brought to you by 🎉 CORE

Sustainability of crop and livestock dominant dryland system of Alentejo region: do they have large differences in economic returns and environmental consequences?

Rosado, Maurícia1; Marques, Carlos2; Fragoso, Rui2

¹ University of Évora - School of Technology Science - Department of Animal Science, ICAAM

CEFAGE ² University of Évora – School of Social Sciences – Department of Management, CEFAGE-UE

Introduction

This work presents a case study with two traditional dryland Mediterranean-type farming systems with 250 ha of area: grazing dominant and cropping dominant system, of the Alentejo region of Portugal. These farming systems are compared in terms of economic returns, environmental impacts and trade-offs.

Crops System

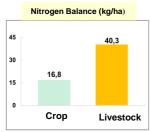
Sunflower - Durum Wheat 1 - Pea - Durum Wheat 2

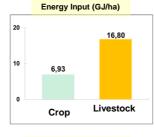
Mixed Crop Livestock System

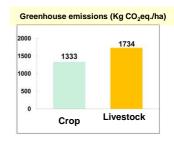
Wheat - Oats - OatxVetch - Durum Wheat - Rye Natural and Improved grassland Livestock: Extensive beef production with selling calves at weaning

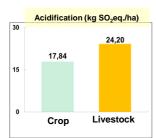
Methodology

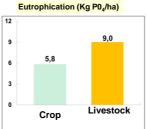
Input-Output Nitrogen balance, Energy input

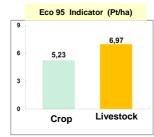

Environmental evaluation: Life cycle assessment (SimaPro): Greenhouse; Acidification; Eutrophication; Eco 95


Economic evaluation of activities: Full cost of production; Gross margin; Net margin


Environmental and economic evaluation:


Linear programming models (GAMS-General algebric model system): maximize net margin; environmental impact of land use; quantify the trade-offs between economic and environmental criteria


Results



Environmental effects and economic trade-offs of the crop systen

Environmental effects and economic trade-offs of the mixed crop livestock system

invironmental effects and economic trade-offs of the crop system			
Variables Crops	Values	Dual Prices	
Net Farm Income (€)	81 336	d.a	
Subsidies(€)	72 630	d.a	
Land (ha)	250	326 (€/ha	
Nitrogen Balance (Kg N)	4 203.75	19.35 (€/KgN	
Energy Input (GJ)	1 655	49.15 (€/GJ	
Greenhouse emissions (KgCO ₂ eq.)	333 175	0.244(€/KgCO₂eq.)	
Acidification (Kg SO ₂ eq.)	4 458.75	18.24(€/Kg SOeq.)	
Eutrophication (Kg de PO4eq.)	1 450,63	56.07 (€/Kg PQeq.)	
Eco 95 (Pt)	1 307.5	62.21 (€/Pt	

Variables Mixed	Values	Dual Prices
Net Farm Income (€)	42 791	d.a
Subsidies(€)	63 955	d.a
Land (ha)	250	171 (€/ha)
Nitrogen Balance (Kg N)	8 075.4	5.30(€/KgN)
Energy Input (GJ)	1 813.6	23.60 (€/GJ)
Greenhouse emissions (KgCO ₂ eq.)	395 621	0.11(€/KgCO₂eq.)
Acidification (Kg SO ₂ eq.)	4 584.3	9.61(€/Kg SOeq.)
Eutrophication (Kg de PO4eq.)	1 737.9	24.62 (€/Kg PQeq.)
Eco 95 (Pt)	1 378.6	31.05 (€/Pt)
d a dagan't apply		0

d.a.= doesn't apply

d.a.= doesn't apply

Source: LP model results

Conclusions

> The net income of the mixed crop livestock system was half of the crop system net income. Relatively to crop system farm subsidies for mixed system farm represent 88%. Mixed crop livestock system has higher environmental impacts than the arable crops.

Source: LP model results

- >The trade-offs evidence potential costs of 31.05 €/Pt for the mixed crop livestock system and 62.21 €/Pt for the crop system associated with the reduction of farmer environmental impacts in aggregated terms (Eco95).
- > The trade-offs determination gives an important input for the formulation and calibration of future agricultural policy which may lead to the development of more sustainable production systems.