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Abstract We analyze the analytic structure of the Covariant Spectator Theory (CST) contribution to the self-
energy amplitude for a scalar particle in a φ 2χ theory. To this end we derive dispersion relations in 1+1
and in 3+1 dimensional Minkowski space. The divergent loop integrals in 3+1 dimensions are regularized
using dimensional regularization. We find that the CST dispersion relations exhibit, in addition to the usual
right-hand branch cut, also a left-hand cut. The origin of this “spectator” left-hand cut can be understood in
the context of scattering for a scalar φ 2χ2-type theory. If the interaction kernel contains a linear confining
component, its contribution to the self-energy vanishes exactly.
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1 Introduction

The energy spectrum and internal structure of mesons are influenced by both the Dirac structure of the effec-
tive confinement interaction and the form of the low energy effective one-gluon-exchange interaction, both of
great theoretical interest. Knowledge of meson spectrum and meson wave functions allows us to unfold in-
formation about these effective interactions, and is therefore of fundamental importance to hadronic physics.
Knowing the wave functions also permits the calculation of decay rates and meson transition form factors,
both of which play an important role in a large variety of reactions, including hadronic contributions to the
anomalous magnetic moment of the muon [1] that is being investigated for possible signs of physics beyond
the Standard Model, and in the production of lepton pairs whose precise knowledge is mandatory in the search
for the quark-gluon plasma [2]. This strong interest has lead to the development of current and future experi-
mental programs to measure meson spectroscopy at Jefferson Lab (CLAS12 and GLUEX programs), CERN
(COMPASS), and GSI (PANDA at FAIR). Although the principal goal of these experiments is to find “exotic”
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mesons, such as glueballs and hybrids, there is still much to be learned about mesons that can be described as
pure qq̄ states.

Our goal is to construct a unified and consistent relativistic model for mesons as qq̄ bound states that can
be applied to both heavy and light mesons. The model should satisfy a number of important requirements: (i)
the formalism used should be covariant, which is essential for the description of systems composed of light
quarks; (ii) the quarks should be strictly confined; (iii) the structure of the constituent quarks themselves,
i.e., their self-interaction, should be described consistently through the same confining interaction that acts
between pairs of quarks; and (iv) the model should reflect the requirements of chiral symmetry (i.e. when the
bare mass of a quark qi approaches zero, a massless qiq̄i bound state must emerge).

In regard to the covariance property, an important difference between our approach and the very successful
Bethe-Salpeter Dyson-Schwinger calculations [3] is that the latter use a Euclidean metric whereas we stay in
Minkowski space. Performing a Wick rotation [4] of the relative-energy component to the imaginary axis, and
thereby effectively turning the physical Minkowski into a Euclidean metric, has the computational advantage
that the propagator singularities located on the real axis are avoided. This method thus simplifies the calcu-
lation of binding energies. However, the Bethe-Salpeter bound-state amplitudes are obtained for unphysical
energy components. For the calculation of electromagnetic form factors, the Bethe-Salpeter amplitude has to
be integrated over physical loop momenta, but the reverse Wick rotation crosses singularities of the integrand.
In addition, for non-zero momentum transfer, the Bethe-Salpeter amplitude has to be known in a frame with
non-zero total momentum. In principle it can be obtained through a boost from the rest-frame amplitude.
However, if the rest-frame amplitude is known only for imaginary relative-energy values, the boost parameter
becomes complex, and performing the boost actually requires knowledge of the amplitude in the whole com-
plex plane. It is not clear how the required analytic continuation could be performed in a reliable manner [5,
6,7]. These difficulties are often ignored, but Refs. [6,7] showed in simple model calculations that significant
differences between form factors calculated in Euclidean and Minkowski metric can be observed.

A different way to deal with the difficulties of the Bethe-Salpeter equation is to simplify it without leaving
Minkowski space. A number of so-called quasi-potential approaches were constructed for that purpose. They
all have in common that the dimension of internal loop integrations is reduced from four to three, which makes
the resulting equations much easier to manage. We use the Covariant Spectator Theory (CST) [8,9,10], which
has been successfully applied in many different few-body systems (for a short recent review see Ref. [11]).
It was also shown in model calculations with a simple interaction between two scalar particles, for which it
was possible to solve the Bethe-Salpeter equation including a complete kernel of ladder and crossed ladder
diagrams in a Feynman-Schwinger representation, that the binding energy obtained with the CST equation is
actually closer to the exact result than the Bethe-Salpeter equation in ladder approximation (the form that is
almost always used in applications) [12].

In a consistent theory of mesons, the constituent quark mass should be related to the quark-antiquark
interaction. In other words, the constituent quark mass should be calculated from a bare mass and the dressing
generated by the same interaction. For the case of the pion, it was shown analytically that in the chiral limit
of vanishing bare quark mass, the two-body CST equation yields a massless pion solution, while the quarks
acquire a non-zero dressed mass through dynamical chiral symmetry breaking. However, in the numerical
calculations performed so far, the constituent quark mass has been treated as a constant [13,14,15] or as a
phenomenological function not related to the kernel [16].

From the structure of the two-body bound-state equation, which will be introduced in Sec. 2, one can see
that the quark mass, which is a function of the quark four-momentum squared, appears inside a loop integral.
Thus, we have to be able to calculate it for arbitrary—including negative—values of its argument. But before
we embark on this somewhat ambitious program, we will study a simpler case, namely that of a scalar particle
dressed by the exchange of another scalar particle and an effective linear confining interaction. A thorough
understanding of the properties of the scalar quark mass function should provide useful information also
about the fermionic quark mass function. In particular, it could yield constraints on the interaction models
with confinement to be used in the realistic case of quarks as fermions.

This paper is organized in the following way: after this Introduction, Sec. 2 describes briefly the main
features of our CST quark model. In Sec. 3, dispersion relations for the self-energy of a scalar particle dressed
through another scalar particle of smaller mass in a φ 2χ theory are derived in 1+1 dimensions and compared to
the dispersion relations of a four-point (“bubble”) amplitude in the corresponding φ 2χ2 theory. These calcu-
lations are extended to 3+1 dimensions in Sec. 4. In Sec. 5 we consider the self-energy for linear confinement
in 3+1 dimensions, and in Sec. 6 we draw our conclusions.
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2 Quark-antiquark bound-state equation and quark self-energy

The development of a covariant model of mesons as bound states of constituent quark-antiquark (qq̄) pairs in
the framework of the Covariant Spectator Theory (CST) was initiated in a series of papers [13,14,15,16]. In
this section we will briefly review the most important features of this model and discuss the aspects we plan to
improve. We begin the discussion by considering the realistic case of two Dirac particles, and later specialize
to scalar particles.

