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exponential tilting, and empirical likelihood estimators. Analytical and bootstrap bias-adjusted GMM 
estimators form the second class of alternatives. Two extensive Monte Carlo simulation studies are 
conducted in this paper for covariance structure and instrumental variable models. We conclude that all 
alternative estimators offer much reduced bias as compared to the GMM estimator, particularly the 
empirical likelihood and some of the bias-corrected GMM estimators analyzed. 
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1 Introduction

Many econometric models are specified solely in terms of moment conditions. The efficient two-

step generalized method of moments (GMM) due to Hansen (1982) is the most common approach

to estimation and inference in such models. Despite its popularity, GMM suffers from some

important drawbacks, the principal of them being its finite sample behaviour. In fact, it has been

recognized for several years now that the first-order asymptotic distribution of the GMM estimator

provides a poor approximation to its small sample distribution. There is increasing Monte Carlo

simulation evidence indicating that in finite samples GMM estimators may be badly biased and

the associated tests may have actual sizes substantially different from the nominal ones; see, for

example, the July 1996 special issue of the Journal of Business & Economic Statistics.

The poor performance of the GMM estimator for the sample sizes typically encountered in

economic applications has motivated the search for alternative estimators. In this paper we analyze

the small sample bias of two classes of alternatives. The first contains alternative procedures which

are asymptotically first-order equivalent to efficient GMM estimation, such as continuous-updating

(CU) [Hansen, Heaton and Yaron (1996)], exponential tilting (ET) [Kitamura and Stutzer (1997)

and Imbens, Spady and Johnson (1998)] and empirical likelihood (EL) [Qin and Lawless (1994)

and Imbens (1997)]. The last two are the main particular cases of the minimum discrepancy

(MD) estimators discussed by Corcoran (1998) and of the generalized empirical likelihood (GEL)

estimators considered by Smith (1997). Analytical and bootstrap bias-adjusted GMM estimators

form the second class of alternative estimators that we examine in this paper. The former were

developed by Newey and Smith (2001), while alternative bootstrap methods applicable in the

moment condition framework were suggested by Hall and Horowitz (1996) and Brown and Newey

(2002).

Unlike the case of the GMM estimator, little is known about the finite sample bias of its

alternatives. Indeed, to the best of our knowledge, although this issue has been analyzed inter

alia by Hansen, Heaton and Yaron (1996), Horowitz (1998), Stock and Wright (2000), and Im-

bens (2002), all of them limited their studies to the Monte Carlo comparison between the GMM

estimator and one or two particular alternatives. Thus, despite promising results reported in all

cases, further investigation is still needed in order to assess those alternative estimators in the

same framework. This is precisely the main aim of this paper, where we undertake two simulation

studies examining the small sample behaviour of several estimators in two different settings for

which there is previous evidence of the inadequate performance of the GMM estimator. In each

case we investigate and compare the finite sample properties of GMM, CU, EL, ET, and various

analytical and bootstrap bias-corrected versions of the GMM estimator.
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This paper is organized as follows. Section 2 introduces some notation and provides a brief

review of the main characteristics of GMM estimation. Section 3 discusses the two classes of

alternative estimators examined in this paper. Section 4 reports the main results obtained in two

Monte Carlo studies, the first dedicated to covariance structure models, the other to instrumental

variable models. Section 5 concludes.

2 GMM estimation

Let yi, i = 1, ..., n, be independent and identically distributed observations on a data vector y, θ

a k-dimensional vector of parameters of interest and g (y, θ) an s-dimensional vector of functions

of the observed variables and parameters of interest, with s ≥ k. It is assumed that the true

parameter vector θ0 uniquely satisfies the moment conditions

EF [g (y, θ0)] = 0, (1)

where EF [·] denotes expectation taken with respect to the unknown distribution function F (y).
Define gi (θ) ≡ g (yi, θ), i = 1, ..., n, and gn (θ) ≡ n−1

Pn
i=1 gi (θ). It is assumed that the

normalized sample counterparts of the moment conditions (1), gn (θ) and
√
ngn (θ0), obey, re-

spectively, a uniform (in θ) weak law of large numbers, gn (θ)
p→ EF [g (y, θ)], and a central limit

theorem,
√
ngn (θ0)

d→ N (0, V ), where the asymptotic variance matrix V ≡ EF
h
gi (θ0) gi (θ0)

0i is
positive definite and

p→ and d→ denote convergence in probability and convergence in distribution,

respectively.

The efficient two-step GMM estimator θ̂ is obtained from minimization of the optimal quadratic

form of the sample moment indicators,

θ̂ ≡ arg min
θ
gn (θ)

h
Vn
³
θ̃
´i−1

gn (θ) , (2)

where θ̃ is a preliminary consistent estimator for θ0 and Ṽn ≡ Vn
³
θ̃
´
is a positive semi-definite

consistent estimator for the limiting covariance matrix V , for example Ṽn = n−1
Pn
i=1 gi

³
θ̃
´
gi
³
θ̃
´0
.

Thus, θ̂ satisfies the system of first-order conditions

Ĝ0nṼ
−1
n ĝn = 0, (3)

where ĝn ≡ gn
³
θ̂
´
and Ĝn ≡ ∂ĝn

∂θ0 is a (s× k) matrix that converges almost surely and uniformly
in θ to G ≡ EF

h
∂gi(θ0)
∂θ0

i
, which is assumed to be full column rank. Under suitable regularity

conditions, see Hansen (1982) and Newey and McFadden (1994), θ̂ is a consistent asymptotically

normal estimator of θ0,
√
n
³
θ̂ − θ0

´
d→ N

·
0,
³
G0V −1G

´−1¸
, (4)
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and, as shown by Chamberlain (1987), it attains the semiparametric efficiency bound in the

model where all that is known are the moment conditions (1), that is, the GMM estimator is

asymptotically efficient among all estimators based on (1).

Despite its asymptotic attractiveness, the GMM estimator displays some bias in small samples;

see inter alia Tauchen (1986), Kocherlakota (1990), Ferson and Foerster (1994) and several papers

published in the July 1996 special issue of the Journal of Business & Economic Statistics such as

Altonji and Segal (1996), Andersen and Sorensen (1996), and Hansen, Heaton and Yaron (1996).

Therefore, we discuss two classes of alternative estimators for moment condition models in the

next section and examine their finite sample properties in section 4.

3 Alternative estimators

3.1 First-order equivalent estimators

As the significant small sample bias of the GMM estimator seems to arise from the necessity of

utilizing a consistent estimate of V in an initial step, one-step estimators for moment condition

models have recently been suggested. In this sub-section we describe the most popular estimators

that can be included in this category. All of them are asymptotically first-order equivalent to GMM

but possess different higher-order asymptotic properties. Furthermore, while the GMM estimator

is not invariant to linear transformations of the original moment conditions, all one-step estimators

are insensitive to how the moment restrictions are scaled. Conversely, their computation is more

complicated and time-consuming.

3.1.1 Continuous-updating estimator

Similarly to GMM, the CU estimator, proposed by Hansen, Heaton and Yaron (1996), is obtained

from minimization of a quadratic form of the sample moment indicators,

θ̂ ≡ arg min
θ
gn (θ)

0 [Vn (θ)]−1 gn (θ) , (5)

but the optimization is now performed simultaneously over the θ in the weighting matrix as well

as the θ in the average sample moments.

