + 𝑣𝑥 (𝑠, 𝜔 (𝑠, 𝑥))

+ 𝑤𝑥 (𝑠, 𝜔 (𝑠, 𝑥)) 𝑑𝑠) × (𝑚0 (𝑥) − 𝑛0 (𝑥)) 𝑑𝑠







𝐿∞

≤ 𝑒
3𝐾𝑇 




𝑚0 (⋅) − 𝑛0 (⋅)





.

(73)

Similarly,

‖𝑚 (𝑡, ⋅) − 𝑙 (𝑡, ⋅)‖ ≤ 𝑒
3𝐾𝑇 




𝑚0 (⋅) − 𝑙0 (⋅)





,

‖𝑛 (𝑡, ⋅) − 𝑙 (𝑡, ⋅)‖ ≤ 𝑒
3𝐾𝑇 




𝑛0 (⋅) − 𝑙0 (⋅)





.

(74)

Theorem 19. Let 𝑢0(𝑥), 𝑣0(𝑥), and 𝑤0(𝑥), 𝑠 > 3/2 and
𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥), 𝑤(𝑡, 𝑥) be the solution in (62)with time𝑇.Then,
𝑇 is finite if and only if

lim
𝑡→𝑇

inf { inf
𝑥∈[0,1]

[𝑢𝑥 (𝑥, 𝑡)]} = −∞ (75)

or

lim
𝑡→𝑇

inf { inf
𝑥∈[0,1]

[𝑣𝑥 (𝑥, 𝑡)]} = −∞ (76)

or

lim
𝑡→𝑇

inf { inf
𝑥∈[0,1]

[𝑤𝑥 (𝑥, 𝑡)]} = −∞. (77)

Proof. Let 𝑢0(𝑥), 𝑣0(𝑥), and 𝑤0(𝑥), 𝑠 > 3/2 and
𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥), 𝑤(𝑡, 𝑥) be the solution (62) with time 𝑇.
We know that 𝑢(𝑡, 0) = 𝑢(𝑡, 1), 𝑣(𝑡, 0) = 𝑣(𝑡, 1), and
𝑤(𝑡, 0) = 𝑤(𝑡, 1). By the definition of𝑚, 𝑛, and 𝑙, we have

‖𝑚‖
2

𝐿2 = ∫

1

0

(𝑢 − 𝑢𝑥𝑥)
2
𝑑𝑥 = ∫

1

0

(𝑢
2
+ 2𝑢

2

𝑥 + 𝑢
2

𝑥𝑥) 𝑑𝑥,

‖𝑛‖
2

𝐿2 = ∫

1

0

(𝑣 − 𝑣𝑥𝑥)
2
𝑑𝑥 = ∫

1

0

(𝑣
2
+ 2𝑣

2

𝑥 + 𝑣
2

𝑥𝑥) 𝑑𝑥,

‖𝑙‖
2

𝐿2 = ∫

1

0

(𝑤 − 𝑤𝑥𝑥)
2
𝑑𝑥 = ∫

1

0

(𝑤
2
+ 2𝑤

2

𝑥 + 𝑤
2

𝑥𝑥) 𝑑𝑥.

(78)

Hence, ‖𝑢‖2𝐻2 ≤ ‖𝑚‖
2
𝐿2 ≤ 2‖𝑢‖

2
𝐻2 , ‖𝑣‖

2
𝐻2 ≤ ‖𝑛‖

2
𝐿2 ≤

2‖𝑣‖
2
𝐻2 , ‖𝑤‖

2
𝐻2 ≤ ‖𝑙‖

2
𝐿2 ≤ 2‖𝑤‖

2
𝐻2 .

Multiplying the first equation by 𝑚, the second one by 𝑛,
and the third one by 𝑙, after integration by parts and adding
up the results, we see that

1

2

𝑑

𝑑𝑡

∫

1

0

(𝑚
2
+ 𝑛

2
+ 𝑙

2
) 𝑑𝑥

= ∫

1

0

[(2𝑢𝑥 + 𝑣𝑥 + 𝑤𝑥)𝑚
2
+ (2𝑣𝑥 + 𝑢𝑥 + 𝑤𝑥) 𝑛

2

+ (2𝑤𝑥 + 𝑢𝑥 + 𝑣𝑥) 𝑙
2
+ (𝑚𝑚𝑥 + 𝑛𝑛𝑥 + 𝑙𝑙𝑥)

× (𝑢 + 𝑣 + 𝑤) + 𝑚𝑛 (𝑢𝑥 + 𝑣𝑥)

+ 𝑙𝑚 (𝑢𝑥 + 𝑤𝑥) + ln (𝑣𝑥 + 𝑤𝑥) ] 𝑑𝑥

= ∫

1

0

[(2𝑢𝑥 + 𝑣𝑥 + 𝑤𝑥 −
1

2

𝑢𝑥 −
1

2

𝑣𝑥 −
1

2

𝑤𝑥)𝑚
2



14 Journal of Function Spaces and Applications

+ (2𝑣𝑥 + 𝑢𝑥 + 𝑤𝑥 −
1

2

𝑢𝑥 −
1

2

𝑣𝑥 −
1

2

𝑤𝑥) 𝑛
2

+ (2𝑤𝑥 + 𝑢𝑥 + 𝑣𝑥 −
1

2

𝑢𝑥 −
1

2

𝑣𝑥 −
1

2

𝑤𝑥) 𝑙
2

+ 𝑚𝑛 (𝑢𝑥 + 𝑣𝑥) + 𝑙𝑚 (𝑢𝑥 + 𝑤𝑥) ln (𝑣𝑥 + 𝑤𝑥) ] 𝑑𝑥

= ∫

1

0

[(

3

2

𝑢𝑥 +
1

2

𝑣𝑥 +
1

2

𝑤𝑥)𝑚
2
+ (

3

2

𝑣𝑥 +
1

2

𝑢𝑥 +
1

2

𝑤𝑥) 𝑛
2

+ (

3

2

𝑤𝑥 +
1

2

𝑢𝑥 +
1

2

𝑣𝑥) 𝑙
2
+ 𝑚𝑛 (𝑢𝑥 + 𝑣𝑥)

+ 𝑙𝑚 (𝑢𝑥 + 𝑤𝑥) + ln (𝑣𝑥 + 𝑤𝑥) ] 𝑑𝑥

= ∫

1

0

[

1

2

(𝑢𝑥 + 𝑣𝑥 + 𝑤𝑥) (𝑚
2
+ 𝑛

2
+ 𝑙

2
)

+ 𝑚
2
𝑢𝑥 + 𝑛

2
𝑣𝑥 + 𝑙

2
𝑤𝑥 + 𝑚𝑛 (𝑢𝑥 + 𝑣𝑥)

+ 𝑙𝑚 (𝑢𝑥 + 𝑤𝑥) + ln (𝑣𝑥 + 𝑤𝑥) ] 𝑑𝑥

= ∫

1

0

[

1

2

(𝑢𝑥 + 𝑣𝑥) (𝑚 + n)2 + 1

2

(𝑢𝑥 + 𝑤𝑥) (𝑚 + 𝑙)
2

+

1

2

(𝑣𝑥 + 𝑤𝑥) (𝑙 + 𝑛)
2
+

1

2

𝑢𝑥𝑚
2

+

1

2

𝑣𝑥𝑛
2
+

1

2

𝑤𝑥𝑙
2
] 𝑑𝑥

(79)

So, we have

𝑑

𝑑𝑡

∫

1

0

(𝑚
2
+ 𝑛

2
+ 𝑙

2
) 𝑑𝑥

≤ (𝐾1 + 𝐾2 + 𝐾3)

× ∫

1

0

[(𝑚 + 𝑛)
2
+ (𝑚 + 𝑙)

2

+ (𝑙 + 𝑛)
2
+ 𝑚

2
+ 𝑛

2
+ 𝑙

2
] 𝑑𝑥

≤ 5 (𝐾1 + 𝐾2 + 𝐾3) ∫

1

0

(𝑚
2
+ 𝑛

2
+ 𝑙

2
) 𝑑𝑥.

(80)

By Gronwall’s inequality, we get

‖𝑢‖
2

𝐻2 + ‖𝑣‖
2

𝐻2 + ‖𝑤‖
2

𝐻2

≤ ∫

1

0

(𝑚
2
+ 𝑛

2
+ 𝑙

2
) 𝑑𝑥

≤ exp [5𝑇 (𝐾1 + 𝐾2 + 𝐾3)]

× ∫

1

0

(𝑚
2

0 + 𝑛
2

0 + 𝑙
2

0) 𝑑𝑥

≤ 2 exp [5𝑇 (𝐾1 + 𝐾2 + 𝐾3)]

× (




𝑢0





2

𝐻2
+




𝑣0





2

𝐻2
+




𝑤0





2

𝐻2
) ,

(81)

The above inequality, Soblev’s embedding theorem, ensure
that the solution (𝑢(𝑡, x), 𝑣(𝑡, 𝑥), 𝑤(𝑡, 𝑥)) cannot blow up in
finite time.

On the other hand, if

lim
𝑡→𝑇

inf { inf
𝑥∈[0,1]

[𝑢𝑥 (𝑥, 𝑡)]} = −∞ (82)

or

lim
𝑡→𝑇

inf { inf
𝑥∈[0,1]

[𝑣𝑥 (𝑥, 𝑡)]} = −∞ (83)

or

lim
𝑡→𝑇

inf { inf
𝑥∈[0,1]

[𝑤𝑥 (𝑥, 𝑡)]} = −∞, (84)

then the solution will blow up in finite time.
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This paper is concerned with the existence and nonexistence of positive solutions to the singular third-order 𝑚-point boundary
value problem 𝑢


(𝑡) + 𝑎(𝑡)𝑓(𝑢(𝑡)) = 0, 0 < 𝑡 < 1, 𝑢(0) = 𝑢(0) = 0, 𝑢(1) − ∑𝑚−2𝑖=1 𝛼𝑖𝑢


(𝜉𝑖) = 𝜆, where 𝜉𝑖 ∈ [0, 1), 𝛼𝑖 ∈ [0,∞) (𝑖 =

1, 2, . . . , 𝑚− 2) are constants, 𝜆 ∈ (0, 1) is a parameter, 𝑓 : [0,∞) → [0,∞) is continuous and 𝑎(⋅) is allowed to be singular at 𝑡 = 0
and 𝑡 = 1. The results here essentially extend and improve some known results.

1. Introduction and the Main Results

Singular boundary value problems for nonlinear ordinary
differential equations arise in a variety of areas of applied
mathematics, physics, chemistry, and so on. For earlier works,
see [1–3]. Nonsingular third-order multipoint boundary
value problems have been studied by many authors by using
different type of techniques, see, for example, [4–9] and
the references therein. In recent years, singular third-order
multipoint boundary value problems have also receivedmuch
attention, see [10–12].

Very recently, motivated by Ma [13], Sun [14] considered
the third-order three-point boundary value problem

𝑢

(𝑡) + 𝑎 (𝑡) 𝑓 (𝑢 (𝑡)) 0 = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢

(0) = 0, 𝑢


(1) − 𝛼𝑢


(𝜂) = 𝜆,

(𝑃𝜆)

where 𝜂 ∈ (0, 1), 𝛼 ∈ [0, 1/𝜂) are constants and 𝜆 ∈ (0,∞) is
a parameter. Under the following assumptions:

(𝐻1) 𝑎 ∈ 𝐶((0, 1), [0,∞)) and 0 < ∫1
0
(1 − 𝑠)𝑠𝑎(𝑠)𝑑𝑠 < ∞;

(𝐻2) 𝑓 ∈ 𝐶([0,∞), [0,∞));
(𝐻
∗
4 ) 𝑓 is superlinear, that is, 𝑓0 = 0, 𝑓∞ = ∞;

(𝐻
∗
5 ) 𝑓 is sublinear, that is, 𝑓0 = ∞, 𝑓∞ = 0,

where 𝑓0 = lim𝑟→0+(𝑓(𝑟)/𝑟), 𝑓∞ = lim𝑟→+∞(𝑓(𝑟)/𝑟).
By using Guo-Krasnosel’skii fixed point theorem, the

author established the following results.

Theorem A (see [14, Theorem 3.1]). Suppose that (𝐻1), (𝐻2),
and (𝐻∗4 ) hold. Then the problem (𝑃𝜆) has at least one positive
solution for 𝜆 small enough and has no positive solution for 𝜆
large enough.

Theorem B (see [14, Theorem 3.2]). Suppose that (𝐻1), (𝐻2),
and (𝐻∗4 ) hold. If 𝑓 nondecreasing, then there exists a positive
constant 𝜆∗ such that the problem (𝑃𝜆) has at least one positive
solution for 𝜆 ∈ (0, 𝜆

∗
) and has no positive solution for 𝜆 ∈

(𝜆
∗
,∞).

Theorem C (see [14, Theorem 3.3]). Suppose that (𝐻1), (𝐻2),
and (𝐻∗5 ) hold. Then the problem (𝑃𝜆) has at least one positive
solution for any 𝜆 ∈ (0,∞).

Being directly inspired by the previously mentioned
works, we will consider the existence and nonexistence of
positive solutions to the following third-order𝑚-point BVP:

𝑢

(𝑡) + 𝑎 (𝑡) 𝑓 (𝑢 (𝑡)) = 0, 0 < 𝑡 < 1, (1)

𝑢 (0) = 𝑢

(0) = 0, 𝑢


(1) −

𝑚−2

∑

𝑖=1

𝛼𝑖𝑢

(𝜉𝑖) = 𝜆, (2𝜆)

where 𝜉𝑖 ∈ [0, 1), 𝛼𝑖 ∈ [0,∞) (𝑖 = 1, 2, . . . , 𝑚 − 2) are
constants and 𝜆 ∈ (0, 1) is a parameter, 𝑎(⋅) is allowed to be
singular at 𝑡 = 0 and 𝑡 = 1. Here, the solution 𝑢 of BVP of (1),
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(2𝜆) is called positive solution if 𝑢(𝑡) is positive on (0, 1) and
satisfies (1) and the boundary conditions (2𝜆).

We assume that (𝐻1), (𝐻2) hold and make the following
additional assumptions:

(𝐻3) 0 < ∑
𝑚−2

𝑖=1 𝛼𝑖𝜉𝑖 < 1;

(𝐻4) lim𝑢→0+ sup (𝑓(𝑢)/𝑢) < Λ 1 and lim𝑢→+∞ inf (𝑓(𝑢)/
𝑢) > Λ 2;

(𝐻5) lim𝑢→0+ inf (𝑓(𝑢)/𝑢) > 0 and lim𝑢→+∞ sup (𝑓(𝑢)/
𝑢) < 𝐿,

where

Λ 1 = 2(1 + ‖ℎ‖)
−1
𝐿, ‖ℎ‖ =

1

2

𝛾,

𝐿 = [(1 + 𝛾

𝑚−2

∑

𝑖=1

𝛼𝑖)∫

1

0

(1 − 𝑠) 𝑠𝑎 (𝑠) 𝑑𝑠]

−1

,

𝛾 = (1 −

𝑚−2

∑

𝑖=1

𝛼𝑖𝜉𝑖)

−1

,

Λ 2 =
1

4

[𝜃
2
∫

1

𝜃

(1 − 𝑠) 𝑠𝑎 (𝑠) 𝑑𝑠]

−1

.

(2)

From (𝐻1), we know that there exists 𝑡0 ∈ (0, 1) such that
𝑎(𝑡0) > 0. Let 𝜃 satisfy 0 < 𝜃 < 𝑡0 < 1.

Our main results are the following.

Theorem 1. Let (𝐻1)–(𝐻4) hold. Then there exists a positive
number 𝜆∗ such that BVP of (1), (2𝜆) has at least one positive
solution for 𝜆 ∈ (0, 𝜆∗) and none for 𝜆 ∈ (𝜆∗,∞).

Theorem 2. Let (𝐻1)–(𝐻3) and (𝐻5) hold. Then BVP of (1),
(2𝜆) has at least one positive solution for any 𝜆 ∈ (0,∞).

The proof of previous theorems is based on the Schauder
fixed-point theorem.

Remark 3. BVP (𝑃𝜆) is a special case of (1), (2𝜆) with 𝛼1 =
𝛼, 𝜉1 = 𝜂, and 𝛼2 = ⋅ ⋅ ⋅ = 𝛼𝑚−2 = 0, 𝜉2 = ⋅ ⋅ ⋅ = 𝜉𝑚−2 = 0.

Remark 4. (𝐻4) allows but do not require the nonlinearity
𝑓(𝑢) to be sublinear at zero and infinity; (𝐻5) allows but do
not require the nonlinearity 𝑓(𝑢) to be sublinear at zero and
infinity.

Remark 5. We do not assume anymonotonicity condition on
the nonlinearity as in [14]. We find that the nondecreasing
condition of 𝑓 can be removed fromTheorem 3.2 in [14], and
the same result is obtained inTheorem 1.

Remark 6. It is obvious that Theorem 1 is an extension
and complement of Theorems 3.1 and 3.2; furthermore,
Theorem 2 is also an extension of Theorem 3.3 in [14].

2. Preliminary Lemmas

In this section, we present some notation and preliminary
lemmas.

Let 𝐶+[0, 1] = {𝑢 ∈ 𝐶[0, 1] | 𝑢(𝑡) ≥ 0, 𝑡 ∈ [0, 1]}

equipped with the norm ‖𝑢‖ = max0≤𝑡≤1|𝑢(𝑡)|.

Lemma 7 (see [15, Lemma 2.1]). Suppose that 𝜙 ∈ {𝜑 ∈

𝐿
1
loc[0, 1] | ∫

1

0
𝑡(1 − 𝑡)|𝜑(𝑡)|𝑑𝑡 < ∞}.

(i) Then ∫𝑡
0
𝑠𝜙(𝑠)𝑑𝑠, ∫1

𝑡
(1 − 𝑠)𝜙(𝑠)𝑑𝑠 ∈ 𝐿

1
(0, 1) and

∫

1

0

∫

𝑡

0

𝑠𝜙 (𝑠) 𝑑𝑠 𝑑𝑡 = ∫

1

0

∫

1

𝑡

(1 − 𝑠) 𝜙 (𝑠) 𝑑𝑠 𝑑𝑡

= ∫

1

0

𝑠 (1 − 𝑠) 𝜙 (𝑠) 𝑑𝑠.

(3)

(ii) Let 𝑟 ∈ (0, 1). Then

lim
𝑡→0+

V (𝑡) ∫
1

𝑡

(1 − 𝑠) 𝜙 (𝑠) 𝑑𝑠 = 0, (4)

for every V ∈ 𝐶1[0, 𝑟] with V(0) = 0, and

lim
𝑡→1−

𝑤 (𝑡) ∫

𝑡

0

𝑠𝜙 (𝑠) 𝑑𝑠 = 0, (5)

for every 𝑤 ∈ 𝐶
1
[𝑟, 1] with 𝑤(1) = 0.

Lemma 8. Suppose that (𝐻1)–(𝐻3) hold, then BVP

𝑢

(𝑡) + 𝑎 (𝑡) 𝑓 (𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝑢

(0) = 0, 𝑢


(1) −

𝑚−2

∑

𝑖=1

𝛼𝑖𝑢

(𝜉𝑖) = 0,

(6)

has a unique nonnegative solution 𝑢 ∈ 𝐶
1
[0, 1] ∩ 𝐶

3
(0, 1)

which can be represented as

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) 𝑓 (𝑢 (𝑠)) 𝑑𝑠 +

1

2

𝛾𝛿𝑓𝑡
2
, (7)

where

𝐺 (𝑡, 𝑠) :=

1

2

{

{

{

(2𝑡 − 𝑡
2
− 𝑠) 𝑠, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(1 − 𝑠) 𝑡
2
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝐺1 (𝑡, 𝑠) :=

{

{

{

(1 − 𝑡) 𝑠, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(1 − 𝑠) 𝑡, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

(8)

and 𝛿𝑓 = ∑
𝑚−2

𝑖=1 𝛼𝑖 ∫
1

0
𝐺1(𝜉𝑖, 𝑠)𝑎(𝑠)𝑓(𝑢(𝑠))𝑑𝑠.

Proof. The proof of the uniqueness is standard and hence is
omitted here. Now we prove the existence of the solution.

From (𝐻1)–(𝐻3) and Lemma 7, we conclude that the
integration in (7) is well defined. Let V = 𝑢

; then BVP (6)
may be reduced to boundary value problems

V (𝑡) + 𝑎 (𝑡) 𝑓 (𝑢 (𝑡)) = 0, 0 < 𝑡 < 1, (9)

V (0) = 0, V (1) −
𝑚−2

∑

𝑖=1

𝛼𝑖V (𝜉𝑖) = 0, (10)

𝑢

(𝑡) = V (𝑡) , 0 < 𝑡 < 1, (11)

𝑢 (0) = 0. (12)
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We claim that (9), (10) have a nonnegative solution V which
can be represented as

V (𝑡) = ∫
1

0

𝐺1 (𝑡, 𝑠) 𝑎 (𝑠) 𝑓 (𝑢 (𝑠)) 𝑑𝑠 + 𝛾𝛿𝑓𝑡.
(13)

In fact, from (𝐻1)–(𝐻3) and Lemma 7, for each 𝑟 ∈

(0, 1), 𝑠𝑎(𝑠)𝑓(𝑢(𝑠)) ∈ 𝐿
1
[0, 𝑟] and (1 − 𝑠)𝑎(𝑠)𝑓(𝑢(𝑠)) ∈

𝐿
1
[𝑟, 1]. Combining the continuity of 𝑠𝑎(𝑠)𝑓(𝑢(𝑠)) and (1 −

𝑠)𝑎(𝑠)𝑓(𝑢(𝑠)), we have

∫

𝑡

0

𝑠𝑎 (𝑠) 𝑓 (𝑢 (𝑠)) 𝑑𝑠 ∈ 𝐶
1
(0, 𝑟] ,

∫

1

𝑡

(1 − 𝑠) 𝑎 (𝑠) 𝑓 (𝑢 (𝑠)) 𝑑𝑠 ∈ 𝐶
1
[𝑟, 1) .