The general structure of the CST equations for the qq̄ bound-state vertex function Γ is displayed graphi-
cally in Fig. 1. The interaction kernel V is an operator in the Dirac space of the two quarks. It can be written
in the general form

V = ∑
i

O
(i)
1 ⊗O

(i)
2 V (i) , (1)

where O
(i)
j refers to a Dirac matrix of type i in the space of particle j, and V (i) describes the momentum

dependence of that particular type of interaction (generally confinement plus particle exchanges). Assuming
that particle 1 is the quark with four-momentum p1 and particle 2 the antiquark with four-momentum p2, the
algebraic form of the two-body equation is

Γ1(p̂1, p2) = ∑
i

∫ d3k1

2Ek1(2π)3 O
(i)
1 (m+ /̂k1)Γ1(k̂1,k2)S(k2)O

(i)
2 V (i)(p̂1, k̂1)

+∑
i

∫ d3k2

2Ek2(2π)3 O
(i)
1 S(k1)Γ2(k1, k̂2)(m+ /̂k2)O

(i)
2 V (i)(p̂1,k1)

Γ2(p1, p̂2) = ∑
i

∫ d3k1

2Ek1(2π)3 O
(i)
1 (m+ /̂k1)Γ1(k̂1,k2)S(k2)O

(i)
2 V (i)(p1, k̂1)

+∑
i

∫ d3k2

2Ek2(2π)3 O
(i)
1 S(k1)Γ2(k1, k̂2)(m+ /̂k2)O

(i)
2 V (i)(p1,k1) . (2)

We use a notation in which a hat over a particle’s momentum explicitly indicates that it is on mass shell, e.g.,
p̂2

i = m2, whereas pi is in general off mass shell. Furthermore, P = p̂1 + p2 = p1 + p̂2 is the total momentum
of the meson, m the dressed quark mass, and Ek ≡ (m2 + kkk2)1/2. The propagator for an off-shell quark with
four-momentum p is

S(p) =
1

m0− /p+Σ(p)− iε
= Z(p2)

M(p2)+ /p
M2(p2)− p2− iε

, (3)

where the dressed quark mass function M(p2) and the renormalization factor Z(p2) are related to the quark
self-energy Σ(p) through

Σ(p) = A(p2)+ /pB(p2) , (4)

M(p2) = Z(p2)
[
m0 +A(p2)

]
, (5)

Z(p2) =
[
1−B(p2)

]−1
, (6)

and m0 is the bare quark mass. The dressed mass m is the solution to the equation M(m2)−m = 0.
It is one of the main features of the CST of a two-body system that in intermediate states the heavier

particle is placed on its positive-energy mass shell. Since we are particularly interested in obtaining solutions
for light mesons made of up and down quarks which are treated as equal-mass particles, we have to generalize
this prescription in a way that restricts either particle on mass shell with equal weight. This leads to the system
of two coupled equations of Fig. 1 and Eq. (2). The two-channel formulation is also necessary to ensure
consistency in the limit when m0 → 0, necessary for a study of the chiral limit [13]. For the description of
heavy-light quark systems, the system of coupled equations can be reduced to a single equation, consisting of
the first equation of Fig. 1 with only the first term on the right-hand side.

For a realistic model of qq̄ bound states, the kernel must include a confining interaction. Nonrelativistic
potential models and lattice QCD studies suggest that the strength of this confining interaction increases
linearly with the distance between the quarks, but there is no general consensus about its Lorentz structure.
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Fig. 1 The coupled CST equations for the qq̄ bound-state vertex function (triangle). The zigzag line represents the kernel, which
in this paper is the sum of a confining interaction and the exchange of another particle. A cross on a quark line indicates that the
particle is on mass shell.

It is not obvious how a linear potential can be used in momentum space, since its Fourier transform does
not exist. Nevertheless, Ref. [13] introduced a limiting procedure which allows an exact solution of bound
states in a nonrelativistic linear potential in momentum space, and which can be generalized to the relativistic
case, although such generalizations are clearly not unique and require additional constraints. According to
this method, the momentum-space version of the nonrelativistic linear potential Ṽ (r) = σr can be written in
the form

VL(qqq) = lim
ε→0

[
VA(qqq)− (2π)3

δ
(3)(qqq)

∫ d3q′

(2π)3 VA(qqq′)
]
, (7)

where qqq is the momentum transfer, and

VA(qqq) =−
8πσ

(qqq2 + ε2)2 . (8)

The subtraction term proportional to the delta function in (7) is crucial. The Fourier transform of VA alone back
into r-space diverges as ε → 0, and the subtraction term exactly cancels the singular part. A straightforward
covariant generalization is the simple substitution qqq2→−q2, which guarantees that a linear confining potential
is obtained in the nonrelativistic limit. This has advantages, but also disadvantages, which is why other forms
have also been explored [16]. Which form is the most suitable to be used in the relativistic kernel is still under
investigation.

In past CST calculations, the linear potential was chosen to be purely scalar, and a constant vector interac-
tion was added to adjust the mass scale. Additional interaction terms can be included if needed, but the exact
form of the kernel will eventually be obtained from a fit to the meson spectrum.

However, the choice of allowed interactions in the kernel is constrained. For instance, chiral symmetry
requires that in the chiral limit, i.e., for vanishing bare quark mass, the pion must become massless. The
dressed mass of the constituent quarks is generated through the dynamical breaking of chiral symmetry. In
the CST quark model, this can be implemented in a way that is analogous to the Nambu–Jona-Lasinio (NJL)
mechanism [17], where chiral symmetry is dynamically broken through point-like fermion self-interactions.
In our case, the self-interaction is of a more general kind, because it also includes confinement.