Both Donald and Newey (2000) and Newey and Smith (2001) argue that the CU estimator

should have smaller bias in finite samples than the GMM estimator. The former authors gave

a jackknife interpretation of the CU estimator, demonstrating that, in the first-order conditions

arising from (5), own observation terms are automatically deleted, which eliminates one known

important source of bias for GMM estimators. On the other hand, Newey and Smith (2001) derived
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stochastic expansions for both estimators, providing asymptotic expressions for their biases. Let

gi ≡ gi (θ0), Gi ≡ ∂gi
∂θ0 , H ≡

¡
G0V −1G

¢−1
G0V −1, P ≡ V −1 − V −1G ¡G0V 1G¢−1G0V −1, V̄θj ≡

E
h
∂gig0i
∂θ

i
, W denote the weight matrix used in the first-step, HW ≡ (G0WG)−1G0W , ej be an

k-vector whose j-element is one and the others are zero and a be an s-vector such that aj ≡
1
2tr

n¡
G0V 1G

¢−1
EF

h
∂2gij(θ0)
∂θ∂θ0

io
, with gij denoting the jth element of gi (θ), j = 1, ..., s. The

asymptotic bias of the GMM estimator is given by

bgmm = BI +BG +BV +BW , (6)

where BI = 1
nH [−a+EF (GiHgi)], BG = − 1n

¡
G0V −1G

¢−1
EF (G

0
iPgi), BV =

1
nHEF (gig

0
iPgi),

and BW = H
Pk
j=1 V̄θj (HW −H)0 ej. Each of the four terms of (7) has its own interpretation.

Following Newey and Smith (2001), the first term is the asymptotic bias for the (infeasible)

optimal GMM estimator based on the first-order conditions G0V −1ĝn, where the optimal linear

combination matrix G0V −1 does not need to be estimated. The second and third terms are due to

the necessity of estimating G and V in that optimal linear combination of moments, respectively.

The last term arises from the choice of the first-step estimator, being zero ifW is a scalar multiple

of V −1. On the other hand, the asymptotic bias of the CU estimator is given only by

bCU = BI +BV . (7)

Thus, the CU is affected by two less sources of bias than the GMM estimator since the terms BG

and BW drop out. See Newey and Smith (2001) for details concerning these derivations.

There is relatively little Monte Carlo evidence on the small sample bias of the CU estimator.

Indeed, to the best of our knowledge, only Hansen, Heaton and Yaron (1996) and Stock and

Wright (2000) have undertaken simulation studies involving this estimator. They obtained similar

conclusions, which indicate that the CU estimator is effectively approximately median unbiased

but has a finite sample distribution with very fat tails, exhibiting sometimes extreme outlier

behaviour. We investigate this question further in section 4.

3.1.2 Empirical likelihood and exponential tilting estimators

Using either of the two previous methods, only k linear combinations of the s sample moment

conditions are in fact set equal to zero. However, it is possible to find a weighting scheme such

that all moment conditions are satisfied in the sample. Consider again the moment conditions

given in (1), EF [g (y, θ0)] = 0, where the distribution F (y) is unknown. Implicitly, by giving the

same weight (n−1) to each observation, GMM uses the empirical distribution function Fn (y) ≡
n−1

Pn
i=1 1 (yi ≤ y) as estimate for F (y), where the indicator function 1 (yi ≤ y) is equal to 1

if yi ≤ y and 0 otherwise. The distribution Fn (y) is the nonparametric maximum likelihood
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estimator of F (y), being the best estimator when no information about the population of interest

is available. However, because the moment conditions (1) are assumed to be satisfied in the

population, this information can be exploited in order to obtain a more efficient estimator of

F (y). Thus, we may select, as suggested firstly by Back and Brown (1993), the estimator θ̂

that minimizes the distance, relatively to some metric, between Fn (y) and a distribution function

FMD (y) satisfying the moment conditions (1). The distribution FMD (y) is, hence, the member of

the class F (θ) of all distribution functions that satisfy (1), F (θ) ≡ {FMD : EFMD
[g (y, θ0)] = 0},

that is closest to Fn.

In the selection of a particular probability measure in F (θ), different metrics for the closeness
between FMD (y) and Fn (y) may be used. Let M (Fn, FMD) be the distance metric utilized.

Then, any MD estimator θ̂ can be described as the solution to the program

θ̂ ≡ arg min
θ
M (Fn, FMD) , subject to pMDi ≥ 0,

nX
i=1

pMDi = 1 and
nX
i=1

pMDi gi (θ) = 0, (8)

where pMDi ≡ dFMD (y), i = 1, ..., n, and the last restriction is an empirical measure counterpart to
the moment conditions (1), imposing them numerically in the sample. Several estimation methods

based on (8), differing only in the choice of metricM (·), have been proposed. The most common
choices forM (·) are particular cases of the Cressie-Read power-divergence statistic [Cressie and
Read (1984)].1 In this case, the computationally complicated MD optimization (8) can be replaced

by a simpler one. Indeed, Newey and Smith (2001) showed that for any MD estimator based on the

Cressie-Read statistic there is a dual GEL estimator.2 GEL estimators are obtained as solution

to the saddle point problem

θ̂ ≡ arg min
θ
sup
φ

nX
i=1

ρ
£
φ0gi (θ)

¤
, (9)

where ρ (·) is a carrier function that conveys the information provided by the moment conditions
(1) and φ is an s-vector of auxiliary parameters that can be interpreted as Lagrange multipliers

associated to the last restriction of (8). Here, we focus on the most well known special cases of GEL

(and MD) estimators: ET, where ρ (·) = −eφ0gi(θ), and EL, for which ρ (·) = ln
£
1 + φ0gi (θ)

¤
.3

After estimating θ and φ in (9), the implied probabilities referred to in Back and Brown (1993),

previously denoted by pMDi and from now on by pGELi , i = 1, ..., n, may be estimated by calculating

1For a more general specification of M (·), which includes the Cressie-Read family as a particular case, see
Corcoran (1998).

2Newey and Smith (2001) emphasize that outside the Cressie-Read family an explicit dual relationship between

MD and GEL estimators is not likely to exist. See Smith (1997) for a detailed description of GEL estimators.
3Note that these and other expressions presented below are slightly different from those appearing in Newey and

Smith (2001) due to the normalizations imposed by them on the function ρ (·). However, that does not affect the
GEL estimators of θ.
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the ratios

p̂GELi ≡ pGELi

³
θ̂, φ̂

´
=

ρ1

h
φ̂
0
gi
³
θ̂
´i

Pn
i=1 ρ1

h
φ̂
0
gi
³
θ̂
´i , (10)

where ρj (v) ≡ ∂jρ(v)
∂vj

(j = 1, 2, ...). These p̂GELi sum to one by construction and, as implied by

(8), the sample moment conditions
Pn
i=1 p̂

GEL
i gi

³
θ̂
´
= 0 are numerically imposed. They are also

positive when φ̂
0
gi
³
θ̂
´
is small uniformly in i. Thus, an efficient estimator of F (y) in (1) can be

obtained by calculating the so-called GEL distribution

F̂GEL (y) =
nX
i=1

p̂GELi 1 (yi ≤ y) , (11)

which means that an efficient estimator of EF [a (y, θ0)], for any function a (·), is given byPn
i=1 p̂

GEL
i

a
³
y, θ̂

´
. Some of the bias-corrected estimators discussed in section 3.2 are based on a variant of

these GEL implied probabilities. See Ramalho and Smith (2002a,b) for other interesting applica-

tions of the weights p̂GELi .