(14)

Thus V(𝑡) ∈ 𝐶1(0, 1). Moreover

V (𝑡) = −∫
𝑡

0

𝑠𝑎 (𝑠) 𝑓 (𝑢 (𝑠)) 𝑑𝑠

+ ∫

1

𝑡

(1 − 𝑠) 𝑎 (𝑠) 𝑓 (𝑢 (𝑠)) 𝑑𝑠 + 𝛾𝛿𝑓.

(15)

Similarity, V(𝑡) ∈ 𝐶
1
(0, 1). From (15), we get V(𝑡) =

−𝑎(𝑡)𝑓(𝑢(𝑡)), 𝑡 ∈ (0, 1).
By Lemma 7, we have from (13) that

V (0) = lim
𝑡→0+

V (𝑡)

= lim
𝑡→0+

(1 − 𝑡) ∫

𝑡

0

𝑠𝑎 (𝑠) 𝑓 (𝑢 (𝑠)) 𝑑𝑠

+ lim
𝑡→0+

𝑡 ∫

1

𝑡

(1 − 𝑠) 𝑎 (𝑠) 𝑓 (𝑢 (𝑠)) 𝑑𝑠

+ lim
𝑡→0+

𝑡𝛾𝛿𝑓 = 0.

(16)

Again applying (13), we have

V (1) = lim
𝑡→1−

V (𝑡) = 𝛾𝛿𝑓. (17)

This together with (13) implies that V(1) = ∑
𝑚−2

𝑖=1 𝛼𝑖V(𝜉𝑖).
The claim is proved.

By Lemma 7, we obtain from (11), (12), and (13) that

𝑢 (𝑡) = ∫

𝑡

0

V (𝜏) 𝑑𝜏

= ∫

𝑡

0

∫

𝜏

0

(1 − 𝜏) 𝑠𝑎 (𝑠) 𝑓 (𝑢 (𝑠)) 𝑑𝑠 𝑑𝜏

+ ∫

𝑡

0

∫

1

𝜏

(1 − 𝑠) 𝜏𝑎 (𝑠) 𝑓 (𝑢 (𝑠)) 𝑑𝑠 𝑑𝜏 +

1

2

𝛾𝛿𝑓𝑡
2

=

1

2

∫

𝑡

0

(2𝑡 − 𝑡
2
− 𝑠) 𝑠𝑎 (𝑠) 𝑓 (𝑢 (𝑠)) 𝑑𝑠

+

1

2

∫

1

𝑡

(1 − 𝑠) 𝑡
2
𝑎 (𝑠) 𝑓 (𝑢 (𝑠)) 𝑑𝑠 +

1

2

𝛾𝛿𝑓𝑡
2
.

(18)

It is easy to see that 𝑢 ∈ 𝐶1[0, 1] ∩𝐶3(0, 1), and moreover,
𝑢 is a nonnegative solution of the BVP (6).

The proof is complete.

Lemma 9 (see [14, Lemmas 2.2 and 2.3]). For any (𝑡, 𝑠) ∈

[0, 1] × [0, 1], one has

(i) 𝑞(𝑡) 𝐺 (1, 𝑠) ≤ 𝐺(𝑡, 𝑠) ≤ 𝐺(1, 𝑠) = (1/2)(1 − 𝑠)𝑠, where
𝑞(𝑡) = 𝑡

2,
(ii) (𝜕/𝜕𝑡) 𝐺 (𝑡, 𝑠) = 𝐺1(𝑡, 𝑠), and 0 ≤ 𝐺1(𝑡, 𝑠) ≤ 𝐺1(𝑠, 𝑠) =

(1 − 𝑠)𝑠.

Lemma 10. Suppose that (𝐻1)–(𝐻3) hold; then the unique
nonnegative solution 𝑢 of (6) satisfies

min
𝑡∈[𝜃,1]

𝑢 (𝑡) ≥ 𝜃
2
‖𝑢‖ . (19)

The proof is similar to Lemma 2.4 in [14].

Lemma 11. Suppose that (𝐻1)–(𝐻3) hold. Let 𝑗 ∈

{1, 2, . . . , 𝑚 − 2} and 𝑟 ∈ (−∞, 0). Then BVP

𝑤

(𝑡) = 0, 0 < 𝜏 < 𝑡 < 1, (20)

𝑤 (𝜏) = 0, 𝑤 (1) −

𝑚−2

∑

𝑖=𝑗

𝛼𝑖𝑤 (𝜉𝑖) = 𝑟 (21)

has a unique solution 𝑤 satisfying 𝑤(𝑡) ≤ 0 on [𝜏, 1].

Proof. From (20) and (21), we obtain 𝑤(𝑡) = (𝑡 − 𝜏)𝑤

(𝜏).

Again applying (21), we have

(1 − 𝜏)𝑤

(𝜏) −

𝑚−2

∑

𝑖=𝑗

𝛼𝑖 (𝜉𝑖 − 𝜏)𝑤

(𝜏) = 𝑟,

𝑤

(𝜏)(1 − 𝜏 −

𝑚−2

∑

𝑖=𝑗

𝛼𝑖 (𝜉𝑖 − 𝜏)) = 𝑟.

(22)

Now set 𝑑 := 1 − 𝜏 − ∑𝑚−2𝑖=𝑗 𝛼𝑖(𝜉𝑖 − 𝜏); then we have that

𝑑 > 1 − 𝜏 −

𝑚−2

∑

𝑖=𝑗

𝛼𝑖 (𝜉𝑖 − 𝜏𝜉𝑖)

= (1 − 𝜏)(1 −

𝑚−2

∑

𝑖=𝑗

𝛼𝑖𝜉𝑖) > 0.

(23)

This together with the fact that 𝑟 ∈ (−∞, 0) implies that
𝑤

(𝜏) < 0.Thus𝑤(𝑡) ≤ 0 on [𝜏, 1].The proof is complete.

3. Proof of the Main Results

In this section, we will prove our main results.

Proof of Theorem 1. We divide the proof into three steps.

Step 1.We first prove the existence of positive solutions to (1),
(2𝜆) for sufficiently small 𝜆 : 𝜆 > 0.
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Let ℎ be the unique solution of

𝑢

(𝑡) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝑢

(0) = 0, 𝑢


(1) −

𝑚−2

∑

𝑖=1

𝛼𝑖𝑢

(𝜉𝑖) = 1.

(24)

Then ℎ(𝑡) = (1/2)𝛾𝑡
2. Let V = 𝑢 − 𝜆ℎ; then 𝑢 is a positive

solution of BVP (1), (2𝜆) if and only if V = 𝑢 − 𝜆ℎ is a
nonnegative solution of BVP

V (𝑡) + 𝑎 (𝑡) 𝑓 (V (𝑡) + 𝜆ℎ (𝑡)) = 0, 0 < 𝑡 < 1,

V (0) = V (0) = 0, V (1) −
𝑚−2

∑

𝑖=1

𝛼𝑖V

(𝜉𝑖) = 0.

(25)

Let ̃𝑓(𝑥) = sup0≤𝑠≤𝑥𝑓(𝑠). Since lim𝑢→0+ sup(̃𝑓(𝑢)/𝑢) <
Λ 1; then there exists a positive number 𝜆1 such that

̃
𝑓 (𝜆1 + 𝜆1 ‖ℎ‖) ≤ Λ 1 (𝜆1 + 𝜆1 ‖ℎ‖) = 2𝜆1𝐿. (26)

Define a closed convex subset in 𝐶+[0, 1] by

𝐷 = {V ∈ 𝐶+ [0, 1] | V (𝑡) ≤ 𝜆1, 𝑡 ∈ [0, 1]} (27)

and an operator 𝑇 : 𝐷 → 𝐶
+
[0, 1] by

𝑇V (𝑡) := ∫
1

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) 𝑓 (V (𝑠)

+ 𝜆ℎ (𝑠)) 𝑑𝑠 +

1

2

𝛾𝛿𝑓𝑡
2
,

(28)

where 𝛿𝑓 = ∑
𝑚−2

𝑖=1 𝛼𝑖 ∫
1

0
𝐺1(𝜉𝑖, 𝑠)𝑎(𝑠)𝑓(V(𝑠) + 𝜆ℎ(𝑠))𝑑𝑠. Mod-

eling the proof of Lemma 2.3 in [10], we can show that 𝑇 is
a completely continuous operator. From Lemma 8, we know
that V is a nonnegative solution of (25) if and only if V is a
fixed point of 𝑇.

Suppose that 𝜆 < 𝜆1; we claim that 𝑇 : 𝐷 → 𝐷.
In fact, from Lemma 9 and (28), we have

0 ≤ 𝑇V (𝑡)

≤
̃
𝑓 (𝜆1 + 𝜆1 ‖ℎ‖) [

1

2

∫

1

0

(1 − 𝑠) 𝑠𝑎 (𝑠) 𝑑𝑠

+

1

2

𝛾

𝑚−2

∑

𝑖=1

𝛼𝑖 ∫

1

0

(1 − 𝑠) 𝑠𝑎 (𝑠) 𝑑𝑠]

=

1

2

̃
𝑓 (𝜆1 + 𝜆1 ‖ℎ‖) 𝐿

−1
≤ 𝜆1.

(29)

The claim is proved. Using the Schauder fixed point
theorem, we conclude that 𝑇 has a fixed point V in 𝐷, and
then 𝑢 = V + 𝜆ℎ is a positive solution of (1), (2𝜆).

Step 2. We verify that BVP of (1), (2𝜆) has no positive
solutions for 𝜆 large enough.

Suppose to the contrary that BVP of (1), (2𝜆) has at
least one positive solution for any 𝜆 > 0. Then there exist

0 < 𝜆1 < 𝜆2 < ⋅ ⋅ ⋅ < 𝜆𝑛 < ⋅ ⋅ ⋅, with lim𝑛→∞𝜆𝑛 = ∞, such
that for any positive integer 𝑛, BVP of (1), (2𝜆) has a positive
solution 𝑢𝑛. Thus V𝑛 = 𝑢𝑛 − 𝜆𝑛ℎ is a nonnegative solution to
(25). On the one hand, we have





V𝑛 + 𝜆𝑛ℎ





≥ 𝜆𝑛 ‖ℎ‖ =

1

2

𝛾𝜆𝑛 → ∞, (𝑛 → ∞) . (30)

On the other hand, since lim𝑢→+∞ inf(𝑓(𝑢)/𝑢) > Λ 2,
there exists 𝑟0 > 0 such that 𝑓(𝑢) ≥ Λ 2𝑢, for any 𝑢 ∈ [𝑟0,∞).
Let 𝑛 be large enough that 𝜃2‖V𝑛 + 𝜆𝑛ℎ‖ ≥ 𝑟0. By Lemma 10,
we have

inf
𝑡∈[𝜃,1]

V𝑛 (𝑡) ≥ 𝜃
2 



V𝑛




,

inf
𝑡∈[𝜃,1]

ℎ (𝑡) =

1

2

𝛾𝜃
2
= 𝜃
2
‖ℎ‖ .

(31)

This implies that

inf
𝑡∈[𝜃,1]

(V𝑛 (𝑡) + 𝜆𝑛ℎ (𝑡)) ≥ 𝜃
2
(




V𝑛




+ 𝜆𝑛 ‖ℎ‖) ≥ 𝜃

2 



V𝑛 + 𝜆𝑛ℎ





.

(32)

Thus




V𝑛 + 𝜆𝑛ℎ






≥




V𝑛




= ∫

1

0

𝐺 (1, 𝑠) 𝑎 (𝑠) 𝑓 (V𝑛 (𝑠) + 𝜆𝑛ℎ (𝑠)) 𝑑𝑠

+

1

2

𝛾

𝑚−2

∑

𝑖=1

𝛼𝑖 ∫

1

0

𝐺1 (𝜉𝑖, 𝑠) 𝑎 (𝑠) 𝑓 (V𝑛 (𝑠) + 𝜆𝑛ℎ (𝑠)) 𝑑𝑠

≥ ∫

1

𝜃

𝐺 (1, 𝑠) 𝑎 (𝑠) 𝑓 (V𝑛 (𝑠) + 𝜆𝑛ℎ (𝑠)) 𝑑𝑠

≥

1

2

Λ 2 (V𝑛 (𝑠) + 𝜆𝑛ℎ (𝑠)) ∫
1

𝜃

(1 − 𝑠) 𝑠𝑎 (𝑠) 𝑑𝑠

= 2




V𝑛 + 𝜆𝑛ℎ





,

(33)

which is a contradiction.

Step 3. Let 𝐵 = {𝜆 | BVP of (1), (2𝜆) has at least one positive
solution} and 𝜆∗ = sup𝐵; then 0 < 𝜆

∗
< ∞. We show that

(1), (2𝜆) have positive solution for any 𝜆 ∈ (0, 𝜆∗). From the
definition of 𝜆∗, we know that, for any 𝜆 ∈ (0, 𝜆∗), there exists
̃
𝜆 > 𝜆 such that (1), (2𝜆) have positive solution 𝑢�̃�.

Now we consider the following third-order 𝑚-point
boundary value problem:

𝑢

(𝑡) + 𝑎 (𝑡) (�̃�𝑢) (𝑡) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝑢

(0) = 0, 𝑢


(1) −

𝑚−2

∑

𝑖=1

𝛼𝑖𝑢

(𝜉𝑖) = 𝜆,

(34)

where

(�̃�𝑢) (𝑡) =

{
{
{

{
{
{

{

𝑓(𝑢
�̃�
(𝑡)) , if 𝑢 (𝑡) > 𝑢

�̃�
(𝑡) ,

𝑓 (𝑢 (𝑡)) , if 0 ≤ 𝑢 (𝑡) ≤ 𝑢
�̃�
(𝑡) ,

𝑓 (0) , if 𝑢 (𝑡) < 0.

(35)
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Since �̃� is bounded, by Schauder fixed point theorem, the
problem (34) has a solution 𝑢𝜆.

By Lemma 8, 𝑢𝜆 satisfies

𝑢𝜆 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) (�̃�𝑢) (𝑠) 𝑑𝑠

+

1

2

𝛾𝑡
2
𝑚−2

∑

𝑖=1

𝛼𝑖 ∫

1

0

𝐺1 (𝜉𝑖, 𝑠) 𝑎 (𝑠) × (�̃�𝑢) (𝑠) 𝑑𝑠

+

1

2

𝛾𝜆𝑡
2
,

(36)

thus 𝑢𝜆 ≥ 0.
Let 𝐼 = {𝑡 ∈ (0, 1] | 𝑢𝜆(𝑡) > 𝑢

�̃�
(𝑡)} and Ω = {𝑡 ∈ (0, 1] |

𝑤(𝑡) > 0}, where 𝑤(𝑡) = 𝑢

𝜆(𝑡) − 𝑢



�̃�
(𝑡), 𝑡 ∈ [0, 1]. We will

show that 𝐼 = 0. Noticing that, if 𝑢𝜆(𝑡) > 𝑢


�̃�
(𝑡) holds for any

𝑡 ∈ (0, 1), combiningwith𝑢𝜆(0) = 𝑢


�̃�
(0), we get𝑢𝜆(𝑡) > 𝑢�̃�(𝑡).

Thus we prove thatΩ = 0; then we have 𝐼 = 0.
Suppose to the contrary thatΩ ̸=0.
If 𝑢𝜆(1) < 𝑢



�̃�
(1), then, from Ω ̸=0, and the continuity of

𝑤(𝑡), there exists (𝑎, 𝑏) ⊂ Ω such that 𝑤(𝑎) = 𝑤(𝑏) = 0.
Moreover, 𝑤(𝑡) = 0 in (𝑎, 𝑏). Thus 𝑤(𝑡) ≡ 0 in (𝑎, 𝑏). This
contradicts with the fact that 𝑤(𝑡) > 0 in (𝑎, 𝑏).

If 𝑢𝜆(1) > 𝑢


�̃�
(1), we claim that there exists 𝑗 ∈

{1, 2, . . . , 𝑚 − 2} such that 𝑤(𝜉𝑗) > 0.
In fact, from the fact that𝑤(1)−∑𝑚−2𝑖=1 𝛼𝑖𝑤(𝜉𝑖) = 𝜆− ̃𝜆 < 0

and 𝑤(1) > 0, we have that ∑𝑚−2𝑖=1 𝛼𝑖𝑤(𝜉𝑖) > 0. Thus, there
exists 𝑗 ∈ {1, 2, . . . , 𝑚 − 2} such that 𝑤(𝜉𝑗) > 0.

Let 𝑗0 = min{𝑗 | 𝑗 ∈ {1, 2, . . . , 𝑚−2} such that𝑤(𝜉𝑗) > 0};
then, we only need to deal with the following four cases.

Case 1. 𝑤(𝑡) > 0 in (0, 1). In this case, we have

𝑤

(𝑡) = 0, 0 < 𝑡 < 1,

𝑤 (0) = 0, 𝑤 (1) −

𝑚−2

∑

𝑖=1

𝛼𝑖𝑤 (𝜉𝑖) = 𝜆 −
̃
𝜆 < 0.

(37)

We easily verify that

𝑤 (𝑡) = (𝜆 −
̃
𝜆) 𝛾𝑡 < 0, in (0, 1) . (38)

This contradicts with the fact thatΩ ̸=0.

Case 2.There exists 𝜏 ∈ (0, 1) such that𝑤(𝜏) = 0 and𝑤(𝑡) > 0
in (0, 𝜏). In this case, we have

𝑤

(𝑡) = 0, 0 < 𝑡 < 𝜏,

𝑤 (0) = 0, 𝑤 (𝜏) = 0.

(39)

We easily obtain 𝑤(𝑡) ≡ 0 in [0, 𝜏], a contradiction again.

Case 3.There exists 𝜏 ∈ (0, 1) such that𝑤(𝜏) = 0 and𝑤(𝑡) > 0
in (𝜏, 1]. In this case, if 𝑗0 > 1, then, for any 𝑖 ∈ {1, 2, . . . , 𝑗0 −
1}, we have 𝑤(𝜉𝑖) < 0. Thus

𝑟 : = 𝑤 (1) −

𝑚−2

∑

𝑖=𝑗0

𝛼𝑖𝑤 (𝜉𝑖)

= 𝑤 (1) −

𝑚−2

∑

𝑖=1

𝛼𝑖𝑤 (𝜉𝑖) +

𝑗0−1

∑

𝑖=1

𝛼𝑖𝑤 (𝜉𝑖)

= 𝜆 −
̃
𝜆 +

𝑗0−1

∑

𝑖=1

𝛼𝑖𝑤 (𝜉𝑖)

≤ 𝜆 −
̃
𝜆

< 0.

(40)

If 𝑗0 = 1, then 𝑟 := 𝑤(1) − ∑
𝑚−2

𝑖=𝑗0
𝛼𝑖𝑤(𝜉𝑖) = 𝜆 −

̃
𝜆 < 0, and

𝑤(𝑡) satisfies

𝑤

(𝑡) = 0, 𝜏 < 𝑡 < 1,

𝑤 (𝜏) = 0, 𝑤 (1) −

𝑚−2

∑

𝑖=𝑗0

𝛼𝑖𝑤 (𝜉𝑖) = 𝑟 < 0.

(41)

By Lemma 11, we also have 𝑤(𝑡) ≤ 0 in [𝜏, 1], a
contradiction again.

Case 4. There exists [𝑎, 𝑏] ⊂ (0, 1) such that 𝑤(𝑎) = 𝑤(𝑏) = 0
and 𝑤(𝑡) > 0 in (𝑎, 𝑏). The same as Case 2, we can lead to a
contradiction.

Summarizing the previous discussion, we assert thatΩ =

0; thus 𝐼 = 0. Up to now, the problem (1), (2𝜆) has a solution
𝑢𝜆.

Proof of Theorem 2. Since lim𝑢→0+ inf(𝑓(𝑢)/𝑢) > 0, there
exists 𝜇 > 0, and 𝑟1 > 0 such that 𝑓(𝑢) ≥ 𝜇𝑢, 𝑢 ∈ [0, 𝑟1]. Next
we consider two cases: 𝑓 is bounded or 𝑓 is unbounded.

Case 1. Suppose that 𝑓 is bounded, that is, 𝑓(𝑢) ≤ 𝑀, for all
𝑢 ∈ [0,∞). By Schauder fixed point theorem the problem of
(1), (2𝜆) has a positive solution.