In fact, when the quark mass function is calculated from the self-energy generated by a certain class
of relativistic qq̄ kernels, in the chiral limit the qq̄ equations automatically have a zero-mass bound-state
solution [13]. In general, this can only occur with relativistic kernels that are invariant under chiral rotations.
Remarkably, it also holds for scalar confining interactions. Although a scalar term breaks chiral symmetry,
in the chiral limit it completely decouples from the equations and is therefore an allowed component of the
kernel.

As already mentioned in the Introduction, we want to eliminate a lack of consistency in previous calcu-
lations of the structure of light mesons in the CST, where the dressed quark mass was treated as a constant
parameter. In this work, we calculate the self-energy of scalar quarks which allows us to substitute this con-
stant quark mass by the correct mass function.



5
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Fig. 2 The self-energy diagram.

A convenient form to represent the mass function is in terms of a dispersion integral which reveals its an-
alytic structure. Here we have to address a more fundamental question that arises in this context: what kind of
dispersion relations do the self-energy amplitudes calculated in the CST framework satisfy? This is an inter-
esting question, because by selecting certain poles in the complex relative-energy plane and excluding others,
the analytic structure of the corresponding amplitudes is surely altered, and it is important to understand the
consequences of these changes.

In the following, we will begin by deriving the dispersion relations for the self-energy amplitude for the
simple case of one scalar particle dressed by another scalar particle with a different mass. Before considering
the 3+1 dimensional case, it is useful to analyze the problem first in 1+1 dimensions where one can obtain
analytic results for both the Feynman and CST amplitudes without any necessity to regularize divergent loop
integrals.

3 Two scalar particles in 1+1 dimensions

The aim of this section is to demonstrate how the self-energy amplitude is derived within the CST framework.
We can compare our results with another approximation used by Becher and Leutwyler in Ref. [18] in the
context of heavy-baryon chiral perturbation theory, and we apply some of the methods to derive dispersion
relations described there.

The self-energy corresponds to the one-loop graph shown in Fig. 2. At first, in order to keep the calcula-
tions simple and to avoid singularities emerging from divergent integrals, we consider the scalar-loop diagram
involving two scalar particles of masses M and m with M > m in two-dimensional Minkowski spacetime.1
This simple example serves as a review of the basic concepts and ideas. Then, in the next section we turn
to the more intricate case of four space-time dimensions where the scalar-loop integral diverges, which we
regularize through dimensional regularization.

3.1 Dispersion relation

This subsection reviews the dispersion relation for the self-energy diagram in two dimensions and serves as a
preparation for the subsequent sections. From Fig. 2 the familiar Feynman scalar-loop integral is given by

Σ(s) = i
∫ d2k

(2π)2
1

A1A2
(9)

with

A1 = M2− k2− iε1 ,

A2 = m2− (P− k)2− iε2 (10)

where kµ = (k0,k1) is the internal two-momentum and Pµ = (P0,P1) is the total two-momentum with Man-
delstam s = P2. The values of coupling constants are irrelevant in this context and thus are set to 1 throughout
this work. The ‘iε’ prescriptions in the denominators of the propagators impose the boundary condition that
positive-energy states propagate forward and negative-energy states backward in time. Note that we have
equipped the two masses with different imaginary parts whose zero limits are taken one after the other. Al-
though this requirement is not needed for now it will become relevant in the next subsection.

1 We use the standard convention for the metric tensor diag(gµν ) = (1,−1).
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Fig. 3 The real (solid) and imaginary (dashed) parts of Σ(s) for the choice M = 2 and m = 1.

The product of the two propagators in Eq. (9) can be rewritten using the standard Feynman parametrization
as

1
A1A2

=
∫ 1

0

dz
(A2z+A1(1− z))2 . (11)

Performing the integrations over d2k gives

Σ(s) =− 1
4π

∫ 1

0

dz
C(z,s)

(12)

with

C(z,s) = z(1− z)
[

m2

1− z
+

M2

z
− s− i

(
ε2

1− z
+

ε1

z

)]
. (13)

In the z-interval of integration [0,1] the imaginary part in the square brackets is always negative, therefore
it is safe to make the following replacement in that region without changing the ‘iε’ prescription:

ε2

1− z
+

ε1

z
→ ε . (14)

The integral of Eq. (12) is elementary and can be written as

Σ(s) =− i
2πρ(s+ iε)

{arctan [η−(s+ iε)]+ arctan [η+(s+ iε)]} (15)

where
ρ(s) =

√
(s− s+)(s− s−) (16)

is the familiar two-body phase space factor with

s+ = (M+m)2 , s− = (M−m)2 and η±(s) =−i
s± (M2−m2)

ρ(s)
. (17)

The real and imaginary parts of Σ(s) are depicted in Fig. 3.
Note that the imaginary part of Σ(s) is non-zero only above the threshold s > s+ where it is kinematically

possible that both particles are on mass shell. It has a singularity at s= s+ and a discontinuity along the branch
cut on the positive real axis from s+ to ∞ as illustrated in Fig. 4. The ‘iε’ prescription in the arguments ensures
that ImΣ(s) is always evaluated on the correct side of the cut, which is in the case at hand the upper-half
complex s plane. We proceed with our discussion by showing that the self-energy Σ(s) satisfies a dispersion
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Fig. 4 The branch cut discontinuity of ImΣ(s+ iε) for the choice M = 2 and m= 1. Note that in order to display the discontinuity
we have plotted ImΣ as a function in the complex (s+ iε)-plane (without performing the limit ε → 0).

relation. In order to find the corresponding integral representation we perform a variable transformation of the
z integral in Eq. (12) defined by the map

s′(z) =
m2

1− z
+

M2

z
. (18)

The inverse transformation involves two roots:

z±(s′) =
1

2s′
[
s′+M2−m2±ρ(s′)

]
. (19)

On the interval of integration 0 < z < 1, the negative branch covers the interval 0 < z− < z(s+)≡M/(M+m)
and the positive branch covers the interval z(s+) < z+ < 1. Furthermore, each of these intervals is mapped
onto the same s′ interval s+ < s′ < ∞ and this interval is thus covered twice by the mapping of Eq. (18).
Written in terms of the new variable s′, the integral of Eq. (12) acquires the expected dispersive form

Σ(s) =− 1
2π

∫
∞

s+

ds′

ρ(s′)
1

s′− s− iε
=

1
π

∫
∞

s+

ds′ImΣ(s′)
s′− s− iε

(20)

with

ImΣ(s) =− 1
2ρ(s)

θ(s− s+) . (21)

We have checked numerically that the analytic expression of Eq. (15) agrees with the dispersion integral
of Eq. (20).