Similarly to the GMM and CU estimators, Newey and Smith (2001) derived asymptotic ex-

pressions for the bias of GEL estimators,

bGEL = BI + (1− η)BV , (12)

where η = ρ1(0)ρ3(0)

2[ρ2(0)]
2 is a scalar. This expression is very similar to that presented for the CU

estimator in (7), apart from the weight (1− η).4 Hence, like the CU estimator, GEL estimators

have two less sources of bias than the GMM estimator. Furthermore, for the EL estimator the last

term of (12) disappears, as η = 1.5 Thus, the EL estimator removes the bias due to estimation of

the weighting matrix in the optimal linear combination of moments. Its bias is then the same as for

the (infeasible) GMM estimator based on the optimal linear combination of moment conditions.

With regard to the ET estimator, η = 1
2 , so the bias term BV is halved relatively to the CU

estimator.

Although the GEL formulation is simpler than the MD one, the computation of GEL esti-

mators is still not straightforward since ρ (·) in (9) is a saddle function. This seems to be the
main reason why so little evidence about the finite sample performance of EL and ET estimators

has been reported so far. To the best of our knowledge, only Imbens (2002) has examined this

issue. Furthermore, they have not been used in empirical work yet. Recently, Imbens (2002) has

suggested three alternative procedures that simplify the computation of GEL estimators. In the

4 In fact, Newey and Smith (2001) show that the CU estimator can also be interpreted as a member of the class

of GEL estimators.
5Note that ρ1 (0) = 1, ρ2 (0) = −1 and ρ3 (0) = 2 for the EL estimator and ρ1 (0) = ρ2 (0) = ρ3 (0) = −1 in the

ET case.
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Monte Carlo experiments undertaken in this paper we follow his penalty approach. Although very

time-consuming, the estimates obtained appear to be very reliable.

3.2 Bias-corrected GMM estimators

Bias-corrected GMM estimators constitute the second class of alternatives to standard GMM

estimation of moment condition models that we consider in this paper. The bias of the GMM

estimator θ̂GMM may be defined as

b (θ0) = EF
³
θ̂GMM − θ0

´
. (13)

If we are able to estimate b (θ0), we can obtain a bias-corrected GMM estimator θ̂BCGMM by

calculating

θ̂BCGMM = θ̂GMM − b̂, (14)

where b̂ denotes the estimated bias. There are several approaches to bias correction. In this section

we analyze the ability of both analytical and bootstrap methods to estimate the bias (13) and

obtain bias-corrected GMM estimators with attractive finite sample properties.

3.2.1 Analytical bias-corrected GMM estimators

Since an asymptotic bias formula for the GMM estimator is already available, see (6), the utiliza-

tion of analytical methods is computationally the simplest way of obtaining bias-adjusted GMM

estimators. Indeed, all we need to do is evaluate (6) at the GMM estimator, using a consistent es-

timator of the distribution function F (y) to estimate the expectations present in that expression,

and then calculate (14).

In this paper we consider two alternative estimators for F (y). One is the empirical distribution

Fn (y) which weights equally all functions of each observation i by n−1, i = 1, ..., n. The other

is a variant of the GEL distribution function given in (11), namely that suggested by Brown and

Newey (2002). Such distribution, which we call here first-stage GEL (FSGEL) distribution, is

obtained as follows. First, the objective GEL function
Pn
i=1 ρ

£
φ0gi (θ)

¤
, see (9), is optimized in

order only to φ, keeping θ = θ̂GMM . Then, the resulting estimators, φ̂FSGEL, are used to obtain

the FSGEL distribution

FFSGEL (y) =
nX
i=1

p̂FSGELi 1 (yi ≤ y) , (15)

where the probabilities p̂FSGELi ≡ pi
³
θ̂GMM , φ̂FSGEL

´
are calculated as in (10). We denote by

ABCa the analytical bias-corrected GMM estimator based on Fn (y) and by ABCb the one based

on FFSGEL (y).

8



To the best of our knowledge, no evidence about the ability of both approaches to reduce the

bias of the GMM estimator has been provided so far.

3.2.2 Bootstrap bias-corrected GMM estimators

Alternatively, the bias of the GMM estimator can be estimated using the bootstrap. Assume

that a random sample S of size n is collected from a population whose (unknown) cumulative

distribution function is F (y). Bootstrap samples are generated by randomly sampling the original

data with replacement. This resampling is based on a certain cumulative distribution function,

F ∗ (y), which assigns each observation a given probability of being sampled. The bias (13) can be

estimated as follows:

1. Compute θ̂GMM accordingly to (2) using the original data;

2. Generate B bootstrap samples S∗j , j = 1, ..., B, of size n by sampling the original data

randomly with replacement accordingly with the chosen distribution function F ∗ (y):

S∗j =
n
y∗j1, ..., y

∗
jn

o
,

where y∗ji, i = 1, ..., n, denotes the observations included in the bootstrap sample S∗j ;

3. For each bootstrap sample calculate the GMM estimator θ̂
∗
j :

θ̂
∗
j ≡ arg min

θ
g∗jn (θ) Ṽ

∗−1
jn g∗jn (θ) , j = 1, ...B,

where g∗jn (θ) = n−1
Pn
i=1 g

³
y∗ji, θ

´
and Ṽ ∗−1jn is evaluated at θ̃

∗
j , a preliminary consistent

estimator for θ0 based on the bootstrap sample S∗j ;

4. Average the B GMM estimators calculated in the preceding step:

θ̄
∗
=
1

B

BX
j=1

θ̂
∗
j ;

5. Estimate the bias of the GMM estimator θ̂ by calculating:

b̂ = θ̄
∗ − θ̂GMM . (16)

Subtracting the bias (16) from the GMM estimator θ̂GMM , it is then possible to obtain the

bias-corrected GMM estimator defined in (14):

θ̂BCGMM = 2θ̂GMM − θ̄
∗. (17)

This general procedure to obtain bootstrap estimators may be implemented in several distinct

forms. In this paper we consider three alternatives. The first is the so-called nonparametric (NP)
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bootstrap, where the resampling is based on the empirical distribution function, F ∗ (y) = Fn (y),

so each observation has equal probability n−1 of being drawn. Although this is the most commonly

applied bootstrap technique in econometrics, its direct application in the GMM framework seems

to be unsatisfactory in many cases. Indeed, when the model is overidentified, while the population

moment conditions EF [g (y, θ)] = 0 are satisfied at θ = θ0, the estimated sample moments are

typically non-zero, that is, there is no θ such that EFn [g (y, θ)] = 0 is met, except in very special

cases. Therefore, Fn (y) may be a poor approximation to the true underlying distribution of

the data and, hence, the NP bootstrap may not yield a substantial improvement over first-order

asymptotic theory in standard applications of GMM.6

As the key factor to successful application of bootstrap techniques in the GMM context seems

to require the satisfaction of a bootstrap version of the population moment conditions, Brown

and Newey (2002) suggested looking for a different resampling distribution, say F1 (y), such that

EF1 [g (y, θ)] = 0 for θ = θ̂GMM . Namely, instead of using the empirical distribution to resample

the original data, Brown and Newey (2002) proposed the employment of the FSGEL distribution

discussed in the previous sub-section, which assigns each observation a different probability of

being drawn. In fact, since
Pn
i=1 p̂

FSGEL
i gi

³
θ̂GMM

´
= 0 is the first-order condition of the FSGEL

optimization problem, see (9) and (10), this FSGEL bootstrap imposes the moment conditions,

evaluated at the GMM estimator θ̂GMM , on the sample: EFSGEL
h
g
³
y, θ̂GMM

´i
= 0. Further-

more, Brown and Newey (2002) proved that the FSGEL bootstrap is asymptotically efficient

relative to any bootstrap based on the empirical distribution function.