Case 2. If 𝑓 is unbounded. Since lim𝑢→+∞ sup(𝑓(𝑢)/𝑢) < 𝐿,
there exists a positive number 𝑟2 such that 𝑓(𝑢) ≤ 𝐿𝑢, for
𝑢 ∈ [𝑟2,∞). Since 𝑓 is unbounded, for any 𝜆 ∈ (0,∞), we are
able to choose

𝑅𝜆 ≥ max {2𝑟1, 𝑟2, 𝜆 ‖ℎ‖} (42)

such that

𝑓 (𝑢) ≤ 𝑓 (2𝑅𝜆) , for 𝑢 ∈ [0, 2𝑅𝜆] . (43)

Defining a closed convex subset in 𝐶+[0, 1] by

𝐷1 = {V ∈ 𝐶
+
[0, 1] | V (𝑡) ≤ 𝑅𝜆, 𝑡 ∈ [0, 1]} . (44)
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For each V ∈ 𝐷1, we have 0 ≤ V + 𝜆ℎ ≤ 2𝑅𝜆. By (28) and
Lemma 9, we obtain that

𝑇V (𝑡) ≤
1

2

𝑓 (2𝑅𝜆) (∫

1

0

(1 − 𝑠) 𝑠𝑎 (𝑠) 𝑑𝑠

+ 𝛾

𝑚−2

∑

𝑖=1

𝛼𝑖 ∫

1

0

(1 − 𝑠) 𝑠𝑎 (𝑠) 𝑑𝑠)

≤

1

2

𝐿 ⋅ 2𝑅𝜆𝐿
−1
= 𝑅𝜆.

(45)

That is, 𝑇V(𝑡) ∈ 𝐷1. By using the Schauder fixed point
theorem, we assert that 𝑇 has a fixed point V ∈ 𝐷1, and then
𝑢 = V + 𝜆ℎ is a positive solution of BVP of (1), (2𝜆).

4. Example

Consider the boundary value problem

𝑢

(𝑡) +

1

𝑡 (1 − 𝑡)

⋅

𝑢
2
(𝑡) + 𝑢 (𝑡)

𝑢 (𝑡) + 176

(7 + cos 𝑢 (𝑡)) = 0,

0 < 𝑡 < 1,

(46)

𝑢 (0) = 𝑢

(0) = 0, 𝑢


(1) −

4

∑

𝑖=1

𝑖𝑢

(

1

8𝑖

) = 𝜆, (47𝜆)

where 𝛼𝑖 = 𝑖, 𝜉𝑖 = (1/8𝑖) (𝑖 = 1, 2, 3, 4), 𝑎(𝑡) = 1/𝑡(1 − 𝑡), 𝑡 ∈
(0, 1), and𝑓(𝑢) = ((𝑢2+𝑢)/(𝑢+176)) (7+cos 𝑢), 𝑢 ∈ [0, +∞).
Obviously (𝐻1), and (𝐻2), and (𝐻3) hold. By calculating, we
have 𝛾 = 2, ‖ℎ‖ = 1, 𝐿 = 1/21, Λ 1 = 1/21. Let 𝜃 = 1/4, then
Λ 2 = 16/3. We easily verify that

lim
𝑢→0+

sup
𝑓 (𝑢)

𝑢

=

1

22

< Λ 1, lim
𝑢→+∞

inf
𝑓 (𝑢)

𝑢

= 6 > Λ 2,

(47)

that is, (𝐻4) is satisfied.Therefore,Theorem 1 now guarantees
that there exists a positive number 𝜆∗ such that BVP of (46),
(47𝜆) has at least one positive solution for 𝜆 ∈ (0, 𝜆

∗
) and

none for 𝜆 ∈ (𝜆∗,∞).
But we cannot apply Theorem B [14, Theorem 3.2]. In

fact, 𝑓 does not satisfy monotonicity condition. Moreover,
condition (𝐻∗4 ) of Theorem B does not hold.
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We discuss the existence of solutions for a boundary value problem of Riemann-Liouville fractional differential inclusions of order
𝛼 ∈ (2, 3] with integral boundary conditions. We establish our results by applying the standard tools of fixed point theory for
multivalued maps when the right-hand side of the inclusion has convex as well as nonconvex values. An illustrative example is also
presented.

1. Introduction

In the last few decades, fractional calculus is found to be an
effective modeling tool in many branches of physics, eco-
nomics, and technical sciences [1–3]. A fractional-order dif-
ferential operator is nonlocal in its character in contrast to its
counterpart in classical calculus. It means that the future state
of a dynamical system or process based on fractional-order
derivative depends on both its current and past states. Thus,
the application of fractional calculus in various materials
and processes enables an investigator to study the complete
behavior (ranging from past to current states) of such stuff.
This is indeed an important feature that makes fractional-
order models more realistic and practical than the integer-
order models and has accounted for the popularity of the
subject. For some recent development on the topic, see [4–
17] and the references therein.

Differential inclusions appear in the mathematical mod-
eling of certain problems in economics, optimal control, and
so forth and are widely studied by many authors. Examples
and details can be found in a series of papers [18–23] and the
references cited therein.

In this paper, we study the following boundary value
problem:

𝐷
𝛼

0+𝑥 (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) , 0 < 𝑡 < 1, 2 < 𝛼 ≤ 3,

𝑥 (0) = 𝑥

(0) = 0,

𝑥 (1) = ∫

1

0

𝑔 (𝑠) 𝑥 (𝑠) 𝑑𝑠,

(1)

where 𝐷
𝛼
0+ is the standard Riemann-Liouville fractional

derivative of order 2 < 𝛼 ≤ 3, 𝐹 : [0, 1] × R → P(R) is a
multivalued map,P(R) is the family of all subsets of R, and
𝑔 is a continuous function.

Here we remark that the present work is motivated by a
recent paper [17], where problem (1) is considered with 𝐹 as
single valued and the results on existence and nonexistence
of positive solutions are obtained.

The main tools of our study include nonlinear alternative
of Leray-Schauder type, a selection theorem due to Bressan
and Colombo for lower semicontinuous multivalued maps,
and Covitz and Nadler’s fixed point theorem for contraction
multivalued maps. The application of these results is new in
the framework of the problem at hand. We recall some pre-
liminaries in Section 2 while themain results are presented in
Section 3.

2. Preliminaries

2.1. Fractional Calculus. Let us recall some basic definitions
of fractional calculus [1, 2].



2 Journal of Function Spaces and Applications

Definition 1. The Riemann-Liouville derivative of fractional
order 𝑞 is defined as

𝐷
𝑞

0+𝑔 (𝑡) =

1

Γ (𝑛 − 𝑞)

(

𝑑

𝑑𝑡

)

𝑛

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝑞−1

𝑔 (𝑠) 𝑑𝑠,

𝑛 − 1 < 𝑞 < 𝑛, 𝑛 = [𝑞] + 1,

(2)

provided the integral exists, where [𝑞]denotes the integer part
of the real number 𝑞.

Definition 2. The Riemann-Liouville fractional integral of
order 𝑞 is defined as

𝐼
𝑞

0+𝑔 (𝑡) =

1

Γ (𝑞)

∫

𝑡

0

𝑔 (𝑠)

(𝑡 − 𝑠)
1−𝑞

𝑑𝑠, 𝑞 > 0, (3)

provided the integral exists.

Definition 3. A function 𝑥 ∈ 𝐴𝐶
2
([0, 1],R) is called a solu-

tion of problem (1) if there exists a function V ∈ 𝐿
1
([0, 1],R)

with V(𝑡) ∈ 𝐹(𝑡, 𝑥(𝑡)), a.e. [0, 1] such that 𝐷𝛼𝑥(𝑡) = V(𝑡), a.e.
[0, 1] and 𝑥(0) = 𝑥


(0) = 0, 𝑥(1) = ∫

1

0
𝑔(𝑡)𝑥(𝑡)𝑑𝑡.

Lemma 4 (see [17]). Given 𝑦 ∈ 𝐿([0, 1],R), then the unique
solution of the problem

𝐷
𝛼
𝑥 (𝑡) + 𝑦 (𝑡) = 0, 0 < 𝑡 < 1, 2 < 𝛼 ≤ 3,

𝑥 (0) = 𝑥

(0) = 0,

𝑥 (1) = ∫

1

0

𝑔 (𝑡) 𝑥 (𝑡) 𝑑𝑡

(4)

is given by

𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, (5)

where

𝐺 (𝑡, 𝑠) = 𝐺1 (𝑡, 𝑠) + 𝐺2 (𝑡, 𝑠) , (6)

𝐺1 (𝑡, 𝑠) =
1

Γ (𝛼)

{

[𝑡 (1 − 𝑠)]
𝛼−1

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

[𝑡 (1 − 𝑠)]
𝛼−1

− (𝑡 − 𝑠)
𝛼−1

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(7)

𝐺2 (𝑡, 𝑠) =
𝑡
𝛼−1

1 − 𝜎

∫

1

0

𝐺1 (𝜏, 𝑠) 𝑔 (𝜏) 𝑑𝜏,

𝜎 = ∫

1

0

𝑠
𝛼−1

𝑔 (𝑠) 𝑑𝑠.

(8)

Lemma 5 (see [17]). The functions 𝐺1(𝑡, 𝑠), 𝐺(𝑡, 𝑠) have the
following properties:

(i) 𝐺1(𝑡, 𝑠) ≥ 0, for all 𝑡, 𝑠 ∈ [0, 1];
(ii) 𝐺1(𝑡, 𝑠) ≤ ((𝛼 − 1)𝑠(1 − 𝑠)

𝛼−1
)/Γ(𝛼) for all 𝑡, 𝑠 ∈ [0, 1];

(iii) 𝐺(𝑡, 𝑠) ≤ (((𝛼 − 1)𝑠(1 − 𝑠)
𝛼−1

)/Γ(𝛼))(1 + (1/(1 −

𝜎)) ∫

1

0
𝑔(𝜏)𝑑𝜏) for all 𝑡, 𝑠 ∈ [0, 1].

2.2. Basic Concepts of Multivalued Maps. Let (X, ‖ ⋅ ‖) be a
normed space and let 𝐻 : X → P(X) be a multivalued
map.𝐻 is said to be

(i) convex (closed) valued if 𝐻(𝑥) is convex (closed) for
all 𝑥 ∈ X;

(ii) bounded on bounded sets if 𝐻(B) = ∪𝑥∈B𝐻(𝑥) is
bounded in X for all B ∈ P𝑏(X), where P𝑏(X) =

{A ∈ P(X) : A is bounded }, (i.e., sup𝑥∈B{sup{|𝑤| :
𝑤 ∈ 𝐻(𝑥)}} < ∞);

(iii) upper semicontinuous (u.s.c.) on X if the set 𝐻(𝑎0)

is a nonempty closed subset of X for each 𝑎0 ∈ X
and if for each open set 𝑀 of X containing 𝐻(𝑎0)

there exists an open neighborhood𝑀0 of 𝑎0 such that
𝐻(𝑀0) ⊆ 𝑀;

(iv) completely continuous if 𝐻(B) is relatively compact
for every B ∈ P𝑏(X).

Definition 6. If the multivalued map𝐻 is completely contin-
uous with nonempty compact values, then 𝐻 is u.s.c. if and
only if 𝐻 has a closed graph; that is, 𝑤𝑛 ∈ 𝐻(𝑥𝑛) imply that
𝑤∗ ∈ 𝐻(𝑥∗) when 𝑥𝑛 → 𝑥∗, 𝑤𝑛 → 𝑤∗.

Definition 7. 𝐻 has a fixed point if there is 𝑥 ∈ X such that
𝑥 ∈ 𝐻(𝑥). The fixed point set of the multivalued operator 𝐻
will be denoted by Fix𝐻.

Definition 8. Let P𝑐𝑙(R) = {𝑊 ∈ P(R) : 𝑊 is closed }.
A multivalued map 𝐻 : [0; 1] → P𝑐𝑙(R) is said to be
measurable if the function

𝑡 → 𝑑 (𝑦,𝐻 (𝑡)) = inf {

𝑦 − 𝑧





: 𝑧 ∈ 𝐻 (𝑡)} (9)

is measurable for every 𝑦 ∈ R.

In the sequel, by 𝐶([0, 1]) we mean a Banach space of
continuous functions from [0, 1] intoR with the norm ‖𝑥‖ =

sup𝑡∈[0,1]|𝑥(𝑡)| whereas 𝐿
1
([0, 1],R) is the Banach space of

measurable functions 𝑥 : [0, 1] → R which are Lebesgue
integrable and normed by ‖𝑥‖𝐿1 = ∫

1

0
|𝑥(𝑡)|𝑑𝑡.

Definition 9. A multivalued map H : [0, 1] × R → P(R)

is said to be Carathéodory if the map 𝑡 → H(𝑡, 𝑥) is
measurable for each 𝑥 ∈ R and the map 𝑥 → H(𝑡, 𝑥) is
upper semicontinuous for almost all 𝑡 ∈ [0, 1]. Further, a
Carathéodory function H is called 𝐿

1-Carathéodory if for
each 𝛼 > 0, there exists 𝜑𝛼 ∈ 𝐿

1
([0, 1],R+) such that

‖H(𝑡, 𝑥)‖ = sup{|V| : V ∈ H(𝑡, 𝑥)} ≤ 𝜑𝛼(𝑡) for all ‖𝑥‖ ≤ 𝛼

and for a. e. 𝑡 ∈ [0, 1].

Definition 10. For each 𝑤 ∈ 𝐶([0, 1],R), the set of selections
ofH is defined by

𝑆H,𝑤 := {V ∈ 𝐿
1
([0, 1] ,R) : V (𝑡) ∈ H (𝑡, 𝑤 (𝑡))

for a.e. 𝑡 ∈ [0, 1]} .

(10)

Definition 11. For a nonempty closed subset 𝑉 of a Banach
space 𝐸, let H𝑐 : 𝑉 → P(𝐸) be a nonempty multivalued
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operator with closed values. We call H𝑐 to be lower semi-
continuous (l.s.c.) if the set {V ∈ 𝑉 : H𝑐(V)∩𝐵 ̸= 0} is open for
any open set 𝑈 in 𝐸.

Definition 12. A subsetA of [0, 1] × R isL ⊗Bmeasurable
ifA belongs to the 𝜎-algebra generated by all sets of the form
J × D, where J is Lebesgue measurable in [0, 1] and D is
Borel measurable in R.

Definition 13. A subset A𝑑 of 𝐿
1
([0, 1],R) is said be decom-

posable if for all 𝑎, 𝑏 ∈ A𝑑 and measurable K ⊂ [0, 1],
the function 𝑎𝜙K + 𝑏𝜙[0,1]\K ∈ A𝑑, where 𝜙K stands for the
characteristic function ofK.

Definition 14. Amultivalued operatorH𝑏𝑐 :𝑊→P(𝐿
1
([0, 1],

R)) has a property (BC) if H𝑏𝑐 is lower semi-continuous
(l.s.c.) and has nonempty closed and decomposable values,
where𝑊 is a separable metric space.

Definition 15. Let 𝐹 : [0, 1] × R → P(R) be a multivalued
mapwith nonempty compact values.We say that𝐹 is of lower
semi-continuous type (l.s.c. type) if its associated Nemytskii
operator F𝑁 is lower semi-continuous and has nonempty
closed and decomposable values, where

F𝑁 (𝑥) = {𝑢 ∈ 𝐿
1
([0, 1] ,R) :

𝑢 (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) for a.e. 𝑡 ∈ [0, 1] } .

(11)

Definition 16. Let (X, 𝑑) be a metric space induced from the
normed space (X; ‖ ⋅ ‖) and let M𝑑 : P(X) × P(X) →

R ∪ {∞} be defined by

M𝑑 (𝐴, 𝐵) = max{sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵) , sup
𝑏∈𝐵

𝑑 (𝐴, 𝑏)} , (12)

where 𝑑(𝐴, 𝑏) = inf𝑎∈𝐴𝑑(𝑎; 𝑏) and 𝑑(𝑎, 𝐵) = inf𝑏∈𝐵𝑑(𝑎; 𝑏).
Then (P𝑏,𝑐𝑙(X),M𝑑) is a metric space and (P𝑐𝑙(X),𝑀𝑑) is a
generalized metric space (see [24]).

Definition 17. A multivalued operator H : X → P𝑐𝑙(X) is
called 𝛾-Lipschitz if and only if there exists 𝛾 > 0 such that

M𝑑 (𝑁 (𝑥) ,𝑁 (𝑦)) ≤ 𝛾𝑑 (𝑥, 𝑦) for each 𝑥, 𝑦 ∈ X,

(13)

and a contraction if and only if it is 𝛾-Lipschitz with 𝛾 < 1.

For further details on multi-valued maps, we refer the
reader to the books [25, 26].

3. Existence Results for
the Multivalued Problem

In this section, we present some existence results for the
problem (1). Our first result deals with the case when 𝐹 is
Carathéodory. We make use of the following known results
to establish the proof.

Lemma 18 (see [27]). Let𝑋 be a Banach space. Let𝐹 : [0, 𝑇]×

R → P𝑐𝑝,𝑐(𝑋) be an 𝐿
1-Carathéodory multivalued map with

compact and convex values and let 𝜃 be a linear continuous
mapping from 𝐿

1
([0, 1], 𝑋) to 𝐶([0, 1], 𝑋). Then the operator

𝜃 ∘ 𝑆𝐹 : 𝐶 ([0, 1] , 𝑋) → P𝑐𝑝,𝑐 (𝐶 ([0, 1] , 𝑋)) ,

𝑥 → (𝜃 ∘ 𝑆𝐹) (𝑥) = 𝜃 (𝑆𝐹,𝑥)

(14)

is a closed graph operator in 𝐶([0, 1], 𝑋) × 𝐶([0, 1], 𝑋).

Lemma 19 (nonlinear alternative for Kakutani maps [28]).
Let 𝐸 be a Banach space, 𝐶 a closed convex subset of 𝐸, 𝑈 an
open subset of 𝐶, and 0 ∈ 𝑈. Suppose that 𝐹 : 𝑈 → 𝑃𝑐,𝑐V(𝐶) is
an upper semicontinuous compact map; here 𝑃𝑐,𝑐V(𝐶) denotes
the family of nonempty, compact convex subsets of 𝐶. Then
either

(i) 𝐹 has a fixed point in 𝑈, or
(ii) there is a 𝑢 ∈ 𝜕𝑈 and 𝜆 ∈ (0, 1) with 𝑢 ∈ 𝜆𝐹(𝑢).

Theorem 20. Assume that
(H1) 𝐹 : [0, 1] ×R → P(R) is Carathéodory and has non-

empty compact and convex values;
(H2) there exists a continuous nondecreasing function 𝜓 :

[0,∞) → (0,∞) and a function 𝑝 ∈ 𝐿
1
([0, 1],R+)

such that
‖𝐹 (𝑡, 𝑥)‖P := sup {


𝑦




: 𝑦 ∈ 𝐹 (𝑡, 𝑥)}

≤ 𝑝 (𝑡) 𝜓 (‖𝑥‖) for each (𝑡, 𝑥) ∈ [0, 1] ×R;

(15)

(H3) there exists a constant �̃� > 0 such that

�̃� (𝜓 (�̃�)

(𝛼 − 1)

Γ (𝛼)

(1 +

1

1 − 𝜎

∫

1

0

𝑔 (𝑠) 𝑑𝑠)

× ∫

1

0

𝑠(1 − 𝑠)
𝛼−1

𝑝 (𝑠) 𝑑𝑠)

−1

> 1.

(16)

Then the boundary value problem (1) has at least one solution
on [0, 1].

Proof. In view of Lemma 4, we define an operator Q :

𝐶([0, 1],R) → P(𝐶([0, 1],R)) by

Q (𝑥)={ℎ ∈ 𝐶 ([0, 1] ,R) : ℎ (𝑡)=∫

1

0

𝐺 (𝑡, 𝑠) V (𝑠) 𝑑𝑠, V ∈ 𝑆𝐹,𝑥}

(17)

and show that it satisfies the hypotheses of Lemma 19. Since
𝑆𝐹,𝑥 is convex (𝐹 has convex values), therefore, it can be easily
shown that Q is convex for each 𝑥 ∈ 𝐶([0, 1],R).

As a next step, we prove that Q maps the bounded sets
(balls) into bounded sets in 𝐶([0, 1],R). For a positive num-
ber 𝜉, let 𝐵𝜉 = {𝑥 ∈ 𝐶([0, 1],R) : ‖𝑥‖ ≤ 𝜉} be a bounded ball
in 𝐶([0, 1],R). Then, for each ℎ ∈ Q(𝑥), 𝑥 ∈ 𝐵𝜉, there exists
V ∈ 𝑆𝐹,𝑥 such that

ℎ (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) V (𝑠) 𝑑𝑠. (18)
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Then, for 𝑡 ∈ [0, 1], we have

|ℎ (𝑡)| ≤ ∫

1

0

𝐺 (𝑡, 𝑠) |V (𝑠)| 𝑑𝑠

≤ 𝜓 (‖𝑥‖)

(𝛼 − 1)

Γ (𝛼)

(1 +

1

1 − 𝜎

∫

1

0

𝑔 (𝑠) 𝑑𝑠)

× ∫

1

0

𝑠(1 − 𝑠)
𝛼−1

𝑝 (𝑠) 𝑑𝑠

≤ 𝜓 (𝜉)

(𝛼 − 1)

Γ (𝛼)

(1 +

1

1 − 𝜎

∫

1

0

𝑔 (𝑠) 𝑑𝑠)

× ∫

1

0

𝑠(1 − 𝑠)
𝛼−1

𝑝 (𝑠) 𝑑𝑠.