3.2 Dispersion relation in the spectator theory

In this section we turn to the CST framework and derive the corresponding dispersion relation for the self-
energy. Applying the CST program to the self-energy diagram means that the heavier particle of mass M
is placed on its positive-energy mass shell. At this point one might ask what prevents us from using the
full self-energy amplitude, which was just obtained in Eqs. (15) and (20), to calculate the mass function
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for the off-shell quark. The reason is that in the chiral limit of vanishing bare quark mass the qq̄ equation
with a confining interaction kernel should have a zero-mass bound-state solution. Such a solution of Eq.
(2) is obtained automatically only if the quark inside the self-energy loop is on mass shell. Although this
requirement is not strictly necessary for scalar particles, we nevertheless apply it here because this work
serves mainly as preparation for more realistic cases, in particular of the pion where the CST constraint is
indispensable.

An elegant procedure to work out this ‘spectator’ contribution has been presented in Refs. [9,18,19]. The
idea is to split up the product of the two propagators of Eq. (11) into two terms according to the algebraic
identity

1
A1A2

=
1

A1(A2−A1)
− 1

A2(A2−A1)
, (22)

or, equivalently, in terms of the z integration as∫ 1

0

dz
(A2z+A1(1− z))2 =

∫
∞

0

dz
(A2z+A1(1− z))2 −

∫
∞

1

dz
(A2z+A1(1− z))2 . (23)

We can design this representation in such a way that the desired spectator contribution is given entirely and
only by the first term on the right-hand side of this equation by choosing an appropriate “ε-prescription”. In
order to see this explicitly we go to the overall rest frame, where P = (W,0) with W =

√
s. Inserting for the

propagators this contribution becomes

ΣCST(s) = i
∫ dk1dk0

(2π)2
1

(Ek− k0− iε1)(Ek + k0− iε1) [m2−M2− s+2Wk0− i(ε2− ε1)]
, (24)

where Ek =
√

M2 + k2
1. At this point it is obvious why we have equipped the two masses with different

imaginary parts: it simply avoids the cancellation of the two imaginary parts and thus provides a well-defined
‘iε’ prescription of the pole in the square brackets. Otherwise, the absence of an ‘iε’ prescription would make
the integral over k ambiguous [18]. In order to obtain the spectator contribution of the heavy particle on its
positive-energy mass shell we assume the following ‘ε-limiting’ prescription: first take the limit ε1→ 0 and
then take the limit ε2→ 0 (such that the difference ε2− ε1 in (24) is always positive) and assume that W > 0.
In this case there is only one pole in the lower-half complex k0 plane, the spectator pole at k0 = Ek− iε1. Now
we can carry out the k0 integration and we recognize the familiar CST term ( see, e.g., Ref. [11]):

ΣCST(s) =−
∫ dk1

2π

1
2Ek

[
e2

k− (W −Ek)2
] (25)

where ek =
√

m2 + k2
1.

Note that we would have obtained the same result if we would have taken the opposite ‘ε-limiting’ pre-
scription provided W < 0. For the other two possible assumptions the single pole would have been in the
upper half plane at k0 = −Ek + iε1, corresponding to taking the negative-energy pole of the heavy particle.
Therefore, the ‘ε-limiting’ prescription together with the sign of W simply fixes the position of the pole
k0 = (s+M2−m2)/2W in the complex plane.

With the same ‘ε-limiting’ prescription as above and in an analogous manner one can show that the
second term on the right hand side of Eq. (22) corresponds to the negative-energy pole contribution of the
light particle of mass m.

In order to find an analytic expression for ΣCST(s) we consider the first term on the right hand side of
Eq. (23) and integrate over d2k to obtain

ΣCST(s) =−
1

4π

∫
∞

0

dz
C(z,s)

. (26)

This resembles the result in Eq. (12), with the difference that the upper limit is now ∞ instead of 1. Before
performing the z integration we have to analyze the ‘iε’ prescriptions over the relevant s regions in order to
obtain the correct sign of ImΣCST(s). With our ‘ε-limiting’ prescription defined above the imaginary part in
the square brackets of Eq. (13) is negative for 0 < z < 1 and positive for z > 1. This, in effect, results in a
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Fig. 5 The branch cut discontinuity of ImΣCST(s+ iε) for the choice M = 2 and m = 1.

sign change of the ‘iε’ prescription on how to treat the pole at s′(z) = s. Note that in the interval 0 < z < 1
the function s′(z) has a minimum s+ at z = M/(M +m) and approaches ∞ as z→ 0+ or z→ 1−. Further, in
the interval 1 < z < ∞ the function s′(z) has a maximum s− at z = M/(M−m), approaches −∞ as z→ 1+
and becomes 0 as z→ ∞. Therefore we have a ‘+iε’ prescription in the interval s+ < s < ∞ and a ‘−iε’
prescription in the interval −∞ < s < s−. We can now perform the z integration in Eq. (26) to obtain

ΣCST(s) =


− i

2πρ(s−iε)

{
π

2 + arctan [η+(s− iε)]
}
, −∞ < s < s−

− i
2πρ(s)

{
π

2 + arctan [η+(s)]
}
, s− < s < s+

− i
2πρ(s+iε)

{
π

2 + arctan [η+(s+ iε)]
}
, s+ < s < ∞ .

(27)

Our next task is to write ΣCST(s) in a dispersive representation similar to Eq. (20). To this end we proceed
in an analogous manner as in Sec. 3.1 by writing Eq. (26) in terms of the s′(z) variable. Note that the z
interval 1 < z < z(s−) covered by the negative branch z−(s) is mapped onto the s′ interval −∞ < s′ < s− and
the interval z(s−) < z < ∞ covered by the positive branch z+(s) is mapped onto s− > s′ > 0. Therefore, the
interval 0 < s′ < s− is covered twice by the map z→ s′(z). As the analysis after Eq. (26) revealed there is a
‘−iε’ prescription in the interval−∞ < s < s− and a ‘+iε’ prescription in the interval s+ < s < ∞. Taking this
into account we obtain

ΣCST(s) =
1

2π

{[
1
2

∫ 0

−∞

+
∫ s−

0

]
ds′

ρ(s′)
1

s′− s+ iε
−
∫

∞

s+

ds′

ρ(s′)
1

s′− s− iε

}
(28)

from which we find the following expression for ImΣCST(s):

ImΣCST(s) =−
1

2ρ(s)

[
1
2

θ(−s)+θ(s)θ(s−− s)+θ(s− s+)
]
. (29)

Note that ImΣCST(s) vanishes in the interval s− < s < s+, it has a discontinuity at s = 0 and it is singular at
s = s− and s = s+. Further, it has two cuts along the real axis, the usual ‘right-hand cut’ going from s+ to ∞

and a ‘left-hand cut’ going from −∞ to s− as shown in Fig. 5. The numerical computation of the dispersion
integral of Eq. (28) agrees with the analytic expressions of Eq. (27).