The other bootstrap method developed specifically for moment condition models was proposed

by Hall and Horowitz (1996). These authors suggested keeping Fn (y) as resampling distribution

and, instead, replacing the moment indicators g (y, θ) used in the GMM estimation criterion (2)

by the recentered moment indicators:

gc
³
y∗j , θ

´
= g

³
y∗j , θ

´
− 1
n

nX
i=1

gi
³
θ̂GMM

´
, j = 1, ..., B. (18)

Clearly, as n−1
Pn
i=1 gi

³
θ̂GMM

´
= EFn

h
g
³
y, θ̂GMM

´i
, this recentering guarantees that the expec-

tation of the modified moment indicators gc (·) with respect to the empirical distribution is zero,
6However, Hahn (1996) demonstrated theoretically that the NP bootstrap distribution of any GMM estimator

converges weakly to the limit distribution of the estimator. According to this author, the arguments against the use

of the NP bootstrap in the moment condition context apply to Hansen’s (1982) J test of overidentifying moment

conditions, not to the GMM estimator itself. Hence, we decided to include the analysis of the bias of the NP

bootstrap GMM estimator in the two Monte Carlo experiments that we conduct in section 4, investigating whether

or not it behaves better than simple GMM estimators in finite samples and how it performs comparatively with the

more refined bootstrap methods discussed below.
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EFn

h
gc
³
y∗j , θ

´i
= 0. To implement this recentered NP (RNP) bootstrap method some adapta-

tions must be made to the general procedures described earlier. Namely, in step 1 we have to

calculate also gn
³
θ̂GMM

´
and in step 3 GMM estimation is now based on the recentered moment

indicators (18), including that used to obtain the preliminary estimator θ̃
∗
j , and Ṽ

∗
jn = n

−1Pn
i=1

gc
³
y∗ji, θ̃

∗
j

´
gc
³
y∗ji, θ̃

∗
j

´0
, j = 1, ..., B. A Monte Carlo study by Horowitz (1998) showed that the

RNP bootstrap is able to reduce significantly the bias of the GMM estimator in some cases. To

the best of our knowledge, no simulation experiments examining the ability of the other bootstrap

methods to estimate the bias of the GMM estimator have been realized.

4 Monte Carlo simulation

In this section we conduct two Monte Carlo simulation studies, the first concerning models of

covariance structures, the other dedicated to instrumental variable models. In both cases our

main aim is the analysis of the small sample bias of all the alternative estimators for moment

condition models discussed throughout this paper. Therefore, for each estimator we report the

estimated mean and median bias, standard error (SE), root mean squared error (RMSE), median

absolute error (MAE) and the 0.05 and 0.95 quantiles of its Monte Carlo distribution. In each

experiment, 1000 Monte Carlo replications of samples of both 100 and 500 observations were

generated. All bootstrap estimators were based on 100 bootstrap samples in each Monte Carlo

replication. The estimators based on the FSGEL distribution were implemented using the EL

criterion function.

4.1 Covariance structure models

Covariance structure models are important in the analysis of a variety of economic processes.

Basically, they are employed to model the serial correlation structure of one economic variable

in longitudinal data or the relation between movements in different economic variables (such as

earnings and hours changes) over time. For applications involving these models see, for example,

Abowd and Card (1987, 1989), Behrman, Rozenzweig and Taubman (1994), Griliches (1979) and

Hall and Mishkin (1982). Altonji and Segal (1996) carried out an extensive Monte Carlo analysis of

the finite sample properties of the efficient GMM estimator in this framework and found that this

estimator is severely downward biased in small samples for most data distributions and in relatively

large samples for ‘badly behaved’ distributions. They explain this poor performance as due to the

correlation between the estimated second moments used to construct the moment indicators and

the sampling optimal weighting matrix. Indeed, as they argued, moment conditions consisting of

second moments are likely to be highly correlated with their covariance matrix “because individual

11



observations that increase the sample estimate of a variance will also tend to increase the sample

estimate of the variance of the variance” [Altonji and Segal (1996), p. 356]. In a similar study,

Horowitz (1998) showed that for n = 500 the RNP bootstrap GMM estimator, although also

biased in some cases, offers much reduced bias as compared to the standard GMM estimator.

4.1.1 Experimental design

Our first simulation study is based on one of the experimental designs analyzed by Altonji and

Segal (1996). We consider a setting where the objective is the estimation of a common population

variance θ0 for a scalar random variable yt, t = 1, ..., T , from observations on a balanced panel of

individuals covering T = 10 time periods. We assume a common population mean E (yt) = 0 and

that yti is independent over t = 1, ..., T and i = 1, ..., n. Thus, for each time period, the variance

of the observations can be computed using the standard unbiased estimator

mt (yt) =
1

n− 1
nX
i=1

y2ti, t = 1, ..., 10. (19)

These estimates of the second moments are stacked into a 10-dimensional vector, m (y) = [m1 (y1) ,

...,m10 (y10)]
0, where y = (y1, ..., y10)0, and are related to the population variance θ0 through the

10-vector of moment conditions

E [g (y, θ0)] = E [m (y)− ιθ0] = 0, (20)

where ι is a 10-vector of ones.

In this Monte Carlo study, all samples are generated in a way that ensures that the data

are independent across t and i. Five different distributions for yt, scaled to have mean 0 and

variance θ0 = 1, are considered. Although the elements of m (y) are independent, this information

is ignored in the estimation of the covariance matrix Ṽn =
Pn
i=1 gi

³
θ̃
´
gi
³
θ̃
´0
, where

gi (θ) = mi (yi)− ιθ =
n

n− 1y
2
i − ιθ. (21)

In this framework, it is straightforward to show that the GMM estimator is given by

θ̂GMM = w
nX
i=1

1

n
mi (yi) , (22)

where w =
³
ι0Ṽ −1n ι

´−1
ι0Ṽ −1n , while GEL estimators may be expressed as

θ̂GEL =
ι0

10

nX
i=1

p̂GELi mi (yi) . (23)

Thus, over i the GMM estimator ascribes equal weights whereas GEL applies the GEL implied

probabilities. Over t, GMM assigns distinct weights, given by the vector w, while for GEL each

12



time period receives an equal weight. Note that in (22) we have evaluated Ṽn at a non-efficient

GMM estimator θ̃ using the identity as weighting matrix, in which case identical weights were

assigned over both i and t:

θ̃ =
ι0

10 ∗ n
nX
i=1

mi (yi) . (24)

4.1.2 Results

Tables 1 and 2 report the results obtained for GMM and its three asymptotically first-order

equivalent alternatives for n = 100 and 500, respectively. The results obtained for the GMM

estimator are very similar to those presented by Altonji and Segal (1996). As in their study,

this estimator is clearly downward biased. This distortion is particularly marked for ‘badly-

behaved’ distributions, namely thicker-tailed symmetric (t5) and long-tailed skewed (lognormal

and exponential) distributions. The worst case is given by the lognormal distribution, where

the mean and median biases for n = 100 are, respectively, 41.9% and 43.5% and the empirical

90% confidence interval does not cover the true value θ0 = 1. Increasing the sample size to

500 significantly improves the estimation but, for the aforementioned distributions, the GMM

estimator still displays substantial bias.