(19)

Thus,

‖ℎ‖ ≤ 𝜓 (𝜉)

(𝛼 − 1)

Γ (𝛼)

(1 +

1

1 − 𝜎

∫

1

0

𝑔 (𝑠) 𝑑𝑠)

× ∫

1

0

𝑠(1 − 𝑠)
𝛼−1

𝑝 (𝑠) 𝑑𝑠.

(20)

Now we show thatQmaps the bounded sets into equicontin-
uous sets of 𝐶([0, 1],R).

Let 𝑡, 𝑡 ∈ [0, 1] with 𝑡

< 𝑡
 and 𝑥 ∈ 𝐵𝜉. For each ℎ ∈ Q,

we obtain






ℎ (𝑡

) − ℎ (𝑡


)






≤ ∫

1

0






𝐺 (𝑡

, 𝑠) − 𝐺 (𝑡


, 𝑠) || V (𝑠)






𝑑𝑠

≤ ∫

1

0






𝐺 (𝑡

, 𝑠) − 𝐺 (𝑡


, 𝑠)






𝑝 (𝑠) 𝜓 ‖𝑥‖ 𝑑𝑠

≤ 𝜓 (𝜉) ∫

1

0






𝐺 (𝑡

, 𝑠) − 𝐺 (𝑡


, 𝑠)






𝑝 (𝑠) 𝑑𝑠.

(21)

Obviously the right-hand side of the above inequality tends
to zero independently of 𝑥 ∈ 𝐵𝜉 as 𝑡


− 𝑡

→ 0. AsQ satisfies

the above three assumptions, therefore, by the Ascoli-Arzelá
theorem, it follows that Q : 𝐶([0, 1],R) → P(𝐶([0, 1],R))

is completely continuous.
In our next step, we show that Q has a closed graph. Let

𝑥𝑛 → 𝑥∗, ℎ𝑛 ∈ Q(𝑥𝑛), and ℎ𝑛 → ℎ∗. Then we need to show
that ℎ∗ ∈ Q(𝑥∗). Associated with ℎ𝑛 ∈ Q(𝑥𝑛), there exists
V𝑛 ∈ 𝑆𝐹,𝑥𝑛

such that for each 𝑡 ∈ [0, 1],

ℎ𝑛 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) V𝑛 (𝑠) 𝑑𝑠. (22)

Thus, it suffices to show that there exists V∗ ∈ 𝑆𝐹,𝑥∗
such that

for each 𝑡 ∈ [0, 1],

ℎ∗ (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) V∗ (𝑠) 𝑑𝑠. (23)

Define a linear operator 𝜑 : 𝐿
1
([0, 1],R) → 𝐶([0, 1],R) as

𝑓 → 𝜑 (V) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) V (𝑠) 𝑑𝑠. (24)

Notice that




ℎ𝑛 (𝑡) − ℎ∗ (𝑡)






=











∫

1

0

𝐺 (𝑡, 𝑠) (V𝑛 (𝑠) − V∗ (𝑠)) 𝑑𝑠










→ 0, as 𝑛 → ∞.

(25)

Thus, it follows from Lemma 18 that 𝜑 ∘ 𝑆𝐹 is a closed graph
operator. Further, we have ℎ𝑛(𝑡) ∈ 𝜑(𝑆𝐹,𝑥𝑛

), since 𝑥𝑛 → 𝑥∗.
Thus, for some V∗ ∈ 𝑆𝐹,𝑥∗

, we have

ℎ∗ (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) V∗ (𝑠) 𝑑s. (26)

In the last step, we show that there exists an open set V ⊆

𝐶([0, 1],R) with 𝑥 ∉ Q(𝑥) for any 𝜇 ∈ (0, 1) and all 𝑥 ∈

𝜕V. Let 𝜇 ∈ (0, 1) and 𝑥 ∈ 𝜇Q(𝑥). Then there exists V ∈

𝐿
1
([0, 1],R) with V ∈ 𝑆𝐹,𝑥 such that for 𝑡 ∈ [0, 1], we have

𝑥 (𝑡) = 𝜇∫

1

0

𝐺 (𝑡, 𝑠) V (𝑠) 𝑑𝑠, (27)

and using the computations used in the second step, we
obtain

|𝑥 (𝑡)| ≤ 𝜓 (‖𝑥‖)

(𝛼 − 1)

Γ (𝛼)

(1 +

1

1 − 𝜎

∫

1

0

𝑔 (𝑠) 𝑑𝑠)

× ∫

1

0

𝑠(1 − 𝑠)
𝛼−1

𝑝 (𝑠) 𝑑𝑠.

(28)

In consequence, we have

‖𝑥‖ (𝜓 (‖𝑥‖)

(𝛼 − 1)

Γ (𝛼)

(1 +

1

1 − 𝜎

∫

1

0

𝑔 (𝑠) 𝑑𝑠)

× ∫

1

0

𝑠(1 − 𝑠)
𝛼−1

𝑝 (𝑠) 𝑑𝑠)

−1

≤ 1.

(29)

By the assumption (H3), there exists �̃� such that ‖𝑥‖ ̸= �̃�. Let
us set

V = {𝑥 ∈ 𝐶 ([0, 1] ,R) : ‖𝑥‖ < �̃�} . (30)

Observe that the operatorQ : V → P(𝐶([0, 1],R)) is upper
semicontinuous and completely continuous. From the choice
of V, there is no 𝑥 ∈ 𝜕V such that 𝑥 ∈ 𝜇Q(𝑥) for some
𝜇 ∈ (0, 1). Consequently, by Lemma 19, we have that Q has
a fixed point 𝑥 ∈ V which is a solution of the problem (1).
This completes the proof.

Example 21. Consider the following boundary value prob-
lem:

𝑐
𝐷
5/2

𝑥 (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑥 (0) = 𝑥

(0) = 0,

𝑥 (1) = ∫

1

0

√𝑡𝑥 (𝑡) 𝑑𝑡,

(31)
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where 𝐹 : [0, 1] ×R → P(R) is a multivalued map given by

𝑥 → 𝐹 (𝑡, 𝑥) = [

𝑡|𝑥|
3

(|𝑥|
3
+ 3)

,

𝑡 |𝑥|

2 (|𝑥| + 1)

] . (32)

For 𝑓 ∈ 𝐹, we have





𝑓




≤ max( 𝑡|𝑥|

3

(|𝑥|
3
+ 3)

,

𝑡 |𝑥|

2 (|𝑥| + 1)

) ≤ √𝑡, 𝑥 ∈ R. (33)

Here 𝜎 = ∫

1

0
𝑠
𝛼−1

𝑔(𝑠)𝑑𝑠 = ∫

1

0
𝑠
3/2

𝑠
1/2

𝑑𝑠 = (1/3) < 1,
‖𝐹(𝑡, 𝑥)‖P := sup{|𝑦| : 𝑦 ∈ 𝐹(𝑡, 𝑥)} ≤ 𝑡 = 𝑝(𝑡)𝜓(‖𝑥‖), 𝑥 ∈ R,
with 𝑝(𝑡) = 𝑡, 𝜓(‖𝑥‖) = 1, and ∫

1

0
𝑠(1 − 𝑠)

3/2
𝑠 𝑑𝑠 = 16/315.

Using the given values in the condition (H3):

𝑀(𝜓 (𝑀)

(𝛼 − 1)

Γ (𝛼)

(1 +

1

1 − 𝜎

∫

1

0

𝑔 (𝑠) 𝑑𝑠)

× ∫

1

0

𝑠(1 − 𝑠)
𝛼−1

𝑝 (𝑠) 𝑑𝑠)

−1

> 1,

(34)

we find that

𝑀 >

96

315√𝜋

. (35)

Clearly, all the conditions ofTheorem 20 are satisfied. Hence,
the conclusion of Theorem 20 applies to the problem (31).

In our next result, we assume that 𝐹 is not necessarily
convex valued. We complete the proof of this result by
applying the nonlinear alternative of Leray-Schauder type
together with the selection theorem of Bressan and Colombo
[29] for lower semi-continuous maps with decomposable
values, which is stated below.

Lemma 22 (see [29, 30]). Let 𝑌 be a separable metric space
and let 𝑁 : 𝑌 → P(𝐿

1
([0, 1],R)) be a multivalued

operator satisfying the property (BC).Then𝑁 has a continuous
selection; that is, there exists a continuous function (single-
valued) 𝑔 : 𝑌 → 𝐿

1
([0, 1],R) such that 𝑔(𝑥) ∈ 𝑁(𝑥) for

every 𝑥 ∈ 𝑌.

Theorem 23. Suppose that (H2) and (H3) hold. In addition,
we assume the following condition:

(H4) 𝐹 : [0, 1]×R → P(R) is a nonempty compact-valued
multivalued map such that

(a) (𝑡, 𝑥) → 𝐹(𝑡, 𝑥) isL ⊗Bmeasurable,
(b) 𝑥 → 𝐹(𝑡, 𝑥) is lower semicontinuous for each 𝑡 ∈

[0, 1].

Then the problem (1) has at least one solution on [0, 1].

Proof. Observe that the assumptions (H2) and (H4) imply
that 𝐹 is of l.s.c. type. Then, by Lemma 22, there exists a
continuous function 𝜈 : 𝐴𝐶

2
([0, 1],R) → 𝐿

1
([0, 1],R) such

that 𝜈(𝑥) ∈ F(𝑥) for all 𝑥 ∈ 𝐶([0, 1],R).

Let us consider the problem

𝐷
𝛼
𝑥 (𝑡) = 𝜈 (𝑥 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑥 (0) = 𝑥

(0) = 0,

𝑥 (1) = ∫

1

0

𝑔 (𝑡) 𝑥 (𝑡) 𝑑𝑡.

(36)

One can note that if 𝑥 ∈ 𝐴𝐶
2
([0, 1],R) is a solution of (36),

then𝑥 is a solution to the problem (1). To convert the problem
(36) to a fixed point problem, we define an operator Q as

Q𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝜈 (𝑥 (𝑠)) 𝑑𝑠. (37)

It is easy to show that the operator Q is continuous and
completely continuous.The rest of the proof is similar to that
of Theorem 20. So we omit it. This completes the proof.

Finally we show the existence of solutions for the problem
(1) with a nonconvex valued right-hand side by applying a
fixed point theorem for multivalued maps according to
Covitz and Nadler [31].

Lemma 24 ([31]). Let (𝑋, 𝑑) be a complete metric space. If𝑁 :

𝑋 → P𝑐𝑙(𝑋) is a contraction, then Fix𝑁 ̸= 0.

Theorem 25. Assume that

(H5) 𝐹 : [0, 1]×R → P𝑐𝑝(R) is such that𝐹(⋅, 𝑥) : [0, 1] →

P𝑐𝑝(R) is measurable for each 𝑥 ∈ R;
(H6) M𝑑(𝐹(𝑡, 𝑥), 𝐹(𝑡, 𝑦)) ≤ 𝑚(𝑡)|𝑥 − 𝑦| for almost all 𝑡 ∈

[0, 1] and 𝑥, 𝑦 ∈ R with 𝑚 ∈ 𝐿
1
([0, 1],R+) and

𝑑(0, 𝐹(𝑡, 0)) ≤ 𝑚(𝑡) for almost all 𝑡 ∈ [0, 1].

Then the boundary value problem (1) has at least one solution
on [0, 1] if

(𝛼 − 1)

Γ (𝛼)

(1 +

1

1 − 𝜎

∫

1

0

𝑔 (𝑠) 𝑑𝑠)∫

1

0

𝑠(1 − 𝑠)
𝛼−1

𝑚(𝑠) 𝑑𝑠 < 1.

(38)

Proof. By the assumption (H5), it follows that the set 𝑆𝐹,𝑥 is
nonempty for each 𝑥 ∈ 𝐶([0, 1],R). So 𝐹 has a measurable
selection (see [32, Theorem III.6]). Now it will be shown that
the operator Q defined by (17) satisfies the hypotheses of
Lemma 24. To show that Q(𝑥) ∈ P𝑐𝑙((𝐶[0, 1],R)) for each
𝑥 ∈ 𝐶([0, 1],R), let {𝑢𝑛}𝑛≥0 ∈ Q(𝑥) be such that𝑢𝑛 → 𝑢(𝑛 →

∞) in 𝐶([0, 1],R). Then 𝑢 ∈ 𝐶([0, 1],R) and there exists
V𝑛 ∈ 𝑆𝐹,𝑥𝑛

such that, for each 𝑡 ∈ [0, 1],

𝑢𝑛 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) V𝑛 (𝑠) 𝑑𝑠. (39)

As 𝐹 has compact values, we pass onto a subsequence (if
necessary) to obtain that V𝑛 converges to V in 𝐿

1
([0, 1],R).

Thus, V ∈ 𝑆𝐹,𝑥 and for each 𝑡 ∈ [0, 1], we have

V𝑛 (𝑡) → V (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) V (𝑠) 𝑑𝑠. (40)

Hence, 𝑢 ∈ Q.
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Next, we show that there exists 𝛿 < 1 such that

M𝑑 (Q (𝑥) ,Q (𝑦))

≤ 𝛿




𝑥 − 𝑦






for each 𝑥, 𝑦 ∈ 𝐴𝐶
2
([0, 1] ,R) .

(41)

Let 𝑥, 𝑦 ∈ 𝐴𝐶
2
([0, 1],R) and ℎ1 ∈ Q(𝑥). Then there exists

V1(𝑡) ∈ 𝐹(𝑡, 𝑥(𝑡)) such that, for each 𝑡 ∈ [0, 1],

ℎ1 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) V1 (𝑠) 𝑑𝑠. (42)

By (H6), we have that

M𝑑 (𝐹 (𝑡, 𝑥) , 𝐹 (𝑡, 𝑦)) ≤ 𝑚 (𝑡)




𝑥 (𝑡) − 𝑦 (𝑡)





. (43)

So, there exists 𝑤 ∈ 𝐹(𝑡, 𝑦(𝑡)) such that




V1 (𝑡) − 𝑤





≤ 𝑚 (𝑡)





𝑥 (𝑡) − 𝑦 (𝑡)





, 𝑡 ∈ [0, 1] . (44)

DefineW : [0, 1] → P(R) by

W (𝑡) = {𝑤 ∈ R :




V1 (𝑡) − 𝑤





≤ 𝑚 (𝑡)





𝑥 (𝑡) − 𝑦 (𝑡)





} . (45)

Since themultivalued operatorW(𝑡)∩𝐹(𝑡, 𝑦(𝑡)) ismeasurable
([32, Proposition III.4]), there exists a function V2(𝑡) which is
a measurable selection for W. So V2(𝑡) ∈ 𝐹(𝑡, 𝑦(𝑡)) and for
each 𝑡 ∈ [0, 1], we have that |V1(𝑡) − V2(𝑡)| ≤ 𝑚(𝑡)|𝑥(𝑡) − 𝑦(𝑡)|.

For each 𝑡 ∈ [0, 1], let us define

ℎ2 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) V2 (𝑠) 𝑑𝑠. (46)

Thus,





ℎ1 (𝑡) − ℎ2 (𝑡)





≤ ∫

1

0

𝐺 (𝑡, 𝑠)




V1 (𝑠) − V2 (𝑠)





𝑑𝑠

≤

(𝛼 − 1)

Γ (𝛼)

(1 +

1

1 − 𝜎

∫

1

0

𝑔 (𝑠) 𝑑𝑠)

× ∫

1

0

𝑠(1 − 𝑠)
𝛼−1

𝑚(𝑠) 𝑑𝑠




V1 (𝑠) − V2 (𝑠)





𝑑𝑠.

(47)

Hence,





ℎ1 − ℎ2





≤

(𝛼 − 1)

Γ (𝛼)

(1 +

1

1 − 𝜎

∫

1

0

𝑔 (𝑠) 𝑑𝑠)

× ∫

1

0

𝑠(1 − 𝑠)
𝛼−1

𝑚(𝑠) 𝑑𝑠




𝑥 − 𝑦





.

(48)

Analogously, interchanging the roles of 𝑥 and 𝑥, we obtain

M𝑑 (Q (𝑥) ,Q (𝑦)) ≤ 𝛿




𝑥 − 𝑦






≤ {

(𝛼 − 1)

Γ (𝛼)

(1 +

1

1 − 𝜎

∫

1

0

𝑔 (𝑠) 𝑑𝑠)

× ∫

1

0

𝑠(1 − 𝑠)
𝛼−1

𝑚(𝑠) 𝑑𝑠}




𝑥 − 𝑦





.

(49)

SinceQ is a contraction, it follows from Lemma 24 thatQ has
a fixed point 𝑥 which is a solution of (1). This completes the
proof.
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We investigate a class of higher order functional differential equations with damping. By using a generalized Riccati transformation
and integral averaging technique, some oscillation criteria for the differential equations are established.

1. Introduction

In this paper, we consider the following higher order func-
tional differential equations with distributed deviating argu-
ments of the form as follows:

𝑥
(𝑛)

(𝑡) + 𝑝 (𝑡) 𝑥
(𝑛−1)

(𝑡) + ∫

𝑏

𝑎

𝑞 (𝑡, 𝜉)

× 𝑓 (𝑥 [𝑔1 (𝑡, 𝜉)] , . . . , 𝑥 [𝑔𝑚 (𝑡, 𝜉)]) 𝑑𝜇 (𝜉) = 0, 𝑡 ≥ 𝑡0,

(1)

where 𝑛 ≥ 2 is an even number, 𝑝(𝑡) ∈ 𝐶
1
([𝑡0,∞), 𝑅+),

𝑞(𝑡, 𝜉) ∈ 𝐶([𝑡0,∞) × [𝑎, 𝑏], 𝑅+), 𝑔𝑖(𝑡, 𝜉) ∈ 𝐶([𝑡0,∞) ×

[𝑎, 𝑏], 𝑅), lim inf 𝑡→∞,𝜉∈[𝑎,𝑏]𝑔𝑖(𝑡, 𝜉) = ∞ for 𝑖 ∈ 𝐼𝑚 =

{1, 2, . . . , 𝑚}, and 𝑓(𝑢1, . . . , 𝑢𝑚) ∈ 𝐶(𝑅
𝑚
, 𝑅) has the same

sign as 𝑢1, . . . , 𝑢𝑚; when they have the same sign, 𝜇(𝜉) ∈

𝐶([𝑎, 𝑏], 𝑅) is nondecreasing, and the integral of (1) is a
Stieltjes one.

We restrict our attention to those solutions 𝑥(𝑡) of (1)
which exist on same half liner [𝑡𝜇,∞) with sup{𝑥(𝑡) : 𝑡 ≥

𝑇} ̸= 0 for any 𝑇 ≥ 𝑡𝜇 and satisfy (1). As usual, a solution 𝑥(𝑡)

of (1) is called oscillatory if the set of its zeros is unbounded
from above, otherwise, it is called nonoscillatory. Equation (1)
is called oscillatory if all solutions are oscillatory.

In recent years, there has been an increasing interest
in studying the oscillation behavior of solutions for the
differential equations with distributed deviating arguments,
and a number of results have been obtained (refer to [1–3]

and their references). However, to the best of our knowledge,
very little is known for the case of higher order differential
equations with damping. The purpose of this paper is to
establish some new oscillation criteria for (1) by introducing
a class of functions Φ(𝑡, 𝑠, 𝑟) defined in [2] and a generalized
Riccati technique.

Firstly, we define the following two class functions.
We say that a function Φ = Φ(𝑡, 𝑢, 𝑣) belongs to the

function class 𝑋, denoted by Φ ∈ 𝑋, if Φ ∈ 𝐶(𝐸, 𝑅), where
𝐸 = {(𝑡, 𝑢, 𝑣) : 𝑡0 ≤ 𝑣 ≤ 𝑢 ≤ 𝑡 < ∞}, which satisfies
Φ(𝑡, 𝑡, 𝑣) = Φ(𝑡, 𝑣, 𝑣) = 0, Φ(𝑡, 𝑢, 𝑣) ̸= 0, 𝑣 < 𝑢 < 𝑡 and has the
partial derivative 𝜕Φ/𝜕𝑢 on 𝐸 that is locally integrable with
respect to 𝑢 in 𝐸.

Let𝐷0 = {(𝑡, 𝑢) : 𝑡0 ≤ 𝑢 < 𝑡},𝐷 = {(𝑡, 𝑢) : 𝑡0 ≤ 𝑢 ≤ 𝑡}. We
say that a function 𝐻 = 𝐻(𝑡, 𝑢) belongs to the function class
𝑌, denoted by 𝐻 ∈ 𝑌, if 𝐻(𝑡, 𝑡) = 0 for 𝑡 ≥ 𝑡0, 𝐻(𝑡, 𝑢) ̸= 0 in
𝐷0,𝐻 has continuous partial derivative in𝐷0 with respect to
𝑡 and 𝑠.

In order to prove the main theorems, we need the
following lemmas.