A comparison of Eq. (28) with Eqs. (22) and (20) reveals where the ‘spectator left-hand cut’ stems from:
it corresponds to (minus) the negative-energy pole contribution of the light particle that is omitted in the
spectator approximation.
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Fig. 6 The branch cut discontinuity of ImΣBL(s+ iε) for the choice M = 2 and m = 1.

We shall now discuss the difference between the spectator approach presented so far and the alternative
approach given by Becher and Leutwyler in Ref. [18]. Instead of keeping the positive-energy pole of the
heavy particle, Becher and Leutwyler have rather kept the positive-energy pole of the light particle. The
corresponding contribution is most easily obtained by simply interchanging A1 with A2 on the right hand
sides of Eqs. (22) and (23), which corresponds to interchanging the masses m and M and the momenta k and
P− k. The relevant term is then given by

∫
∞

0

dy
(A1y+A2(1− y))2 =

∫ 1

−∞

dz
(A2z+A1(1− z))2 , (30)

where we have transformed the integral from a y integration to a z = 1− y integration. This term leads to the
desired contribution provided the limit ε2 → 0 is taken before the limit ε1 → 0 and W > 0. This alternative
‘ε-limiting’ prescription contrasts the one from the CST contribution and ensures that there is only one pole in
the lower k0 plane, namely the positive-energy pole of the light particle. With this prescription, the imaginary
part in the square brackets of Eq. (13) changes the sign in the interval −∞ < z < 1 at z = 0. Further, the
interval −∞ < z < 0 covered by the positive branch z+(s′) is mapped onto the interval 0 > s′(z)> −∞. This
effectively results in a ‘+iε’ prescription in the interval s+ < s < ∞ and a ‘−iε’ prescription in the interval
−∞ < s < 0. Integrating Eq. (30) over d2k and then performing the z integration yields the analytic result

ΣBL(s) =−
1

4π

∫ 1

−∞

dz
C(z,s)

=


− i

2πρ(s−iε)

{
π

2 + arctan [η−(s− iε)]
}
, −∞ < s < 0

− i
2πρ(s)

{
π

2 + arctan [η−(s)]
}
, 0 < s < s+

− i
2πρ(s+iε)

{
π

2 + arctan [η−(s+ iε)]
}
, s+ < s < ∞ .

(31)

The cut structure of ImΣBL(s) is displayed in Fig. 6.
As expected, by interchanging the masses M and m the analytic results for ΣCST(s) and ΣBL(s) are mapped

onto each other, as can be seen explicitly by comparing the expressions in (27) and (31). Finally, we obtain
the following dispersion relation for the self-energy in the Becher-Leutwyler approach:

ΣBL(s) =
1

2π

[
1
2

∫ 0

−∞

ds′

ρ(s′)
1

s′− s+ iε
−
∫

∞

s+

ds′

ρ(s′)
1

s′− s− iε

]
(32)
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Fig. 7 The real parts (a) and imaginary parts (b) of ΣCST(s) (dashed line) and ΣBL(s) (dotted line) are compared with Σ(s) (solid
line) for the choice M = 2 and m = 1. Note that in (b) for s < 0 ImΣCST(s) and ImΣBL(s) lie on top of each other and for s > s+
all three lines lie on top of each other.

with

ImΣBL (s) =− 1
2ρ(s)

[
1
2

θ(−s)+θ(s− s+)
]

(33)

which agrees numerically with the analytic result of Eq. (31).
The real and imaginary parts of ΣCST(s) and ΣBL(s) are compared with the ones of Σ(s) in Fig. 7. Both

ΣCST(s) and ΣBL(s) have left-hand cuts not present in the full amplitude. It is instructive to look at a related
φ 2χ2 theory to better understand the origin of these cuts.

3.3 The ‘left-hand cut’ in the two-particle scattering amplitude

From the topology of the self-energy graph in Fig. 2 with one incoming and one outgoing line it is obvious
that there exists only one channel, the s-channel we have discussed so far. If one considers, however, elastic
scattering of two particles, then there are two topologically different Feynman diagrams that contribute to the
second-order amplitude. These are the s- and the u-channel diagrams which are related by crossing symmetry.
In this section we will show that for two-body scattering it is the u-channel contribution that gives rise to a
‘left-hand cut’ along the real s-axis similar to the spectator ‘left-hand cut’ discussed in the previous section. In
order to see this explicitly we consider a φ 2χ2-type theory in 1+1 dimensional Minkowski spacetime of two
interacting scalar particles of masses M and m. The corresponding second-order contributions to the scattering
amplitude are the s- and the u-channel bubbles shown in Fig. 8.