Table 1 about here

Table 2 about here

While all estimators exhibit similar SE, the improvement for ET and EL in terms of both

mean and median bias, RMSE and MAE is clear, mainly in the latter case. Indeed, relative to the

GMM estimator, for n = 100 the mean bias of the EL estimator is less between 20.3% (lognormal)

and 84.6% (normal), the median bias between 19.5% (lognormal) and 87.5% (normal), the RMSE

between 9.3% (normal) and 32.2% (exponential) and the MAE between 10.5% (normal) and 43.5%

(exponential). For the ET estimator, the improvements over GMM are much more modest. On

the other hand, the results for the CU estimator are worse than those for the GMM estimator for

n = 100 and very similar for n = 500. Thus, whichever data distribution is considered, the best

is the EL estimator, followed by ET, GMM and, finally, CU, as is also clearly visible in Figure

1, which shows the sampling cumulative density functions for the four estimators for the n = 100

case. A theoretical explanation for this small sample behaviour arises from the bias functions

derived by Newey and Smith (2001). In fact, since G = −ι in this example, from (6), (7) and

(12) it follows that bGMM = bCU = 2bET = BV and bEL = 0. Although these bias values do not

correspond exactly to the Monte Carlo results we achieved, they reflect the hierarchy we found for

the four estimators.
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Figure 1 about here

Tables 3 and 4 report the results obtained for bias-corrected GMM estimators (see also Figure

2). In general, all analytical and bootstrap GMM estimators substantially reduce the bias of the

GMM estimator at the expense of a rather modest increase in their SE. Indeed, the gain from bias

reduction outweighs the increased contribution of SE to RMSE in almost all cases. The behaviour

of these estimators is not uniform, however. The improvements are much less significative for the

NP bootstrap, as expected. The RNP and FSGEL bootstrap methods are the best in terms of

bias but the former estimator exhibits too much variability in the lognormal and, only for n = 100,

t5 cases. On the other hand, ABCb tends to dominate the other analytical bias-corrected GMM

estimator according to all criteria. Relative to the RNP and FSGEL bootstrap techniques, the

bias performance of the ABCb estimator is slightly inferior but its RMSE is the best in many

cases.

Table 3 about here

Table 4 about here

Figure 2 about here

Comparing the results obtained for the two classes of estimators, we see that EL is the only

serious competitor for the best bias-corrected GMM estimators analyzed, namely for n = 500,

where its bias is similar and its RMSE is less. For n = 100, the bias of EL is in general larger but

its RMSE is similar.

4.2 Instrumental variable models

In this second Monte Carlo investigation we consider instrumental variable models, one of the

most widely spread applications of GMM. There are numerous studies showing that, in small

samples, GMM estimators are not unbiased, especially when the number of instruments is large

[e.g. Tauchen (1986), Kocherlakota (1990), and Anderson and Sorenson (1996)] or the correlation

between regressors and instruments is weak [e.g. Nelson and Startz (1990) and Bound, Jaeger and

Baker (1995)]. In this section we present additional evidence confirming those results and examine

how the other alternative estimation methods under analysis perform in this framework.

4.2.1 Data generating process

Consider the linear model described by equation

y = Xθ0 + u, (25)
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where y and X are n-vectors of observations on a dependent and an explanatory variable, respec-

tively, and u is a n-vector of normal errors with mean zero and variance one. Analogously to

Nelson and Startz (1990), we generate the regressor X and the s instruments Zj, j = 1, ..., s, that

constitute the matrix of instruments Z from

X = λu+ ² (26)

and

Zj = γj²+ vj , j = 1, ..., s, (27)

where ² and vj are random disturbances independently generated from a N (0, I) distribution and

λ and γj are fixed parameters that allow the correlations ρxu between X and u and ρxzj between

X and the instrument Zj to be controlled according to equations

λ =
ρxup
1− ρ2xu

(28)

and

γj = ρxzj

vuut 1 + λ2

1−
³
1 + λ2

´
ρ2xzj

. (29)

Five different experiments were performed, as described in Table 5. In the two first experi-

ments only one of the instruments utilized in estimation (Z1) is not worthless. However, while

in experiment 1 there is a single overidentifying moment condition, in the second case (and all

the others) the number of instruments is large relative to the number of regressors. Experiment

3 investigates the effects of increasing the correlation between the explanatory variable and the

instrument Z1. Experiment 4 examines the consequences of lower feedbacks from u to X in equa-

tion (25), an effect which is not usually analyzed [the only exception seems to be Blomquist and

Dahlberg (1999)] but, as Nelson and Startz (1990) implicitly acknowledge, the correlation ρxu

is one of the most important determinants of the accuracy with which an instrumental variable

model may be estimated, because high feedbacks from u to X make the model poorly identified

even when the correlation between regressors and instruments is relatively important. Finally, in

experiment 5, we repeat experiment 2 but now the additional nine instruments utilized convey

information about X. In all experiments the parameter θ0 was fixed at 1 and in the construction

of the bootstrap samples we resampled with replacement from the original (y,X,Z) sample.

Table 5 about here

In each experiment, as we ignore the homoskedasticity assumption, the GMM estimator is

given by

θ̂GMM =
³
X 0ZṼ −1n Z 0X

´−1
X 0ZṼ −1n Z 0y,
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while GEL estimators can be expressed as

θ̂GEL =
³
X 0Π̂ZṼ −1n Z0Π̂X

´−1
X 0Π̂ZṼ −1n Z 0Π̂y,

where Π̂ is a (n× n) diagonal matrix with typical element p̂geli , i = 1, ..., n. Comparing the two
expressions, we see that the difference between these estimators results from the weights applied

to the Z0X and Z0y matrices: the GMM estimator applies unit weights whereas GEL estimators

weight each component of those matrices using the GEL implied probabilities.

4.2.2 Results

Table 6 reports the results obtained for GMM, CU, ET and EL estimators for n = 100. In Figure

3 we show also their cumulative distribution functions. Similarly to the results widely reported by

other simulation studies, the GMM estimator is significantly biased in all experiments. Its best

(least bad) performance in terms of bias occurs when only two instruments are used (experiment 1),

precisely the case where it exhibits more dispersion, which reflects the traditional trade-off between

bias and efficiency that usually happens when the number of moment conditions is increased and

the GMM estimator is employed. Note that this effect occurs not only when the nine instruments

added are useless (experiments 2-4) but, surprisingly, also in experiment 5, where each one of the

new instruments has the same correlation with X as the instrument Z1 in experiment 1. Notice

also that the decrease in the dispersion of the GMM estimator when new instruments are added

is such that its RMSE is substantially lower in experiments 2-5.

Table 6 about here

Figure 3 about here

The bias of GMM is particularly significant in experiment 2, where this method clearly over-

estimates the parameter θ0, producing estimates greater than 1, the true value of θ0, in 95.5% of

the replications realized. In experiment 3 the GMM estimator still presents a substantial bias but,

due to the higher correlation between Z1 and X, there is an important improvement in its small

sample properties. In fact, although 10 instruments are still worthless, the mean bias of the GMM

estimator is reduced by 74.4% and its standard error by 36.8% by merely increasing ρxz1 from 0.3

to 0.7. With regard to the feedback from u to X in equation (25), analyzed in experiment 4, its

decrease seems to have two distinct consequences for the GMM estimator. On the one hand, its

bias diminishes considerably, which was expected because, although the correlation between Z1

and X is still 0.7, the component of the regressor not correlated with the error term now has a

higher influence over the behaviour of the dependent variable.7 On the other hand, there is an
7See also the bias expressions presented in footnote 8.
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increase in its dispersion, probably due to the higher variability of y, which in turn results directly

from X and u being less dependent. Finally, the results obtained in experiment 5, although, as

expected, better than those achieved for experiment 2, are worse than those of experiment 3,

which emphasizes the importance of high correlations between instruments and regressors in this

framework. Indeed, despite the existence of 10 useless instruments in experiment 3 and only 1 in

experiment 5, the presence of a single good instrument in the former case is sufficient for better

results than those obtained when 10 reasonable instruments are used in the latter.