Lemma 1 (see [4]). Let 𝑥(𝑡) ∈ 𝐶
𝑛
([𝑡0,∞), 𝑅+), if 𝑥(𝑛)(𝑡) is of

constant sign and not identically zero on any ray [𝑡𝜇, +∞) for
𝑡𝜇 ≥ 𝑡0, then there exists a 𝑡𝜎 ≥ 𝑡𝜇, an integer 𝑙(0 ≤ 𝑙 ≤ 𝑛), with
𝑛 + 𝑙 even for 𝑥(𝑡)𝑥(𝑛)(𝑡) ≥ 0 or 𝑛 + 𝑙 odd for 𝑥(𝑡)𝑥(𝑛)(𝑡) ≤ 0;
and for 𝑡 ≥ 𝑡𝜎 ≥ 𝑡𝜇, 𝑥(𝑡)𝑥(𝑘)(𝑡) > 0, 0 ≤ 𝑘 ≤ 𝑙, and
(−1)
𝑘+𝑙

𝑥(𝑡)𝑥
(𝑘)

(𝑡) > 0, 𝑙 ≤ 𝑘 ≤ 𝑛.
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Lemma 2 (see [5]). If the function 𝑥(𝑡) is as in Lemma 1 and
𝑥
(𝑛−1)

(𝑡)𝑥
(𝑛)

(𝑡) ≤ 0 for 𝑡 ≥ 𝑡𝜎 ≥ 𝑡𝜇, then there exists a constant
𝜃 ∈ (0, 1) such that for sufficiently large 𝑡, there exists a constant
𝑀𝜃 > 0, satisfying

𝑥

(𝜃𝑡) ≥ 𝑀𝜃𝑡

𝑛−2
𝑥
(𝑛−1)

(𝑡) . (2)

Lemma 3 (see [3]). Suppose that 𝑥(𝑡) is a nonoscillatory
solution of (1). If

lim
𝑡→∞

∫

𝑡

𝑇0

exp{−∫

𝑠

𝑇0

𝑝 (𝜏) 𝑑𝜏} 𝑑𝑠 = ∞, 𝑇0 ≥ 𝑡0, (3)

then 𝑥(𝑡)𝑥
(𝑛−1)

(𝑡) > 0 for any large 𝑡.

2. Main Results

Theorem 4. Assume that (3) holds, and

(A1) there exists a function 𝜎(𝑡) ∈ 𝐶
𝑛
([𝑡0,∞), 𝑅+) such that

𝜎(𝑡) = min1≤𝑖≤𝑚{𝑡, inf𝜉∈[𝑎,𝑏]𝑔𝑖(𝑡, 𝜉)}, lim𝑡→∞𝜎(𝑡) =

∞. 𝜎(𝑡) ≥ 𝜎 > 0, 𝜎𝑛−2(𝑡) ≥ 𝜌
𝑛−2

> 0, (𝑀𝜃/2)𝜎𝜌𝑛−2 =:
𝑘 > 0, where 𝜎, 𝜌, and 𝑘 are constants.

(A2) 𝑓(𝑢1, . . . , 𝑢𝑚) is nondecreasing with 𝑢𝑖, 𝑖 ∈ 𝐼𝑚, and
there exist constants 𝑁 > 0 and 𝜆 > 0 such that

lim inf
𝑢𝑖0 →∞

𝑓 (𝑢1, . . . , 𝑢𝑚)

𝑢𝑖0

≥ 𝜆, 𝑢𝑖 ≥ 𝑁, 𝑖 ̸= 𝑖0. (4)

If there exists a functionΦ(𝑡, 𝑢, 𝑣) ∈ 𝑋, such that for any 𝑙(𝑡) ∈
𝐶
1
([𝑡0,∞), 𝑅+), 𝑟(𝑡) ∈ 𝐶

1
([𝑡0,∞), 𝑅) and 𝑇0 ≥ 𝑡0,

lim sup
𝑡→∞

∫

𝑡

𝑇0

{Φ
2
(𝑠, 𝑢, 𝑣) 𝜓 (𝑠) −

𝜙 (𝑠)

𝑘

× [Φ


𝑠 (𝑠, 𝑢, 𝑣) +
𝑙

(𝑠) Φ (𝑠, 𝑢, 𝑣)

2𝑙 (𝑠)

]

2

}𝑑𝑠 > 0,

(5)

where

𝜙 (𝑡) = 𝑙 (𝑡) exp{−2𝑘∫

𝑡

𝑇0

𝑟 (𝑠) 𝑑𝑠} ,

𝜓 (𝑡) = 𝜙 (𝑡) {𝜆∫

𝑏

𝑎

𝑞 (𝑡, 𝜉) 𝑑𝜇 (𝜉) + 𝑘𝑟
2
(𝑡)

−𝑟

(𝑡) −

𝑝

(𝑡)

2𝑘

−

𝑝
2
(𝑡)

4𝑘

} .

(6)

Then (1) is oscillatory.

Proof. Suppose to the contrary that (1) has a nonoscillatory
solution 𝑥(𝑡). Without loss of generality, wemay suppose that
𝑥(𝑡) is an eventually positive solution. From the conditions of
𝑔𝑖(𝑡, 𝜉) and 𝑓(𝑢1, . . . , 𝑢𝑚), there exists a 𝑇0 ≥ 𝑡0, such that

𝑥 (𝑡) > 0, 𝑥 [𝑔𝑖 (𝑡, 𝜉)] > 0,

𝑓 (𝑥 [𝑔1 (𝑡, 𝜉)] , . . . , 𝑥 [𝑔𝑚 (𝑡, 𝜉)]) > 0, 𝑡 ≥ 𝑇0, 𝑖 ∈ 𝐼𝑚.

(7)

By Lemma 3, there exists a 𝑡1 ≥ 𝑇0 such that 𝑥(𝑛−1)(𝑡) > 0,
𝑡 ≥ 𝑡1. Thus, we have

𝑥
(𝑛)

(𝑡) = − 𝑝 (𝑡) 𝑥
(𝑛−1)

(𝑡)

− ∫

𝑏

𝑎

𝑞 (𝑡, 𝜉) 𝑓 (𝑥 [𝑔1 (𝑡, 𝜉)] , . . . , 𝑥 [𝑔𝑚 (𝑡, 𝜉)])

× 𝑑𝜇 (𝜉) ≤ 0, 𝑡 ≥ 𝑡1.

(8)

By Lemma 1, there exists a 𝑡2 > 𝑡1 such that 𝑥(𝑡) > 0, 𝑡 ≥ 𝑡2.
Further, by Lemma 2, there exist constant 𝑀𝜃 > 0 and a 𝑡3 ≥

𝑡2, such that

𝑥

[

𝜎 (𝑡)

2

] ≥ 𝑀𝜃𝜎
𝑛−2

(𝑡) 𝑥
(𝑛−1)

[𝜎 (𝑡)]

≥ 𝑀𝜃𝜎
𝑛−2

(𝑡) 𝑥
(𝑛−1)

(𝑡) , 𝑡 ≥ 𝑡3.

(9)

Set

𝑦 (𝑡) = 𝜙 (𝑡) {

𝑥
(𝑛−1)

(𝑡)

𝑥 [𝜎 (𝑡) /2]

+ 𝑟 (𝑡) +

𝑝 (𝑡)

2𝑘

} , (10)

then

𝑦

(𝑡) =

𝜙

(𝑡)

𝜙 (𝑡)

𝑦 (𝑡) + 𝜙 (𝑡)

× {−∫

𝑏

𝑎

𝑞 (𝑡, 𝜉)

𝑓 (𝑥 [𝑔1 (𝑡, 𝜉)] , . . . , 𝑥 [𝑔𝑚 (𝑡, 𝜉)])

𝑥 [𝜎 (𝑡) /2]

× 𝑑𝜇 (𝜉) − 𝑝 (𝑡)

𝑥
(𝑛−1)

(𝑡)

𝑥 [𝜎 (𝑡) /2]

−

𝜎

(𝑡) 𝑥
(𝑛−1)

(𝑡) 𝑥

[𝜎 (𝑡) /2]

2𝑥
2
[𝜎 (𝑡) /2]

+ 𝑟

(𝑡) +

𝑝

(𝑡)

2𝑘

} .

(11)

In view of (A1), (A2) and the definition of 𝑦(𝑡), 𝜙(𝑡), we have

𝑦

(𝑡) ≤

𝜙

(𝑡)

𝜙 (𝑡)

𝑦 (𝑡) + 𝜙 (𝑡)

× {−𝑝 (𝑡)

𝑥
(𝑛−1)

(𝑡)

𝑥 [𝜎 (𝑡) /2]

− 𝜆∫

𝑏

𝑎

𝑞 (𝑡, 𝜉) 𝑑𝜇 (𝜉)

− 𝑘[

𝑥
(𝑛−1)

(𝑡)

𝑥 [𝜎 (𝑡) /2]

]

2

+ 𝑟

(𝑡) +

𝑝

(𝑡)

2𝑘

}

= −

𝑘𝑦
2
(𝑡)

𝜙 (𝑡)

+

𝑙

(𝑡) 𝑦 (𝑡)

𝑙 (𝑡)

− 𝜓 (𝑡) ,

(12)

where𝜓(𝑡) = 𝜙(𝑡){𝜆 ∫

𝑏

𝑎
𝑞(𝑡, 𝜉)𝑑𝜇(𝜉)+𝑘𝑟

2
(𝑡)−𝑟

(𝑡)−𝑝


(𝑡)/2𝑘−

𝑝
2
(𝑡)/4𝑘}.
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Multiplying (12) by Φ
2
(𝑡, 𝑢, 𝑣) and integrating from 𝑡3 to

𝑡, we have

∫

𝑡

𝑡3

Φ
2
(𝑠, 𝑢, 𝑣) 𝜓 (𝑠) 𝑑𝑠

≤ ∫

𝑡

𝑡3

Φ
2
(𝑠, 𝑢, 𝑣) [−𝑦


(𝑠) +

𝑙

(𝑠)

𝑙 (𝑠)

𝑦 (𝑠)] 𝑑𝑠

− ∫

𝑡

𝑡3

Φ
2
(𝑠, 𝑢, 𝑣)

𝑘𝑦
2
(𝑠)

𝜙 (𝑠)

𝑑𝑠.

(13)

Integrating by parts and using integral averaging tech-
nique, we have

∫

𝑡

𝑡3

Φ
2
(𝑠, 𝑢, 𝑣) 𝜓 (𝑠) 𝑑𝑠

≤ ∫

𝑡

𝑡3

𝜙 (𝑠)

𝑘

[Φ


𝑠 (𝑠, 𝑢, 𝑣) +
𝑙

(𝑠) Φ (𝑠, 𝑢, 𝑣)

2𝑙 (𝑠)

]

2

𝑑𝑠

− ∫

𝑡

𝑡3

{

{

{

Φ(𝑠, 𝑢, 𝑣) 𝑦 (𝑠)√

𝑘

𝜙 (𝑠)

− √
𝜙 (𝑠)

𝑘

× [Φ


𝑠 (𝑠, 𝑢, 𝑣) +
𝑙

(𝑠) Φ (𝑠, 𝑢, 𝑣)

2𝑙 (𝑠)

]

}

}

}

2

𝑑𝑠

≤ ∫

𝑡

𝑡3

𝜙 (𝑠)

𝑘

[Φ


𝑠 (𝑠, 𝑢, 𝑣) +
𝑙

(𝑠) Φ (𝑠, 𝑢, 𝑣)

2𝑙 (𝑠)

]

2

𝑑𝑠,

(14)

thus

lim sup
𝑡→∞

∫

𝑡

𝑡3

{Φ
2
(𝑠, 𝑢, 𝑣) 𝜓 (𝑠) −

𝜙 (𝑠)

𝑘

×[Φ


𝑠 (𝑠, 𝑢, 𝑣) +
𝑙

(𝑠) Φ (𝑠, 𝑢, 𝑣)

2𝑙 (𝑠)

]

2

}𝑑𝑠 ≤ 0,

(15)

which contradicts (5).This completes the proof ofTheorem 4.

If we choose Φ(𝑡, 𝑢, 𝑣) = √𝐻1(𝑡, 𝑢)𝐻2(𝑢, 𝑣), where 𝐻1,

𝐻2 ∈ 𝑌. By Theorem 4, we have the following results.

Corollary 5. Assume that (3), (A1), and (A2) hold. If there
exist𝐻1, 𝐻2 ∈ 𝑌 such that for each 𝑇0 ≥ 𝑡0,

lim sup
𝑡→∞

∫

𝑡

𝑇0

𝐻1 (𝑠, 𝑢)𝐻2 (𝑢, 𝑣)

× {𝜓 (𝑠) −

[ℎ1 (𝑠, 𝑢) + ℎ2 (𝑢, 𝑣)]
2

4𝑘

}𝑑𝑠 > 0,

(16)

where ℎ1 and ℎ2 are defined by 𝜕𝐻1(𝑡, 𝑢)/𝜕𝑢 =

ℎ1(𝑡, 𝑢)𝐻1(𝑡, 𝑢), 𝜕𝐻2(𝑢, 𝑣)/𝜕𝑢 = ℎ2(𝑢, 𝑣)𝐻2(𝑢, 𝑣), and

𝜓 (𝑡) = 𝜆∫

𝑏

𝑎

𝑞 (𝑡, 𝜉) 𝑑𝜇 (𝜉) −

𝑝

(𝑡)

2𝑘

−

𝑝
2
(𝑡)

4𝑘

. (17)

Then (1) is oscillatory.

If we choose 𝑙(𝑡) = 1, 𝑟(𝑡) = 0, and let Φ(𝑡, 𝑢, 𝑣) =

(𝑡 − 𝑢)(𝑢 − 𝑣)
𝛼
, 𝛼 > 1/2, byTheorem 4, we have the following

corollary.

Corollary 6. Assume that (3), (A1), and (A2) hold. If there
exists a constant 𝛼 > 1/2 such that for each 𝑇0 ≥ 𝑡0,

lim sup
𝑡→∞

1

𝑡
2𝛼+1

∫

𝑡

𝑇0

(𝑠 − 𝑢)
2
(𝑢 − 𝑣)

2𝛼

× 𝑘𝜓 (𝑠) 𝑑𝑠 >

𝛼

(2𝛼 − 1) (2𝛼 + 1)

,

(18)

where 𝜓(𝑡) is defined as in Corollary 5. Then (1) is oscillatory.

Theorem 7. Assume that (3) holds, and

(A3) there exist functions 𝛾𝑖(𝑡) ∈ 𝐶
𝑛
([𝑡0,∞), 𝑅+), such that

𝛾𝑖(𝑡) ≤ min1≤𝑖≤𝑚{𝑡, inf𝜉∈[𝑎,𝑏]𝑔𝑖(𝑡, 𝜉)}, lim𝑡→∞𝛾𝑖(𝑡) =

∞, 𝛾𝑖 (𝑡) ≥ 𝛾𝑖 > 0, where 𝛾𝑖 are constants, 𝑖 ∈ 𝐼𝑚;

(A4) there exist constants 𝜆𝑖 ∈ [0, 1] and 𝜆 > 0, such that

𝑚

∑

𝑖=1

𝜆𝑖𝛾𝑖 (𝑡) > 0,

𝑓 (𝑢1, . . . , 𝑢𝑚)

𝜆1𝑢1 + ⋅ ⋅ ⋅ + 𝜆𝑚𝑢𝑚

≥ 𝜆. (19)

𝛾
𝑛−2
𝑖 (𝑡) ≥ 𝜌

𝑛−2
𝑖 ≥ 0, (𝑀𝜃/2)∑

𝑚

𝑖=1 𝜆𝑖𝛾𝑖𝜌
𝑛−2
𝑖 (𝑡) =: 𝑘 > 0, where

𝜌𝑖 and 𝑘 are constants, 𝑖 ∈ 𝐼𝑚.

If there exists a function Φ ∈ 𝑋, such that for any 𝑙(𝑡) ∈

𝐶
1
([𝑡0,∞), 𝑅+), 𝑟(𝑡) ∈ 𝐶

1
([𝑡0,∞), 𝑅), and 𝑇0 ≥ 𝑡0, and (5)

holds, where 𝜙(𝑡) is defined as in Theorem 4:

𝜓 (𝑡) = 𝜙 (𝑡) {𝜆∫

𝑏

𝑎

𝑞 (𝑡, 𝜉) 𝑑𝜇 (𝜉)

+ 𝑘𝑟
2
(𝑡) − 𝑟


(𝑡) −

𝑝

(𝑡)

2𝑘

−

𝑝
2
(𝑡)

4𝑘

} .

(20)

Then (1) is oscillatory.

Proof. Suppose to the contrary that (1) has a nonoscillatory
solution 𝑥(𝑡). Without loss of generality, wemay suppose that
𝑥(𝑡) is an eventually positive solution. Similar to the proof of
Theorem 4, there exists a 𝑇0 ≥ 𝑡0, such that 𝑥[𝑔𝑖(𝑡, 𝜉)] > 0,
𝑥[𝛾𝑖(𝑡)] > 0, 𝑥(𝑡) > 0, 𝑓(𝑥[𝑔1(𝑡, 𝜉)], . . . , 𝑥[𝑔𝑚(𝑡, 𝜉)]) > 0,
𝑥
(𝑛−1)

(𝑡) > 0, and 𝑥
(𝑛)

(𝑡) ≤ 0, for 𝑡 ≥ 𝑇0, 𝑖 ∈ 𝐼𝑚. Set

𝑦 (𝑡) = 𝜙 (𝑡) {

𝑥
(𝑛−1)

(𝑡)

∑
𝑚

𝑖=1 𝜆𝑖𝑥 [𝛾𝑖 (𝑡) /2]
+ 𝑟 (𝑡) +

𝑝 (𝑡)

2𝑘

} , (21)
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then

𝑦

(𝑡) =

𝜙

(𝑡)

𝜙 (𝑡)

𝑦 (𝑡) + 𝜙 (𝑡)

× { − 𝑝 (𝑡)

𝑥
(𝑛−1)

(𝑡)

∑
𝑚

𝑖=1 𝜆𝑖𝑥 [𝛾𝑖 (𝑡) /2]

− ∫

𝑏

𝑎

𝑞 (𝑡, 𝜉)

𝑓 (𝑥 [𝑔1 (𝑡, 𝜉)] , . . . , 𝑥 [𝑔𝑚 (𝑡, 𝜉)])

∑
𝑚

𝑖=1 𝜆𝑖𝑥 [𝛾𝑖 (𝑡) /2]

× 𝑑𝜇 (𝜉) −

𝑥
(𝑛−1)

(𝑡)

2{∑
𝑚

𝑖=1 𝜆𝑖𝑥 [𝛾𝑖 (𝑡) /2]}
2

×

𝑚

∑

𝑖=1

𝜆𝑖𝑥

[𝛾𝑖 (𝑡)] 𝛾



𝑖 (𝑡) + 𝑟

(𝑡) +

𝑝

(𝑡)

2𝑘

} .

(22)

In view of (A3), (A4) and the definition of 𝑦(𝑡), 𝜙(𝑡), we have

𝑦

(𝑡) ≤ −

𝑘𝑦
2
(𝑡)

𝜙 (𝑡)

+

𝑙

(𝑡) 𝑦 (𝑡)

𝑙 (𝑡)

− 𝜓 (𝑡) . (23)

The following proof is similar toTheorem 4, and we omit the
details. This completes the proof of Theorem 7.

Similar to Corollaries 5 and 6, we have the following
corollaries.

Corollary 8. Assume that (3), (𝐴3), and (A4) hold. If there
exist 𝐻1, 𝐻2 ∈ 𝑌 such that for each 𝑇0 ≥ 𝑡0, and (16) holds,
where ℎ1, ℎ2 are defined as in Corollary 5:

𝜓 (𝑡) = 𝜆∫

𝑏

𝑎

𝑞 (𝑡, 𝜉) 𝑑𝜇 (𝜉) −

𝑝

(𝑡)

2𝑘

−

𝑝
2
(𝑡)

4𝑘

. (24)

Then (1) is oscillatory.

Corollary 9. Assume that (3), (A3), and (A4) hold. If there
exists a constant 𝛼 > 1/2 such that for each 𝑇0 ≥ 𝑡0, and
(18) holds. where 𝜓(𝑡) is defined as in Corollary 8, then (1) is
oscillatory.

For the case of the function 𝑓(𝑢1, . . . , 𝑢𝑚) with mono-
tonicity, we have the following theorem.

Theorem 10. Assume that (3), (A3) hold, and

(A5) there exist 𝜕𝑓/𝜕𝑢𝑖 and 𝜕𝑓/𝜕𝑢𝑖 ≥ 𝜆𝑖 ≥ 0, such that
∑
𝑚

𝑖=1 𝜆𝑖𝛾

𝑖 (𝑡) > 0, where 𝜆𝑖 is constants. 𝛾𝑛−2𝑖 ≥ 𝜌

𝑛−2
𝑖 ≥

0, (𝑀𝜃/2)∑
𝑚

𝑖=1 𝜆𝑖𝛾𝑖𝜌
𝑛−2
𝑖 (𝑡) =: 𝑘 > 0, in which 𝜌𝑖 and 𝑘

are constants,𝑖 ∈ 𝐼𝑚.

If there exists a function Φ ∈ 𝑋, such that for any 𝑙(𝑡) ∈

𝐶
1
([𝑡0,∞), 𝑅+), 𝑟(𝑡) ∈ 𝐶

1
([𝑡0,∞), 𝑅), and (5) holds, where

𝜙(𝑡) is defined as in Theorem 4:

𝜓 (𝑡) = 𝜙 (𝑡) {∫

𝑏

𝑎

𝑞 (𝑡, 𝜉) 𝑑𝜇 (𝜉)

+ 𝑘𝑟
2
(𝑡) − 𝑟


(𝑡) −

𝑝

(𝑡)

2𝑘

−

𝑝
2
(𝑡)

4𝑘

} .