P− p

p k

P− k
P− p′

p′

(a)

P− p

p

kP− p′ − p+ k

P− p′

p′

(b)

Fig. 8 The s-channel (a) and the u-channel (b) bubble diagram.
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The s-channel bubble contribution B(s) of Fig. 8 (a) coincides with Σ(s) of Eq. (9) for the self-energy
which has already been discussed in Sec. 3.1, with the analytic result and the dispersion relation given by
Eqs. (15) and (20), respectively. Therefore, we concentrate in this section on the u-channel bubble B(u) of
Fig. 8 (b). It is given by

B(u) = i
∫ d2k

(2π)2
1

A1B2
(34)

with

B2 = m2− (P− p′− p+ k)2− iε2 (35)

and with Mandelstam u = (P− p′− p)2. By introducing a Feynman parameter and performing the d2k inte-
gration, this contribution can be put into a form that is equivalent to the one for Σ(s), see Eq. (12):

B(u) =− 1
4π

∫ 1

0

dz
C(z,u)

. (36)

The fact that B(u) and B(s) have the same functional form is a consequence of crossing symmetry. Conse-
quently, B(u) and B(s) satisfy the same dispersion relations:

B(u) =
1
π

∫
∞

s+

ds′ImB(s′)
s′−u− iε

(37)

with

ImB(u) =− 1
2ρ(u)

θ(u− s+) . (38)

If we consider only cases where Mandelstam t is small, we can use the relation

s+u≈ 2M2 +2m2 (39)

to express u in terms of s, which gives us an approximate expression for the u-channel contribution as a
function of Mandelstam s:

B(u)≈ B(2M2 +2m2− s) = Bu(s) . (40)

With this approximation the dispersion relation for Bu(s) obtained from Eq. (37) reads

Bu(s) =−
1
π

∫ s−

−∞

ds′′ImBu(s′′)
s′′− s+ iε

with s′′ = 2M2 +2m2− s′ (41)

and

ImBu(s) =−
1

2ρ(s)
θ(s−− s) . (42)

We see that the u-channel bubble contribution expressed in terms of the Mandelstam s variable has a ‘left
hand cut’ along the real s-axis going from −∞ to s−. With the help of Eq. (39) we can approximate the total
second-order contribution as a function that depends solely on s:

B(s)+B(u)≈ B(s)+Bu(s) = M2(s) . (43)

The CST and Becher-Leutwyler contributions to the s-channel bubble of Fig. 8, BCST(s) and BBL(s), are
simply the same as for the self-energy diagram of the preceding section, ΣCST(s) and ΣBL(s), respectively.

In Fig. 9 the real parts of M2(s), BCST(s), BBL(s), B(s) and Bu(s) are shown for different mass ratios
α = M/m. First, note the symmetry of the total contribution M2(s) about the point s = sm ≡ M2 +m2 as
consequence of crossing symmetry and t ≈ 0. Second, from Fig. 9 (a), we observe that for the case of equal
masses, i.e. α ' 1, BCST(s) and BBL(s) become identical, as can be seen explicitly from the analytic expres-
sions (27) and (31), which differ only by interchanging the masses M↔ m. Third, Fig. 9 (d) reveals that for
the case when M becomes very large compared to m, i.e. α � 1, the Becher-Leutwyler contribution BBL(s)
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Fig. 9 The real parts ReM2(s) (solid), ReBCST(s) (dashed), ReBBL(s) (dotted), ReB(s) (long-dashed) and ReBu(s)
(dot-dashed) are shown for m = 1 and for different choices M = 1.05 (a), M = 1.5 (b), M = 2 (c) and M = 9 (d).

goes over to the s-channel contribution B(s) and the spectator contribution BCST(s) approaches the total con-
tribution M2(s). Actually, the latter observation is simply the confirmation of the CST cancellation theorem
for φ 4-type theories discussed in Ref. [11]: in the limit α → ∞ the sum of the s- and u-channel diagrams be-
comes identical to the part of the s-channel diagram where the heavy particle is placed on its positive-energy
mass shell. Therefore, we conclude that for mass ratios α � 1, the Becher-Leutwyler contribution is a better
approximation to the self-energy diagram (or equivalently the s-channel bubble), whereas the CST contribu-
tion is a better effective description of the total bubble diagram (s- plus u-channel bubble). Consequently, for
α � 1 the difference between the Becher-Leutwyler result and the CST result for the bubble diagram is the
u-channel bubble contribution.

4 Two scalar particles in 3+1 dimensions

We now apply the above ideas to the physical 3+1 dimensional Minkowski spacetime. In this case we are
confronted with divergent integrals for the self-energy and for the bubble-diagram contributions. In order to
find the dispersion relations for such diagrams we have to separate the regular from the singular parts. This
will be achieved by a procedure [18] based on dimensional regularization.
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4.1 Dimensional regularization and dispersion relation

Let us first analyze the scalar-loop integral for the self-energy of Fig. 2 in d spacetime dimensions (with d
being an arbitrary value) and then perform the limit d→ 4:

Σ̃(s) = i
∫ ddk

(2π)d
1

A1A2
. (44)

Here all two-vectors in A1 and A2 of Eq. (10) have been replaced by d-vectors.2 Introducing one Feynman
parameter and performing the ddk integrations using the standard techniques leads to

Σ̃(s) =−Γ

(
2− d

2

)∫ 1

0

dz

(4π)
d
2

C
d
2−2(z,s) . (45)

This expression is singular for d = 4 due to the Γ -function in front of the integral which reflects the logarithmic
divergence of the loop integral (44) in four dimensions. In order to separate the finite from the singular parts

of Σ̃(s) we write d = 4− δ for δ > 0. Then, by expanding [C(z,s)]−
δ
2 in (45) about small values of δ we

obtain

Σ̃δ (s) =−
2Γ

(
1+ δ

2

)
δ (4π)2− δ

2

[
1− δ

2

∫ 1

0
dz lnC(z,s)

]
. (46)

Here the first term in the square brackets is identified as the singular part as δ → 0. Since this part is indepen-
dent of s we define the finite part of Σ̃(s) in d = 4 dimensions by a single subtraction at a point s = s0:

Σ(s) = lim
δ→0

[
Σ̃δ (s)− Σ̃δ (s0)

]
=

1
(4π)2

∫ 1

0
dz ln

[
C(z,s)
C(z,s0)

]
. (47)

This integral is elementary and can be expressed as

Σ(s) =
1

(4π)2

{
iρ(s+ iε)

s+ iε
{arctan [η+(s+ iε)]+ arctan [η−(s+ iε)]}

− iρ(s0 + iε)
s0 + iε

{arctan [η+(s0 + iε)]+ arctan [η−(s0 + iε)]}

+ ln
(

M
m

)2

[z0(s+ iε)− z0(s0 + iε)]

}
, (48)

with

z0(s) =
1
2s

(
s+M2−m2) . (49)

Note that the ‘+iε’ prescription again ensures that the imaginary part ImΣ(s) is always evaluated on the
correct side of the branch cut where it has a discontinuity, which is in this case always on the upper-half
complex s plane. The subtracted dispersion relation for Σ̃(s) follows from Eq. (47) by an integration by parts
and by transforming the integral from z to s′(z) (see the discussion in Sec. 3.1):

Σ̃(s) = Σ̃(s0)−
s− s0

π

∫
∞

s+

ds′ ImΣ(s′)
(s′− s0)(s′− s− iε)

(50)

with

ImΣ(s) =− ρ(s)
16πs

θ(s− s+) . (51)

This dispersion relation resembles the corresponding one in two dimensions, see Eq. (20), with a branch-
cut discontinuity along the real s axis from s+ to ∞.