Unlike the previous simulation study, the CU, ET and EL estimators now exhibit a very similar

behaviour in most experiments (the exception is the second one), as can be immediately seen from

Figure 3, where their sampling cumulative density functions are almost indistinguishable. This

happens because, in this case of moments consisting of products of instruments with a Gaussian

residual, the third moments of gi are zero, so the bias term BV of (7) and (12) disappears and,

hence, the asymptotic biases of the three estimators become equal.8 Furthermore, the three esti-

mators are nearly median unbiased in all the cases considered (again, the exception is experiment

2, where the CU estimator displays some bias). However, for the poorest identified models (exper-

iments 1 and 2), the Monte Carlo distributions of their estimators are quite disperse, having very

heavy left tails. These results conform with those obtained by Hansen, Heaton and Yaron (1996),

which showed that the criterion function for the CU estimator can sometimes lead to extreme

outliers for θ̂ but that, in general, this estimator will be median unbiased [see also the results

reported by Stock and Wright (2000)].9 By increasing the correlation between instruments and

regressors, much more concentrated sampling distributions for these three estimators are obtained,

without extreme values. For this reason, only small mean biases are present in experiments 3-

5, substantially less than that of the GMM estimator. However, even in these cases, the GMM

estimator possesses the least RMSE.

Table 7 presents the results for n = 500. There is a significant improvement in the properties

of all estimation methods but various points should be noted. First, even for this sample size,

the GMM estimator exhibits important biases, particularly in experiment 2. Thus, it seems that

it would be necessary to dramatically increase the number of observations to avoid this. Second,

the CU, ET and EL estimators appear even more similar. Their variability is much less for this

8 In fact, in this case bCU = bET = bEL = − 1
n
σxu
σ2u

¡
G0V −1G

¢−1
, while bGMM = 1

n
(s− 2) σxu

σ2u

¡
G0V −1G

¢−1
,

where σxu = E (Xu|Z) and σ2u = E
¡
u2
¯̄
Z
¢
. Note that while the bias of the latter estimator increases linearly with

the number of moment conditions, the biases of the others do not depend on it, as our simulation results confirm.
9Note that the median bias is more appropriate than the mean bias to assess the performance of the CU estimator

because, in this example, it coincides with the limited information maximum likelihood estimator, which is known

to have no finite moments [see inter alia Mariano (1982)].
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sample size, so they are now also approximately mean unbiased in all cases and present in general

less RMSE than the GMM estimator. Comparing the results obtained for experiments 1 and 2, we

can confirm that these methods are relatively indifferent to the addition of worthless instruments,

unlike the GMM estimator that continues to present the habitual trade-off between bias and

efficiency.

Table 7 about here

With regard to the bias-corrected GMM estimators, Figure 4 clearly shows their relatively

uniform performance, see also Tables 8 and 9.10 In the first two experiments, which concern

the poorest identified models, the behaviour of all bias-corrected estimators was not particularly

promising. In the first case, they produced similar biases to the GMM estimator itself and the

sampling distributions of the bootstrap estimators are much more variable. In the second case,

although they cut the median bias of the GMM estimator by about 30-40%, the bias is still

very high (around 16-20%). However, their behaviour improves substantially in the remaining

experiments and for n = 500, where all analytical and bootstrap bias-corrected estimators yielded

encouraging results. Apart from experiment 1, the analytical methods performed slightly better in

terms of bias and slightly worse in terms of dispersion than bootstrap estimators. Relative to the

other class of alternative estimators, the bias-corrected methods are less efficient in the remotion

of the bias of the GMM estimator but, due to their lower variability, exhibit less RMSE in most

cases.

Table 8 about here

Table 9 about here

Figure 4 about here

5 Conclusion

In this paper we investigated through some Monte Carlo experiments the finite sample properties

of various methods which are theoretically appropriate for the estimation of moment condition

models. Two different settings, where GMM is known to produce biased estimators, were consid-

ered. Clearly, our results showed that, in general, all the alternatives analyzed are better than

GMM to estimate both covariance structure (the exception is CU) and instrumental variable mod-

els. Although no estimator seems to fully dominate the others, we found that, overall, in the first

10 In the calculation of the analytical bias-adjusted GMM estimators we estimated also the bias term BV , since

the information that BV = 0 is usually unknown in empirical work.
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class of alternatives EL seems to be the best, while in the second the NP bootstrap produced

results clearly inferior to the other bias-corrected estimators.

In covariance structure models, the FSGEL bootstrap produced the best results, leading to

the least biased estimators in most cases and sharing with the EL method the best performance

according to the RMSE criterion. For instrumental variable models, ET and EL estimators ap-

peared to be nearly median unbiased in all cases and also mean unbiased for larger sample sizes.

However, in poorly identified models, they exhibited great variability which suggests that some

care must be taken in their application in small samples and when there are doubts about the

quality of the instruments. In those cases, any of the bias-corrected GMM estimators simulated

is an interesting alternative, since their RMSE in much less.

A natural extension of the investigation undertaken in this paper is the study of the finite

sample properties of analytical bias-corrected CU, ET and EL estimators, which can be based on

the bias expressions deduced by Newey and Smith (2001). Another potential avenue for future

research is the analysis of the ability of the bootstrap to eliminate the bias of those three estimators,

which is, however, a formidable task, requiring a great deal of computing time. Most of all, we hope

that the results found in this paper help to motivate the utilization of these alternative estimation

methods in applied work, since the increased computational burden is largely compensated by the

achievement of estimators with better finite sample properties.
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Table 1: Covariance structure models: first-order equivalent estimators (n=100)

Estimator Bias Quantiles SE RMSE MAE
Mean Median 0.05 0.95

t5
GMM -.103 -.107 0.795 1.009 .065 .122 .107
CU -.117 -.120 0.773 0.996 .070 .136 .120
ET -.085 -.090 0.810 1.030 .067 .109 .091
EL -.056 -.059 0.841 1.065 .068 .088 .068

t10
GMM -.049 -.050 0.865 1.038 .053 .073 .054
CU -.056 -.057 0.854 1.033 .056 .079 .059
ET -.036 -.039 0.877 1.053 .055 .066 .046
EL -.018 -.021 0.897 1.074 .056 .058 .041

Normal
GMM -.026 -.024 0.898 1.050 .047 .054 .038
CU -.030 -.028 0.890 1.048 .049 .057 .040
ET -.016 -.014 0.906 1.061 .048 .051 .036
EL -.004 -.003 0.916 1.074 .048 .049 .034

Lognormal
GMM -.419 -.435 0.436 0.770 .108 .433 .435
CU -.486 -.496 0.330 0.722 .122 .501 .496
ET -.419 -.432 0.400 0.789 .131 .439 .432
EL -.334 -.350 0.481 0.892 .132 .359 .350