(25)

Then (1) is oscillatory.

Proof. Suppose to the contrary that (1) has a nonoscillatory
solution 𝑥(𝑡). Without loss of generality, we may suppose
that 𝑥(𝑡) is an eventually positive solution. Similar to the
proof of Theorem 4, there exists a 𝑇0 ≥ 𝑡0, when 𝑡 ≥ 𝑇0,
and we have 𝑥[𝑔𝑖(𝑡, 𝜉)] > 0, 𝑥[𝛾𝑖(𝑡)] > 0, 𝑥


(𝑡) > 0,

𝑓(𝑥[𝑔1(𝑡, 𝜉)], . . . , 𝑥[𝑔𝑚(𝑡, 𝜉)]) > 0, 𝑥(𝑛−1)(𝑡) > 0, and 𝑥
(𝑛)

(𝑡) ≤

0, 𝑖 ∈ 𝐼𝑚. Set

𝑦 (𝑡) = 𝜙 (𝑡) {

𝑥
(𝑛−1)

(𝑡)

𝑓 (𝑥 [𝛾1 (𝑡) /2] + ⋅ ⋅ ⋅ + 𝑥 [𝛾𝑚 (𝑡) /2])

+ 𝑟 (𝑡) +

𝑝 (𝑡)

2𝑘

} ,

(26)

then

𝑦

(𝑡)

=

𝜙

(𝑡)

𝜙 (𝑡)

𝑦 (𝑡) + 𝜙 (𝑡)

× { − 𝑝 (𝑡)

𝑥
(𝑛−1)

(𝑡)

𝑓 (𝑥 [𝛾1 (𝑡) /2] + ⋅ ⋅ ⋅ + 𝑥 [𝛾𝑚 (𝑡) /2])

− ∫

𝑏

𝑎

𝑞 (𝑡, 𝜉)

𝑓 (𝑥 [𝑔1 (𝑡, 𝜉)] , . . . , 𝑥 [𝑔𝑚 (𝑡, 𝜉)])

𝑓 (𝑥 [𝛾1 (𝑡) /2]+⋅ ⋅ ⋅+𝑥 [𝛾𝑚 (𝑡) /2])

× 𝑑𝜇 (𝜉) −

𝑥
(𝑛−1)

(𝑡)

2{𝑓 (𝑥 [𝛾1 (𝑡) /2] + ⋅ ⋅ ⋅ + 𝑥 [𝛾𝑚 (𝑡) /2])}
2

×

𝑚

∑

𝑖=1

𝜆𝑖𝑥

[𝛾𝑖 (𝑡)] 𝛾



𝑖 (𝑡) + 𝑟

(𝑡) +

𝑝

(𝑡)

2𝑘

} .

(27)

In view of (A3), (A5) and the definition of 𝑦(𝑡), 𝜙(𝑡), we have

𝑦

(𝑡) ≤ −

𝑘𝑦
2
(𝑡)

𝜙 (𝑡)

+

𝑙

(𝑡) 𝑦 (𝑡)

𝑙 (𝑡)

− 𝜓 (𝑡) . (28)

The following proof is similar to Theorem 4, we omit the
details. This completes the proof of Theorem 10.

Similar to Corollaries 5 and 6, we have the following
corollaries.
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Corollary 11. Assume that (3), (𝐴3), and (𝐴5) hold. If there
exist 𝐻1, 𝐻2 ∈ 𝑌 such that for each 𝑇0 ≥ 𝑡0, and (16) holds,
where ℎ1, ℎ2 are defined as in Corollary 5:

𝜓 (𝑡) = ∫

𝑏

𝑎

𝑞 (𝑡, 𝜉) 𝑑𝜇 (𝜉) −

𝑝

(𝑡)

2𝑘

−

𝑝
2
(𝑡)

4𝑘

. (29)

Then (1) is oscillatory.

Corollary 12. Assume that (3), (𝐴3), and (𝐴5) hold. If there
exists a constant 𝛼 > 1/2 such that for each 𝑇0 ≥ 𝑡0, and
(18) holds. where 𝜓(𝑡) is defined as in Corollary 11. Then (1)
is oscillatory.

3. Examples

Example 13. Consider the following equation

𝑥
(4)

(𝑡) +

1

𝑡

𝑥
(3)

(𝑡) ∫

𝜋/2

0

𝜉

𝑡
2

2𝑥 (𝑡 + sin 𝜉)

2 − exp (−𝑥
2
(𝑡 + cos 𝜉))

𝑑𝜉 = 0,

𝑡 ≥ 1,

(30)

where 𝑢1 = 𝑥(𝑡 + cos 𝜉), 𝑢2 = 𝑥(𝑡 + sin 𝜉), obviously
𝑓(𝑢1, 𝑢2)/𝑢2 ≥ 1 = 𝜆. Choosing 𝜎 = 1, 𝜌 = 1, then 𝑘 = 𝑀𝜃/2,
and

lim sup
𝑡→∞

1

𝑡
2𝛼+1

∫

𝑡

0

(𝑠 − 𝑢)
2
(𝑢 − 𝑣)

2𝛼
(

𝑀𝜃

2𝑠
2
+

1

4𝑠
2
)𝑑𝑠

= (

𝑀𝜃

2

+

1

4

) lim sup
𝑡→∞

1

𝑡
2𝛼+1

∫

𝑡

0

(𝑠 − 𝑢)
2
(𝑢 − 𝑣)

2𝛼 1

𝑠
2
𝑑𝑠

= (

𝑀𝜃

2

+

1

4

)

1

𝛼 (2𝛼 + 1) (2𝛼 − 1)

.

(31)

Thus, there exists a constant𝛼 > 1/2, such that (𝑀𝜃/2+1/4) >
𝛼
2, that is,

(

𝑀𝜃

2

+

1

4

)

1

𝛼 (2𝛼 + 1) (2𝛼 − 1)

>

𝛼

(2𝛼 + 1) (2𝛼 − 1)

. (32)

By Corollary 6, then (30) is oscillatory.

Example 14. Consider the following equation

𝑥
(4)

(𝑡) +

1

𝑡

𝑥
(3)

(𝑡) + ∫

1

0

𝜉

𝑡
2

× [𝑥 (𝑡 − 𝜉) + 𝑥 (𝑡 + 𝜉) + 𝑥
3
(𝑡 − 𝜉) + 𝑥

5
(𝑡 + 𝜉)] 𝑑𝜉 = 0,

(33)

where 𝑓(𝑢1, 𝑢2) = 𝑢1 + 𝑢2 + 𝑢
3
1 + 𝑢
5
2, obviously 𝜕𝑓/𝜕𝑢1 =

1 + 3𝑢
2
1 ≥ 1, 𝜕𝑓/𝜕𝑢2 = 1 + 5𝑢

4
2 ≥ 1. Choosing 𝜆𝑖 = 1, 𝛾𝑖 = 1,

𝜌𝑖 = 1, and 𝑖 = 1, 2, then 𝑘 = 𝑀𝜃. By Corollary 12, then (33)
is oscillatory.
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We are concerned with the existence and uniqueness of positive solutions for the following
nonlinear perturbed fractional two-point boundary value problem:Dα

0+u(t)+f(t, u, u
′, . . . , u(n−2))+

g(t) = 0, 0 < t < 1, n − 1 < α ≤ n, n ≥ 2, u(0) = u′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0, where Dα
0+ is

the standard Riemann-Liouville fractional derivative. Our analysis relies on a fixed-point theorem
of generalized concave operators. An example is given to illustrate the main result.

1. Introduction

In this paper, we are interested in the existence and uniqueness of positive solutions for the
following nonlinear perturbed fractional two-point boundary value problem:

Dα
0+u(t) + f

(
t, u, u′, . . . , u(n−2)

)
+ g(t) = 0, 0 < t < 1, n − 1 < α ≤ n, n ≥ 2,

u(0) = u′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0,
(1.1)

where Dα
0+ is the standard Riemann-Liouville fractional derivative and g : [0, 1] → [0,+∞)

is continuous.
Fractional differential equations arise in many fields, such as physics, mechanics,

chemistry, economics, engineering, and biological sciences; see [1–15], for example. In
recent years, the study of positive solutions for fractional differential equation boundary
value problems has attracted considerable attention, and fruits from research into it emerge
continuously. For a small sample of such work, we refer the reader to [16–26] and the
references therein. On the other hand, the uniqueness of positive solutions for nonlinear
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fractional differential equation boundary value problems has been studied by some authors;
see [19–22, 25], for example.

When g(t) ≡ 0, Yang and Chen [22] investigated the existence and uniqueness of
positive solutions for the problem (1.1) by means of a fixed-point theorem for u0 concave
operators. They present the following result.

Theorem 1.1 (see [22]). Assume that

(H1) f ∈ C([0, 1] × [0,+∞) × Rn−2 → [0,+∞)), f(t, y1, y2, . . . , yn−1) is increasing for yi ≥ 0,
i = 1, 2, . . . , n − 1, and f is not identically vanishing;

(H2) for any t ∈ [0, 1], yi ≥ 0, i = 1, 2, . . . , n−1, there exist constantsm1,m2,m1 ≤ 0 ≤ m2 < 1
such that

cm2f
(
t, y1, y2, . . . , yn−1

) ≤ f(t, cy1, cy2, . . . , cyn−1
) ≤ cm1f

(
t, y1, y2, . . . , yn−1

)
, ∀0 < c ≤ 1;

(1.2)

(H3) m2 < (2m1 + 1)/3.

Then the problem (1.1) with g(t) ≡ 0 has a unique positive solution.

In this paper, we will remove the condition (H3) and improve on (H2). And we
will use a fixed-point theorem of generalized concave operators to show the existence and
uniqueness of positive solutions for the problem (1.1). Our main result is summarized in the
following theorem.

Theorem 1.2. Assume that (H1) holds and

(H4) for any c ∈ (0, 1) and yi ≥ 0, i = 1, 2, . . . , n − 1, there exists a number ϕ(c) ∈ (c, 1) such
that

f
(
t, cy1, cy2, . . . , cyn−1

) ≥ ϕ(c)f(t, y1, y2, . . . , yn−1
)
. (1.3)

Then the problem (1.1) has a unique positive solution u∗ = In−20+ v∗ ∈ C([0, 1], [0,+∞))which satisfies
λ(v∗)tα−n+1(1 − t) ≤ v∗(t) ≤ μ(v∗)tα−n+1(1 − t), t ∈ [0, 1], where μ(v∗) ≥ λ(v∗) > 0.

Remark 1.3. Some examples of ϕ(t)which satisfy the condition (H4) are

(1) ϕ(t) = tr , for all t ∈ (0, 1), where r ∈ (0, 1),

(2) ϕ(t) = t(1 + η(t))with 0 < η(t) ≤ 1/t − 1, for all t ∈ (0, 1).

Remark 1.4. It is easy to see that the condition (H4) is weaker than the condition (H2).
Moreover, we do not need the condition (H3) in our main result.

2. Preliminaries and Previous Results

For the convenience of the reader, we present here some definitions, lemmas, and basic results
that will be used in the proof of our theorem.



Journal of Function Spaces and Applications 3

Definition 2.1 (see [4, Definition 2.1]). The integral

Iα0+f(x) =
1

Γ(α)

∫x

0

f(t)

(x − t)1−α
dt, x > 0, (2.1)

is called the Riemann-Liouville fractional integral of order α, where α > 0 and Γ(α) denotes
the gamma function.

Definition 2.2 (see [4, page 36-37]). For a function f(x) given in the interval [0,∞), the
expression

Dα
0+f(x) =

1
Γ(n − α)

(
d

dx

)n ∫x

0

f(t)

(x − t)α−n+1
dt, (2.2)

where n = [α] + 1, [α] denotes the integer part of number α, is called the Riemann-Liouville
fractional derivative of order α.

By using the same method in [21], the problem (1.1) can be transformed into the
following boundary value problem:

Dα−n+2
0+ v(t) + f

(
t, In−20+ v(t), In−30+ v(t), . . . , I10+v(t), v(t)

)
+ g(t) = 0, 0 < t < 1,

v(0) = v(1) = 0.
(2.3)

Moreover, from Lemma 2.5 and Lemma 2.7 in [21], we can easily obtain the following result.

Lemma 2.3. If v ∈ C([0, 1], [0,+∞)) is a positive solution of the problem (2.3), then u(t) = In−20+ v(t)
is a positive solution of the problem (1.1). On the other hand, if v ∈ C([0, 1], [0,+∞)) is a positive
solution of the problem (2.3), then the solution is

v(t) =
∫1

0
G(t, s)

[
f
(
s, In−20+ v(s), In−30+ v(s), . . . , I10+v(s), v(s)

)
+ g(s)

]
ds, t ∈ [0, 1], (2.4)

where

G(t, s) =
1

Γ(α − n + 2)

{
(t(1 − s))α−n+1 − (t − s)α−n+1, 0 ≤ s ≤ t ≤ 1,
(t(1 − s))α−n+1, 0 ≤ t ≤ s ≤ 1.

(2.5)

Here G(t, s) is called the Green function of the problem (2.3). Evidently, G(t, s) ≥ 0 for t, s ∈ [0, 1].

The following property of the Green function plays important roles in this paper.
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Lemma 2.4 (see [22]). The Green function G(t, s) in Lemma 2.3 has the following property:

α − n + 1
Γ(α − n + 2)

s(1 − s)α−n+1tα−n+1(1 − t)

≤ G(t, s) ≤ 1
Γ(α − n + 2)

(1 − s)α−ntα−n+1(1 − t) for t, s ∈ [0, 1].

(2.6)

In the sequel, we present some basic concepts in ordered Banach spaces for
completeness and a fixed-point theorem which we will be used later. For convenience of
readers, we suggest that one refers to [27, 28] for details.

Suppose that (E, ‖ ·‖) is a real Banach space which is partially ordered by a cone P ⊂ E,
that is, x ≤ y if and only if y − x ∈ P . If x ≤ y and x /=y, then we denote x < y or y > x. By θ
we denote the zero element of E. Recall that a nonempty closed convex set P ⊂ E is a cone if
it satisfies (i) x ∈ P , λ ≥ 0 ⇒ λx ∈ P ; (ii) x ∈ P , −x ∈ P ⇒ x = θ.

P is called normal if there exists a constantM > 0 such that, for all x, y ∈ E, θ ≤ x ≤ y
implies ‖x‖ ≤M‖y‖; in this caseM is called the normality constant of P . If x1, x2 ∈ E, the set
[x1, x2] = {x ∈ E | x1 ≤ x ≤ x2} is called the order interval between x1 and x2.

For all x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and μ > 0 such that
λx ≤ y ≤ μx. Clearly, ∼ is an equivalence relation. Given h > θ (i.e., h ≥ θ and h/= θ), we
denote by Ph the set Ph = {x ∈ E | x ∼ h}. It is easy to see that Ph ⊂ P is convex and λPh = Ph
for all λ > 0.

In a recent paper [28], Zhai et al. considered the following operator equation:

x = Ax + x0. (2.7)

They established the existence and uniqueness of positive solutions for the above equation,
and they present the following interesting result.

Theorem 2.5 (see Theorem 2.1 in [28]). Let h > θ and P be a normal cone. Assume that

(D1)A : P → P is increasing;

(D2)x0 ∈ P satisfies Ah + x0 ∈ Ph;

(D3) for any x ∈ P and t ∈ (0, 1), there exists ϕ(t) ∈ (t, 1) such that A(tx) ≥ ϕ(t)Ax.

Then the operator equation (2.7) has a unique solution in Ph.

Remark 2.6. An operator A is said to be generalized concave if A satisfies condition (D3).

3. Proof of Theorem 1.2

In this section, we apply Theorem 2.5 to study the problem (1.1), and we obtain a new result
on the existence and uniqueness of positive solutions. The method used here is new to the
literature and so is the existence and uniqueness result to the fractional differential equations.
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In our considerations we will work in the Banach space C[0, 1] = {x : [0, 1] →
R is continuous} with the standard norm ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}. Notice that this space
can be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇐⇒ x(t) ≤ y(t) for t ∈ [0, 1]. (3.1)

Set P = {x ∈ C[0, 1] | x(t) ≥ 0, t ∈ [0, 1]}, the standard cone. It is clear that P is a normal cone
in C[0, 1] and the normality constant is 1.

Proof of Theorem 1.2. Let h(t) = tα−n+1(1 − t), t ∈ [0, 1]. Then

Ph =
{
x ∈ P | and there exist λ(x), μ(x) > 0 such that λ(x)h ≤ x ≤ μ(x)h}. (3.2)

For any v ∈ P , we define

Av(t) =
∫1

0
G(t, s)f

(
s, In−20+ v(s), In−30+ v(s), . . . , I10+v(s), v(s)

)
ds, x0(t) =

∫1

0
G(t, s)g(s)ds,

(3.3)

where G(t, s) is given as in Lemma 2.3. Noting that In−20+ v(s), In−30+ v(s), . . . , I10+v(s), v(s) ≥ 0
and G(t, s) ≥ 0, it follows from (H1) that A : P → P . In the sequel we check that A and x0
satisfy all assumptions of Theorem 2.5.

Firstly, we prove that A : P → P is an increasing operator. In fact, for vi ∈ P , i = 1, 2
with v1 ≤ v2, we know that v1(t) ≤ v2(t), t ∈ [0, 1], by the monotonicity of Riemann-Liouville
fractional integral Iδ0+, δ > 0 and (H1),

Av1(t) =
∫1

0
G(t, s)f

(
s, In−20+ v1(s), In−30+ v1(s), . . . , I10+v1(s), v1(s)

)
ds

≤
∫1

0
G(t, s)f

(
s, In−20+ v2(s), In−30+ v2(s), . . . , I10+v2(s), v2(s)

)
ds = Av2(t).

(3.4)

That is Av1 ≤ Av2. Hence, the condition (D1) in Theorem 2.5 is satisfied.
Next we show that the condition (D3) holds. From (H4), for any γ ∈ (0, 1) and v ∈ P ,

we obtain

A
(
γv

)
(t) =

∫1

0
G(t, s)f

(
s, In−20+ γv(s), In−30+ γv(s), . . . , I10+γv(s), γv(s)

)
ds

=
∫1

0
G(t, s)f

(
s, γIn−20+ v(s), γIn−30+ v(s), . . . , γI10+v(s), γv(s)

)
ds

≥
∫1

0
G(t, s)ϕ

(
γ
)
f
(
s, In−20+ v(s), In−30+ v(s), . . . , I10+v(s), v(s)

)
ds

= ϕ
(
γ
)
Av(t), t ∈ [0, 1].

(3.5)
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That is A(γv) ≥ ϕ(γ)Av, for allv ∈ P , γ ∈ (0, 1). So the condition (D3) in Theorem 2.5 is
satisfied. Now we show that the condition (D2) is also satisfied. On one hand, it follows from
(H1) and Lemma 2.4 that

Ah(t) =
∫1

0
G(t, s)f

(
s, In−20+ h(s), In−30+ h(s), . . . , I10+h(s), h(s)

)
ds

≥ h(t)
∫1

0

α − n + 1
Γ(α − n + 2)

s(1 − s)α−n+1 f
(
s, In−20+ h(s), In−30+ h(s), . . . , I10+h(s), h(s)

)
ds

=
α − n + 1

Γ(α − n + 2)
h(t)

×
∫1

0
s(1 − s)α−n+1f

(
s, In−20+ h(s), In−30+ h(s), . . . , I10+h(s), h(s)

)
ds, t ∈ [0, 1].

(3.6)

On the other hand, also from (H1) and Lemma 2.4, we obtain

Ah(t) ≤ 1
Γ(α − n + 2)

h(t)
∫1

0
(1 − s)α−nf

(
s, In−20+ h(s), In−30+ h(s), . . . , I10+h(s), h(s)

)
ds, t ∈ [0, 1].

(3.7)

Let

λ(h) =
α − n + 1

Γ(α − n + 2)

∫1

0
s(1 − s)α−n+1f

(
s, In−20+ h(s), In−30+ h(s), . . . , I10+h(s), h(s)

)
ds,

μ(h) =
1

Γ(α − n + 2)

∫1

0
(1 − s)α−nf

(
s, In−20+ h(s), In−30+ h(s), . . . , I10+h(s), h(s)

)
ds.