2 As in Sec.3, we use the standard convention for the metric tensor diag(gµν ) = (1,−1, . . . ,−1) with µ,ν = 0, . . . ,d−1.
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4.2 Spectator dispersion relation

The spectator contribution Σ̃CST(s) to the self-energy diagram in d dimensions is obtained from Σ̃(s) in the
same manner as in Sec. 3.2 by splitting up the product of the propagators according to Eq. (23). This gives

Σ̃CST(s) =−Γ

(
2− d

2

)∫
∞

0

dz

(4π)
d
2

C
d
2−2(z,s) . (52)

Similar to Σ̃(s) of the previous section this contribution is singular in d = 4 dimensions because of the Γ -
function in front of the integral. Furthermore, for d = 4, the z integral does not converge anymore due to the
upper limit at z = ∞, which makes the CST case somewhat more intricate as compared to Σ̃(s) from before.
In order to work out the finite part of Σ̃CST(s) we follow the procedure presented in Ref. [18]. To this end we
note that C(z,s) is a second-order polynomial in z that can be written in the form

C(z,s) =C0(s)+ s [z− z0(s)]
2 (53)

where (suppressing the small imaginary parts)

C0(s) =−
ρ2(s)

4s
. (54)

Then

C
d
2−2(z,s) =C0(s)C

d
2−3(z,s)+ s [z− z0(s)]

2 C
d
2−3(z,s) (55)

where the second term is proportional to the derivative of C
d
2−2(z,s) with respect to z. An integration by parts

gives

Σ̃CST(s) =
1

(4π)
d
2

2Γ
(
3− d

2

)
(d−3)(d−4)

{
[z− z0(s)]C

d
2−2(z,s)

∣∣∣∞
z=0

+(d−4)C0(s)
∫

∞

0
dzC

d
2−3(z,s)

}
. (56)

The first terms in the curly brackets are singular for d = 4. Let us concentrate on the remaining finite term of
the integral. In four dimensions this integral converges and gives the finite part of the CST contribution (for
s 6= 0):

Σ CST(s) =
2C0(s)
(4π)2

∫
∞

0

dz
C(z,s)

=


− iρ(s−iε)

(4π)2s

{
π

2 + arctan [η+(s− iε)]
}
, −∞ < s < s−

− iρ(s)
(4π)2s

{
π

2 + arctan [η+(s)]
}
, s− < s < s+

− iρ(s+iε)
(4π)2s

{
π

2 + arctan [η+(s+ iε)]
}
, s+ < s < ∞ .

(57)

Note that this function has a pole at s = 0. Following [18], this suggests the twice-subtracted dispersion
relation

Σ̃CST(s) =
z0(s)

z0(s+)
Σ̃CST(s+)+

ρ2(s)
(4π)2s

{[
1
2

∫ 0

−∞

+
∫ s−

0

]
ds′

ρ(s′)
1

s′− s+ iε
−
∫

∞

s+

ds′

ρ(s′)
1

s′− s− iε

}
, (58)

from which the imaginary part follows as

ImΣ CST(s) =−
ρ(s)
16πs

[
1
2

θ(−s)+θ(s)θ(s−− s)+θ(s− s+)
]
. (59)

Thus, we encounter the typical CST branch-cut structure of the two-dimensional case, see Eq. (28).
The Becher-Leutwyler contribution Σ̃BL(s) to the self-energy diagram in four dimensions is expressed by

similar formulae (see Sec. 3.2) and will not be given here explicitly.
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Fig. 10 The imaginary parts ImM 2(s) (solid), ImBCST(s) (dashed) and ImBBL(s) (dotted) are shown for the choice M = 2 and
m = 1. Note that for s > s− all three curves, and for s < 0 ImBCST(s) and ImBBL(s), lie on top of each other.

4.3 Bubble diagram

The contributions to the s-channel bubble diagram (Fig. 8 (a)) in four dimensions, B̃(s), B̃CST(s) and B̃BL(s)
coincide with the ones for the self-energy, Σ̃(s), Σ̃CST(s) and Σ̃BL(s), respectively. What is still missing for the
calculation of the full bubble diagram in four dimensions is the contribution of the u-channel bubble diagram
of Fig. 8 (b). In the approximation of Eq. (40) this contribution can be written as a function of Mandelstam
s only. Using the methods of Sec. 4.1 this contribution satisfies the following once-subtracted dispersion
relation:

B̃u(s) = B̃u(s0)+Bu(s)

= B̃u(s0)−
s− s0

π

∫ s−

−∞

ds′ ImBu(s′)
(s′− s0)(s′− s+ iε)

(60)

with

ImBu(s) =−
ρ(s)

16π(2M2 +2m2− s)
θ(s−− s) . (61)

As expected from the result in two dimensions, we see that also in four dimensions the u-channel bubble
contribution gives raise to a ‘left-hand branch cut’ in the complex s-plane along the real axis from s = −∞

to s = s−. Finally, we can write down the approximate expression for the finite part of the total second-order
bubble amplitude:

M 2(s) = B(s)+Bu(s) . (62)

The imaginary parts of the contributions are compared in Fig. 10.
It is interesting to see the difference between the imaginary parts in two and in four dimensions. While

the former are singular at s = s± (due to the ρ function in the denominator), the latter, in contrast, vanish at
s = s± (ρ function in numerator). Furthermore, in four dimensions the imaginary parts of BCST(s) and BBL(s)
are singular at s = 0 and become positive for s < 0, whereas in two dimensions they are always negative.