Exponential
GMM -.148 -.154 0.716 0.999 .087 .171 .154
CU -.171 -.174 0.667 0.987 .098 .197 .174
ET -.123 -.125 0.728 1.030 .091 .153 .126
EL -.074 -.078 0.783 1.084 .090 .116 .087

Table 2: Covariance structure models: first-order equivalent estimators (n=500)

Estimator Bias Quantiles SE RMSE MAE
Mean Median 0.05 0.95

t5
GMM -.039 -.039 0.906 1.015 .034 .052 .040
CU -.040 -.040 0.905 1.014 .034 .053 .041
ET -.027 -.027 0.919 1.026 .033 .043 .030
EL -.014 -.014 0.931 1.041 .034 .037 .025

t10
GMM -.014 -.014 0.947 1.026 .025 .028 .020
CU -.014 -.014 0.947 1.026 .025 .029 .020
ET -.008 -.009 0.954 1.032 .025 .026 .018
EL -.002 -.003 0.959 1.038 .025 .025 .017

Normal
GMM -.006 -.006 0.961 1.029 .021 .021 .014
CU -.006 -.006 0.960 1.029 .021 .021 .014
ET -.003 -.003 0.964 1.032 .021 .021 .013
EL .001 .001 0.967 1.036 .021 .021 .013

Lognormal
GMM -.227 -.230 0.647 0.916 .083 .242 .230
CU -.233 -.235 0.632 0.910 .085 .248 .235
ET -.181 -.186 0.701 0.962 .080 .198 .186
EL -.122 -.129 0.753 1.032 .081 .147 .130

Exponential
GMM -.043 -.044 0.891 1.028 .041 .059 .046
CU -.044 -.045 0.888 1.028 .041 .060 .047
ET -.026 -.028 0.911 1.043 .039 .047 .033
EL -.009 -.009 0.928 1.057 .039 .040 .029
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Table 3: Covariance structure models: bias-corrected GMM estimators (n=100)

Estimator Bias Quantiles SE RMSE MAE
Mean Median 0.05 0.95

t5
GMM -.103 -.107 0.795 1.009 .065 .122 .107
NPB -.071 -.075 0.809 1.059 .076 .104 .082
RNPB -.035 -.044 0.843 1.101 .108 .113 .065
FSGELB -.043 -.049 0.841 1.089 .075 .087 .066
ABCa -.056 -.061 0.831 1.068 .072 .092 .070
ABCb -.046 -.052 0.843 1.083 .073 .086 .065

t10
GMM -.049 -.050 0.865 1.038 .053 .073 .054
NPB -.023 -.026 0.883 1.073 .060 .064 .045
RNPB -.010 -.012 0.898 1.084 .058 .059 .042
FSGELB -.010 -.012 0.897 1.085 .058 .059 .039
ABCa -.015 -.017 0.894 1.079 .057 .059 .042
ABCb -.011 -.013 0.897 1.081 .057 .058 .041

Normal
GMM -.026 -.024 0.898 1.050 .047 .054 .038
NPB -.006 -.004 0.912 1.074 .050 .050 .035
RNPB -.000 .000 0.921 1.078 .049 .049 .034
FSGELB -.000 .000 0.922 1.079 .049 .049 .034
ABCa -.001 -.000 0.920 1.078 .049 .049 .034
ABCb -.000 -.000 0.921 1.077 .049 .049 .033

Lognormal
GMM -.419 -.435 0.436 0.770 .108 .433 .435
NPB -.386 -.411 0.428 0.878 .144 .412 .411
RNPB -39.898 -.286 0.455 1.834 1243.082 1243.722 .326
FSGELB -.276 -.305 0.518 1.011 .159 .319 .307
ABCa -.357 -.378 0.464 0.884 .136 .382 .378
ABCb -.298 -.321 0.509 0.965 .147 .332 .322

Exponential
GMM -.148 -.154 0.716 0.999 .087 .171 .154
NPB -.096 -.104 0.731 1.093 .112 .147 .113
RNPB -.057 -.066 0.768 1.132 .109 .123 .086
FSGELB -.050 -.058 0.782 1.135 .107 .118 .083
ABCa -.084 -.090 0.754 1.090 .103 .132 .102
ABCb -.064 -.070 0.776 1.115 .101 .120 .088
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Table 4: Covariance structure models: bias-corrected GMM estimators (n=500)

Estimator Bias Quantiles SE RMSE MAE
Mean Median 0.05 0.95

t5
GMM -.039 -.039 0.906 1.015 .034 .052 .040
NPB -.020 -.020 0.921 1.040 .038 .042 .029
RNPB -.012 -.014 0.927 1.052 .039 .040 .028
FSGELB -.014 -.015 0.927 1.048 .038 .040 .028
ABCa -.017 -.018 0.926 1.044 .037 .040 .029
ABCb -.015 -.016 0.927 1.046 .037 .040 .028

t10
GMM -.014 -.014 0.947 1.026 .025 .028 .020
NPB -.003 -.003 0.956 1.039 .026 .026 .018
RNPB -.001 -.002 0.957 1.041 .026 .026 .018
FSGELB -.001 -.001 0.958 1.040 .026 .026 .018
ABCa -.002 -.002 0.958 1.040 .026 .026 .018
ABCb -.001 -.002 0.958 1.040 .026 .026 .018

Normal
GMM -.006 -.006 0.961 1.029 .021 .021 .014
NPB .001 .001 0.965 1.035 .021 .021 .013
RNPB .001 .001 0.966 1.036 .021 .021 .013
FSGELB .001 .001 0.967 1.036 .021 .021 .013
ABCa .001 .001 0.967 1.036 .021 .021 .013
ABCb .001 .001 0.967 1.036 .021 .021 .013

Lognormal
GMM -.227 -.230 0.647 0.916 .083 .242 .230
NPB -.162 -.167 0.674 1.028 .110 .196 .169
RNPB -.074 -.113 0.719 1.136 .742 .746 .130
FSGELB -.123 -.128 0.716 1.067 .108 .163 .134
ABCa -.163 -.167 0.687 1.006 .099 .190 .169
ABCb -.134 -.140 0.720 1.037 .098 .166 .143

Exponential
GMM -.043 -.044 0.891 1.028 .040 .059 .046
NPB -.013 -.014 0.913 1.067 .045 .047 .032
RNPB -.008 -.010 0.919 1.068 .044 .045 .031
FSGELB -.008 -.010 0.920 1.069 .044 .045 .031
ABCa -.012 -.013 0.916 1.063 .044 .045 .031
ABCb -.010 -.011 0.919 1.063 .043 .044 .030

Table 5: Instrumental variable models: experimental designs

Experiment s ρxu ρxz1 ρxz2 ρxz3 = ... = ρxz11
1 2 0.7 0.3 0 -
2 11 0.7 0.3 0 0
3 11 0.7 0.7 0 0
4 11 0.3 0.7 0 0
5 11 0.7 0.3 0 0.3
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Table 6: Instrumental variable models: first-order equivalent estimators (n = 100)

Estimator Bias Quantiles SE RMSE MAE
Mean Median 0.05 0.95

Model 1
GMM .020 .066 0.590 1.366 .324 .325 .162
CU .077 .004 0.218 1.330 6.141 6.141 .172
ET -.111 .004 0.206 1.320 .698 .707 .173
EL -.124 .007 0.178 1.328 .866 .874 .172