(3.8)

Since f is continuous and f /≡ 0, we can get 0 < λ(h) ≤ μ(h). Consequently,

λ(h)h(t) ≤ Ah(t) ≤ μ(h)h(t). (3.9)

Next we consider x0. If g(t) ≡ 0, then x0(t) ≡ 0; if g(t)/≡ 0, let l = maxt∈[0,1]g(t), then l > 0. It is
easy to prove that

0 ≤ x0(t) ≤ l

Γ(α − n + 2)
h(t)

∫1

0
(1 − s)α−nds = l

(α − n + 1)Γ(α − n + 2)
h(t). (3.10)

Hence,

0 ≤ x0 ≤ l

(α − n + 1)Γ(α − n + 2)
h. (3.11)
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Further,

λ(h)h ≤ x0 +Ah ≤
[
μ(h) +

l

(α − n + 1)Γ(α − n + 2)

]
h. (3.12)

Hence x0 + Ah ∈ Ph. Finally, using Theorem 2.5, v = Av + x0 has a unique solution v∗ in Ph.
That is, v∗ is a unique positive solution of the problem (2.3) in Ph. So there are μ(v∗), λ(v∗)
with μ(v∗) ≥ λ(v∗) > 0 such that λ(v∗)tα−n+1(1 − t) ≤ v∗(t) ≤ μ(v∗)tα−n+1(1 − t), t ∈ [0, 1]. From
Lemma 2.3, u∗ = In−20+ v∗ is the solution of the problem (1.1). Evidently, u∗ ∈ C([0, 1], [0,+∞))
is a unique positive solution of the problem (1.1).

Remark 3.1. Let f ≡ C > 0. Then the conditions (H1), (H4) are satisfied and the problem (2.3)
has a unique solution v(t) =

∫1
0 G(t, s)[C + g(t)]ds, t ∈ [0, 1]. From Lemma 2.4, the unique

solution v is a positive solution and satisfies v ∈ Ph = Ptα−n+1(1−t). So u = In−20+ v is a unique
positive solution of the problem (1.1).

To illustrate how our main result can be used in practice we present an example.

Example 3.2. Consider the following problem:

D5/2
0+ u(t) + a(t)

{
u1/3(t) +

[
u′(t)

]1/4} + g(t) = 0, 0 < t < 1,

u(0) = u′(0) = u′(1) = 0,
(3.13)

where a, g : [0, 1] → [0,+∞) are continuous with a/≡ 0.
In this example, we have α = 5/2. Let f(t, x, y) = a(t)[x1/3 + y1/4]. Evidently, f(t, x, y)

is increasing in x for t ∈ [0, 1], y ≥ 0, and increasing in y for t ∈ [0, 1], x ≥ 0. Moreover, f /≡ 0.
Set ϕ(γ) = γ5/12, γ ∈ (0, 1). Then

f
(
t, γx, γy

)
= a(t)

[
γ1/3x1/3 + γ1/4y1/4

]
≥ ϕ(γ)f(t, x, y), t ∈ [0, 1], x, y ≥ 0. (3.14)

Hence, all the conditions of Theorem 1.2 are satisfied. An application of Theorem 1.2 implies
that the problem (3.13) has a unique positive solution.
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This paper is concerned with q-Sturm-Liouville boundary value problem in the Hilbert space with
a spectral parameter in the boundary condition. We construct a self-adjoint dilation of the maximal
dissipative q-difference operator and its incoming and outcoming spectral representations, which
make it possible to determine the scattering matrix of the dilation. We prove theorems on the
completeness of the system of eigenvalues and eigenvectors of operator generated by boundary
value problem.

1. Introduction

Spectral analysis of Sturm-Liouville and Schrödinger differential equations with a spectral
parameter in the boundary conditions has been analyzed intensively (see [1–16]). Then
spectral analysis of discrete equations became an interesting subject in this field. So there
is a substantial literature on this subject (see [10, 17–19]).

There has recently been great interest in quantum calculus and many works have
been devoted to some problems of q-difference equation. In particular, we refer the reader
to consult the reference [20] for some definitions and theorems on q-derivative, q-integration,
q-exponential function, q-trigonometric function, q-Taylor formula, q-Beta and Gamma
functions, Euler-Maclaurin formula, anf so forth. In [21], Adıvar and Bohner investigated
the eigenvalues and the spectral singularities of non-selfa-djoint q-difference equations of
second order with spectral singularities. In [12], Huseynov and Bairamov examined the
properties of eigenvalues and eigenvectors of a quadratic pencil of q-difference equations.
In [22], Agarwal examined spectral analysis of self-adjoint equations. In [23], Shi and Wu
presented several classes of explicit self-adjoint Sturm-Liouville difference operators with
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either a non-Hermitian leading coefficient function, or a non-Hermitian potential function,
or a nondefinite weight function, or a non-self-adjoint boundary condition. In [24], Annaby
and Mansour studied a q-analogue of Sturm-Liouville eigenvalue problems and formulated
a self-adjoint q-difference operator in a Hilbert space. They also discussed properties of the
eigenvalues and the eigenfunctions.

In this paper, we consider q-Sturm-Liouville Problem and define an adequate Hilbert
space. Our main target of the present paper is to study q-Sturm-Liouville boundary value
problem in case of dissipation at the right endpoint of (0, a) and with the spectral parameter
at zero. The maximal dissipative q-Sturm-Liouville operator is constructed using [25, 26] and
Lax-Phillips scattering theory in [27]. Then we constructed a functional model of dissipative
operator by means of the incoming and outcoming spectral representations and defined
its characteristic function in terms of the solutions of the corresponding q-Sturm-Liouville
equation. By combining the results of Nagy-Foiaş and Lax-Phillips, characteristic function is
expressed with scattering matrix and the dilation of dissipative operator is set up. Finally, we
give theorems on completeness of the system of eigenvectors and associated vectors of the
dissipative q-difference operator.

Let q be a positive number with 0 < q < 1, A ⊂ R, and a ∈ C. A q-difference equation
is an equation that contains q-derivatives of a function defined on A. Let y(x) be a complex-
valued function on x ∈ A. The q-difference operator Dq is defined by

Dqy(x) =
y
(
qx
) − y(x)
μ(x)

, ∀x ∈ A, (1.1)

where μ(x) = (q − 1)x. The q-derivative at zero is defined by

Dqy(0) = lim
n→∞

y
(
qnx

) − y(0)
qnx

, x ∈ A, (1.2)

if the limit exists and does not depend on x. A right inverse to Dq, the Jackson q-integration,
is given by

∫x
0
f(t)dqt = x

(
1 − q)

∞∑
n=0

qnf
(
qnx

)
, x ∈ A, (1.3)

provided that the series converges, and

∫b
a

f(t)dqt =
∫b
0
f(t)dqt −

∫a
0
f(t)dqt, a, b ∈ A. (1.4)

Let L2
q(0, a) be the space of all complex-valued functions defined on [0, a] such that

∥∥f∥∥ :=
(∫a

0

∣∣f(x)∣∣dqx
)1/2

<∞. (1.5)
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The space L2
q(0, a) is a separable Hilbert space with the inner product

(
f, g

)
:=
∫a
0
f(x)g(x)dqx, f, g ∈ L2

q(0, a). (1.6)

We will consider the basic Sturm-Liouville equation

l
(
y
)
:= −1

q
Dq−1Dqy(x) + v(x)y(x), 0 ≤ x ≤ a < +∞, (1.7)

where v(x) is defined on [0, a] and continuous at zero. The q-Wronskian of y1(x), y2(x) is
defined to be

Wq

(
y1, y2

)
(x) := y1(x)Dqy2(x) − y2(x)Dqy1(x), x ∈ [0, a]. (1.8)

Let L0 denote the closure of the minimal operator generated by (1.7) and by D0 its domain.
Besides, we denote byD the set of all functions y(x) from L2

q(0, a) such that y(x) andDqy(x)
are continuous in [0, a) and l(y) ∈ L2

q(0, a); D is the domain of the maximal operator L.
Furthermore, L = L∗

0 [2, 4, 13]. Suppose that the operator L0 has defect index (2, 2).
For every y, z ∈ D we have q-Lagrange’s identity [24]

(
Ly, z

) − (y, Lz) = [y, z](a) − [y, z](0), (1.9)

where [y, z] := y(x)Dq−1z(x) −Dq−1y(x)z(x).

2. Construction of the Dissipative Operator

Consider boundary value problem governed by

(
ly
)
= λy, y ∈ D, (2.1)

subject to the boundary conditions

y(a) − hDq−1y(a) = 0, Imh > 0,
(2.2)

α1y(0) − α2Dq−1y(0) = λ
(
α′1y(0) − α′2Dq−1y(0)

)
, (2.3)

where λ is spectral parameter and α1, α2, α′1, α
′
2 ∈ R and α is defined by

α :=
∣∣∣∣
α′1 α1
α′2 α2

∣∣∣∣ = α′1α2 − α1α′2 > 0. (2.4)



4 Journal of Function Spaces and Applications

For convenience we assume

R0
(
y
)
:= α1y(0) − α2Dq−1y(0),

R′
0
(
y
)
:= α′1y(0) − α′2Dq−1y(0),

Na
1

(
y
)
:= y(a),

Na
2

(
y
)
:= Dq−1y(a),

N0
1

(
y
)
:= y(0),

N0
2

(
y
)
:= Dq−1y(0)∞,

Ra

(
y
)
:=Na

2

(
y
) − hNa

1

(
y
)
.

(2.5)

Lemma 2.1. For arbitrary y, z ∈ D, let one suppose that R0(z) = R0(z), R′
0(z) = R′

0(z), then one
has the following.

Proof.

[
y, z

]
0 =

1
α

[
R0
(
y
)
R′

0(z) − R′
0
(
y
)
R0(z)

]
, (2.6)

1
α

[
R0
(
y
)
R′

0(z) − R′
0
(
y
)
R0(z)

]

=
1
α

⎡
⎣
(
α1y(0) − α2Dq−1y(0)

)(
α′1z(0) − α′2Dq−1z(0)

)

−(α′1y(0) − α′2Dq−1y(0)
)(
α1z(0) − α2Dq−1z(0)

)
⎤
⎦

=
1
α

[(
α′1α2 − α1α′2

)(
y(0)Dq−1z(0) −Dq−1y(0)z(0)

)]

=
[
y, z

]
0.

(2.7)

Let θ1, θ2 denote the solutions of (2.1) satisfying the conditions

N0
1(θ2) = α2 − α′2λ, N0

2(θ2) = α1 − α′1λ, Na
1 (θ1) = h, Na

2 (θ1) = 1. (2.8)

Then from (2.3)we have

Δ(λ) = [θ1, θ2]x = −[θ2, θ1]x = −[θ2, θ1]0

= − 1
α

[
R0(θ1)R′

0(θ2) − R′
0(θ1)R0(θ2)

]

= R0(θ2) − λR′
0(θ2),
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Δ(λ) = [θ1, θ2]x = −[θ2, θ1]x = −[θ2, θ1]a

= −
(
y(a)Dq−1z(a) − z(a)Dq−1y(a)

)

= −
(
y(a) − hDq−1y(a)

)
= −(Na

2 (θ1) − hNa
1 (θ1)

)
.

(2.9)

We let

G(x, ξ, λ) =
−1

Δ(λ)

{
θ2(ξ, λ)θ1(x, λ), x < ξ
θ1(x, λ)θ2(ξ, λ), ξ < x

}
. (2.10)

It can be shown that G(x, ξ, λ) satisfies (2.1) and boundary conditions (2.2)–(2.3). G(x, ξ, λ)
is a Green function of the boundary value problem (2.1)–(2.3). Thus, we obtain that the
G(x, ξ, λ) is a Hilbert-Schmidt kernel and the solution of the boundary value problem can
be expressed by

y(x, λ) =
∫a
0
G(x, ξ, λ)y(ξ, λ)dξ = Rλy. (2.11)

Thus Rλ is a Hilbert Schmidt operator on space L2
q(0, a). The spectrum of the boundary value

problem coincides with the roots of the equation Δ(λ) = 0. Since Δ is analytic and not
identical to zero, it means that the function Δ has at most a countable number of isolated
zeros with finite multiplicity and possible limit points at infinity.

Suppose that f (1) ∈ L2[0, a), f (2) ∈ C, then we denote linear space H = L2
q(0, a) ⊕ C

with two component of elements of f̂ =
(
f (1)

f (2)

)
. If α > 0 and f̂ =

(
f (1)

f (2)

)
, ĝ =

(
g(1)

g(2)

)
∈ H, then

the formula

(
f̂ , ĝ

)
=
∫a
0
f (1)(x)g(1)dqx +

1
α
f (2)g(2) (2.12)

defines an inner product in Hilbert space H. Let us define operator of Ah : H → H with
equalities suitable for boundary value problem

D(Ah) =
{
f̂ =

(
f (1)

f (2)

)
∈ H : f (1) ∈ D,Ra

(
f (1)

)
= 0, f (2) = R′

0

(
f (1)

)}
,

Ahf̂ = l̃
(
f̂
)
:=
(
l
(
f (1))

R0
(
f (1))

)
.

(2.13)

Remind that a linear operatorAh with domainD(Ah) in Hilbert spaceH is called dissipative
if Im(Ahf, f) ≥ 0 for all f ∈ D(Ah) and maximal dissipative if it does not have a proper
extension.
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Definition 2.2. If the system of vectors of y0, y1, y2, . . . , yn corresponding to the eigenvalue λ0
is

l
(
y0
)
= λ0y0, R0

(
y0
) − λR′

0
(
y0
)
= 0, Ra

(
y0
)
= 0,

l
(
ys
) − λ0ys − ys−1 = 0, R0

(
ys
) − λR′

0
(
ys
) − R′

0
(
ys−1

)
= 0,

Ra

(
ys
)
= 0, s = 1, 2, . . . , n,

(2.14)

then the system of vectors of y0, y1, y2, . . . , yn corresponding to the eigenvalue λ0 is called a
chain of eigenvectors and associated vectors of boundary value problem (2.2)–(2.12).

Since the operator Ah is dissipative in H and from Definition 2.2, we have the
following.

Lemma 2.3. The eigenvalue of boundary value problem (2.1)–(2.3) coincides with the eigenvalue
of dissipative Ah operator. Additionally each chain of eigenvectors and associated vectors y0, y1,
y2, . . . , yn corresponding to the eigenvalue λ0 corresponds to the chain eigenvectors and associated
vectors ŷ0, ŷ1, ŷ2, . . . , ŷn corresponding to the same eigenvalue λ0 of dissipative Ah operator. In this
case, the equality

ŷk =
(

yk
R′

0

(
yk
)
)
, k = 0, 1, 2, . . . , n (2.15)

holds.

Proof. ŷ0 ∈ D(Ah) and Ahŷ0 = λ0ŷ0, then the equality l(y0) = λ0y0, R0(y0) − λR′
0(y0) = 0,

R1(y0) = R2(y0) = 0 takes place; that is, y0 is an eigenfunction of the problem. Conversely,
if conditions (2.14) are realized, then

(
y0

R′
0(y0)

)
= ŷ0 ∈ D(Ah) and Ahŷ0 = λ0ŷ0, ŷ0 is an

eigenvector of the operator Ah. If ŷ0, ŷ1, ŷ2, . . . , ŷn are a chain of the eigenvectors and
associated vectors of the operator Ah corresponding to the eigenvalue λ0, then by
implementing the conditions ŷk ∈ D(Ah)(k = 0, 1, 2, . . . , n) and equality Ahŷ0 = λ0ŷ0, Ahŷs =
λ0ŷs + ŷs−1, s = 1, 2, . . . , n, we get the equality (2.15), where y0, y1, y2, . . . , yn are the first
components of the vectors ŷ0, ŷ1, ŷ2, . . . , ŷn. On the contrary, on the basis of the elements
y0, y1, y2, . . . , yn corresponding to (2.1)–(2.3), one can construct the vectors ŷk =

(
yk

R′
0(yk)

)
for

which ŷk ∈ D(Ah)(k = 0, 1, 2, . . . , n) and Ahŷ0 = λ0ŷ0, Ahŷs = λ0ŷs + ŷs−1, s = 1, 2, . . . , n.

Theorem 2.4. The operator Ah is maximal dissipative in the spaceH.

Proof. Let ŷ ∈ D(Ah). From (2.6), we have

(
Ahŷ, ŷ

) − (ŷ, Ahŷ
)
=
[
y1, y1

]
a −

[
y1, y1

]
0 +

1
α

[
R0
(
y1
)
R′

0
(
y1
) − R′

0
(
y1
)
R0
(
y1
)]

=
[
y1, y1

]
a = 2 Imh

(
Dq−1y1(a)

)2
.

(2.16)
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It follows from that Im(Ahŷ, ŷ) = Imh(Dq−1y1(a))
2 ≥ 0, Ah is a dissipative operator inH. Let

us prove that Ah is maximal dissipative operator in the spaceH. It is sufficient to check that

(Ah − λI)D(Ah) = H, Imλ < 0. (2.17)

To prove (2.17), let F ∈ H, Imλ < 0 and put

Γ =

⎛
⎝

(
G̃x, F

)

R′
0

[(
G̃x, F

)]
⎞
⎠, (2.18)

where

G̃x =
(

G(x, ξ, λ)
R′

0[G(x, ξ, λ)]

)
=

⎛
⎝

G(x, ξ, λ)
−1

Δ(λ)
θ1(x, λ)α

⎞
⎠,

G(x, ξ, λ) =
−1

Δ(λ)

{
θ2(ξ, λ)θ1(x, λ), x < ξ
θ1(x, λ)θ2(ξ, λ), ξ < x

}
.

(2.19)

The function x → (G(x, ξ, λ), F1) satisfies the equation l(y) − λy = F1(0 ≤ x < ∞) and the
boundary conditions (2.1)–(2.3). Moreover, for all F ∈ H and for Imλ < 0, we arrive at
Γ ∈ D(Ah). For each F ∈ H and for Imλ < 0, we have (Ah − λI)Γ = F. Consequently, in the
case of Imλ < 0, the result is (Ah − λI)D(Ah) = H. Hence, Theorem 2.4 is proved.

3. Self-Adjoint Dilation of Dissipative Operator

We first construct the self-adjoint dilation of the operator Ah. Let us add the “incoming” and
“outgoing” subspacesD− = L2(−∞, 0] andD+ = L2[0,∞) toH = L2

q(0, a) ⊕C. The orthogonal
sumH = D− ⊕H ⊕D+ is calledmain Hilbert space of the dilation. In the spaceHwe consider the
operatorLh on the setD(Lh), its elements consisting of vectorsw = 〈ϕ−, y, ϕ+〉, generated by
the expression

L〈ϕ−, ŷ, ϕ+
〉
=
〈
i
dϕ−
dξ

, l̃
(
ŷ
)
, i
dϕ+

dξ

〉
. (3.1)

satisfying the conditions: ϕ− ∈ W1
2 (−∞, 0], ϕ+ ∈ W1

2 [0,∞), ŷ ∈ H, ŷ =
(
y1(x)
y2

)
, y1 ∈ D, y2 =

R0(y1), and

y(a) − hDq−1y(a) = βϕ−(0), y(a) − hDq−1y(a) = βϕ+(0), (3.2)

whereW1
2 (·, ·) are Sobolev spaces and β2 := 2 Im h, β > 0. Then we have the following.

Theorem 3.1. The operator Lh is self-adjoint inH and it is a self-adjoint dilation of the operatorAh.
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Proof. We first prove that Lh is symmetric inH. Namely (Lhf, g)H − (f,Lhg)H = 0. Let f ,g ∈
D(Lh), f = 〈ϕ−, ŷ, ϕ+〉 and g = 〈ψ−, ẑ, ψ+〉. Then we have

(Lhf, g
)
H − (f,Lhg

)
H =

(L〈ϕ−, ŷ, ϕ+
〉
,
〈
ψ−, ẑ, ψ+

〉) − (〈ϕ−, ŷ, ϕ+
〉
,L〈ψ−, ẑ, ψ+

〉)
,

=
[
y1, z1

]
a −

[
y1, z1

]
0 +

1
α

[
R0
(
y1
)
R′

0(z1) − R′
0
(
y1
)
R0(z1)

]

+ iψ−(0)ϕ−(0) − iϕ+(0)ψ+(0),
(Lhf, g

)
H − (f,Lhg

)
H =

[
y1, z1

]
a + iψ−(0)ϕ−(0) − iϕ+(0)ψ+(0).

(3.3)

On the other hand,

iψ−(0)ϕ−(0) − iϕ+(0)ψ+(0) =
i

β2
(
y(a) − hDq−1y(a)

)(
z(a) − hDq−1z(a)

)

− i

β2

(
y(a) − hDq−1y(a)

)(
z(a) − h Dq−1z(a)

)
,

=
i

β2

[(
h − h

)
y(a)Dq−1z(a) −Dq−1y(a)z(a)

]
.

(3.4)

By (3.3), we have

iψ−(0)ϕ−(0) − iϕ+(0)ψ+(0) = −[y1, z1
]
a. (3.5)

From equalities (3.3) and (3.5), we have (Lhf, g)H − (f,Lhg)H = 0. Thus, Lh is a symmetric
operator. To prove that Lh is self-adjoint, we need to show that Lh ⊆ L∗

h
. We consider the

bilinear form (Lhf, g)H on elements g = 〈ψ−, ẑ, ψ+〉 ∈ D(L∗
h
), where f = 〈ϕ−, ŷ, ϕ+〉 ∈ D(Lh),

ϕ∓ ∈ W1
2 (R∓),ϕ∓(0) = 0. Integrating by parts, we get L∗

hg = 〈i(dψ−/dξ), ẑ∗,i(dψ+/dξ)〉, where
ψ∓ ∈ W1

2 (R∓), ẑ∗ ∈ H. Similarly, if f = 〈0, ŷ, 0〉 ∈ D(Lh), then integrating by parts in
(Lhf, g)H, we obtain

L∗
hg = L∗〈ψ−, ẑ, ψ+

〉
=
〈
i
dψ−
dξ

, l̃(ẑ), i
dψ+

dξ

〉
, z1 ∈ D, z2 = R′

0(z1). (3.6)

Consequently, we have (Lhf, g)H = (f,Lhg)H, for each f ∈ D(Lh) by (3.6), where the
operator L is defined by (3.1). Therefore, the sum of the integrated terms in the bilinear form
(Lhf, g)H must be equal to zero:

[
y1, z1

]
a −

[
y1, z1

]
0 +

1
α

[
R0
(
y1
)
R

′
0(z1) − R′

0
(
y1
)
R0(z1)

]
+ iϕ−(0)′ψ−(0) − iϕ′

+(0)ψ+(0) = 0.