In order to compare the real parts we choose the subtraction point for B(s) and Bu(s) to be at threshold,
i.e. s0 = s+. The real parts of the contributions are shown in Fig. 11 for different mass ratios α = M

m . As in two
dimensions, the symmetry of M 2(s) about the point sm = M2 +m2 is a consequence of crossing symmetry.
Further, as expected from the symmetric appearance of the masses in the expressions, for equal masses (α ' 1)
ReBCST(s) and ReBBL(s) become identical. Also, for α → ∞ the CST result approaches the total bubble
contribution. This happens, however, not as fast as in two dimensions. Nevertheless, we can still conclude
that the CST result approximates the sum of the two bubble diagrams quite well for M� m. Interestingly, in
four dimensions the Becher-Leutwyler result does not converge to the total self-energy contribution as α→∞

and is therefore not as good an approximation in this limit as it is in two dimensions.
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Fig. 11 The real parts ReM 2(s) (solid), ReBCST(s) (dashed), ReBBL(s) (dotted), ReB(s) (long-dashed) and ReBu(s)
(dot-dashed) are shown are shown for m = 1 and for different choices M = 1.1 (a), M = 2 (b), M = 5 (c) and M = 50 (d).

5 Confining interaction between scalar particles

We consider now a simplified model of mesons as bound states of scalar particles in the framework of CST,
whose interaction consists of a confining part and another one that is described through the exchange of a sec-
ond scalar particle. In order to make this description consistent, the self-energy of these scalar particles, which
we will call simply “scalar quarks”, has to be calculated from the same interaction kernel. The dressing by
the scalar exchange has already been calculated in Secs. 3 and 4, so we only need to calculate the contribution
from the confining part.

Following the general form given in Eqs. (1), (7), and (8), a relativistic generalization in CST can be
achieved by [13]

VRL(p̂, k̂) = lim
ε→0

[
VRA(p̂, k̂)−2Ek(2π)3

δ
(3)(ppp− kkk)

∫ d3k′

2Ek′(2π)3 VRA(p̂, k̂′)
]
, (63)

and
VRA(p̂, k̂) =− 8πσ

(−q2 + ε2)2 , (64)

with
q2 = (Ep−Ek)

2− (ppp− kkk)2 . (65)

The expression for the self-energy of a scalar quark dressed by VRL in 3+1 dimensions is then simply

ΣL,CST(s) =
∫ d3k

2Ek(2π)3 VRL(p̂, k̂) = 0 , (66)
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which is easy to verify from the form of the kernel (63). That the integral of VRL should vanish follows from
the fact that VL(qqq) of Eq. (7) is the Fourier transform of the linear potential Ṽ (r) = σr, and the inverse Fourier
transform must yield zero at r = 0. This yields the condition

Ṽ (0) =
∫ d3q

(2π)3 VL(qqq) = 0 , (67)

and Eq. (66) can then be seen as a covariant generalization of (67).
To summarize, we have shown that the linear confining interaction does not contribute to the scalar-quark

self-energy at all. If the total kernel consists of a confining part and another scalar exchange as described
in Sec. 4, then the total result for the self-energy is given by Eq. (58). While the scalar confinement makes
no contribution to the self-energy, it does contribute to the structure of the meson. This can be understood
physically if we think of the self-energy as a correction that occurs at short distances (i.e. at rrr = 0), while the
meson wave function is sensitive to the kernel at all values of rrr.

For completeness it should be mentioned that in 1+1 dimensions the same result is obtained.

6 Summary and Conclusions

In this paper, we continue the development of a unified and consistent covariant quark model for mesons in the
framework of the CST that was initiated by Gross and Milana [13,14,15]. The main aspect of this model we
aim to improve is the consistent implementation of the quark mass function, in the sense that it is calculated
from the same interaction that binds the two quarks together. In a first step, we investigated the simpler case
of scalar quarks and calculated their self-energy amplitude, obtaining a representation for the mass function in
form of a dispersion integral. The CST approach modifies the analytic structure of field-theoretic amplitudes
by selecting certain pole contributions and neglecting others. It is therefore interesting to see that the CST
amplitudes actually do satisfy dispersion relations.

To avoid complications due to divergences in loop integrals, we performed these calculations first in
1+1 dimensions. We found that the CST amplitude satisfies a dispersion relation which has a left-hand cut, in
addition to the usual right-hand cut. This is similar to an approximation investigated by Becher and Leutwyler,
which also has a left-hand cut. In order to understand the origin of the left-hand cut in the CST amplitude,
we calculated also the dispersion relations for the scattering amplitude of two scalar particles in a φ 2χ2-
type theory to second order. The calculation in the s-channel is essentially the same since only the external
particle momentum has to be written as the sum of two particle momenta, and therefore the same cut structure
is obtained. However, there is also a u-channel which generates a left-hand cut. Thus, the total amplitude
has both a left-hand and a right-hand cut, just as the s-channel CST amplitude with the heavier particle on its
positive-energy mass shell. This is a natural result, since one of the basic ideas of the CST is that its amplitudes
approximate the sum of direct and crossed diagrams, which in this case means s- and u-channels. On the other
hand, in the case of the self-energy amplitude at one-loop level, there is no u-channel, and therefore a simple
physical interpretation for the presence of a left-hand cut is not obvious. At this time the interpretation and
treatment of this left-hand cut is an open question to be discussed in future work. Repeating these calculations
in 3+1 dimensions using dimensional regularization gave the same cut structure for the self-energy.

Because of the CST constraint (66) on the confining interaction, the self-energy of a scalar quark due to a
linear confining interaction vanishes exactly, and does not contribute to the mass function at all. The confining
interaction will contribute to the structure of the meson because the meson wave function is sensitive to the
kernel at all values of rrr (or q) while the self-energy is a correction that occurs only at short distances where a
purely linear confining interaction is zero. It would be amusing to study a simple toy model of scalar particles
bound solely through a linear confining interaction where a constant mass for the constituent particles would
be part of an exact and consistent solution of the system. We postpone discussion of this toy model for another
time.

We emphasize that the vanishing of the self-energy contribution due to confinement holds only for scalar
particles and does not carry over to spinor quarks. With spinor quarks the structure of the confining interaction
can be divided into a part that gives no contribution to the self energy but may violate chiral symmetry (and
therefore decouples in the chiral limit) and a chirally invariant part that will, in general, contribute to the
quark self-energy. These issues will be discussed when we extend these studies to the case of spin-1/2 quarks
with more realistic interactions, including confining interactions with a spin dependent structure, and when
we consistently calculate the mass function, the meson spectrum, and the meson wave functions.
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