Model 2
GMM .270 .272 1.012 1.507 .152 .310 .273
CU .468 .043 -0.059 1.598 12.949 12.957 .217
ET -.233 .005 -0.269 1.407 1.610 1.627 .205
EL -.201 .004 -0.228 1.406 1.313 1.329 .202

Model 3
GMM .069 .082 0.897 1.209 .096 .118 .095
CU -.019 .005 0.740 1.162 .134 .136 .081
ET -.016 .003 0.751 1.157 .123 .124 .077
EL -.015 .002 0.759 1.153 .121 .122 .074

Model 4
GMM .040 .051 0.802 1.260 .140 .146 .105
CU -.018 -.005 0.680 1.253 .183 .184 .114
ET -.016 -.005 0.695 1.236 .169 .170 .109
EL -.016 -.003 0.698 1.237 .169 .170 .107

Model 5
GMM .100 .110 0.905 1.253 .107 .146 .118
CU -.034 -.001 0.634 1.192 .186 .189 .103
ET -.029 -.003 0.669 1.181 .160 .163 .096
EL -.028 .000 0.676 1.185 .158 .161 .093

Table 7: Instrumental variable models: first-order equivalent estimators (n = 500)

Estimator Bias Quantiles SE RMSE MAE
Mean Median 0.05 0.95

Model 1
GMM .001 .014 0.797 1.157 .113 .113 .072
CU -.011 .004 0.776 1.155 .118 .118 .073
ET -.011 .004 0.776 1.155 .118 .118 .073
EL -.011 .004 0.776 1.155 .118 .118 .073

Model 2
GMM .088 .091 0.942 1.223 .089 .125 .097
CU -.008 .005 0.783 1.162 .123 .124 .078
ET -.008 .005 0.787 1.160 .122 .123 .078
EL -.008 .006 0.786 1.160 .122 .123 .078

Model 3
GMM .018 .018 0.946 1.085 .044 .047 .033
CU -.001 -.000 0.918 1.068 .046 .046 .029
ET -.001 -.001 0.921 1.068 .046 .046 .029
EL -.001 -.001 0.921 1.068 .046 .046 .029

Model 4
GMM .012 .014 0.912 1.106 .060 .061 .040
CU .001 .003 0.899 1.098 .061 .061 .039
ET .001 .002 0.898 1.096 .061 .061 .039
EL .001 .002 0.900 1.098 .061 .061 .039

Model 5
GMM .025 .028 0.940 1.104 .051 .057 .039
CU -.002 .001 0.910 1.085 .055 .055 .036
ET -.002 .001 0.908 1.083 .055 .055 .035
EL -.002 .002 0.909 1.084 .055 .055 .035
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Table 8: Instrumental variable models: bias-corrected GMM estimators (n = 100)

Estimator Bias Quantiles SE RMSE MAE
Mean Median 0.05 0.95

Model 1
GMM .020 .066 0.590 1.366 .324 .325 .162
NPB -.027 .061 0.387 1.371 .525 .526 .164
RNPB -.028 .060 0.383 1.370 .524 .524 .163
FSGELB -.020 .060 0.442 1.371 .520 .520 .169
ABCa .020 .067 0.592 1.366 .325 .325 .161
ABCb .020 .067 0.592 1.366 .325 .325 .161

Model 2
GMM .270 .272 1.012 1.507 .152 .310 .273
NPB .187 .199 0.825 1.508 .217 .287 .224
RNPB .187 .199 0.823 1.506 .212 .283 .221
FSGELB .191 .200 0.851 1.500 .203 .279 .217
ABCa .163 .188 0.749 1.496 .243 .293 .222
ABCb .182 .196 0.804 1.499 .218 .284 .217

Model 3
GMM .069 .082 0.897 1.209 .096 .118 .095
NPB .031 .047 0.825 1.188 .111 .116 .087
RNPB .018 .033 0.811 1.178 .110 .112 .080
FSGELB .014 .031 0.813 1.171 .111 .112 .079
ABCa .008 .026 0.795 1.169 .115 .115 .080
ABCb .011 .028 0.805 1.170 .113 .113 .080

Model 4
GMM .040 .051 0.802 1.260 .140 .146 .105
NPB .012 .021 0.745 1.249 .157 .158 .106
RNPB .007 .019 0.743 1.243 .153 .153 .100
FSGELB .004 .017 0.745 1.244 .154 .154 .105
ABCa .005 .019 0.740 1.244 .155 .155 .104
ABCb .006 .021 0.746 1.240 .152 .153 .102

Model 5
GMM .100 .110 0.905 1.253 .107 .146 .118
NPB .043 .057 0.802 1.226 .134 .140 .099
RNPB .032 .044 0.790 1.214 .132 .136 .094
FSGELB .031 .045 0.796 1.213 .130 .134 .093
ABCa .022 .038 0.780 1.210 .138 .140 .093
ABCb .029 .045 0.798 1.208 .133 .136 .092
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Table 9: Instrumental variable models: bias-corrected GMM estimators (n = 500)

Estimator Bias Quantiles SE RMSE MAE
Mean Median 0.05 0.95

Model 1
GMM .001 .014 0.797 1.157 .113 .113 .072
NPB .001 .015 0.793 1.156 .114 .114 .073
RNPB .001 .015 0.794 1.158 .114 .114 .073
FSGELB .001 .014 0.787 1.157 .114 .114 .073
ABCa .001 .014 0.797 1.157 .113 .113 .072
ABCb .001 .014 0.797 1.157 .113 .113 .072

Model 2
GMM .088 .091 0.942 1.223 .089 .125 .097
NPB .027 .036 0.838 1.192 .111 .114 .081
RNPB .026 .034 0.835 1.189 .111 .114 .080
FSGELB .029 .039 0.849 1.192 .108 .112 .080
ABCa .018 .030 0.826 1.186 .116 .117 .080
ABCb .023 .034 0.835 1.187 .112 .114 .080

Model 3
GMM .018 .018 0.946 1.085 .044 .047 .033
NPB .003 .005 0.926 1.074 .046 .046 .029
RNPB .002 .004 0.925 1.071 .046 .046 .029
FSGELB .001 .004 0.925 1.072 .046 .046 .030
ABCa .001 .002 0.924 1.072 .046 .046 .029
ABCb .001 .002 0.924 1.071 .046 .046 .030

Model 4
GMM .012 .014 0.912 1.106 .060 .061 .040
NPB .003 .006 0.903 1.099 .061 .061 .041
RNPB .003 .005 0.902 1.098 .061 .061 .041
FSGELB .002 .005 0.898 1.098 .061 .061 .041
ABCa .002 .005 0.901 1.099 .061 .061 .040
ABCb .002 .004 0.901 1.099 .061 .061 .040

Model 5
GMM .025 .028 0.940 1.104 .051 .057 .039
NPB .004 .008 0.911 1.091 .054 .055 .036
RNPB .003 .006 0.910 1.090 .054 .055 .036
FSGELB .003 .006 0.912 1.090 .054 .055 .037
ABCa .002 .005 0.910 1.088 .055 .055 .036
ABCb .003 .005 0.911 1.089 .054 .054 .036
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Figure 1: Covariance structure models: sampling cumulative density functions (n=100; 1000 replications)
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Figure 2: Covariance structure models: sampling cumulative density functions for bias-corrected GMM estimators
 (n=100; 1000 replications)
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Figure 3: Instrumental variable models: sampling cumulative density functions (n=100; 1000 replications)
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Figure 4: Instrumental variable models: sampling cumulative density functions for bias-corrected GMM estimators
 (n=100; 1000 replications)