(3.7)

Then by (2.6), we get

[
y1, z1

]
a + iϕ−(0)′ψ−(0) − iϕ′

+(0)ψ+(0) = 0. (3.8)
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From the boundary conditions for Lh, we have

y(a) = βϕ−(0) − h1
iβ

(
ϕ−(0) − ϕ+(0)

)
,

Dq−1y(a) =
i

β

(
ϕ−(0) − ϕ+(0)

)
.

(3.9)

Afterwards, by (3.8)we get

βϕ−(0) − h1
iβ

(
ϕ−(0) − ϕ+(0)

)
z(a) − i

β

(
ϕ−(0) − ϕ+(0)

)
Dq−1z(a)

= iϕ+(0)ψ+(0) − iϕ−(0)ψ−(0).

(3.10)

Comparing the coefficients of ϕ−(0) in (3.10), we obtain

iβ2 − h1
β

z(a) +
1
β
Dq−1z(a) = ϕ−(0) (3.11)

or

z(a) − hDq−1z(a) = βψ−(0). (3.12)

Similarly, comparing the coefficients of ϕ+(0) in (3.10) we get

z(a) − hDq−1z(a) = βψ+(0). (3.13)

Therefore conditions (3.12) and (3.13) imply D(L∗
h
) ⊆ D(Lh), hence Lh = L∗

h
.

The self-adjoint operator Lh generates on H a unitary group Ut = exp(iLht) (t ∈ R+ =
(0,∞)). Let us denote by P : H → H and P1 : H → H the mapping acting according to the
formulae P : 〈ϕ−, ŷ, ϕ+〉 → ŷ and P1 : ŷ → 〈0, ŷ, 0〉. Let Zt := PUtP1,t ≥ 0, by using Ut. The
family {Zt}(t ≥ 0) of operators is a strongly continuous semigroup of completely nonunitary
contraction on H. Let us denote by Bh the generator of this semigroup: Bhŷ = limt→+0(it)

−1

(Ztŷ − ŷ). The domain of Bh consists of all the vectors for which the limit exists. The operator
Bh is dissipative. The operator Lh is called the self-adjoint dilation of Bh (see [2, 9, 18]). We
show that Bh = Ah, henceLh is self-adjoint dilation of Bh. To show this, it is sufficient to verify
the equality

P(Lh − λI)−1P1ŷ = (Ah − λI)−1ŷ, ŷ ∈ H, Imh < 0. (3.14)

For this purpose, we set (Lh − λI)−1P1ŷ = g = 〈ψ−, ẑ, ψ+〉which implies that (Lh−λI)g = P1ŷ,
and hence l̃(ẑ) − λẑ = ŷ, ψ−(ξ) = ψ−(0)e−iλξ and ψ+(ξ) = ψ+(0)e−iλξ. Since g ∈ D(Lh), then
ψ− ∈ L2(−∞, 0), and it follows that ψ−(0) = 0, and consequently z satisfies the boundary
condition z(a) − hDq−1z(a) = 0. Therefore, ẑ ∈ D(Ah), and since point λ with Imλ < 0 cannot
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be an eigenvalue of dissipative operator, it follows that ψ+(0) is obtained from the formula
ψ+(0) = β−1(z(a) − hDq−1z(a)). Thus

(Lh − λI)−1P1ŷ =
〈
0, (Ah − λI)−1ŷ, β−1

(
z(a) − hDq−1z(a)

)〉
(3.15)

for ŷ and Imλ < 0. On applying the mapping P , we obtain (3.14), and

(Ah − λI)−1 = P(Lh − λI)−1P1 = −iP
∫∞

0
Ute

−iλtdtP1

= −i
∫∞

Zte
−iλtdt = (Bh − λI)−1, Imλ < 0,

(3.16)

so this clearly shows that Ah = Bh.

The unitary group {Ut} has an important property which makes it possible to apply
it to the Lax-Phillips [27], that is, it has orthogonal incoming and outcoming subspaces D− =
〈L2(−∞, 0), 0, 0〉 and D+ = 〈0, 0, L2(0,∞)〉 having the following properties:

(1) UtD− ⊂ D−, t ≤ 0 andUtD+ ⊂ D+, t ≥ 0;

(2) ∩t≤0UtD− = ∩t≥0UtD+ = {0};
(3) ∪t≥0UtD− = ∪t≤0UtD+ = H;

(4) D− ⊥ D+.

To be able to prove property (1) for D+ (the proof for D− is similar), we set Rλ =
(Lh − λI)−1. For all λ, with Imλ < 0 and for any f = 〈0, 0, ϕ+〉 ∈ D+, we have

Rλf =

〈
0, 0,−ie−iλξ

∫ ξ
0
eiλsϕ+(s)ds

〉
, (3.17)

as Rλf ∈ D+. Therefore, if g ⊥ D+, then

0 =
(Rλf, g

)
H = −i

∫∞

0
e−iλt

(
Utf, g

)
Hdt, Imλ < 0 (3.18)

which implies that (Utf, g)H = 0 for all t ≥ 0. Hence, for t ≥ 0, UtD+ ⊂ D+, and property (1)
has been proved.

In order to prove property (2), we define the mappings P+ : H → L2(0,∞) and P+
1 :

L2(0,∞) → D+ as follows: P+ : 〈ϕ−, ŷ, ϕ+〉 → ϕ+ and P+
1 : ϕ → 〈0, 0, ϕ〉, respectively. We

take into consideration that the semigroup of isometries U+
t := P+UtP

+
1 (t ≥ 0) is a one-sided

shift in L2(0,∞). Indeed, the generator of the semigroup of the one-sided shift Vt in L2(0,∞)
is the differential operator i(d/dξ)with the boundary condition ϕ(0) = 0. On the other hand,
the generator S of the semigroup of isometries U+

t (t ≥ 0) is the operator Sϕ = P+LhP
+
1 ϕ =
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P+Lh〈0, 0, ϕ〉 = P+〈0, 0, i(d/dξ)ϕ〉 = i(d/dξ)ϕ, where ϕ ∈ W1
2 (0,∞) and ϕ(0) = 0. Since a

semigroup is uniquely determined by its generator, it follows thatU+
t = Vt, and hence

⋂
t≥0
UtD+ =

〈
0, 0,

⋂
t≤0
VtL

2(0,∞)

〉
= {0}, (3.19)

so, the proof of property (2) is completed.

Definition 3.2. The linear operatorAwith domainD(A) acting in the Hilbert spaceH is called
completely non-self-adjoint (or simple) if there is no invariant subspace M ⊆ D(A)(M/= {0}) of
the operator A on which the restriction A toM is self-adjoint.

To prove property (3) of the incoming and outcoming subspaces, let us prove
following lemma.

Lemma 3.3. The operator Ah is completely non-self-adjoint (simple).

Proof. Let H ′ ⊂ H be a nontrivial subspace in which Ah induces a self-adjoin t operator A′
h

with domain D(A′
h
) = H ′ ∩D(Ah). If f̂ ∈ D(A′

h
), then f̂ ∈ D(A

′∗
h
) and

d

dt

∥∥∥eiA′
h
tf̂
∥∥∥
2

H
=
d

dt

(
eiA

′
h
tf̂ , eiA

′
h
tf̂
)
H

= i
(
A′
he

iA′
h
tf̂ , eiA

′
h
tf̂
)
− i
(
eiA

′
h
tf̂ , A′

he
iA′

h
tf̂
) (3.20)

and taking ĝ = eiA
′
h
tf̂ , we have

0 = i
(
A′
hĝ, ĝ

)
H
− i(ĝ, A′

hĝ
)
H

= i
[
g1, g1

]
a − i

[
g1, g1

]
0 +

i

α

[
R0
(
g1
)
R′

0

(
g1
) − R′

0
(
y1
)
R0
(
g1
)]

= −2 Imh
(
Dq−1y1(a)

)2

= −β2(Dq−1y1(a)
)2
.

(3.21)

Since f̂ ∈ D(A′
h
), A′

h
holds condition above. Moreover, eigenvectors of the operator A′

h

should also hold this condition. Therefore, for the eigenvectors ŷ(λ) of the operatorAh acting
in H ′ and the eigenvectors of the operator A′

h
, we have Dq−1y1(a) = 0. From the boundary

conditions, we get y1(a) = 0 and ŷ(x, λ) = 0. Consequently, by the theorem on expansion in
the eigenvectors of the self-adjoint operator A′

h, we obtain H ′ = {0}. Hence the operator Ah

is simple. The proof is completed.

Let us defineH− = ∪t≥0UtD−, H+ = ∪t≤0UtD+.

Lemma 3.4. The equalityH− +H+ = H holds.
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Proof. Considering property (1) of the subspace D+, it is easy to show that the subspaceH′ =
H� (H− +H+) is invariant relative to the group {Ut} and has the formH′ = 〈0,H ′, 0〉, where
H ′ is a subspace inH. Therefore, if the subspaceH′ (and hence alsoH ′)was nontrivial, then
the unitary group {Ut} restricted to this subspace would be a unitary part of the group {U′

t},
and hence the restriction B′

h
of Bh to H ′ would be a self-adjoint operator in H ′. Since the

operator Bh is simple, it follows thatH ′ = {0}. The lemma is proved.

Assume that ϕ(λ) and ψ(λ) are solutions of l(y) = λy satisfying the conditions

ϕ1(0, λ) = 0, ϕ2(0, λ) = 1, ψ1(0, λ) = 1, ψ2(0, λ) = 0.

θ(x, λ) = ϕ(x, λ) +ma(λ)ψ(x, λ) ∈ L2
q(0, a), Imλ > 0.

(3.22)

The Titchmarsh-Weyl functionma(λ) is a meromorphic function on the complex plane C with
a countable number of poles on the real axis. Further, it is possible to show that the function
ma(λ) possesses the following properties: Imma(λ) ≥ 0 for all Imλ > 0, and ma(λ) = ma(λ)
for all λ ∈ C, except the real polesma(λ). We set

Sh(λ) :=
ma(λ) − h
ma(λ) − h

, (3.23)

U−
λ(x, ξ, ζ) = 〈e−iλξ, (ma(λ) − h)−1αθ(x, λ), Sh(λ)e−iλζ〉. (3.24)

We note that the vectors U−
λ
(x, ξ, ζ) for real λ do not belong to the space H. However,

U−
λ
(x, ξ, ζ) satisfies the equation LU = λU and the corresponding boundary conditions for

the operatorLH . By means of vectorU−
λ(x, ξ, ζ), we define the transformation F− : f → f̃−(λ)

by

(
F − f)(λ) := f̃−(λ) := 1√

2π

(
f,Uλ

)
H, (3.25)

on the vectors f = 〈ϕ−, ŷ, ϕ+〉 in which ϕ−(ξ), ϕ+(ζ), y(x) are smooth, compactly supported
functions.

Lemma 3.5. The transformation F− isometrically mapsH− onto L2(R). For all vectors f, g ∈ H− the
Parseval equality and the inversion formulae hold:

(
f, g

)
H =

(
f̃−, g̃−

)
L2

=
∫∞

−∞
f̃−(λ)g̃−(λ)dλ, f =

1√
2π

∫∞

−∞
f̃−(λ)Uλdλ, (3.26)

where f̃−(λ) = (F−f)(λ) and g̃−(λ) = (F−g)(λ).

Proof. For f, g ∈ D−, f = 〈ϕ−, 0, 0〉, g = 〈ψ+, 0, 0〉, with Paley-Wiener theorem, we have

f̃−(λ) =
1√
2π

(
f,Uλ

)
H =

1√
2π

∫0

−∞
ϕ−(ξ)e−iλξdξ ∈ H2

−, (3.27)
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and by using usual Parseval equality for Fourier integrals

(
f, g

)
H =

∫∞

−∞
ϕ−(ξ)ψ−(ξ)dξ =

∫∞

−∞
f̃−(λ)g̃−(λ)dλ =

(
F−f, F−g

)
L2 . (3.28)

Here,H2
± denote the Hardy classes in L2(R) consisting of the functions analytically extendible

to the upper and lower half-planes, respectively.
We now extend to the Parseval equality to the whole of H−. We consider in H− the

dense set of H ′
− of the vectors obtained as follows from the smooth, compactly supported

functions in D− : f ∈ H ′
− if f = UTf0, f0 = 〈ϕ−, 0, 0〉, ϕ− ∈ C∞

0 (−∞, 0), where T = Tf
is a nonnegative number depending on f . If f, g ∈ H ′

−, then for T > Tf and T > Tg we
haveU−Tf,U−Tg ∈ D−; moreover, the first components of these vectors belong to C∞

0 (−∞, 0).
Therefore, since the operatorsUt(t ∈ R) are unitary, by the equality

F−Utf =
(
Utf,Uλ

)
H = eiλt

(
f,U−

λ

)
H = eiλtF−f, (3.29)

we have

(
f, g

)
H =

(
U−Tf,U−Tg

)
H =

(
F−U−Tf, F−U−Tg

)
L2

(
eiλTF−f, eiλTF−g

)
L2

=
(
f̃ , g̃

)
L2
.

(3.30)

By taking the closure (3.30), we obtain the Parseval equality for the spaceH−. The inversion
formula is obtained from the Parseval equality if all integrals in it are considered as limits in

the of integrals over finite intervals. Finally F−H− = ∪t≥0F−UtD− = ∪t≥0eiλtH2
− = L2(R), that is,

F− mapsH− onto the whole of L2(R). The lemma is proved.

We set

U+
λ(x, ξ, ζ) =

〈
Sh(λ)e−iλξ,

(
ma(λ) − h

)−1
αθ(x, λ), e−iλζ

〉
. (3.31)

We note that the vectors U+
λ(x, ξ, ζ) for real λ do not belong to the space H. However,

U+
λ
(x, ξ, ζ) satisfies the equationLU = λU and the corresponding boundary conditions for the

operatorLH . With the help of vectorU+
λ(x, ξ, ζ), we define the transformation F+ : f → f̃+(λ)

by (F+f)(λ) := f̃+(λ) := (1/
√
2π)(f,U+

λ
)H on the vectors f = 〈ϕ−, ŷ, ϕ+〉 in which ϕ−(ξ), ϕ+(ζ)

and y(x) are smooth, compactly supported functions.

Lemma 3.6. The transformation F+ isometrically mapsH+ onto L2(R). For all vectors f, g ∈ H+ the
Parseval equality and the inversion formula hold:

(
f, g

)
H =

(
f̃+, g̃+

)
L2

=
∫∞

−∞
f̃+(λ)g̃+(λ)dλ, f =

1√
2π

∫∞

−∞
f̃+(λ)U+

λdλ, (3.32)

where f̃+(λ) = (F+f)(λ) and g̃+(λ) = (F+g)(λ).
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Proof. The proof is analogous to Lemma 3.5.

It is obvious that the matrix-valued function Sh(λ) is meromorphic in C and all poles
are in the lower half-plane. From (3.23), |Sh(λ)| ≤ 1 for Imλ > 0; and Sh(λ) is the unitary
matrix for all λ ∈ R. Therefore, it explicitly follows from the formulae for the vectors U−

λ
and

U+
λ
that

U+
λ = Sh(λ)U−

λ . (3.33)

It follows from Lemmas 3.5 and 3.6 thatH− = H+. Together with Lemma 3.4, this shows that
H− = H+ = H; therefore, property (3) above has been proved for the incoming and outcoming
subspaces. Finally property (4) is clear.

Thus, the transformation F− isometrically maps H− onto L2(R) with the subspace D−
mapped ontoH2

− and the operatorsUt are transformed into the operators of multiplication by
eiλt. This means that F− is the incoming spectral representation for the group {Ut}. Similarly,
F+ is the outgoing spectral representation for the group {Ut}. It follows from (3.33) that
the passage from the F− representation of an element f ∈ H to its F+ representation is
accomplished as f̃+(λ) = S−1

h
(λ)f̃−(λ). Consequently, according to [27] we have proved the

following.

Theorem 3.7. The function S−1
h
(λ) is the scattering matrix of the group {Ut} (of the self-

adjoint operator LH).

Let S(λ) be an arbitrary nonconstant inner function on the upper half-plane (the
analytic function S(λ) on the upper half-plane C+ is called inner function on C+ if |Sh(λ)| ≤ 1
for all λ ∈ C+ and |Sh(λ)| = 1 for almost all λ ∈ R). Define K = H2

+ � SH2
+. Then K/= {0} is a

subspace of the Hilbert spaceH2
+. We consider the semigroup of operators Zt(t ≥ 0) acting in

K according to the formulaZtϕ = P[eiλtϕ],ϕ = ϕ(λ) ∈ K, where P is the orthogonal projection
fromH2

+ onto K. The generator of the semigroup {Zt} is denoted by

Tϕ = lim
t→+0

(it)−1
(
Ztϕ − ϕ), (3.34)

in which T is a maximal dissipative operator acting inK andwith the domainD(T) consisting
of all functions ϕ ∈ K, such that the limit exists. The operator T is called a model dissipative
operator (we remark that this model dissipative operator, which is associated with the names
of Lax-Phillips [27], is a special case of a more general model dissipative operator constructed
by Nagy and Foiaş [26]). The basic assertion is that S(λ) is the characteristic function of the
operator T .

Let K = 〈0,H, 0〉, so that H = D− ⊕ K⊕
D+. It follows from the explicit form of the

unitary transformation F− under the mapping F−

H −→ L2(R), f −→ f̃−(λ) =
(
F−f

)
(λ), D− −→ H2

−, D+ −→ ShH
2
+,

K −→ H2
+ � SGH

2
+, Utf −→

(
F−UtF

−1
− f̃−

)
(λ) = eiλtf̃−(λ).

(3.35)

The formulae (3.35) show that operator Ah is a unitarily equivalent to the model dissipative
operator with the characteristic function Sh(λ). Since the characteristic functions of unitary
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equivalent dissipative operator coincide (see [26]), we have thus proved the following
theorem.

Theorem 3.8. The characteristic function of the maximal dissipative operator Ah coincides with the
function Sh(λ) defined in (3.23).

Using characteristic function, the spectral properties of the maximal dissipative
operator Ah can be investigated. The characteristic function of the maximal dissipative
operator Ah is known to lead to information of completeness about the spectral properties of
this operator. For instance, the absence of a singular factor s(λ) of the characteristic function
Sh(λ) in the factorization det Sh(λ) = s(λ)B(λ), where B(λ) is a Blaschke product, ensures
completeness of the system of eigenvectors and associated vectors of the operator Ah in the
space L2

q(0, a) (see [25]).

Theorem 3.9. For all the values of h with Im h > 0, except possibly for a single value h = h0,
the characteristic function Sh(λ) of the maximal dissipative operator Ah is a Blaschke product. The
spectrum of Ah is purely discrete and belongs to the open upper half-plane. The operator Ah has
a countable number of isolated eigenvalues with finite multiplicity and limit points at infinity. The
system of all eigenvectors and associated vectors of the operator Ah is complete in the spaceH.

Proof. From (3.23), it is clear that Sh(λ) is an inner function in the upper half-plane, and it is
meromorphic in the whole complex λ-plane. Therefore, it can be factored in the form

Sh(λ) = eiλcBh(λ), c = c(h) ≥ 0, (3.36)

where Bh(λ) is a Blaschke product. It follows from (3.36) that

|Sh(λ)| =
∣∣∣eiλc

∣∣∣|Bh(λ)| ≤ e−b(h) Imλ, Imλ ≥ 0. (3.37)

Further, forma(λ) in terms of Sh(λ), we find from (3.23) that

ma(λ) =
h − hSh(λ)
Sh(λ) − 1

. (3.38)

If c(h) > 0 for a given value h(Imh > 0), then (3.37) implies that limt→+∞Sh(it) = 0, and then
(3.24) gives us that limt→+∞ma(it) = −G. Sincema(λ) does not depend on h, this implies that
c(h) can be nonzero at not more than a single point h = h0 (and further h0 = −limt→+∞ma(it)).
The theorem is proved.

Due to Theorem 2.4, since the eigenvalues of the boundary value problem (2.1)–(2.3)
and eigenvalues of the operator Ah coincide, including their multiplicity and, furthermore,
for the eigenfunctions and associated functions the boundary problems (2.1)–(2.3), then
theorem is interpreted as follows.

Corollary 3.10. The spectrum of the boundary value problem (2.1)–(2.3) is purely discrete and
belongs to the open upper half-plane. For all the values of h with Imλ > 0, except possible for a single
value h = h0, the boundary value problem (2.1)–(2.3) (h/=h0) has a countable number of isolated
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eigenvalues with finite multiplicity and limit points and infinity. The system of the eigenfunctions and
associated functions of this problem (h/=h0) is complete in the space L2

q(0, a).
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